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Abstract

For any finite connected poset P , Galashin introduced a simple convex (|P |−2)-
dimensional polytope A (P ) called the poset associahedron. We study the face
numbers of poset associahedra. First, we show that the face numbers of A (P )
only depend on the comparability graph of P . Second, for a certain family of
posets, whose poset associahedra interpolate between the classical permutohedron
and associahedron, we give a simple combinatorial interpretation of the h-vector,
which allows us to prove real-rootedness of some of their h-polynomials. Then, we
conjecture a general identity involving the h-polynomials. Finally, we survey some
results and conjectures on the γ-positivity of poset associahedra.
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1 Introduction

For a finite connected poset P , Galashin introduced the poset associahedron A (P ) (see
[Gal21]). The faces of A (P ) correspond to tubings of P , and the vertices of A (P )
correspond to maximal tubings of P ; see Section 2.3 for the definitions. A (P ) can also
be described as a compactification of the configuration space of order-preserving maps
P → R.

Many polytopes can be described as poset associahedra, including permutohedra and
associahedra. In particular, when P is the claw poset, i.e. P consists of a unique minimal
element 0 and n pairwise-incomparable elements, then A (P ) is the n-permutohedron. On
the other hand, when P is a chain of n + 1 elements, i.e. P = Cn+1, then A (P ) is the
associahedron Kn+1.

In this thesis, we survey recent results and conjectures concerning the face numbers
of poset associahedra. Most of the results here are joint work with Andrew Sack (see
[NS23a, NS23b]).

For a d-dimensional polytope P , the f -vector of P is the sequence (f0(P ), . . . , fd(P ))
where fi(P ) is the number of i-dimensional faces of P . The f -polynomial of P is

fP (t) =
d∑

i=0

fi(P )ti.

For simple polytopes such as poset associahedra, it is often better to consider the smaller
and still nonnegative h-vector and h-polynomial defined by the relation

fP (t) = hP (t+ 1).

It is well-known that when P is a simple polytope, its h-vector is symmetric: hi(P ) =
hd−i(P ). Thus, there is the even smaller γ-vector and γ-polynomial defined by

hP (t) =

⌊ d
2
⌋∑

i=0

γi(P )ti(1 + t)d−2i = (1 + t)dγP

(
t

(1 + t)2

)
.

1.1 Comparability invariance

The comparability graph of a poset P is a graph C(P ) whose vertices are the elements
of P and where i and j are connected by an edge if i and j are comparable. A property
of P is said to be comparability invariant if it only depends on C(P ). We will show in
Section 3 that the face numbers of poset associahedra is a comparability invariant.

Theorem 3.1 ([NS23b, Theorem 1.1]). The f -vector of A (P ) is a comparability invari-
ant.

1.2 Stack-sorting

Stack-sorting is a function s : Sn → Sn which attempts to sort the permutations w in
Sn in linear time, not always sorting them completely (see definition in Section 4.3). A
permutation w ∈ Sn is stack-sortable if s(w) = 12 . . . n. It is well-known that stack-
sortable permutations are exactly 231-avoiding permutations. Thus, we have an alterna-
tive interpretation for the h-vector of A (Cn+1): hi counts the number of permutations in
s−1(12 . . . n) with exactly i descents.

In Section 4, we will study broom posets An,k = Cn+1 ⊕Ak where Ak is the antichain
of k elements. In particular, A0,k is a claw poset, and An,0 is the chain Cn+1. For example,
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Figure 1 shows three broom posets. The left poset A0,3 is a claw poset, the right poset
A3,0 is a chain, and the middle poset is an intermediate broom poset.

A0,3 A2,3 A3,0

Figure 1: Some broom posets

Surprisingly, the h-vector of A (An,k) is also counted by descents of stack-sorting
preimages. Let Sn,k = {w | w ∈ Sn+k, wi = i for all i > k}, we prove the following
generalization of the above classic result.

Theorem 4.1 ([NS23a, Theorem 4.8]). Let Sn,k = {w | w ∈ Sn+k, wi = i for all i > k}
and h = (h0, h1, . . . , hn+k−1) be the h-vector of A (An,k). Then hi counts the number of
permutations in s−1(Sn,k) with exactly i descents.

In the process of proving Theorem 4.1, we find the size of s−1(Sn,k) in terms of k! and

the Catalan convolution C
(k)
n , which will be introduced in Section 4.2.

Corollary 4.14. For all n, k ≥ 0, we have

|s−1(Sn,k)| = k! · C(k)
n .

Note that C
(0)
n is the classic Catalan number Cn. Thus, setting k = 0 in Corollary

4.14, we obtain the classic result that s−1(12 . . . n) = Cn. Finally, in Section 4.5, we will
use a “happy coincidence” in stack-sorting to prove real-rootedness of the h-polynomials
of A (An,2).

Theorem 4.33. Let Hn(x) be the h-polynomial of A (An,2). Then, Hn(x) is real-rooted.

1.3 An h-vector identity

In Section 5, we will make a conjecture that generalizes the happy coincidence above. We
say S is an autonomous subset of a poset P if for all x, y ∈ S and z ∈ P − S, we have

(x ⪯ z ⇔ y ⪯ z) and (z ⪯ x ⇔ z ⪯ y).

In other words, every element in P − S “sees” every element in S the same.
In Section 5.1, we will introduce three families of polynomials Bw(x), Gw(x), F̃w(x) in

Z[x], indexed by permutations w in Sn. Then, we make the following conjectures.

Conjecture 5.1. Let P be a poset with a proper autonomous subposet S that is a chain
of size n. For 1 ≤ i ≤ n, let Pi be the poset obtained from P by replacing S by an
antichain of size i. Let hP (x), hP1(x), . . ., hPn(x) be the h-polynomials of A (P ), A (P1),
. . ., A (Pn), respectively. Then,

hP (x) =
1

n!

∑
w∈Sn

Bw(x)hPℓ(w)(x).
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We will show that Conjecture 5.1 follows from the following conjecture.

Conjecture 5.2. For all n,∑
w∈Sn

tℓwGw(x) =
∑
w∈Sn

t(t+ x) . . . (t+ (ℓw − 1)x)F̃w(x).

1.4 γ-positivity

In Section 6, we give combinatorial interpretations of the h-and-γ-vectors of cyclic fence
posets in terms of colored balanced paths (see definitions in Section 6.1). For example,
Figure 2 gives examples of two cyclic fence posets: CF6 and CF7.

(a) CF6 (b) CF7

Figure 2: Cyclic fence posets

Theorem 6.5. For CF2(n+1), the h-vector is given by

hi = |{w ∈ CPn,n | #red peak steps−#blue peak steps = 2(i− n)}|.

For CF2n+1, the h-vector is given by

hi = |{w ∈ CPn−1,n | #red side steps−#blue side steps = 2(i− n) + 1}|.

Corollary 6.8. For CF2(n+1), the γ-vector is given by

γi = 4i
(
n

i

)2

.

For CF2n+1, the γ-vector is given by

γi = 4i
(
n

i

)(
n− 1

i

)
.

In particular, the poset associahedra of cyclic fence posets are γ-positive.

From Corollary 6.8 and computational evidence, we make a few conjectures about
γ-positivity of poset associahedra.

Conjecture 6.9. All poset associahedra are γ-positive.

Conjecture 6.10. Let P be a connected poset on n elements, and P is not Cn or
K⌊n

2 ⌋,⌈n
2 ⌉. Then the h-and-γ-vectors of A (P ) satisfy

hCn ≪ hP ≪ hK⌊n
2 ⌋,⌈n

2 ⌉
,

γCn ≪ γP ≪ γK⌊n
2 ⌋,⌈n

2 ⌉
.

Here, we say (a1, . . . , ak) ≪ (b1, . . . , bk) if ai < bi for all 1 ≤ i ≤ k. Conjecture 6.9
can be made even stronger as follows.

Conjecture 6.11. The h-polynomials of poset associahedra are real-rooted.
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2 Preliminaries

2.1 Polynomials and sequences

A polynomial p(x) = a0 + a1x+ . . .+ anx
n ∈ R≥0[x] is called

• symmetric if ai = an−i for all i ∈ [0, n];

• unimodal if a0 ≤ a1 ≤ . . . ≤ aj ≥ aj+1 ≥ . . . ≥ an for some j;

• log-concave if ai−1ai+1 ≤ a2i for all i ∈ [n− 1];

• real-rooted if all complex roots of p(x) are real.

When p(x) is symmetric, it has a unique expansion in terms of binomials ti(1 + t)n−2i

for 0 ≤ i ≤ n/2, i.e. we can write

p(x) =

⌊n
2
⌋∑

i=0

γit
i(1 + t)d−2i.

We say p(x) is γ-nonnegative (resp. γ-positive) if all coefficients γi in the above expansion
are nonnegative (resp. positive). Since the f -and-h-vectors are nonnegative and have no
internal zeros, we have the following implications among these properties:

• real-rooted ⇒ log-concave ⇒ unimodal;

• symmetric and real-rooted ⇒ γ-nonnegative ⇒ symmetric and unimodal.

Finally, we say a sequence (a0, a1, . . . , an) has property X if its generating function
p(x) = a0 + a1x+ . . .+ anx

n has property X.

