Fourier-Mukai Theory in Commutative Algebra

Mahrud Sayrafi

Preliminary Oral Examination June 16, 2021

Section 1

Motivation

Let $S = \mathbb{k}[x_0, \dots, x_n]$ be a polynomial ring. Let *E* be a vector bundle of rank *r* over $\mathbb{P}^n = \operatorname{Proj} S$.

Let $S = \mathbb{k}[x_0, \dots, x_n]$ be a polynomial ring. Let *E* be a vector bundle of rank *r* over $\mathbb{P}^n = \operatorname{Proj} S$.

Fact: vector bundles on $\mathbb{P}^n \iff$ projective modules over *S*.

Let $S = \mathbb{k}[x_0, \dots, x_n]$ be a polynomial ring. Let *E* be a vector bundle of rank *r* over $\mathbb{P}^n = \operatorname{Proj} S$.

Fact: vector bundles on $\mathbb{P}^n \iff$ projective modules over *S*.

Classical question

When does *E* split as a direct sum of line bundles?

Let $S = \mathbb{k}[x_0, \dots, x_n]$ be a polynomial ring. Let *E* be a vector bundle of rank *r* over $\mathbb{P}^n = \operatorname{Proj} S$.

Fact: vector bundles on $\mathbb{P}^n \iff$ projective modules over *S*.

Classical question

When does E split as a direct sum of line bundles?

- Grothendieck: any vector bundle on \mathbb{P}^1 splits as $\oplus_{i=1}^r \mathcal{O}_{\mathbb{P}^1}(d_i)$.
- There are indecomposable bundles of rank n-1 on \mathbb{P}^n , $n \ge 3$.

Notation:

- \mathcal{O}_X is the structure sheaf on X;
- Ω_X is the cotangent sheaf on X;

Classical problem

Construct indecomposable vector bundles of low rank on \mathbb{P}^n .

Classical problem

Construct indecomposable vector bundles of low rank on \mathbb{P}^n .

Definition

A monad is a complex $0 \leftarrow A \xleftarrow{\alpha} B \xleftarrow{\beta} C \leftarrow 0$ of vector bundles that is exact except at B, defining a vector bundle $E = \ker \alpha / \operatorname{im} \beta$.

Classical problem

Construct indecomposable vector bundles of low rank on \mathbb{P}^n .

Definition

A monad is a complex $0 \leftarrow A \xleftarrow{\alpha} B \xleftarrow{\beta} C \leftarrow 0$ of vector bundles that is exact except at B, defining a vector bundle $E = \ker \alpha / \operatorname{im} \beta$.

- Horrocks–Mumford: an indecomposable rank 2 bundle on \mathbb{P}^4 from

$$\mathcal{O}_{\mathbb{P}^4}^5 \leftarrow \left(\Omega_{\mathbb{P}^4}^2(2)\right)^2 \leftarrow \mathcal{O}_{\mathbb{P}^4}(-1)^5.$$

- Existence of such bundles on \mathbb{P}^n , $n \ge 5$ is unknown.

Classical problem

Construct indecomposable vector bundles of low rank on \mathbb{P}^n .

Definition

A monad is a complex $0 \leftarrow A \xleftarrow{\alpha} B \xleftarrow{\beta} C \leftarrow 0$ of vector bundles that is exact except at B, defining a vector bundle $E = \ker \alpha / \operatorname{im} \beta$.

- Horrocks–Mumford: an indecomposable rank 2 bundle on \mathbb{P}^4 from

$$\mathcal{O}^{5}_{\mathbb{P}^{4}} \leftarrow \left(\Omega^{2}_{\mathbb{P}^{4}}(2)\right)^{2} \leftarrow \mathcal{O}_{\mathbb{P}^{4}}(-1)^{5}.$$

- Existence of such bundles on \mathbb{P}^n , $n \ge 5$ is unknown.
- Physics: an instanton bundle is the cohomology of a linear monad

$${\mathcal O}_{{\mathbb P}^3}(1)^n \leftarrow {\mathcal O}_{{\mathbb P}^3}^{2n+2} \leftarrow {\mathcal O}_{{\mathbb P}^3}(-1)^n.$$

Theorem (Horrocks' splitting criterion)

If for all twists $d \in \mathbb{Z}$ and $i \ge 0$, $\mathrm{H}^{i}(\mathbb{P}^{n}, E \otimes \mathcal{O}_{\mathbb{P}^{n}}(d))$ is equal to the cohomology of positive sums of line bundles, then E splits.

