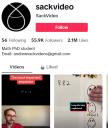
# Face Numbers of Poset Associahedra: **Results and Conjectures**

#### Son Nguyen

Advisor: Vic Reiner Readers: Gregg Musiker, Pavlo Pylyavskyy Joint work with Andrew Sack



A ...



Face Numbers of Poset Associahedra

Given a poset P, a tube  $\tau$  is a connected convex subposet of P such that  $1<|\tau|<|P|.$ 

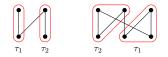


Image: A matrix

A B A A B A

æ

Given two tubes  $\tau_1, \tau_2$ , we say  $\tau_1 \prec \tau_2$  if  $\tau_1 \cap \tau_2 = \emptyset$ , and there exists  $v_1 \in \tau_1$  and  $v_2 \in \tau_2$  such that  $v_1 <_P v_2$ .

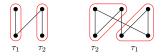


э

→ Ξ ► < Ξ ►</p>

Image: A matrix

Given two tubes  $\tau_1, \tau_2$ , we say  $\tau_1 \prec \tau_2$  if  $\tau_1 \cap \tau_2 = \emptyset$ , and there exists  $v_1 \in \tau_1$  and  $v_2 \in \tau_2$  such that  $v_1 <_P v_2$ .



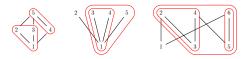
Potential problem: may/will have  $\tau_1 \prec \tau_2 \prec \ldots \prec \tau_k \prec \tau_1$ .

< ロト < 同ト < ヨト < ヨト

# Tubing

A tubing T of P is a set of tubes such that

- any pair of tubes in T is either nested or disjoint, and
- there is no potential problem  $\{\tau_1, \tau_2, \ldots, \tau_k\} \subseteq T$  such that  $\tau_1 \prec \tau_2 \prec \ldots \prec \tau_k \prec \tau_1$ .



Examples

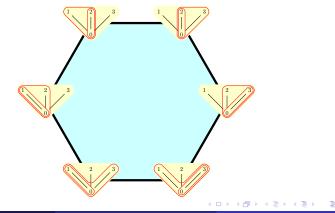


Non-examples

< □ > < □ > < □ > < □ >

#### Definition (Galashin '21)

For a finite poset P, there exists a simple, convex polytope  $\mathscr{A}(P)$  whose face lattice is isomorphic to the set of tubings ordered by reverse inclusion. This polytope is called the **poset associahedron** of P.



# f and h-vector

• *f*-vector:  $(f_0, f_1, \ldots, f_d)$  where

 $f_i = \#i$ -dimensional faces

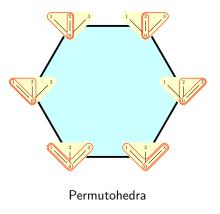
Eg: (6, 6, 1)

• *f*-polynomial:

$$f(t) = 6 + 6t + t^2$$

• *h*-vector and *h*-polynomial:

$$f(t) = h(t+1)$$
  
6+6t+t<sup>2</sup> = 1+4(t+1)+(t+1)<sup>2</sup>  
 $\rightarrow$  (1,4,1)



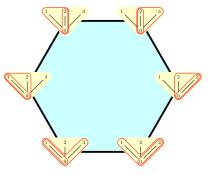
- 3 ▶

 When the *h*-polynomial is symmetric, we have the *γ*-vector and *γ*-polynomial:

$$1 + 4t + t^2 = (1 + t)^2 + 2t$$

 $\rightarrow$  (1,2)

Note: Not necessarily nonnegative



Permutohedra

 $\gamma$ -nonnegativity??? (BIG)

æ

イロト イヨト イヨト イヨト

 $\gamma$ -nonnegativity??? (BIG)

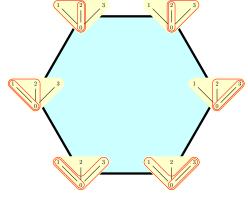
```
real-rootedness??? (BIGGER)
```

For our polytopes: real-rooted  $\Rightarrow \gamma$ -nonnegative, log-concave, unimodal

