Face Numbers of Poset Associahedra: Results and Conjectures

Son Nguyen

Advisor: Vic Reiner
Readers: Gregg Musiker, Pavlo Pylyavskyy
Joint work with Andrew Sack

sackvideo
SackVideo
$\Delta \cdot$

Follow
56 Following 55.9 K Followers 2.1 M Likes
Math PhD student
Email: andrewsackvideos@gmail.com
Videos \quad Liked

Face Numbers of Poset Associahedra

Tube

Given a poset P, a tube τ is a connected convex subposet of P such that $1<|\tau|<|P|$.

Example

Non-example

Tube

Given two tubes τ_{1}, τ_{2}, we say $\tau_{1} \prec \tau_{2}$ if $\tau_{1} \cap \tau_{2}=\emptyset$, and there exists $v_{1} \in \tau_{1}$ and $v_{2} \in \tau_{2}$ such that $v_{1}<p v_{2}$.

Tube

Given two tubes τ_{1}, τ_{2}, we say $\tau_{1} \prec \tau_{2}$ if $\tau_{1} \cap \tau_{2}=\emptyset$, and there exists $v_{1} \in \tau_{1}$ and $v_{2} \in \tau_{2}$ such that $v_{1}<p v_{2}$.

Potential problem: may/will have $\tau_{1} \prec \tau_{2} \prec \ldots \prec \tau_{k} \prec \tau_{1}$.

Tubing

A tubing T of P is a set of tubes such that

- any pair of tubes in T is either nested or disjoint, and
- there is no potential problem $\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{k}\right\} \subseteq T$ such that $\tau_{1} \prec \tau_{2} \prec \ldots \prec \tau_{k} \prec \tau_{1}$.

Examples

Non-examples

Poset Associahedra

Definition (Galashin '21)

For a finite poset P, there exists a simple, convex polytope $\mathscr{A}(P)$ whose face lattice is isomorphic to the set of tubings ordered by reverse inclusion. This polytope is called the poset associahedron of P.

f and h-vector

- f-vector: $\left(f_{0}, f_{1}, \ldots, f_{d}\right)$ where

$$
f_{i}=\# i \text {-dimensional faces }
$$

Eg: $(6,6,1)$

- f-polynomial:

$$
f(t)=6+6 t+t^{2}
$$

- h-vector and h-polynomial:

$$
\begin{aligned}
& \quad f(t)=h(t+1) \\
& 6+6 t+t^{2}=1+4(t+1)+(t+1)^{2} \\
& \rightarrow(1,4,1)
\end{aligned}
$$

Permutohedra

γ-vector

- When the h-polynomial is symmetric, we have the γ-vector and γ-polynomial:

$$
1+4 t+t^{2}=(1+t)^{2}+2 t
$$

$$
\rightarrow(1,2)
$$

Note: Not necessarily nonnegative

Big Questions

γ-nonnegativity??? (BIG)

Big Questions

γ-nonnegativity??? (BIG)
real-rootedness??? (BIGGER)
For our polytopes: real-rooted $\Rightarrow \gamma$-nonnegative, log-concave, unimodal

Vic's Favorite Examples

Permutohedra

Vic's Favorite Examples

Associahedra

Broom Posets

Broom posets: $A_{n, k}=C_{n+1} \oplus A_{k}$

$$
A_{4,3}
$$

Broom Posets

Broom posets: $A_{n, k}=C_{n+1} \oplus A_{k}$

$$
A_{4,3}
$$

Question: What do their face numbers count?

Permutohedra

- h-vector: Eulerian number
$h_{i}=\left|\left\{w \in \mathfrak{S}_{n} \mid \operatorname{des}(w)=i\right\}\right|$
$\#$ vertices $=n!$

Permutohedra

Associahedra

- h-vector: Narayana number

$$
h_{i}=?
$$

- \# vertices $=$ Catalan number

Associahedra

Stack-sorting

Stack-sorting, denoted s, is an algorithm that "sorts" a permutation in linear time

Stack-sorting

Stack-sorting, denoted s, is an algorithm that "sorts" a permutation in linear time

Stack-sortable permutations are counted by Catalan numbers!!!

Associahedra

- h-vector: Narayana number

$$
h_{i}=\left|\left\{w \in s^{-1}(12 \ldots n) \mid \operatorname{des}(w)=i\right\}\right|
$$

- \# vertices $=\left|s^{-1}(12 \ldots n)\right|=$ Catalan number

Associahedra

Permutohedra

- h-vector: Eulerian number
$h_{i}=\left|\left\{w \in \mathfrak{S}_{n} \mid \operatorname{des}(w)=i\right\}\right|$
$\#$ vertices $=n!$

Permutohedra

Associahedra

- h-vector: Narayana number

$$
h_{i}=\left|\left\{w \in s^{-1}(12 \ldots n) \mid \operatorname{des}(w)=i\right\}\right|
$$

- \# vertices $=\left|s^{-1}(12 \ldots n)\right|=$ Catalan number

Associahedra

Broom Posets

Define $\mathfrak{S}_{n, k}=\left\{w \mid w \in \mathfrak{S}_{n+k}, w_{i}=i\right.$ for all $\left.i>k\right\}$. Eg. $\mathfrak{S}_{3,2}=\{12345,21345\}$.