Theorem (Horrocks' splitting criterion)

If for all twists $d \in \mathbb{Z}$ and $i \ge 0$, $\mathrm{H}^{i}(\mathbb{P}^{n}, E \otimes \mathcal{O}_{\mathbb{P}^{n}}(d))$ is equal to the cohomology of positive sums of line bundles, then E splits.

"If it walks like a duck and talks like a duck, then it's a duck."

Theorem (Horrocks' splitting criterion)

If for all twists $d \in \mathbb{Z}$ and $i \ge 0$, $\mathrm{H}^{i}(\mathbb{P}^{n}, E \otimes \mathcal{O}_{\mathbb{P}^{n}}(d))$ is equal to the cohomology of positive sums of line bundles, then E splits.

"If it walks like a duck and talks like a duck, then it's a duck."

- Computable using Tate resolutions over the exterior algebra.
- Idea: construct the *Beilinson* monad for *E* with terms given by:

$$B_i = igoplus_{j \in \mathbb{Z}} \operatorname{H}^{j-i}\left(\mathbb{P}^n, E \otimes \mathcal{O}_{\mathbb{P}^n}(-j)
ight) \otimes \Omega^j_{\mathbb{P}^n}(j).$$

Theorem (Horrocks' splitting criterion)

If for all twists $d \in \mathbb{Z}$ and $i \ge 0$, $\mathrm{H}^{i}(\mathbb{P}^{n}, E \otimes \mathcal{O}_{\mathbb{P}^{n}}(d))$ is equal to the cohomology of positive sums of line bundles, then E splits.

"If it walks like a duck and talks like a duck, then it's a duck."

- Computable using Tate resolutions over the exterior algebra.
- Idea: construct the *Beilinson* monad for E with terms given by:

$$B_i = igoplus_{j \in \mathbb{Z}} \operatorname{H}^{j-i}\left(\mathbb{P}^n, E \otimes \mathcal{O}_{\mathbb{P}^n}(-j)
ight) \otimes \Omega^j_{\mathbb{P}^n}(j).$$

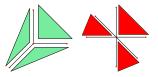
Motivation

For which toric varieties can we prove a similar splitting criterion?

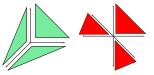
Section 2

Toric Varieties

Let $\sigma \subset N \cong \mathbb{Z}^n$ be a cone and $\sigma^{\vee} \subset M \otimes_{\mathbb{Z}} \mathbb{R}$ be its dual cone, where $M = \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$.



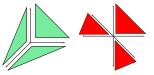
Let $\sigma \subset N \cong \mathbb{Z}^n$ be a cone and $\sigma^{\vee} \subset M \otimes_{\mathbb{Z}} \mathbb{R}$ be its dual cone, where $M = \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$.



Global Coordinates

The gluing data for a toric variety comes from a fan Δ of cones.

Let $\sigma \subset N \cong \mathbb{Z}^n$ be a cone and $\sigma^{\vee} \subset M \otimes_{\mathbb{Z}} \mathbb{R}$ be its dual cone, where $M = \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$.

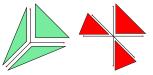


Global Coordinates

The gluing data for a toric variety comes from a fan Δ of cones.

Construction: for each $\sigma \in \Delta$ we have

Let $\sigma \subset N \cong \mathbb{Z}^n$ be a cone and $\sigma^{\vee} \subset M \otimes_{\mathbb{Z}} \mathbb{R}$ be its dual cone, where $M = \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$.