2.2 Polytope and face numbers

A convex polytope P is the convex hull of a finite collection of points in Rn. The dimension
of a polytope is the dimension of its affine span. A face F of a convex polytope P is the
set of points in P where some linear functional achieves its maximum on P . Faces that
consist of a single point are called vertices and 1-dimensional faces are called edges of P .
A d-dimensional polytope P is simple if any vertex of P is incident to exactly d edges.

For a d-dimensional polytope P , the face number fi(P ) is the number of i-dimensional
faces of P . In particular, f0(P ) counts the vertices and f1(P ) counts the edges of P . The
sequence (f0(P ), f1(P ), . . . , fd(P )) is called the f -vector of P , and the polynomial

fP (t) =
d∑

i=0

fi(P )ti

is called the f -polynomial of P . The h-vector (h0(P ), . . . , hd(P )) and h-polynomial
hP (t) =

∑d
i=0 hi(P )ti are defined by the relation

fP (t) = hP (t+ 1).

It is well-known that when P is a simple polytope, its h-vector is nonnegative and satisfies
the Dehn-Sommerville symmetry: hi(P ) = hd−i(P ). When the h-polynomial is symmet-
ric, recall that it has a unique expansion in terms of (centered) binomials ti(1 + t)d−2i
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for 0 ≤ i ≤ d/2. This unique expansion gives the γ-vector (γ0(P ), . . . , γ⌊ d
2
⌋(P )) and

γ-polynomial γP (t) =
∑⌊ d

2
⌋

i=0 γi(P )ti defined by

hP (t) =

⌊ d
2
⌋∑

i=0

γi(P )ti(1 + t)d−2i = (1 + t)dγP

(
t

(1 + t)2

)
.

Note that the γ-vector may not be nonnegative.

2.3 Poset and poset associahedra

Definition 2.1. A partially ordered set (poset) is a set P with a partial order ⪯ satisfying
the following conditions.

1. Reflexivity : x ⪯ x for all x ∈ P .

2. Antisymmetry : if x ⪯ y and y ⪯ x then x = y.

3. Transitivity : if x ⪯ y and y ⪯ z then x ⪯ z.

We have some poset terminologies.

Definition 2.2. Let (P,⪯) be a finite poset, and τ, σ ⊆ P be subposets.

• τ is connected if it is connected as an induced subgraph of the Hasse diagram of P .

• τ is convex if whenever x, z ∈ τ and y ∈ P such that x ⪯ y ⪯ z, then y ∈ τ .

• τ is a tube of P if it is connected and convex. τ is a proper tube if 1 < |τ | < |P |.

• τ and σ are nested if τ ⊆ σ or σ ⊆ τ . τ and σ are disjoint if τ ∩ σ = ∅.

• We say σ ≺ τ if σ ∩ τ = ∅, and there exists x ∈ σ and y ∈ τ such that x ⪯ y.

• A tubing T of P is a set of proper tubes such that any pair of tubes in T is either
nested or disjoint, and there is no subset {τ1, τ2, . . . , τk} ⊆ T such that τ1 ≺ τ2 ≺
. . . ≺ τk ≺ τ1. We will refer to the latter condition as the acyclic condition.

• A tubing T is maximal if it is maximal under inclusion, i.e. T is not a proper subset
of any other tubing.

Example 2.3. Figure 3 shows examples and non-examples of tubings of posets. Note
that the right-most example in Figure 3b is a non-example since it violates the acyclic
condition. In particular, if we label the tubes from right to left as τ1, τ2, τ3, then we have
τ1 ≺ τ2 ≺ τ3 ≺ τ1.

1

2 3 4

5

1

2 3 4 5

1

2

3

4

5

6

(a) Examples

1

2 3 4

5

1

2 3 4 5

1

2

3

4

5

6

(b) Non-examples

Figure 3: Examples and non-examples of tubings of posets
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Definition 2.4 ([Gal21, Theorem 1.2]). For a finite connected poset P , there exists a
simple, convex polytope A (P ) of dimension |P | − 2 whose face lattice is isomorphic to
the set of tubings ordered by reverse inclusion. The faces of A (P ) correspond to tubings
of P , and the vertices of A (P ) correspond to maximal tubings of P . This polytope is
called the poset associahedron of P .

Example 2.5. Examples of poset associahedra can be seen in Figure 4. In particular, if
P is a claw, i.e. P consists of a unique minimal element 0 and n pairwise-incomparable
elements as shown in Figure 4a, A (P ) is a permutohedron. If P is a chain, A (P ) is an
associahedron.

0

1 2 3

0

1 2 3

0

1 2 3

0

1 2 3

0

1 2 3

0

1 2 3

(a) Permutohedron
0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

(b) Associahedron

Figure 4: Permutohedron and associahedron as poset associahedra

3 Comparability invariant

The comparability graph of a poset P is a graph C(P ) whose vertices are the elements of
P and where i and j are connected by an edge if i and j are comparable. A property of
P is said to be comparability invariant if it only depends on C(P ). Properties of finite
posets known to be comparability invariant include the order polynomial and number
of linear extensions [Sta86], the fixed point property [DPW85], and the Dushnik–Miller
dimension [TMS76]. It turns out that the face numbers of poset associahedra is also a
comparability invariant.

Theorem 3.1 ([NS23b, Theorem 1.1]). The f -vector of A (P ) is a comparability invari-
ant.

In this section, we sketch the proof of Theorem 3.1 in [NS23b].

3.1 Autonomous subposets

Definition 3.2. Let P and S be posets and let a ∈ P . The substitution of a for S is the
poset P (a → S) on the set (P − {a}) ⊔ S formed by replacing a with S.

More formally, x ⪯P (a→S) y if and only if one of the following holds:

• x, y ∈ P − {a} and x ⪯P y

• x, y ∈ S and x ⪯S y

8



• x ∈ S, y ∈ P − {a} and a ⪯P y

• y ∈ S, x ∈ P − {a} and y ⪯P a.

Definition 3.3. Let P be a poset and let S ⊆ P . S is called autonomous if there exists
a poset Q and a ∈ Q such that P = Q(a → S).

Equivalently, S is autonomous if for all x, y ∈ S and z ∈ P − S, we have

(x ⪯ z ⇔ y ⪯ z) and (z ⪯ x ⇔ z ⪯ y).

Definition 3.4. For a poset S, the dual poset Sop is defined on the same ground set
where x ⪯S y if and only if y ⪯Sop x. The flip of S in P = Q(a → S) is the replacement
of P by Q(a → Sop).

See Figure 5a for an example of an autonomous subset and Figure 5b for an example
of a flip.

1

2 3
4

5 6 7

8 9

10 11 12
13

14 15

16 17

18

(a) An autonomous subset S of a poset P .

1

2 3
4

5 6 7

8 9

10 11 12

13
14 15

16 17

18

(b) A flip of S.

Figure 5

We have the following key lemma.

Lemma 3.5 ([DPW85, Theorem 1]). If P and P ′ are finite posets such that C(P ) =
C(P ′) then P and P ′ are connected by a sequence of flips of autonomous subsets.

By Lemma 3.5, in order to prove that a property is comparability invariant, we only
need to prove that it is preserved under flips.

3.2 Proof sketch of Theorem 3.1

Let P = Q(a → S) and P ′ = Q(a → Sop). By an abuse of notation, we let A (P ) also
refer to the set of tubings of P . Our goal is to build a bijection ΦP,S : A (P ) → A (P ′)
such that for any tubing T ∈ A (P ), we have |T | = |ΦP,S(T )|. Let T ∈ A (P ), we will
describe how to construct T ′ := ΦP,S(T ).

Definition 3.6. A tube τ ∈ T is good if τ ⊆ P −S, τ ⊆ S, or S ⊆ τ and is bad otherwise.
We denote the set of good tubes by Tgood and the set of bad tubes by Tbad.
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The key idea of defining ΦP,S is to decompose Tbad into a triple (L,M,U) where L
and U are nested sequences of sets, some of which may be marked, contained in P −S and
M is an ordered set partition of S. We build the decomposition in such a way so that we
can uniquely recover Tbad from (L,M,U). Then, we construct T ′ by keeping Tgood and
replacing Tbad by T ′

bad, which is obtained from (L,M,U) where M is the reverse of M.
We decompose Tbad as follows.

Definition 3.7. A tube τ ∈ Tbad is called lower (resp. upper) if there exist x ∈ τ − S
and y ∈ τ ∩S such that x ⪯ y (resp. y ⪯ x). We denote the set of lower tubes by TL and
the set of upper tubes by TU .

Lemma 3.8 (Structure Lemma). Tbad is the disjoint union of TL and TU . Furthermore,
TL and TU each form a nested sequence.

For example, Tbad in Figure 6a is the disjoint union of the blue TL and red TU .

Definition 3.9 (Tubing decomposition). Let TL = {τ1, τ2, . . .} where τi ⊂ τi+1 for all i.
For convenience, we define τ0 = ∅. We define a nested sequence L = (L1, L2, . . .) and a
sequence of disjoint sets ML = (M1

L,M
2
L, . . .) as follows.

