Determine the abelian groups of order 900.

Let \(p \) be the smallest prime dividing the order of a finite group \(G \), and suppose \(G \) has a subgroup \(H \) of index \(p \). Show that \(H \) is normal.

Show that the ideal \(I \) in \(\mathbb{Z}[x] \) generated by 11 and \(x^2 + 1 \) is maximal.

Let \(S, T \) be diagonalizable operators on a finite-dimensional complex vector space \(V \). Suppose that \(ST = TS \). Show that there is a basis for \(V \) consisting of simultaneous eigenvectors for all \(S, T \).

Show that \(x^5 + y^7 + z^{11} \) is irreducible in \(\mathbb{C}[x, y, z] \).

Exhibit a finite field with 32 elements.

Let \(T \) be a diagonalizable operator on a finite-dimensional complex vector space \(V \). Given an eigenvalue \(\lambda \) of \(T \) on \(V \), show that there is a polynomial \(P \in \mathbb{C}[x] \) such that \(P(T) \) is the projector to the \(\lambda \)-eigenspace.

Explicitly determine all fields between \(\mathbb{Q} \) and \(\mathbb{Q}(\zeta) \), where \(\zeta \) is a primitive 12th root of unity.