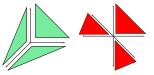
Global Coordinates

The gluing data for a toric variety comes from a fan Δ of cones.

Construction: for each $\sigma \in \Delta$ we have

- a commutative semi-group $S_{\sigma} = \sigma^{\vee} \cap M$, and

Let $\sigma \subset N \cong \mathbb{Z}^n$ be a cone and $\sigma^{\vee} \subset M \otimes_{\mathbb{Z}} \mathbb{R}$ be its dual cone, where $M = \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$.

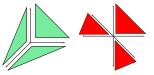


Global Coordinates

The gluing data for a toric variety comes from a fan Δ of cones.

- Construction: for each $\sigma \in \Delta$ we have
- a commutative semi-group $S_{\sigma} = \sigma^{\vee} \cap M$, and
- an open affine toric subvariety $U_{\sigma} = \operatorname{Spec} \mathbb{C}[S_{\sigma}].$

Let $\sigma \subset N \cong \mathbb{Z}^n$ be a cone and $\sigma^{\vee} \subset M \otimes_{\mathbb{Z}} \mathbb{R}$ be its dual cone, where $M = \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$.



Global Coordinates

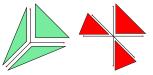
The gluing data for a toric variety comes from a fan Δ of cones.

Construction: for each $\sigma \in \Delta$ we have

- a commutative semi-group $S_{\sigma} = \sigma^{\vee} \cap M$, and
- an open affine toric subvariety $U_{\sigma} = \operatorname{Spec} \mathbb{C}[S_{\sigma}].$

Now glue U_{σ} according to the fan.

Let $\sigma \subset N \cong \mathbb{Z}^n$ be a cone and $\sigma^{\vee} \subset M \otimes_{\mathbb{Z}} \mathbb{R}$ be its dual cone, where $M = \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$.



Global Coordinates

The gluing data for a toric variety comes from a fan Δ of cones.

Construction: for each $\sigma \in \Delta$ we have

- a commutative semi-group $S_{\sigma} = \sigma^{\vee} \cap M$, and
- an open affine toric subvariety $U_{\sigma} = \operatorname{Spec} \mathbb{C}[S_{\sigma}].$

Now glue U_{σ} according to the fan.

Definition

A toric variety is *smooth* (resp. *simplicial*) if every cone is generated by a subset of an \mathbb{Z} -basis (resp. \mathbb{R} -basis) of N (resp. $N \otimes_{\mathbb{Z}} \mathbb{R}$).

- In particular, smooth implies simplicial.

Let S be the *total coordinate ring* of a toric variety X.

Let S be the *total coordinate ring* of a toric variety X. Fact: S is a polynomial ring graded by the Picard group Pic(X).

Let S be the *total coordinate ring* of a toric variety X. Fact: S is a polynomial ring graded by the Picard group Pic(X).

Theorem (Thm. 3.2, Cox 1995)

Every coherent sheaf on a simplicial toric variety X corresponds to a finitely generated Pic(X)-graded S-module.

Let S be the *total coordinate ring* of a toric variety X. Fact: S is a polynomial ring graded by the Picard group Pic(X).

Theorem (Thm. 3.2, Cox 1995)

Every coherent sheaf on a simplicial toric variety X corresponds to a finitely generated Pic(X)-graded S-module.

We can do commutative algebra on a toric variety!

- Monomial orderings
- Gröbner basis algorithms
- Syzygies and free resolutions

Let S be the *total coordinate ring* of a toric variety X. Fact: S is a polynomial ring graded by the Picard group Pic(X).

Theorem (Thm. 3.2, Cox 1995)

Every coherent sheaf on a simplicial toric variety X corresponds to a finitely generated Pic(X)-graded S-module.

We can do commutative algebra on a toric variety!

- Monomial orderings
- Gröbner basis algorithms
- Syzygies and free resolutions

Caution: saturation on *S* is with respect to an *irrelevant ideal B*.