• For each i ≥ 1, let Li = τi − S, and mark Li with a star if (τi − τi−1) ∩ S ̸= ∅.

• If Li is the j-th starred set, let M j
L = (τi − τi−1) ∩ S.

We define the sequences U and MU analogously. We make the following definitions.

• Let M̂ := S − ⋃
τ∈Tbad

τ.

• For sequences a = (a1, . . . , ap) and b = (b1, . . . , bq), let the sequence a · b :=
(a1, . . . , ap, b1, . . . , bq) be their concatenation, and let a := (ap, . . . , a1) be the re-
verse of a.

• We define

M :=

{
ML · MU if M̂ = ∅
ML · (M̂) · MU if M̂ ̸= ∅

where (M̂) is the sequence containing exactly one set: M̂ .

• The decomposition of Tbad is the triple (L,M,U).
Example 3.10. Figure 6 gives an example of a decomposition.

Lemma 3.11 (Reconstruction algorithm). Tbad can be reconstructed from its decomposi-
tion.

Proof. Let M = (M1, . . . ,Mn). To reconstruct TL, we set τ1 = L1 ∪M1 and take

τi =

{
τi−1 ∪ Li if Li is not starred

τi−1 ∪ Li ∪Mj if Li is marked with the j-th star.

For TU , we set τ1 = U1 ∪Mn and

τi =

{
τi−1 ∪ Ui if Ui is not starred

τi−1 ∪ Ui ∪Mn−j+1 if Ui is marked with the j-th star.

10



1

2 3
4
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8 9
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13

14 15

16 17

18

TL

TU

(a) TL is blue and TU is red.

1

2 3
4

5 6 7

8 9

10 11 12
13

14 15

16 17

18

U = ({13, 15}∗, {13, 14, 15})

M = ({6}, {5}, {7}, {8, 9, 10, 11}, {12})

L = ({3}∗, {3}∗, {1, 2, 3}∗, {1, 2, 3, 4})

(b) L is blue, M is purple, and U is red.

Figure 6: The decomposition of Tbad.

Lemma 3.12. Applying the reconstruction algorithm to (L,M,U) yields a proper tubing
T ′
bad of P ′ with exactly |Tbad| tubes.

Example 3.13. Figure 7 shows the tubes in T ′
bad and its L,M,U . One can check that

the set M for T ′
bad (in Figure 7b) is the reverse of the set M for Tbad (in Figure 6b).

Furthermore, the number of tubes in T ′
bad (in Figure 7a) is the same as that in Tbad (in

Figure 6a).
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U = ({13, 15}∗, {13, 14, 15})

M = ({12}, {8, 9, 10, 11}, {7}, {5}, {6})

L = ({3}∗, {3}∗, {1, 2, 3}∗, {1, 2, 3, 4})

(b) L, M, and U of T ′
bad

Figure 7: The decomposition of T ′
bad.

Finally, we define T ′ := T ′
bad ⊔ Tgood and take ΦP,S(T ) := T ′.

Lemma 3.14. T ′ is a proper tubing of P ′. Furthermore, ΦP ′,S(T
′) = T and |ΦP,S(T )| =

|T |.

This completes the proof of Theorem 3.1.

4 h-vector of broom posets and stack-sorting

4.1 Broom posets

The ordinal sum of two posets (P,<P ) and (Q,<Q) is the poset (R,<R) whose elements
are those in P ∪Q, and a ≤R b if and only if

11



• a, b ∈ P and a ≤P b or

• a, b ∈ Q and a ≤Q b or

• a ∈ P and b ∈ Q.

We denote the ordinal sum of P and Q as P ⊕ Q. Let Cn be the chain poset of size n and
Ak be the antichain of size k. In this section, we study the broom posets An,k = Cn+1⊕Ak.
In particular, An,0 is the chain poset Cn+1, and A0,k is the claw poset C1⊕Ak. Recall that
A (An,0) is the associahedron and A (A0,k) is the permutohedron (see Figure 4). Hence,
the poset associahedra of broom posets interpolate between the classical permutohedra
and associahedra. Hence, one may expect a general combinatorial interpretation of the
face numbers of these poset associahedra that generalizes that of both permutahedra and
associahedra. Indeed, it was shown in [NS23a] that the h-vector of the poset associahedra
of broom posets counts descents of stack-sorting preimages.

Stack-sorting is a function s : Sn → Sn which attempts to sort the permutations w
in Sn in linear time, not always sorting them completely (see definition in Section 4.3).
A permutation w ∈ Sn is stack-sortable if s(w) = 12 . . . n. It is well-known that the
h-vector of the classical associahedra counts descents of stack-sortable permutations. In
the more general case of poset associahedra of broom posets, we have the following result.

Theorem 4.1 ([NS23a, Theorem 4.8]). Let Sn,k = {w | w ∈ Sn+k, wi = i for all i > k}
and h = (h0, h1, . . . , hn+k−1) be the h-vector of A (An,k). Then hi counts the number of
permutations in s−1(Sn,k) with exactly i descents.

In the next few sections, we will summarize the proof of Theorem 4.1 in [NS23a]. The
main idea is to use a “third party” set Pn,k (defined in Section 4.2). Then, in Section
4.3.2 and 4.4.4, we will describe descent-preserving bijections from s−1(Sn,k) and B-trees,
an object counted by the h-vector of A (An,k), to Pn,k, thus proving Theorem 4.1.

We also want to point out the following result by Brändén.

Theorem 4.2 ([Brä08]). For A ⊆ Sn, we have

∑
σ∈s−1(A)

xdes(σ) =

⌊n−1
2

⌋∑
m=0

|{σ ∈ s−1(A) : peak(σ) = m}|
2n−1−2m

xm(1 + x)n−1−2m,

where peak(σ) is the number of index i such that σi−1 < σi > σi+1.

Hence, Theorem 4.1 gives the following corollary.

Corollary 4.3. The γ-vector of A (An,k) is nonnegative.

4.2 Catalan convolution

The Catalan numbers, Cn = 1
n+1

(
2n
n

)
, are one of the most well-known sequences in combi-

natorics. Among hundreds of objects counted by the Catalan numbers, three well-known
objects are binary trees, stack-sortable permutations, and Dyck paths.

A Dyck path of length 2n is a path from (0, 0) to (n, n) with steps (1, 0) (up steps) and
(0, 1) (right steps) that never goes below the diagonal line. There is a bijection between
Dyck paths of length 2n and binary trees with n nodes as follows. For a binary tree T :
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1. Create a binary tree T ′ by adding one child to every node in T that has exactly one
child, and adding two children to every node in T that has no child. T ′ is a full
binary tree, i.e. a binary tree in which each node has zero or two children, and T ′

has 2n + 1 nodes. The added nodes are the leaves of T ′, and the original nodes in
T are the internal nodes of T ′.

2. Read T ′ in preorder : first read the root, then read the left subtree in preorder before
reading the right subtree in preorder. When we read an internal node, add an up
step to the Dyck path. When we read a leaf, add a right step. Note that we always
ignore the final leaf since there are 2n+1 nodes in T ′ but only 2n steps in the Dyck
path.

Recall that a valley in a Dyck path is a rightstep followed by an upstep. Observe that in
the above bijection, the number of right edges in T is the same as the number of valleys
in the corresponding Dyck path. For example, in Figure 8, the binary tree has 2 right
edges and the corresponding Dyck path has 2 valleys.

Figure 8: Example of the bijection between binary trees and Dyck paths

The Catalan convolution is defined as follows.

Definition 4.4. For n, k ∈ Z≥0, the kth Catalan convolution is

C(k)
n =

∑
a1+a2+...+ak+1=n
a1,a2,...,ak+1∈Z≥0

Ca1Ca2 . . . Cak+1
.

The explicit formula for C
(k)
n is

C(k)
n =

k + 1

n+ k + 1

(
2n+ k

n

)
.

See [Reg12] for a proof of the formula, and [Ted11] for some combinatorial interpretations.

By definition, C
(0)
n = Cn and C

(1)
n = Cn+1. Also, for all k, we have C

(k)
0 = 1 and C

(k)
1 =

k + 1. We will use the following combinatorial interpretation of Catalan convolution:
C

(k)
n counts the number of Dyck paths of length 2(n + k) that start with at least k up

steps. To see that this is the correct interpretation, recall that a Dyck path of length
2(n + k) starting with at least k up steps corresponds to a parenthesization of n + k
pairs of parentheses starting with at least k open brackets. We mark these open brackets.
For each marked open bracket, we mark the close bracket that matches it. This gives k
marked close brackets. In the Dyck path, we mark the steps corresponding to the marked
brackets. Thus, the Dyck path has the following form:

U, . . . , U, U︸ ︷︷ ︸
k up steps

, D1, R,D2, R, . . . , Dk, R,Dk+1,
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where the marked steps are colored blue. Observe that the steps in D1 correspond to
the brackets inside the inner-most pair of marked brackets. These brackets have to form
a parenthesization. Thus, D1 is a Dyck path of length 2a1 ≥ 0. Similarly, each Di is a
Dyck path of length 2ai ≥ 0. Note that some Di may have length zero, so we may have
consecutive marked right steps.

