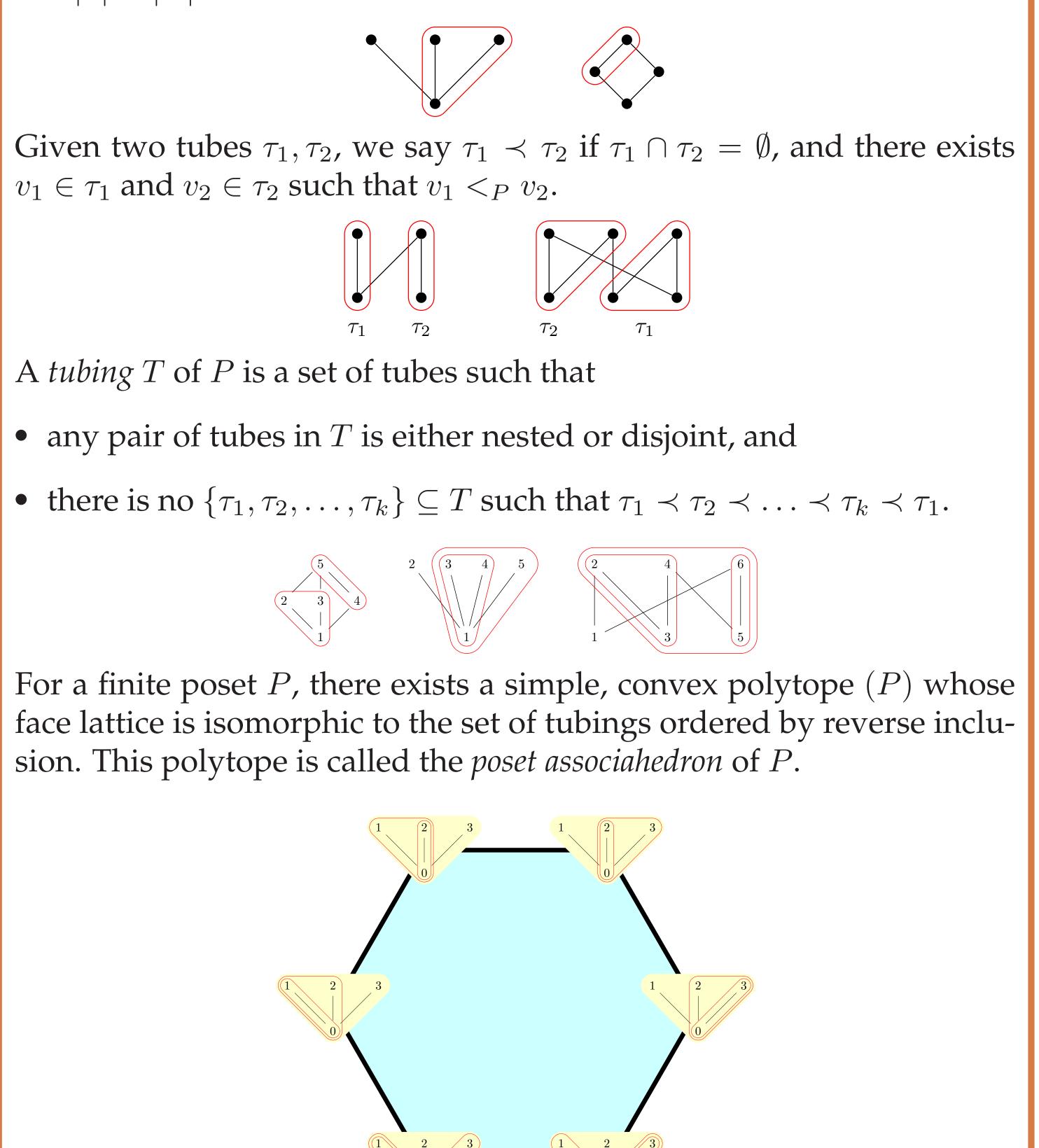


# **POSET ASSOCIATEDRA**

Given a poset *P*, a *tube*  $\tau$  is a connected convex subposet of *P* such that  $1 < |\tau| < |P|.$ 



Example: Permutohedron

## FACE NUMBERS

• *f*-polynomial:  $\sum f_i t^i$  where  $f_i = #$  *i*-dimensional faces.