э

イロト 不得 ト イヨト イヨト

## Vic's Favorite Examples

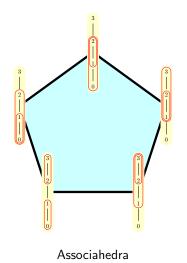


Permutohedra

æ

< □ > < 同 > < 回 > < 回 > < 回 >

## Vic's Favorite Examples



æ

э

### Broom Posets

Broom posets:  $A_{n,k} = C_{n+1} \oplus A_k$ 



 $A_{4,3}$ 

3

イロト イヨト イヨト イヨト

## Broom Posets

Broom posets:  $A_{n,k} = C_{n+1} \oplus A_k$ 



 $A_{4,3}$ 

Question: What do their face numbers count?

Son Nguyen

æ

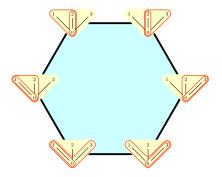
医ト く 医トー

< □ > < 凸

### Permutohedra

• *h*-vector: Eulerian number  $h_i = |\{w \in \mathfrak{S}_n \mid \operatorname{des}(w) = i\}|$ 

# vertices = n!



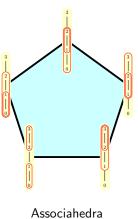
Permutohedra

э

(日) (四) (日) (日) (日)

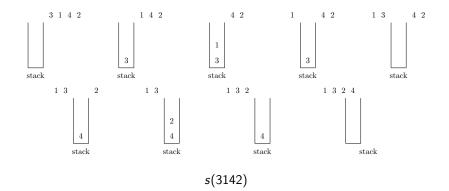
## Associahedra

- *h*-vector: Narayana number
  *h<sub>i</sub>* =?
- # vertices = Catalan number

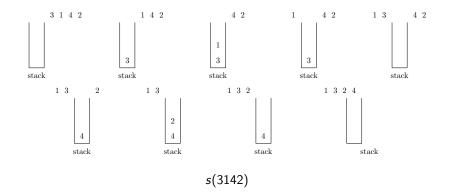


3. 3

Stack-sorting, denoted s, is an algorithm that "sorts" a permutation in linear time



Stack-sorting, denoted s, is an algorithm that "sorts" a permutation in linear time

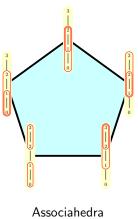


Stack-sortable permutations are counted by Catalan numbers!!!

## Associahedra

• *h*-vector: Narayana number  $h_i = |\{w \in s^{-1}(12...n) | \operatorname{des}(w) = i\}|$ 

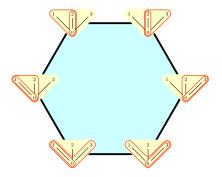
• # vertices =  $|s^{-1}(12...n)|$  = Catalan number



### Permutohedra

• *h*-vector: Eulerian number  $h_i = |\{w \in \mathfrak{S}_n \mid \operatorname{des}(w) = i\}|$ 

# vertices = n!



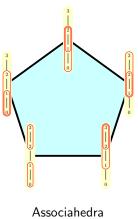
Permutohedra

(日) (四) (日) (日) (日)

## Associahedra

• *h*-vector: Narayana number  $h_i = |\{w \in s^{-1}(12...n) | \operatorname{des}(w) = i\}|$ 

• # vertices =  $|s^{-1}(12...n)|$  = Catalan number



Define  $\mathfrak{S}_{n,k} = \{ w \mid w \in \mathfrak{S}_{n+k}, w_i = i \text{ for all } i > k \}.$ Eg.  $\mathfrak{S}_{3,2} = \{ 12345, 21345 \}.$ 

3

Define 
$$\mathfrak{S}_{n,k} = \{ w \mid w \in \mathfrak{S}_{n+k}, w_i = i \text{ for all } i > k \}.$$
  
Eg.  $\mathfrak{S}_{3,2} = \{ 12345, 21345 \}.$ 

#### Theorem (N., Sack '23)

Let  $h = (h_0, h_1, \dots, h_{n+k-1})$  be the h-vector of  $\mathscr{A}(A_{n,k})$ . Then

$$h_i = |\{w \in s^{-1}(\mathfrak{S}_{n,k}) \mid des(w) = i\}|$$

2

イロト イヨト イヨト イヨト

### Theorem (Brändén '08)

For  $A \subseteq \mathfrak{S}_n$ , we have

$$\sum_{x \in s^{-1}(A)} x^{\mathsf{des}(\sigma)}$$

 $\sigma$ 

is  $\gamma$ -nonnegative.