Section 3

Derived Categories

Monads We Know & Love!

If we consider longer monads, we can also represent all sheaves.

- Beilinson monads:
$$B_i = \bigoplus_{j \in \mathbb{Z}} \operatorname{H}^{j-i} (\mathbb{P}^n, E \otimes \mathcal{O}(-j)) \otimes \Omega^j(j)$$

- Virtual resolutions: $V_i = \bigoplus_{j \in \mathbb{Z}} \operatorname{H}^{j-i} (\mathbb{P}^n, E \otimes \Omega^j(j)) \otimes \mathcal{O}(-j)$

Monads We Know & Love!

If we consider longer monads, we can also represent all sheaves.

- Beilinson monads:
$$B_i = \bigoplus_{j \in \mathbb{Z}} \operatorname{H}^{j-i} (\mathbb{P}^n, E \otimes \mathcal{O}(-j)) \otimes \Omega^j(j)$$

- Virtual resolutions: $V_i = \bigoplus_{j \in \mathbb{Z}} \operatorname{H}^{j-i} (\mathbb{P}^n, E \otimes \Omega^j(j)) \otimes \mathcal{O}(-j)$

Proposition (Beilinson 1978)

There exit two full strong exceptional collections for $\mathcal{D}^{\mathrm{b}}(\mathbb{P}^n)$:

 $\mathcal{O}_{\mathbb{P}^n}, \ \mathcal{O}_{\mathbb{P}^n}(1), \ \ldots, \ \mathcal{O}_{\mathbb{P}^n}(n) \quad and \quad \mathcal{O}_{\mathbb{P}^n}, \ \Omega_{\mathbb{P}^n}(1), \ \ldots, \ \Omega_{\mathbb{P}^n}^n(n)$

Monads We Know & Love!

If we consider longer monads, we can also represent all sheaves.

- Beilinson monads:
$$B_i = \bigoplus_{j \in \mathbb{Z}} \operatorname{H}^{j-i} (\mathbb{P}^n, E \otimes \mathcal{O}(-j)) \otimes \Omega^j(j)$$

- Virtual resolutions: $V_i = \bigoplus_{j \in \mathbb{Z}} \operatorname{H}^{j-i} (\mathbb{P}^n, E \otimes \Omega^j(j)) \otimes \mathcal{O}(-j)$

Proposition (Beilinson 1978)

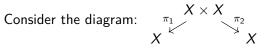
There exit two full strong exceptional collections for $\mathcal{D}^{\mathrm{b}}(\mathbb{P}^n)$:

 $\mathcal{O}_{\mathbb{P}^n}, \ \mathcal{O}_{\mathbb{P}^n}(1), \ \ldots, \ \mathcal{O}_{\mathbb{P}^n}(n) \quad \text{and} \quad \mathcal{O}_{\mathbb{P}^n}, \ \Omega_{\mathbb{P}^n}(1), \ \ldots, \ \Omega_{\mathbb{P}^n}^n(n)$

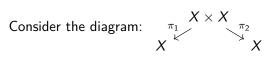
Question

What is the machinery for translating between the monads above?

Fourier-Mukai Transforms



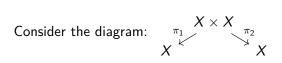
Fourier-Mukai Transforms



Let \mathcal{K} be a resolution of the diagonal $\Delta = \operatorname{im}(X \to X \times X)$

$$\mathcal{K} \colon \mathbf{0} \leftarrow \mathcal{S}_{\Delta} \leftarrow \mathcal{K}_{\mathbf{0}} \leftarrow \mathcal{K}_{\mathbf{1}} \leftarrow \cdots$$

Fourier-Mukai Transforms



Let $\mathcal K$ be a resolution of the diagonal $\Delta = \operatorname{im}(X o X imes X)$

$$\mathcal{K} \colon \mathbf{0} \leftarrow S_{\Delta} \leftarrow \mathcal{K}_{\mathbf{0}} \leftarrow \mathcal{K}_{\mathbf{1}} \leftarrow \cdots$$

Definition (Huybrechts 2006)

The Fourier–Mukai transform with kernel \mathcal{K} is the functor

- identity functor on $\mathcal{D}^{\mathrm{b}}(X)$ produces quasi-isomorphisms.