• *h*-polynomial: h(t+1) = f(t).

• 
$$\gamma$$
-polynomial:  $(1+t)^d \gamma\left(\frac{t}{(1+t)^2}\right) = h(t).$ 

Example: For the permutohedron above

• 
$$f(t) = 6 + 6t + 6t^2$$

• 
$$h(t) = 1 + 4t + t^2$$

• 
$$\gamma(t) = 1 + 2t$$

# FACE NUMBERS OF POSET ASSOCIATEDRA

SON NGUYEN **ADVISOR: VIC REINER** UNIVERSITY OF MINNESOTA TWIN CITIES

# **COMPARABILITY INVARIANT**

The *comparability graph* of a poset *P* is a graph C(P) whose vertices are the elements of *P* and where *i* and *j* are connected by an edge if *i* and *j* are comparable.

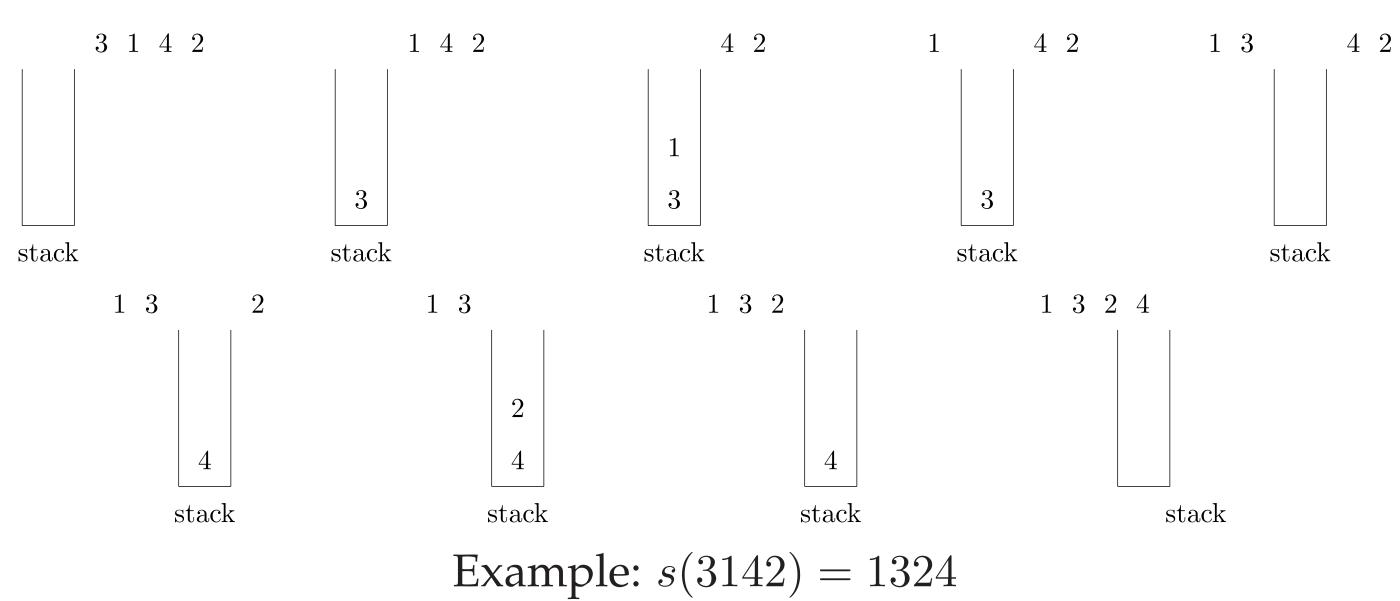
**Theorem.** If P and P' have the same comparability graph, then  $\mathscr{A}(P)$  and  $\mathscr{A}(P')$  have the same face numbers.