Definition 4.5. For n, k ≥ 0, we define Dn,k to be the set of all Dyck paths of length
2(n+ k) that start with k up steps. For each Dyck path D ∈ Dn,k, let c(D) be the vector
where ci is the length of the ith block of consecutive marked right steps.

Thus, c(D) is a composition of k and also depends on k. For example, Figures 9a and
9b both show the same Dyck path D. However, in Figure 9a, we view D as an element
of D5,4, so c(D) = (1, 2, 1), which is a composition of 4. In Figure 9b, we view D as an
element of D6,3, so c(D) = (2, 1), which is a composition of 3.

(a) A Dyck path in D5,4 (b) A Dyck path in D6,3

Figure 9: The same Dyck path but viewed as an element of two different sets

Given a permutation w ∈ Sk and a composition c = (c1, . . . , cℓ) of k, c divides the
indices 1, 2, . . . , k into ℓ blocks: the first block consists of the indices 1, 2, . . . , c1; the
second block consists of the indices c1 + 1, c1 + 2, . . . , c1 + c2; and so on. We define the
descent of w with respect to c as

desc(w) = |{i | i and i+ 1 are in the same block divided by c and wi > wi+1}|.

For example, des(2,2)(4312) = 1 because even though w2 > w3, 2 and 3 are not in the
same block divided by (2, 2), so this descent does not count.

Definition 4.6. For n, k ≥ 0, we define

Pn,k = {(w,D) | w ∈ Sk, D ∈ Dn,k}.

For each pair (w,D) ∈ Pn,k, we define

des(w,D) = desc(D)(w) + #valley in D.

4.3 Stack-sorting

4.3.1 Definition

First introduced by Knuth in [K+73], the stack-sorting algorithm led to the study of
pattern avoidance in permutations. In [Wes90], West defined a deterministic version of
Knuth’s stack-sorting algorithm, which we call the stack-sorting map and denote by s.
The stack-sorting map is defined as follows.
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Definition 4.7 (Stack-sorting). Given a permutation π ∈ Sn, s(π) is obtained through
the following procedure. Iterate through the entries of π. In each iteration,

• if the stack is empty or the next entry is smaller than the entry at the top of the
stack, push the next entry to the top of the stack;

• else, pop the entry at the top of the stack to the end of the output permutation.

Example 4.8. Figure 10 illustrates the stack-sorting process on π = 3142.

stack

3 1 4 2

3

stack

1 4 2

3

1

stack

4 2

3

stack

4 21

stack

4 21 3

4

stack

21 3

4

2

stack

1 3

4

stack

1 3 2

stack

1 3 2 4

Figure 10: Example of s(3142)

Another way to define s is by decreasing binary trees. Recall that a binary tree is
a rooted tree in which each node has at most 2 children, usually called the left and
right child. A decreasing binary tree is a binary tree whose n nodes have been labeled
bijectively with the numbers {1, 2, . . . , n}, such that the number in each node is larger
than the numbers in its children.

There is a natural bijection between decreasing binary trees of size n and permutations
in Sn by inorder reading. To read a binary tree in inorder, first we read the left subtree
in inorder. Then we read the root, and finally we read the right subtree in inorder. Note
that this is a recursive definition. For a decreasing binary tree T , we denote by I(T ) the
permutation obtained by reading T in inorder. Recall that a descent of a permutation w
is an index i such that wi > wi+1. Notice that for every decreasing binary tree T , the
descents of I(T ) are in one-to-one correspondence with the right edges of T .

Another order to read a binary tree is postorder. To read a binary tree in postorder,
first we read the left subtree in postorder. Then we read the right subtree in order before
we read the root. This is also a recursive definition. For a decreasing binary tree T , we
denote by P(T ) the permutation obtain by reading T in postorder.

Example 4.9. Figure 11 shows two permutations obtained by reading a binary tree in
inorder and postorder.

1

23

4

5

6

7

3475612 3451267
I P

Figure 11: Reading a binary tree in inorder and postorder
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The reading orders of binary trees give an alternate definition of stack-sorting.

Proposition 4.10 ([Bón22, Corollary 8.26]). For any π ∈ Sn, one has

s(π) = P(I−1(π)).

For example, we encourage the the readers to check that s(3475612) = 3451267, which
matches the example in Figure 11.

4.3.2 Descents

We now describe the bijection between s−1(Sn,k) and Pn,k that preserves the number of
descents, as defined in [NS23a, Section 3].

For w ∈ s−1(Sn,k), let T = I−1(w) be the decreasing binary tree corresponding to w.
Define the core tree of T to be the induced subtree of T formed by the nodes k+1, . . . , n+k.
Note that the core tree of T is connected, and the nodes have to be labeled from k+1 to
n+ k in postorder. A node in the core tree is marked if it contains node k+1 in its right
subtree. Let a1, . . . , aℓ−1 be the marked nodes. Observe that since they all contain k + 1
in their right subtree, they are totally ordered k + 1 = aℓ <T aℓ1 <T . . . <T a1. Recall
that when reading T in postorder, we obtain a permutation in Sn,k. In particular, the
nodes appearing before node k+ 1 in postorder are exactly the nodes 1, . . . , k. Thus, the
nodes in T≤k+1 and in the left subtree of the marked nodes are exactly the nodes 1, . . . , k.

Define the sequence c(T ) as follows: for 1 ≤ i ≤ ℓ, ci equals the number of nodes
in the left subtree of ai in T ; in addition, cℓ+1 equals the number of nodes in the right
subtree of aℓ = k + 1 in T . The nodes in the left subtrees of ai’s and in the right subtree
of k + 1 are exactly the nodes 1, . . . , k, so c(T ) is a weak composition of k.

For each marked node, we now remove its right edge. This divides the core tree of T
into ℓ disjoint trees B1, . . . , Bℓ, with Bi containing ai. Furthermore, in Bi, ai is a leaf,
and ai is the left most node, i.e. the unique path from the root to ai consists of only left
edges. We construct a sequence of Dyck paths D1, . . . , Dℓ corresponding to T as follows.
For each Bi,

1. let B′
i be Bi\{ai};

2. let D′
i be the Dyck path corresponding to B′

i by the bijection in Section 4.2;

3. let Di be U,D′
i, R.

Observe that each Di is a Dyck path that never returns to the diagonal. Furthermore,
the total length of these Dyck paths is exactly 2n since there are n nodes in the core tree
of T . Now we are ready to state our bijection.

Definition 4.11. Define the map

fn,k : s
−1(Sn,k) → Pn,k

as follows. For w ∈ s−1(Sn,k), let T = I−1(w). Let D1, . . . , Dℓ be the sequence of Dyck
paths corresponding to T , and let c(T ) = (c1, . . . , cℓ+1). We have fn,k(w) = (ω,D), where

• ω is obtained by removing all numbers k + 1, . . . , n in w, and

• D has the form

U, . . . , U︸ ︷︷ ︸
k up steps

, R, . . . , R︸ ︷︷ ︸
cℓ+1 right steps

, Dℓ, R, . . . , R︸ ︷︷ ︸
cℓ right steps

, Dℓ−1, . . . , R, . . . , R︸ ︷︷ ︸
c2 right steps

, D1, R, . . . , R︸ ︷︷ ︸
c1 right steps

.
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Note that another way to get ω is to read the nodes 1, . . . , k in T in inorder. Furthermore,
c(T ) is a weak composition of k, and the total length of D1, . . . , Dℓ is 2n. Thus, D is a
Dyck path of length 2(n+ k) starting with k up steps, i.e. D ∈ Dn,k. Therefore, fn,k(w)
is indeed in Pn,k since ω ∈ Sk, and D ∈ Dn,k.

Example 4.12. Let us show an example of this map. Figure 12 shows a binary tree T
with I(T ) ∈ s−1(S11,6). The marked nodes of T are colored red, i.e. a1 = 13, a2 = 11,
a3 = 10, and a4 = 7. Thus, we have c1 = 2 since there are two nodes in the left subtree
of a1 = 13. Similarly, c2 = 0, c3 = 1, c4 = 2. Finally, c5 = 1 since there is one node in the
right subtree of a4 = 7.

17

16

1514

13

12

11

10

9

87

6

5

4

3

2

1

Figure 12: A binary tree T with I(T ) ∈ s−1(S11,6)

Next, removing the right edges of ai for 1 ≤ i < 4, we obtain four disjoint binary trees
shown in Figure 13. Figure 13 also shows the corresponding Dyck paths. Observe that
these are Dyck paths that never return to the diagonal (until the last step).

c(T ) = (2, 0, 1, 2, 1)

17

16

1514

13

12

11

10 9

87

B1 B2 B3 B4

D1 D2 D3 D4

Figure 13: The sequence c(T ), the disjoint binary trees and the corresponding Dyck paths

Putting the Dyck paths and c(T ) together, we obtain the Dyck path in Figure 14.

Proposition 4.13. The map fn,k above is a bijection.

In particular, we can easily find the size of s−1(Sn,k).
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D

ω = 146325

Figure 14: The pair (ω,D) = f11,6(T )

Corollary 4.14. For all n, k ≥ 0, we have

|s−1(Sn,k)| = k! · C(k)
n .