Section 4

Applications

Virtual Resolutions for $X = \mathbb{P}^{\underline{n}}$

Let $\mathbb{P}^{\underline{n}} = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_r}$ be a product of r projective spaces. Let $M = \bigoplus_d M_d$ be a f.g. \mathbb{Z}^r -graded module over the Cox ring S.

Virtual Resolutions for $X = \mathbb{P}^{\underline{n}}$

Let $\mathbb{P}^{\underline{n}} = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_r}$ be a product of r projective spaces. Let $M = \bigoplus_d M_d$ be a f.g. \mathbb{Z}^r -graded module over the Cox ring S.

Fact: coherent sheaves on $\mathbb{P}^{\underline{n}} \iff f.g.$ graded modules over *S*.

Virtual Resolutions for $X = \mathbb{P}^{\underline{\mathbf{n}}}$

Let $\mathbb{P}^{\underline{n}} = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_r}$ be a product of r projective spaces. Let $M = \bigoplus_d M_d$ be a f.g. \mathbb{Z}^r -graded module over the Cox ring S.

Fact: coherent sheaves on $\mathbb{P}^{\underline{n}} \iff$ f.g. graded modules over *S*.

Observation

Minimal free resolutions on $\mathbb{P}^{\underline{n}}$ can be longer than dimension of $\mathbb{P}^{\underline{n}}$.

Hilbert's Syzygy Theorem on S does not reflect the geometry of $\mathbb{P}^{\underline{n}}$!

Virtual Resolutions for $X = \mathbb{P}^{\underline{\mathbf{n}}}$

Let $\mathbb{P}^{\underline{n}} = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_r}$ be a product of r projective spaces. Let $M = \bigoplus_d M_d$ be a f.g. \mathbb{Z}^r -graded module over the Cox ring S.

Fact: coherent sheaves on $\mathbb{P}^{\underline{n}} \iff$ f.g. graded modules over *S*.

Observation

Minimal free resolutions on $\mathbb{P}^{\underline{n}}$ can be longer than dimension of $\mathbb{P}^{\underline{n}}$.

Hilbert's Syzygy Theorem on S does not reflect the geometry of $\mathbb{P}^{\underline{n}}$!

But a **virtual** Hilbert Syzygy Theorem for $\mathbb{P}^{\underline{n}}$ still holds:

Theorem (Berkesch, Erman, and Smith 2020)

A virtual resolution of length $\leq \dim \mathbb{P}^n$ exists for graded modules.

Roadmap for constructing a short virtual resolution on $X = \mathbb{P}^{\underline{n}}$:

Roadmap for constructing a short virtual resolution on $X = \mathbb{P}^{\underline{n}}$:

() compute a Koszul resolution of the diagonal in $X \times X$ given by

$$\mathcal{K} \colon \cdots o \bigwedge_{|e_i|=k} \left(\mathcal{O}_X(-e_i) \boxtimes \Omega_X^{e_i}(e_i) \right) o \cdots o \mathcal{O}_{X imes X} o \mathcal{O}_\Delta o 0$$

Roadmap for constructing a short virtual resolution on $X = \mathbb{P}^{\underline{n}}$:

() compute a Koszul resolution of the diagonal in $X \times X$ given by

$$\mathcal{K} \colon \cdots \to \bigwedge_{|e_i|=k} \left(\mathcal{O}_X(-e_i) \boxtimes \Omega_X^{e_i}(e_i) \right) \to \cdots \to \mathcal{O}_{X \times X} \to \mathcal{O}_\Delta \to 0$$

② find *d* ∈ Pic(*X*) so $Ω^u(u + d) ⊗ 𝔅$ has no higher cohomology;