#### Corollary

The  $\gamma$ -vector of  $\mathscr{A}(A_{n,k})$  is nonnegative.

э

# Happy Coincidence

### Proposition (N., Sack '23)

$$|\{w \in s^{-1}(2134...n) | \deg(w) = i\}| =$$
  
 $|\{w \in s^{-1}(1234...n) | \deg(w) = i, w_1 < n, w_n < n\}|$ 

æ

< □ > < 同 > < 回 > < 回 > < 回 >

#### Proposition (N., Sack '23)

$$|\{w \in s^{-1}(2134...n) | \operatorname{des}(w) = i\}| =$$

$$\{w \in s^{-1}(1234...n) \mid des(w) = i, w_1 < n, w_n < n\}$$

### Proposition (N., Sack '23)

$$h_{A_{n,2}}(x) = 2h_{A_{n+2,0}}(x) - (1+x)h_{A_{n+1,0}}(x).$$

æ

< □ > < □ > < □ > < □ > < □ > < □ >

#### Proposition (N., Sack '23)

$$|\{w \in s^{-1}(2134...n) | \operatorname{des}(w) = i\}| = |\{w \in s^{-1}(1234...n) | \operatorname{des}(w) = i, w_1 < n, w_n < n\}|$$

### Proposition (N., Sack '23)

$$h_{A_{n,2}}(x) = 2h_{A_{n+2,0}}(x) - (1+x)h_{A_{n+1,0}}(x).$$

#### Theorem (N., Sack '23)

$$h_{A_{n,2}}(x)$$
 is real-rooted.

æ

イロト イヨト イヨト イヨト

### Conjecture (Hard)

The h-polynomials of  $\mathscr{A}(A_{n,k})$  are real-rooted.

æ

#### Conjecture (Hard)

The h-polynomials of  $\mathscr{A}(A_{n,k})$  are real-rooted.

### Conjecture (Harder)

 $\mathscr{A}(P)$  are  $\gamma$ -positive for all P.

æ

< ロト < 同ト < ヨト < ヨト

#### Conjecture (Hard)

The h-polynomials of  $\mathscr{A}(A_{n,k})$  are real-rooted.

### Conjecture (Harder)

 $\mathscr{A}(P)$  are  $\gamma$ -positive for all P.

#### Conjecture (Very Hard)

The h-polynomials of  $\mathscr{A}(P)$  are real-rooted for all P.

æ

< ロト < 同ト < ヨト < ヨト

# Questions

#### Question (Another Direction)

Find more stack-sorting preimages that give h-polynomials of  $\mathscr{A}(P)$ .

Eg: Known for two-leg broom posets



.

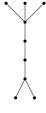
How about many-leg broom posets?

# Questions

### Question (Another Direction)

Find more stack-sorting preimages that give h-polynomials of  $\mathscr{A}(P)$ .

Eg: Known for two-leg broom posets



 $A_{2,3,3}$ 

How about many-leg broom posets?

#### Question (A Rabbit Hole)

*Real-rootedness of descent generating polynomials of stack-sorting preimages.* 

Son Nguyen

#### ACKNOWLEDGEMENT

I would like to thank

- Vic Reiner for his wonderful guidance, his careful reading of my papers, and always knowing the right ideas;
- Gregg Musiker and Pavlo Pylyavskyy for their amazing support and mentorship during my undergraduate years;
- Ayah Almousa, Daoji Huang, Patricia Klein, Anna Weigandt, and a long list of people at Minnesota for being the most welcoming and supporting group I have ever known;
- Andrew Sack for teaching me many things about polytopes;
- Colin Defant and Pavel Galashin for helpful conversations;
- my family for supporting my academic journey;
- Nhi Dang for her mental support throughout the years.