Recall that C
(0)
k = Cn. Thus, setting k = 0 in Corollary 4.14, we recover the well-

known result that |s−1(12 . . . n)| = Cn.

Proposition 4.15. For any w ∈ s−1(Sn,k), we have

des(w) = des(f(w)).

4.4 Graph associahedra and B-trees
4.4.1 Graph associahedra

It turns out that the poset associahedra of broom posets are also graph associahedra. It
is actually more convenient to study them as graph associahedra since there is a known
combinatorial interpretation of the h-vector of graph associahedra. Graph associahedra
are generalized permutohedra arising as special cases of nestohedra. We refer the readers
to [PRW06] for a comprehensive study of face numbers of generalized permutohedra and
nestohedra.

Definition 4.16. Let G = (V,E) be a connected graph, and τ, σ ⊆ V be subsets of
vertices.

• τ is a tube of G if τ ̸= V and it induces a connected subgraph of G.

• τ and σ are nested if τ ⊆ σ or σ ⊆ τ . τ and σ are disjoint if τ ∩ σ = ∅.

• τ and σ are compatible if they are nested or they are disjoint and τ ∪ σ is not a
tube.
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• A tubing T of G is a set of pairwise compatible tubes.

• A tubing T is maximal if it is maximal by inclusion, i.e. T is not a proper subset
of any other tubing.

Example 4.17. Figure 15 shows examples and non-examples of tubings of graphs. Note
that the left-most example in Figure 15b is a non-example since the tubes {1} and {4} are
disjoint yet their union {1, 4} is still a tube. The same reason applies for the right-most
example.

1

2 3

4

1 2 3 4

1

2 3

4

(a) Examples

1

2 3

4

1 2 3 4

1

2 3

4

(b) Non-examples

Figure 15: Examples and non-examples of tubings of graphs

Definition 4.18. For a connected graph G = (V,E), the graph associahedron of G is
a simple, convex polytope Ass(G) of dimension |V | − 1 whose face lattice is isomorphic to
the set of tubings ordered by reverse inclusion. The faces of Ass(G) correspond to tubings
of G, and the vertices of Ass(G) correspond to maximal tubings of G.

Example 4.19. Examples of graph associahedra can be seen in Figure 16. In particular,
if G is a complete graph, Ass(G) is a permutohedron. If G is a path graph, Ass(G) is an
associahedron.
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(a) Permutohedron
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(b) Associahedron

Figure 16: Permutohedron and associahedron as graph associahedra

4.4.2 Graph associahedra and poset associahedra

Despite the similarity between graph associahedra and poset associahedra, neither of them
is a subset of the other. Nevertheless, when the Hasse diagram of a poset P is a tree, let
GP be the line graph of the Hasse diagram of P , then A (P ) is isomorphic to Ass(GP ).
For instance, if P is a claw, then GP is a complete graph, and A (P ) and Ass(GP ) are
both permutohedra. If P is a chain, then GP is a path graph, and A (P ) and Ass(GP ) are
both associahedra. One can see a clear correspondence betweem tubings of P and GP in
Figures 4 and 16.

Conveniently, the Hasse diagrams of broom posets are trees, so their poset associahedra
are also graph associahedra. An (n, k)-lollipop graph, denoted Ln,k, is a graph consisting
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of a path graph of size n and a complete graph of size k, connected by an edge. We call
the unique vertex in the complete graph that is adjacent to the path graph the link vertex.
We call the other vertices in the complete graph the clique vertices. We call the other
vertices in the path graph the path vertices. For instance, in Figure 17, the link vertex is
colored blue, and the clique vertices are colored red.

1

2

3

4

56 7

A4,3

1

2

3

4

5

6 7

L3,4

Figure 17: Poset A4,3 and graph L3,4

Observe that the line graph of the Hasse diagram of An,k is Ln−1,k+1. For example,
Figure 17 shows the correspondence between the edges of the Hasse diagram of A4,3 and
the vertices of L3,4. This means A (An,k) is isomorphic to Ass(Ln−1,k+1). Therefore,
instead of studying the h-vector of A (An,k), we will study the h-vector of Ass(Ln−1,k+1).

4.4.3 B-trees
Every maximal tubing of G can be associated with a B-tree. Recall that a rooted tree is a
tree with a distinguished node, called its root. One can view a rooted tree T as a partial
order on its nodes in which i <T j if j lies on the unique path from i to the root. For
a node i in a rooted tree T , let T≤i = {j | j ≤T i} be the set of all descendants of i.
Note that i ∈ T≤i. Nodes i and j in a rooted tree are called incomparable if neither i is a
descendant of j, nor j is a descendant of i. A descent of T is an edge (i, j) ∈ E such that
i < j and j <T i. We denote des(T ) the number of descents in T .

Definition 4.20. For a maximal tubing B of a graph G = ([n], E), its B-tree is a rooted
tree T on the node set [n] such that

• For any i ∈ [n] such that i is not the root, one has T≤i ∈ B.

• For k ≥ 2 incomparable nodes i1, . . . , ik ∈ [n], one has
⋃k

j=1 T≤ij ̸∈ B.

Example 4.21. Figure 18 shows three B-trees corresponding to three maximal tubings
of a path graph. It is clear that B-trees of the same graph are not necessarily isomorphic.

The h-polynomial of Ass(G) is counted by the descents of the B-trees.
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Figure 18: Maximal tubings of a path graph and their corresponding B-trees

Theorem 4.22 ([PRW06, Corollary 8.4]). For a connected graph G, the h-polynomial of
Ass(G) is given by

hAss(G)(t) =
∑
T

tdes(T ),

where the sum is over all B-trees T .

4.4.4 Descents

Recall from Section 4.4.2 that the poset associahedra of An,k is also the graph associa-
hedra of the lollipop graph Ln−1,k+1. Let Bn−1,k+1 be the set of B-trees of Ln−1,k+1. We
now described the descent-preserving bijection between Bn−1,k+1 and Pn,k, as defined in
[NS23a, Section 4].

First, we will label the vertices in Ln−1,k+1 as follows. We label the link vertex n. We
label the clique vertices n + 1, . . . , n + k. Finally, we label the path vertices n− 1, . . . , 1
in decreasing order starting from vertex n. Figure 19 shows an example of this labeling
for L11,4.

First, let us make some observations about the B-trees in Bn−1,k+1. Our running
example throughout these observations will be Figure 19.

Lemma 4.23. Let B ∈ Bn−1,k+1. The nodes n+ 1, . . . , n+ k are totally ordered.

Lemma 4.23 means that we have a chain w1 <T w2 <T . . . <T wk where wi ∈
{n+1, . . . , n+ k}. We call the unique path from w1 to the root the core chain of B. Let
a1 <T a2 <T . . . <T aℓ be the other nodes in the core chain. For example, in Figure 19,
the clique nodes (colored red) are totally ordered 14 <T 15 <T 13. The other elements of
the core chain are colored blue.

Lemma 4.24. The nodes n+ 1 . . . , n+ k have at most one child.

Lemma 4.24 means that in the core chain of B, the only nodes that may have two
children are a1, . . . , aℓ. For these nodes, we call the branch that contains w1 their main
branch. We call the other branch, if exists, their secondary branch. For instance, in Figure
19, the clique nodes all have one child. The other nodes in the core chain may or may not
have two children. For node 10, which has two children, the secondary branch consists of
the nodes 7, 8, 9.

Lemma 4.25. We have a1 > a2 > . . . > aℓ. Moreover, the secondary branch of ai
contains exactly the nodes ai+1 + 1, ai+1 + 2, . . . , ai − 1.
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Figure 19: A tubing of L11,4 and the corresponding B-tree

For example, in Figure 19, the secondary branch of 10 consists of nodes 7, 8, 9, which
are exactly the numbers between a1 = 10 and a2 = 6.

Lemma 4.26. If w1 has a child, then T<w1 = {n, n− 1, . . . , a1 + 1}.

Back to our running example, in Figure 19, the descendants of w1 = 14 are 11 and 12,
which are exactly the numbers from n = 12 to a1 + 1 = 11.
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Lemmas 4.25 and 4.26 means that the descendants of w1 form a B-tree B0 of the
subgraph (a1 +1)− (a1 +2)− . . .− n. This subgraph is a path graph of n− a1 elements.
Similarly, the secondary branch of each ai forms a B-tree Bi of the subgraph (ai+1 +1)−
(ai+1 + 2) − . . . − (ai − 1). This is also a path graph of ai − ai+1 − 1 elements (with
aℓ+1 = 0).

In [PRW06, Section 10.2], it is shown that there is a bijection between B-trees of path
graphs and binary trees. Moreover, the descent edges of the B-trees correspond to the
right edges of the binary trees. This means that there is a bijection between B-trees of
path graphs and Dyck paths such that the descent edges of the B-trees correspond to the
valleys of the Dyck paths.

Let B0 be the tree formed by the descendants of w1. For 1 ≤ i ≤ ℓ, let Bi be the
tree formed by the secondary branch of ai. Next, we construct a sequence of Dyck paths
D1, . . . , Dℓ as follows. For each Bi with 1 ≤ i ≤ ℓ,

• let D′
i be the Dyck path corresponding to Bi by the bijection above;

• let Di be U,D′
i, R.