Roadmap for constructing a short virtual resolution on $X = \mathbb{P}^{\underline{n}}$:

() compute a Koszul resolution of the diagonal in $X \times X$ given by

$$\mathcal{K} \colon \cdots o igwedge_{|e_i|=k} igl(\mathcal{O}_X(-e_i) oxtimes \Omega^{e_i}_X(e_i)igr) o \cdots o \mathcal{O}_{X imes X} o \mathcal{O}_\Delta o 0$$

a find d ∈ Pic(X) so Ω^u(u + d) ⊗ 𝔅 has no higher cohomology;
apply the Fourier–Mukai functor with kernel 𝔅 on $\widetilde{M}(d)$;

Roadmap for constructing a short virtual resolution on $X = \mathbb{P}^{\underline{n}}$:

() compute a Koszul resolution of the diagonal in $X \times X$ given by

$$\mathcal{K} \colon \cdots o igwedge_{|e_i|=k} igl(\mathcal{O}_X(-e_i) oxtimes \Omega^{e_i}_X(e_i)igr) o \cdots o \mathcal{O}_{X imes X} o \mathcal{O}_\Delta o 0$$

- If ind d ∈ Pic(X) so Ω^u(u + d) ⊗ 𝔅 has no higher cohomology;
- **③** apply the Fourier–Mukai functor with kernel \mathcal{K} on M(d);
- apply the global sections functor on the resulting complex.

Roadmap for constructing a short virtual resolution on $X = \mathbb{P}^{\underline{n}}$:

() compute a Koszul resolution of the diagonal in $X \times X$ given by

$$\mathcal{K} \colon \cdots \to \bigwedge_{|e_i|=k} \left(\mathcal{O}_X(-e_i) \boxtimes \Omega_X^{e_i}(e_i) \right) \to \cdots \to \mathcal{O}_{X \times X} \to \mathcal{O}_\Delta \to 0$$

- **②** find *d* ∈ Pic(*X*) so $Ω^u(u + d) ⊗ 𝔅$ has no higher cohomology;
- **③** apply the Fourier–Mukai functor with kernel \mathcal{K} on $\widetilde{M}(d)$;
- apply the global sections functor on the resulting complex.

Problem

What conditions on the exceptional collections of a toric variety guarantee that a virtual Hilbert Syzygy Theorem holds?

Roadmap for constructing a short virtual resolution on $X = \mathbb{P}^{\underline{n}}$:

() compute a Koszul resolution of the diagonal in $X \times X$ given by

$$\mathcal{K} \colon \cdots \to \bigwedge_{|e_i|=k} \left(\mathcal{O}_X(-e_i) \boxtimes \Omega_X^{e_i}(e_i) \right) \to \cdots \to \mathcal{O}_{X \times X} \to \mathcal{O}_\Delta \to 0$$

- ② find *d* ∈ Pic(*X*) so $Ω^u(u + d) ⊗ 𝔅$ has no higher cohomology;
- **③** apply the Fourier–Mukai functor with kernel \mathcal{K} on $\widetilde{M}(d)$;
- apply the global sections functor on the resulting complex.

Problem

What conditions on the exceptional collections of a toric variety guarantee that a virtual Hilbert Syzygy Theorem holds?

"Variations on the theme of Beilinson's resolution of the diagonal."

Let $S = \Bbbk[x_0, \dots, x_n]$ and $B = (x_0, \dots, x_n)$ with deg $x_i = 1$. Let $M = M_{\geq m}(\mathbf{m})$ be an 0-regular S-module.

Let $S = \mathbb{k}[x_0, \dots, x_n]$ and $B = (x_0, \dots, x_n)$ with deg $x_i = 1$. Let $M = M_{\geq m}(\mathbf{m})$ be an 0-regular S-module.

Let F_{\bullet} be the minimal free resolution of M, and G_{\bullet} be the virtual resolution of M as in BES20.