# **STACK-SORTING AND BROOM POSETS**

### Stack-sorting

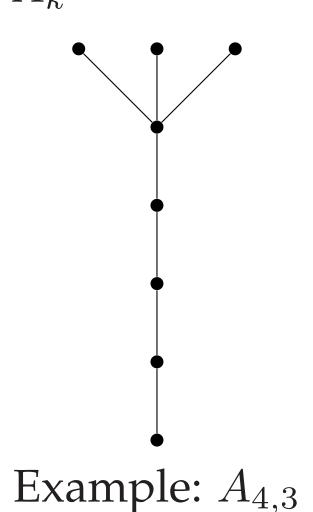
Given a permutation  $\pi \in \mathfrak{S}_n$ , the *stack-sorting algorithm* maps  $\pi$  to  $s(\pi)$ obtained through the following procedure. Iterate through the entries of  $\pi$ . In each iteration,

- if the stack is empty or the next entry is smaller than the entry at the top of the stack, push the next entry to the top of the stack;
- else, pop the entry at the top of the stack to the end of the output permutation.



### **Broom Posets**

Broom posets  $A_{n,k} = C_{n+1} \oplus A_k$ 



**Theorem.** Let  $\mathfrak{S}_{n,k} = \{w \mid w \in \mathfrak{S}_{n+k}, w_i = i \text{ for all } i > k\}$  and h(t) = $\sum h_i t^i$  be the h-polynomial of  $\mathscr{A}(A_{n,k})$ , then

$$h_i = |\{w \in s^{-1}(\mathfrak{S}_{n,k})|$$

**Corollary.**  $\mathscr{A}(A_{n,k})$  is  $\gamma$ -nonnegative.

**Theorem.** The h-polynomial of  $\mathscr{A}(A_{n,2})$  is real-rooted.

 $\operatorname{des}(w) = i \}|.$ 

# **CYCLIC FENCE POSETS**

The *(even) cyclic fence poset*  $CF_{2(n+1)}$  is the poset on the elements  $\{1, 2, \ldots, 2n + 2\}$  with the covering relations  $2k - 1, 2k + 1 \le 2k$  for  $1 \le k \le n$ , and  $1, 2n + 1 \lt 2n + 2$ . The (odd) cyclic fence poset  $CF_{2n+1}$  is the poset on the elements  $\{1, 2, \ldots, 2n + 1\}$  with the covering relations  $2k - 1, 2k + 1 \le 2k$  for  $1 \le k \le n$ , and  $1 \lt 2n + 1$ .

Example: 
$$CF_6$$
 and  $CF_7$ 

A *colored* (m, n) *path* is a sequence of m upsteps and n downsteps where each step is colored red or blue. Let  $CP_{m,n}$  denote the set of colored (m, n) path. A *peak* is an upstep followed by a downstep. A peak step is one of the two steps at some peak. The remaining steps are called side steps.

**Theorem.** For  $CF_{2(n+1)}$ , the h-vector is given by

For  $CF_{2n+1}$ , the h-vector is given by

# **CONJECTURES AND QUESTIONS**

**Conjecture.** All poset associated are real-rooted and  $\gamma$ -nonnegative.

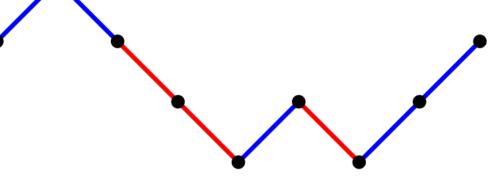
**Question.** Find a combinatorial interpretation for the face numbers of poset associahedra.

# ACKNOWLEDGEMENT

I would like to thank

- pers, and always knowing the right ideas;
- mentorship during my undergraduate years;
- supporting group I have ever known;





Example: A path in  $CP_{5,4}$  with 4 peak steps and 5 side steps

 $h_i = |\{w \in CP_{n,n} \mid \# red \ peak \ steps - \# blue \ peak \ steps = 2(i-n)\}|.$ 

 $h_i = |\{w \in CP_{n-1,n} \mid \# red \ side \ steps - \# blue \ side \ steps = 2(i-n) + 1\}|.$ 

• Vic Reiner for his wonderful guidance, his careful reading of my pa-

• Gregg Musiker and Pavlo Pylyavskyy for their amazing support and

• Ayah Almousa, Daoji Huang, Patricia Klein, Anna Weigandt, and a long list of people at Minnesota for being the most welcoming and

• Andrew Sack for teaching me many things about polytopes;

• Colin Defant and Pavel Galashin for helpful conversations;

• my family for supporting my academic journey;

• Nhi Dang for her mental support throughout the years.