Once again, each Di is a Dyck path that never returns to the diagonal. Finally, let
D0 be the Dyck path corresponding to B0. D0 is a Dyck path that may return to the
diagonal. Furthermore, for 1 ≤ i ≤ ℓ, D′

i is a Dyck path of length (ai − ai+ 1− 1), so Di

is a Dyck path of length 2(ai − ai+1). D0 is a Dyck path of length 2(n − a1). Thus, the
total length of these Dyck paths is exactly 2n. Now we are ready to state our bijection.

Definition 4.27. Define the map

gn,k : Bn,k → Pn,k

as follows. ForB ∈ Bn,k, we construct w1, . . . , wk and a1, . . . , aℓ as above. LetD0, D1, . . . , Dℓ

be the sequence of Dyck paths constructed as above. Also, for 1 < i ≤ ℓ, let ci be the
number of clique nodes between ai and ai−1. Let c1 be the number of clique nodes below
a1 and cℓ+1 be the number of clique nodes above aℓ. We have gn,k(B) = (w,D), where

• w = (w1 − n), (w2 − n), . . . , (wk − n), and

• D has the form

U, . . . , U︸ ︷︷ ︸
k up steps

, D0, R, . . . , R︸ ︷︷ ︸
c1 right steps

, D1, R, . . . , R︸ ︷︷ ︸
c2 right steps

, D2, . . . , Dℓ−1, R, . . . , R︸ ︷︷ ︸
cℓ right steps

, Dℓ, R, . . . , R︸ ︷︷ ︸
cℓ+1 right steps

.

By definition, c1 + . . . + cℓ+1 is the total number of clique nodes, which is k. The total
length of D1, . . . , Dℓ is 2n. Thus, D is a Dyck path of length 2(n+ k) starting with k up
steps, i.e. D ∈ Dn,k. Clearly, w ∈ Sk. Therefore, gn,k(B) is indeed in Pn,k.

Proposition 4.28. The map gn,k above is a bijection.

Proposition 4.29. For any B ∈ Bn,k, we have

des(B) = des(g(B)).
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4.5 Real-rootedness

In this section, we will use a “happy coincidence” in stack-sorting to show real-rootedness
of the h-polynomial of A (An,2). Recall that we say a polynomial a0 + a1x+ . . .+ anx

n is
real-rooted if all of its zeros are real. We say a sequence (a0, a1, . . . , an) is real-rooted if
its generating function a0 + a1x+ . . .+ anx

n is real-rooted.
Let f and g be real-rooted polynomials with positive leading coefficients and real roots

{fi} and {gi}, respectively. We say that f interlaces g if

g1 ≤ f1 ≤ g2 ≤ f2 ≤ . . . ≤ fd−1 ≤ gd

where d = deg g = deg f + 1. We say that f alternates left of g if

f1 ≤ g1 ≤ f2 ≤ g2 ≤ . . . ≤ fd ≤ gd

where d = deg g = deg f . Finally, we say f interleaves g, denoted f ≪ g, if f either
interlaces or alternates left of g.

A classic example of real-rooted polynomials is a Narayana polynomial. Recall that
the Narayana polynomial Nn(x) is defined by

Nn(x) =
n−1∑
i=0

aix
i

where ai counts the number of permutations in s−1(12 . . . n) with exactly i descents. In
other words, Nn(x) is the h-polynomial of A (An,0) and A (An−1,1). We have the following
result.

Theorem 4.30 ([Brä06]). For all n, Nn(x) is real-rooted. Furthermore, Nn−1(x) ≪
Nn(x).

To prove real-rootedness of the h-polynomial of A (An,2), we will need the following
“happy coincidence”.

Proposition 4.31. The number of permutations in s−1(2134 . . . n) with exactly i descents
is the same as the number of permutations w in s−1(1234 . . . n) with exactly i descents
such that w1, wn < n.

Here we sketch the bijection used in [NS23a] to prove Theorem 4.31. Let

T1 = {T | I(T ) = w ∈ s−1(1234 . . . n), w1, wn < n}

and
T2 = {T | I(T ) = w ∈ s−1(2134 . . . n)}.

In addition, for two nodes v1, v2 in a binary tree T , we say v1 →R v2 (resp. →L) if v1 is
the right (resp. left) child of v2. Our bijection φ is constructed as follows.

Given T ∈ T1, let v be the smallest ancestor of node 1 that has two children. Then,
we must have a chain 1 →D1 2 →D2 . . . →Dv−1 v where each Di is either R or L, and
each node 2, 3, . . . , v − 1 has exactly one child. Furthermore, since I(T ) = 1234 . . . n and
v has two children, 1 has to be in the left-subtree of v, so Dv−1 = L. Then, φ(T ) ∈ T2 is
constructed as follows.

1. Remove all nodes below v − 1.
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Figure 20: Example of the map φ

2. The root of T has to be n, add the follow edges: n →Dv−2 n + 1 →Dv−3 . . . →D1

n+ v − 2.

3. Relabel the nodes such that the postorder reading word is 2134 . . . n.

An example of the map φ above can be seen in Figure 20.
Proposition 4.31 gives the following important recurrence.

Proposition 4.32. Let Hn(x) be the h-polynomial of A (An,2), and recall that Nn+2(x)
and Nn+1(x) are the h-polynomials of A (An+2,0) and A (An+1,0), respectively. We have

Hn(x) = 2Nn+2(x)− (1 + x)Nn+1(x).

From the recurrence in Proposition 4.32, and the useful fact that Nn+1(x) ≪ Nn+2(x)
in Theorem 4.30, we have the following theorem.

Theorem 4.33. Let Hn(x) be the h-polynomial of A (An,2). Then, Hn(x) is real-rooted.

4.6 Two-leg broom posets

Now we shift our attention to two-leg broom posets A2,n,k = A2⊕Cn+1⊕Ak. For example,
Figure 21 shows the two-leg broom poset A2,3,3.

The h-vectors of A (A2,n,k) are also given by stack-sorting preimages.

Proposition 4.34. Let Sn+3,k = {w | w ∈ Sn+k+3, wi = i for all i > k} and h =
(h0, h1, . . . , hn+k+1) be the h-vector of A (A2,n,k). Then hi counts the number of permuta-
tions in

{w | w ∈ s−1(Sn+3,k), w1 ≤ n+ k + 1, wn+k+3 ≥ n+ k + 2}
with exactly i descents.

Question 4.35. Are there any other stack-sorting preimages whose descent-generating
functions give the h-polynomial of poset associahedra? In particular, one may ask for
such interpretation for many-leg broom posets Aℓ,n,k = Aℓ ⊕ Cn+1 ⊕ Ak.

In his FPSAC 2023 Extended Abstract, Sack found the following.
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A2,3,3

Figure 21: A two-leg broom poset

Proposition 4.36. Let Km,n be the complete bipartite poset Am ⊕ An. Then

hi(A (Km,n)) = |{w ∈ Sm+n, des(w) = i, w1 ≤ m,wm+n ≥ m+ 1}|,

γi(A (Km,n)) = |{w ∈ Ŝm+n, des(w) = i, w1 ≤ m,wm+n ≥ m+ 1}|,
where Ŝm+n is the set of permutations in Sm+n with no double descents or final descent.

Thus, we expect the answer of Question 4.35 for many-leg broom posets to be a
generalization of Proposition 4.36. This is indeed the case for Proposition 4.34. Another
relevant question is the following.

Question 4.37. Given a (strong) composition α = (α1, . . . , αℓ), find a combinatorial
interpretation for the h-and-γ-vectors for A (Aα) where Aα = Aα1⊕. . .⊕Aαℓ

. By Theorem
3.1, it actually suffices to answer this question for partitions λ.

5 An h-vector identity

5.1 Polynomials

We conjecture that the recurrence in Proposition 4.32 can be generalized to any poset.
Let us first introduce some relevant polynomials. The (type A) Narayana polynomial is
defined to be

Nn(x) =
n−1∑
k=0

1

n

(
n

k

)(
n

k + 1

)
xk.

For example, we have

N1(x) = 1,

N2(x) = 1 + x,

N3(x) = 1 + 3x+ x2,

N4(x) = 1 + 6x+ 6x2 + x3.

It is well-known that Narayana polynomials give the h-vectors of the classical associahedra.
The corresponding f -vectors are

Fn(x) = Nn(x+ 1).
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For example, we have

F1(x) = 1,

F2(x) = 2 + x,

F3(x) = 5 + 5x+ x2,

F4(x) = 14 + 21x+ 9x2 + x3.

We also define
F̃n(x) = nFn−1(x),

with the convention that F0(x) = 1. For example, we have

F̃1(x) = 1,

F̃2(x) = 2,

F̃3(x) = 6 + 3x,

F̃4(x) = 20 + 20x+ 4x2.

Similarly, the type B Narayana polynomial is defined to be

Bn(x) =
n−1∑
k=0

(
n− 1

k

)2

xk.

For example, we have

B1(x) = 1,

B2(x) = 1 + x,

B3(x) = 1 + 4x+ x2,

B4(x) = 1 + 9x+ 9x2 + x3.