Let $S = \Bbbk[x_0, \dots, x_n]$ and $B = (x_0, \dots, x_n)$ with deg $x_i = 1$. Let $M = M_{\geq \mathbf{m}}(\mathbf{m})$ be an 0-regular S-module.

Let F_{\bullet} be the minimal free resolution of M, and G_{\bullet} be the virtual resolution of M as in BES20.

Remark

- The (a, j)-th Betti number of F_{\bullet} is given by dim $\operatorname{Tor}_{j}(M, k)_{a}$.
- The (a, j)-th Betti number of G_{\bullet} is given by $h^{a-j}(\widetilde{M} \otimes \Omega^a(a))$.

Let $S = \Bbbk[x_0, \dots, x_n]$ and $B = (x_0, \dots, x_n)$ with deg $x_i = 1$. Let $M = M_{\geq \mathbf{m}}(\mathbf{m})$ be an 0-regular S-module.

Let F_{\bullet} be the minimal free resolution of M, and G_{\bullet} be the virtual resolution of M as in BES20.

Remark

- The (a, j)-th Betti number of F_{\bullet} is given by dim $\operatorname{Tor}_{j}(M, k)_{a}$.
- The (a, j)-th Betti number of G_{\bullet} is given by $h^{a-j}(\widetilde{M} \otimes \Omega^a(a))$.

We can improve a result of Eisenbud and Goto:

Theorem

$$G_{\bullet} \cong F_{\bullet}$$
 and $h^{a-j}\left(\widetilde{M}\otimes\Omega^{a}(a)\right) = \dim \operatorname{Tor}_{j}(M,k)_{a}$

Let X be a "nice" toric variety, such as:

- a projective space \mathbb{P}^n , or product of projective spaces $\mathbb{P}^{\underline{\mathbf{n}}}$,
- a Hirzebruch surface \mathbb{F}_n ;
- the del Pezzo surface dP6.

Let X be a "nice" toric variety, such as:

- a projective space \mathbb{P}^n , or product of projective spaces $\mathbb{P}^{\underline{\mathbf{n}}}$,
- a Hirzebruch surface \mathbb{F}_n ;
- the del Pezzo surface dP6.

Conjecture

There is a "Beilinson-type" resolution of the diagonal \mathcal{K} for X.

Let X be a "nice" toric variety, such as:

- a projective space \mathbb{P}^n , or product of projective spaces $\mathbb{P}^{\underline{\mathbf{n}}}$,
- a Hirzebruch surface \mathbb{F}_n ;
- the del Pezzo surface dP6.

Conjecture

There is a "Beilinson-type" resolution of the diagonal \mathcal{K} for X.

Let $M = M_{\geq m}(\mathbf{m})$ be an "S-regular" S-module.

Let F_{\bullet} be the minimal free resolution of M, and G_{\bullet} be the virtual resolution of M constructed via $\Phi_{\mathcal{K}}$.

Let X be a "nice" toric variety, such as:

- a projective space \mathbb{P}^n , or product of projective spaces $\mathbb{P}^{\underline{\mathbf{n}}}$,
- a Hirzebruch surface \mathbb{F}_n ;
- the del Pezzo surface dP6.

Conjecture

There is a "Beilinson-type" resolution of the diagonal \mathcal{K} for X.

Let
$$M = M_{\geq m}(\mathbf{m})$$
 be an "S-regular" S-module.

Let F_{\bullet} be the minimal free resolution of M, and G_{\bullet} be the virtual resolution of M constructed via $\Phi_{\mathcal{K}}$.