Broom Posets

Define $\mathfrak{S}_{n, k}=\left\{w \mid w \in \mathfrak{S}_{n+k}, w_{i}=i\right.$ for all $\left.i>k\right\}$.
Eg. $\mathfrak{S}_{3,2}=\{12345,21345\}$.

Theorem (N., Sack '23)

Let $h=\left(h_{0}, h_{1}, \ldots, h_{n+k-1}\right)$ be the h-vector of $\mathscr{A}\left(A_{n, k}\right)$. Then

$$
h_{i}=\left|\left\{w \in s^{-1}\left(\mathfrak{S}_{n, k}\right) \mid \operatorname{des}(w)=i\right\}\right|
$$

Broom Posets

Theorem (Brändén '08)

For $A \subseteq \mathfrak{S}_{n}$, we have

$$
\sum_{\sigma \in s^{-1}(A)} x^{\operatorname{des}(\sigma)}
$$

is γ-nonnegative.

Corollary

The γ-vector of $\mathscr{A}\left(A_{n, k}\right)$ is nonnegative.

Happy Coincidence

Proposition (N., Sack '23)

$$
\begin{gathered}
\left|\left\{w \in s^{-1}(2134 \ldots n) \mid \operatorname{des}(w)=i\right\}\right|= \\
\left|\left\{w \in s^{-1}(1234 \ldots n) \mid \operatorname{des}(w)=i, w_{1}<n, w_{n}<n\right\}\right|
\end{gathered}
$$

Happy Coincidence

Proposition (N., Sack '23)

$$
\begin{gathered}
\left|\left\{w \in s^{-1}(2134 \ldots n) \mid \operatorname{des}(w)=i\right\}\right|= \\
\left|\left\{w \in s^{-1}(1234 \ldots n) \mid \operatorname{des}(w)=i, w_{1}<n, w_{n}<n\right\}\right|
\end{gathered}
$$

Proposition (N., Sack '23)

$$
h_{A_{n, 2}}(x)=2 h_{A_{n+2,0}}(x)-(1+x) h_{A_{n+1,0}}(x) .
$$

Happy Coincidence

Proposition (N., Sack '23)

$$
\begin{gathered}
\left|\left\{w \in s^{-1}(2134 \ldots n) \mid \operatorname{des}(w)=i\right\}\right|= \\
\left|\left\{w \in s^{-1}(1234 \ldots n) \mid \operatorname{des}(w)=i, w_{1}<n, w_{n}<n\right\}\right|
\end{gathered}
$$

Proposition (N., Sack '23)

$$
h_{A_{n, 2}}(x)=2 h_{A_{n+2,0}}(x)-(1+x) h_{A_{n+1,0}}(x) .
$$

Theorem (N., Sack '23)

$$
h_{A_{n, 2}}(x) \text { is real-rooted. }
$$

Conjectures

Conjecture (Hard)

The h-polynomials of $\mathscr{A}\left(A_{n, k}\right)$ are real-rooted.

Conjectures

Conjecture (Hard)

The h-polynomials of $\mathscr{A}\left(A_{n, k}\right)$ are real-rooted.

Conjecture (Harder)

$\mathscr{A}(P)$ are γ-positive for all P.

Conjectures

Conjecture (Hard)

The h-polynomials of $\mathscr{A}\left(A_{n, k}\right)$ are real-rooted.

Conjecture (Harder)

$\mathscr{A}(P)$ are γ-positive for all P.

Conjecture (Very Hard)

The h-polynomials of $\mathscr{A}(P)$ are real-rooted for all P.

Questions

Question (Another Direction)

Find more stack-sorting preimages that give h-polynomials of $\mathscr{A}(P)$.
Eg: Known for two-leg broom posets

How about many-leg broom posets?

Questions

Question (Another Direction)

Find more stack-sorting preimages that give h-polynomials of $\mathscr{A}(P)$.
Eg: Known for two-leg broom posets

$A_{2,3,3}$
How about many-leg broom posets?

Question (A Rabbit Hole)

Real-rootedness of descent generating polynomials of stack-sorting preimages.

ACKNOWLEDGEMENT

I would like to thank

- Vic Reiner for his wonderful guidance, his careful reading of my papers, and always knowing the right ideas;
- Gregg Musiker and Pavlo Pylyavskyy for their amazing support and mentorship during my undergraduate years;
- Ayah Almousa, Daoji Huang, Patricia Klein, Anna Weigandt, and a long list of people at Minnesota for being the most welcoming and supporting group I have ever known;
- Andrew Sack for teaching me many things about polytopes;
- Colin Defant and Pavel Galashin for helpful conversations;
- my family for supporting my academic journey;
- Nhi Dang for her mental support throughout the years.