The type B Narayana polynomials show up as the rank-generating function of the type B
analogue NCB

n of the lattice of non-crossing partitions (see [Rei97]) and the h-polynomials
of type B associahedra (see [Sim03]). In particular, the sum of the coefficients in Bn+1(x)
is
(
2n
n

)
, which is called type B Catalan number. The corresponding f -vectors of type B

associahedra are
Gn(x) = Bn(x+ 1).

For example, we have

G1(x) = 1,

G2(x) = 2 + x,

G3(x) = 6 + 6x+ x2,

G4(x) = 20 + 30x+ 12x2 + x3.

For each family of polynomials {Pn(x)}, and each partition λ = (λ1, λ2, . . . , λℓ), we define

Pλ(x) = Pλ1(x)Pλ2(x) . . . Pλℓ
(x).

For example, we have

N(4,2,1)(x) = (1 + 6x+ 6x2 + x3)(1 + x)(1),

F(4,2,1)(x) = (14 + 21x+ 9x2 + x3)(2 + x)(1),
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F̃(4,2,1)(x) = (20 + 20x+ 4x2)(2)(1),

B(4,2,1)(x) = (1 + 9x+ 9x2 + x3)(1 + x)(1),

G(4,2,1)(x) = (20 + 30x+ 12x2 + x3)(2 + x)(1).

For each permutation w, the cycle type of w is a partition λ(w), and the number of cycles
in w is ℓw = ℓ(λ(w)). We abuse notation and define

Pw(x) = Pλ(w)(x)

for each family of polynomials {Pn(x)}. Note that this means Pw1 and Pw2 are the same
if w1 and w2 are in the same conjugacy class.

Finally, we denote by sn,k the unsigned Stirling number of the first kind, which counts
the number of permutations of Sn with k cycles. Note that sn,k is the coefficient of xk in
x(x+1) . . . (x+n−1), or equivalently the coefficient of xn−k in 1(1+x) . . . (1+(n−1)x).

5.2 Identity

Recall that for a poset P , a subposet S of P is called autonomous if there exists a poset
Q and a ∈ Q such that P = Q(a → S). A subposet S of P is proper if S ̸= P . Our main
conjecture is the following.

Conjecture 5.1. Let P be a poset with a proper autonomous subposet S that is a chain
of size n, i.e. P = Q(a → Cn). For 1 ≤ i ≤ n, let Pi be the poset obtained from P by
replacing S by an antichain of size i, i.e. Pi = Q(a → Ai). Let hP (x), hP1(x), . . ., hPn(x)
be the h-polynomials of A (P ), A (P1), . . ., A (Pn), respectively. Then,

hP (x) =
1

n!

∑
w∈Sn

Bw(x)hPℓw
(x). (1)

In particular, when n = 2, we have

hP (x) =
1

2
(hP2(x) + (1 + x)hP1(x)) ,

which give the formula in Proposition 4.32. We will show that Conjecture 5.1 follows from
the following conjecture.

Conjecture 5.2. For all n,∑
w∈Sn

tℓwGw(x) =
∑
w∈Sn

t(t+ x) . . . (t+ (ℓw − 1)x)F̃w(x). (2)

Example 5.3. For n = 3, the LHS of (2) is

t3 + 3t2(x+ 2) + 2t(x2 + 6x+ 6),

and the RHS is
t(t+ x)(t+ 2x) + 3t(t+ x)(2) + 2t(3x+ 6).

One can check that they are equal.

Proposition 5.4. Conjecture 5.1 follows from Conjecture 5.2.

We will need a few lemmas to prove Proposition 5.4. Let P = Q(a → Cn) be a poset
with a proper autonomous subposet S = Cn. We say a tubing T of P is degradable if
there is a tube τ ∈ T such that τ ⊆ S. We say that T is non-degradable otherwise. Our
main lemma is the following, which will be proved in Section 5.2.1.
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Lemma 5.5. Let tk be the number of non-degradable tubings of P = Q(a → Cn) with k
tubes, and ti,k, for 1 ≤ i ≤ n, be the number of tubings of Pi = Q(a → Ai) with k tubes.
Then

n!tk =
n∑

i=1

sn,iti,k.

On the other hand, if T is degradable, we say a tube τ of T is degrading if τ ⊆ S.
Clearly, the degrading tubes of T gives a tubing of S. Here we modify the rule slightly
and allow S to be a tube of S.

Given a tubing of S = Cn, we say a tube is maximal if it is not contained in another
tube. We say an element s ∈ S is lonely if it is not contained in any tube. Then, the
lonely elements and maximal tubes of each tubing gives a composition of n.

Example 5.6. Figure 22 shows a tubing of S = C10. The lonely elements and maximal
tubes are colored red. The composition is (2, 1, 1, 3, 3).

Figure 22: A tubing of S = C10

The following lemma is immediate.

Lemma 5.7. Let T ′ be a tubing of S = Cn, let (α1, . . . , αℓ) be the composition corre-
sponding to T ′. Then the number of tubings with k tubes of Q(a → S) that contain T ′ is
the same as the number of non-degradable tubings of Q(a → Cℓ) with k − |T ′| tubes.

To see Lemma 5.7, from a tubing with k tubes of Q(a → S) that contain T ′, one
can contract every maximal tube of T ′ into a single element and obtain a non-degradable
tubing of Q(a → Cℓ) with k− |T ′| tubes. Figure 23 gives an example of this contraction.

Combining Lemma 5.5 and 5.7, we have the following lemma.

Lemma 5.8. With the same notations as in Conjecture 5.1, let fP (x), fP1(x), . . ., fPn(x)
be the h-polynomials of A (P ), A (P1), . . ., A (Pn), respectively. Then,

n!fP (x) =
∑
λ⊢n

n!

ℓ(λ)!
R(λ)F(λ1−1,λ2−1,...)(x)

 ℓ(λ)∑
k=1

sℓ(λ),kx
ℓ(λ)−kfPk

(x)

 , (3)

where R(λ) is the number of rearrangements of λ.
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Figure 23: A degradable tubing of Q(a → C5) (left) and a non-degradable tubing of
Q(a → C3) (right)

Proof. For each composition α = (α1, . . . , αℓ) that is a rearrangement of a partition
λ, the generating function for the degrading tubings of S whose composition is α is
F(λ1−1,λ2−1,...)(x). This is because for each maximal tube τ of S, the tubes contained in τ
form a tubing of C|τ |, and the generating function for such tubings is F|τ |−1(x). By Lemma
5.7, degradable tubings of P in which the composition of the degrading tubings is α can
be viewed as non-degradable tubings of Q(a → Cℓ). Then by Lemma 5.5, non-degradable
tubings of Q(a → Cℓ) can be written as a sum of tubings of P1, . . . , Pℓ with coefficients
Sℓ,k. This gives the desired formula.

Proof of Proposition 5.4. For each partition λ, one can view λ as a tuple (c1, . . . , cn) such
that

∑
i ici = n. Then, in the RHS of (3),

R(λ) =
ℓ(λ)!

c1! . . . cn!
.

Thus,
n!

ℓ(λ)!
R(λ)F(λ1−1,λ2−1,...) =

n!

c1! . . . cn!
F(λ1−1,λ2−1,...)(x)

=
n!

λ1 . . . λℓ · c1! . . . cn!
λ1 . . . λℓ · F(λ1−1,λ2−1,...)(x) =

n!

λ1 . . . λℓ · c1! . . . cn!
F̃λ(x).

Notice that n!
λ1...λℓ·c1!...cn!

is the number of permutations in Sn with cycle type λ, so the

RHS of (3) becomes ∑
w∈Sn

F̃w(x)

(
ℓw∑
k=1

sℓw,kx
ℓw−kfPk

(x)

)
.

Recall that sn,k is the coefficient of xn−k in 1(1+x) . . . (1+(n−1)x). Hence, the coefficient
of fPk

(x) in the above sum is the coefficient of tk in∑
w∈Sn

F̃w(x)t(t+ x) . . . (t+ (ℓw − 1)x),

which is the RHS of (2).
Finally, by the h-to-f -vector conversion, one can check that the coefficient of fPk

(x)
in the RHS of (1) is the coefficient of tk in the LHS of (2). Hence, Conjecture 5.2 implies
Conjecture 5.1.
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5.2.1 Proof of Lemma 5.5

In order to prove Lemma 5.5, we will need a small bijection between

• pairs (w, α) where w ∈ Sn and α is a composition of n into k parts, and

• pairs (ω, U) where ω is a permutation in Sn with ℓ cycles and U is an ordered set
partition of {1, . . . , ℓ} into k sets.

Our bijection is constructed as follows. Given a pair (w, α) where w ∈ Sn and α =
(α1, . . . , αk) is a composition of n into k parts:

1. Let µi = wα1+...+αi−1+1 . . . wα1+...+αi
.

2. Let Vi = {v1 < . . . < vαi
} be the set of elements in µi, then we can consider µi as a

permutation of the elements v1, . . . , vαi
. Let σi be the cycle decomposition of this

permutation.

3. Let ω = σ1 . . . σi, this is the desired permutation.

4. Order the cycles in ω as ν1, . . . , νℓ in the order of their smallest element, then let
Ui = {j | σi contains νj}. (U1, . . . , Uk) is the desired ordered set partition.