Conjecture

$$G_{\bullet} \cong F_{\bullet}$$
 and $h^{|a|-j}\left(\widetilde{M}\otimes\Omega^{a}(a)\right) = \dim \operatorname{Tor}_{j}(M,k)_{a}$

References

Beilinson, A. A. (July 1978). "Coherent sheaves on P^n and problems of linear algebra". Functional Analysis and Its Applications 12.3, pp. 214–216. DOI: 10.1007/BF01681436. Berkesch, Christine, Daniel Erman, and Gregory G. Smith (July 2020). "Virtual resolutions for a product of projective spaces". Algebraic Geometry, pp. 460–481. DOI: 10.14231/ag-2020-013. Cox, David A. (1995). "The homogeneous coordinate ring of a toric variety". J. Algebraic Geom. 4.1, pp. 17–50. Eisenbud, David and Shiro Goto (1984). "Linear free resolutions and minimal multiplicity". Journal of Algebra 88.1, pp. 89–133. DOI: 10.1016/0021-8693(84)90092-9. Huybrechts, Daniel (2006). Fourier-Mukai Transforms in Algebraic Geometry. Oxford Mathematical Monographs. Clarendon Press. Maclagan, Diane and Gregory G. Smith (Jan. 2004). "Multigraded Castelnuovo-Mumford regularity". Journal für die reine und angewandte Mathematik (Crelles Journal) 2004.571. DOI: 10.1515/crll.2004.040.

Regularity and Linear Resolutions for $X = \mathbb{P}^n$

Let $S = \Bbbk[x_0, \ldots, x_n]$ and $\mathfrak{m} = (x_0, \ldots, x_n)$ with deg $x_i = 1$. Let $M = \bigoplus_d M_d$ be a f.g. \mathbb{Z} -graded S-module.

Proposition (Eisenbud and Goto 1984)

The following are equivalent to M being m-regular:

- *i*-th syzygy of M is generated in degrees $\leq m + i$
- 2 $H^{i}_{\mathfrak{m}}(M)_{d} = 0$ for $d \ge m + 1 i$ and all i = 0, 1, ...
- **(3)** the truncation $M_{>m}$ admits a linear free resolution.

Recall that a free resolution F_{\bullet} of $M_{\geq m}$ is linear if:

- $M_{\geq m}$ is generated in one degree only and
- F_{\bullet} has only linear elements in its differential matrices

Equivalent to the Betti table being concentrated in one line.

Multigraded Regularity for $X = \mathbb{P}^{\underline{n}}$

Let $X = \mathbb{P}^{\mathbf{n}} = \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_r}$ be a product of r projective spaces. Let $S = \operatorname{Cox}(X)$ with B the \mathbb{Z}^r -graded irrelevant ideal of X. Let $M = \bigoplus_d M_d$ be a f.g. \mathbb{Z}^r -graded S-module.

Definition (Maclagan and Smith 2004)

An S-module M on a product of projective spaces is m-regular if

$$H^i_B(M)_{\mathbf{d}}=0$$
 for $\mathbf{d}\in\mathbf{m}+\mathbb{N}^r[1-i]$ and all $i=0,1,\ldots$

Then reg $M = {\mathbf{m} \in \mathbb{Z}^r : M \text{ is } \mathbf{m}\text{-regular}}.$

Notation:

$$\mathbb{N}^{r}[1-i] = \bigcup \{ \mathbb{N}^{r} \text{ shifted northwest by } 1-i \text{ steps} \}.$$

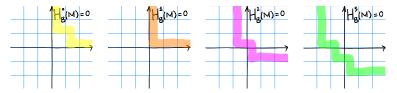
Multigraded Regularity for $X = \mathbb{P}^1 \times \mathbb{P}^2$

Definition (Maclagan and Smith 2004)

 $\mathbf{m}\in \operatorname{reg} M \iff H^i_B(M)_{\mathbf{d}} = 0 \text{ for } \mathbf{d}\in \mathbf{m}+\mathbb{N}^2[1-i] \text{ and all } i\geq 0.$

Notation: $\mathbb{N}^2[1-i] = \bigcup \{\mathbb{N}^2 \text{ shifted northwest by } 1-i \text{ steps} \}.$

Example for Picard rank = 2



- Implemented in the M2 package VirtualResolutions using Tate resolutions joint with Ayah Almousa, Juliette Bruce, and Mike Loper.