Example 5.9. Let w = 965347128 and α = (3, 4, 2).

1. µ1 = 965, µ2 = 3471, µ3 = 28.

2. σ1 = (59)(6) when we consider 965 as a permutation of 569; similarly, σ2 =
(1347), σ3 = (2)(8).

3. ω = (59)(6)(1347)(2)(8) = 324796185.

4. The cycles are ordered as ν1 = (1347), ν2 = (2), ν3 = (59), ν4 = (6), ν5 = (8), then
U1 = {3, 4} since σ1 contains ν3 and ν4; similarly, U2 = {1}, U3 = {2, 5}.

Proof of Lemma 5.5. We will construct a bijection between

• pairs (w, T ) where w ∈ Sn and T is a non-degradable tubing of P = Q(a → Cn)
with k tubes, and

• pairs (ω, T ′) where ω is a permutation in Sn with ℓ cycles and T ′ is a tubing of
Pℓ = Q(a → Aℓ) with k tubes.

Our construction of T ′ from T follows the same idea as in Section 3.2. Recall that a tube
τ ∈ T is good if τ ⊆ P − S, τ ⊆ S, or S ⊆ τ and is bad otherwise. We denote the set of
good tubes by Tgood and the set of bad tubes by Tbad. In this case, we do not have tubes
τ ⊆ S. Hence, we can keep Tgood for T ′. Then, we decompose Tbad into a triple (L,M,U)
where L and U are nested sequences of sets, some of which may be marked, contained in
P − S and M is an ordered set partition of S = Cn. Finally, we construct T ′

bad from a
triple (L,M′,U), where M′ is an ordered set partition of some Aℓ and |M′| = M, and
have T ′ = Tgood ⊔ T ′

bad.
Hence, our bijection between (w, T ) and (ω, T ′) comes down to a bijection between

(w,M) and (ω,M′), where |M′| = M.
Since S = Cn, there is an easy one-to-one correspondence between sequences M of S

and compositions α of n. On the other hand, any ordered set partition of Aℓ is an ordered
set partition U of {1, . . . , ℓ}. Therefore, a bijection between (w,M) and (ω,M′), where
|M′| = M, is essentially a bijection between (w, α) and (ω, U), which is the bijection
discussed at the beginning of the section.
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6 γ-positivity

6.1 Cyclic fence poset

Definition 6.1. The (even) cyclic fence poset CF2(n+1) is defined to be the poset on the
elements {1, 2, . . . , 2n+ 2} with the covering relations 2k − 1, 2k + 1⋖ 2k for 1 ≤ k ≤ n,
and 1, 2n+ 1⋖ 2n+ 2.

Similarly, the (odd) cyclic fence poset CF2n+1 is defined to be the poset on the elements
{1, 2, . . . , 2n+1} with the covering relations 2k−1, 2k+1⋖2k for 1 ≤ k ≤ n, and 1⋖2n+1.

Example 6.2. Figure 24 gives examples of even and odd cyclic fence posets.

(a) CF6 (b) CF7

Figure 24: Cyclic fence posets

It turns out that the h-and-γ-vectors of cyclic fence posets have a particularly nice
combinatorial interpretation in terms of colored paths.

Definition 6.3. A colored (m,n) path is a sequence of m upsteps and n downsteps where
each step is colored red or blue. Let CPm,n denote the set of colored (m,n) path. A peak
is an upstep followed by a downstep. A peak step is one of the two steps at some peak.
The remaining steps are called side steps.

Example 6.4. Figure 25 shows a colored (5, 4) path. This path has two peaks, three
blue peak steps and one red peak step. The remaining five steps are side steps. Note that
if the last step is an upstep, we do not consider it a peak step.

Figure 25: A path in CP5,4

The following theorem relates colored paths and h-vectors of the poset associahedra
of cyclic fence posets. The case for CF2(n+1) was found by Sack and appeared in his
FPSAC 2023 Extended Abstract. The case for CF2n+1 was found later through private
communication.

Theorem 6.5. For CF2(n+1), the h-vector is given by

hi = |{w ∈ CPn,n | #red peak steps−#blue peak steps = 2(i− n)}|.

For CF2n+1, the h-vector is given by

hi = |{w ∈ CPn−1,n | #red side steps−#blue side steps = 2(i− n) + 1}|.

Question 6.6. Our proofs for Theorem 6.5 use generating functions. It would be a nice
problem to find a bijective proof for this theorem. In particular, the case for CF2(n+1) is
related to Shapiro’s convolution formula, which was proved by a complicated bijection in
[HN14].
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Figure 26: Paths in CP1,1

Figure 27: Paths in CP1,2

Example 6.7. Figure 26 shows paths in CP1,1. This means that the h-vector of CF4 is
(1, 6, 1). Similarly, from Figure 27, the h-vector of CF5 is (1, 11, 11, 1).

Corollary 6.8. For CF2(n+1), the γ-vector is given by

γi = 4i
(
n

i

)2

.

For CF2n+1, the γ-vector is given by

γi = 4i
(
n

i

)(
n− 1

i

)
.

In particular, the poset associahedra of cyclic fence posets are γ-positive.

Proof. For CF2(n+1), let P be a path with n upsteps, n downsteps, n − i peaks, and all
side steps colored red or blue. Then, the 2n−i coloring of the peak steps of P contribute
xi(x+ 1)2n−2i to the h-polynomial hCF2(n+1)

(x).

Observe also that the number of such paths P is 4i
(
n
i

)2
. This is because the number

of path with n upsteps, n downsteps, and n− i peaks is
(
n
i

)2
(see [Sim03, Proposition 2]).

Each of the 2i side steps can be colored either red or blue, so there are 4i ways to color
each path. This gives the desired formula.

The case for CF2n+1 is similar.
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6.2 γ-positivity conjectures

A simplicial complex ∆ is a flag complex if its simplices are exactly the cliques of some
graph. A simple polytope is flag if its dual simplicial complex is flag.

In [Gal05], Gal conjectured that every flag simple polytope is γ-nonnegative. This
conjecture has been proved for several family of polytopes. For example, Postnikov–
Reiner–Williams ([PRW06]) proved the conjecture for nestohedra of connected chordal
building sets, which include graph associahedra of chordal graphs (e.g. trees). Volodin
([Vol10]) proved the conjecture for the class sd(Σd−1) of simplicial complexes that can
be obtained from Σd−1 by stellar subdivisions in edges. See also: [Ais12, Ath12, Ero09,
Gor11].

Not all poset associahedra are flag. In fact, the minimal example of non-flag poset
associahedra is the cyclic fence poset CF6. However, Corollary 6.8 shows that the poset
associahedra of cyclic fence posets are still γ-positive. Thus, we make the following
conjecture.

Conjecture 6.9. All poset associahedra are γ-positive.

Computational evidence suggested a stronger evidence. Let Cn be poset that is a chain
of n elements, and K⌊n

2 ⌋,⌈n
2 ⌉ be the complete bipartite poset A⌊n

2 ⌋ ⊕A⌈n
2 ⌉. Note that Cn

is the poset on n elements with the fewest covering relations, and K⌊n
2 ⌋,⌈n

2 ⌉ is the poset

with the most covering relations. In addition, we say (a1, . . . , ak) ≪ (b1, . . . , bk) if ai < bi
for all 1 ≤ i ≤ k. We have the following conjecture.

Conjecture 6.10. Let P be a connected poset on n elements, and P is not Cn or
K⌊n

2 ⌋,⌈n
2 ⌉. Then the h-and-γ-vectors of A (P ) satisfy

hCn ≪ hP ≪ hK⌊n
2 ⌋,⌈n

2 ⌉
,

γCn ≪ γP ≪ γK⌊n
2 ⌋,⌈n

2 ⌉
.

Conjecture 6.10 has been checked for all connected poset of size up to 7. In fact, we
have an even stronger conjecture.

Conjecture 6.11. The h-polynomials of poset associahedra are real-rooted.

Remark 6.12. Despite Conjecture 6.10, there is no apparent relationship between the
number of covering relations of a poset and the face numbers of its poset associahedra.
For example, the posets A2 ⊕A2 and A1 ⊕A2 ⊕A1 both have four covering relations, but
their face numbers are different.

Question 6.13. In [PRW06], Postnikov–Reiner–Williams proved Gal’s conjecture for
nestohedra PB of connected chordal building sets B by finding a set of permutations S(B)
such that the descent-generating function of S(B) and Ŝ(B) gives the h-and-γ-vectors of
PB, respectively. Here Ŝ(B) is the set of permutations in S(B) with no double descents
or final descent. They asked whether such S(B) exists for any building set B [PRW06,
Question 14.3]. This question was answered partly in [Ero09] for connected building sets.
Here we ask a similar question for poset associahedra, that is: for any connected poset P ,
is there a set of permutations S(P ) such that the descent-generating function of S(P )
and Ŝ(P ) gives the h-and-γ-vectors of A (P )?

In fact, it remains an open problem to find a combinatorial interpretation for the face
numbers of poset associahedra.

Question 6.14. Find a combinatorial interpretation for the face numbers of poset asso-
ciahedra.
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