TEAM 2 FINAL REPORT

Constructing a no-arbitrage volatility surface in liquid and illiquid commodity markets

https://sites.google.com/site/fmmodeling11/
SVI Model

Parameterization:

\[\text{var}(k; a, b, \sigma, \rho, m) = a + b\{\rho(k - m) + \sqrt{(k - m)^2 + \sigma^2}\} \]

- \(a\) gives the overall level of variance
- \(b\) gives the angle between the left and right asymptotes
- \(\sigma\) determines how smooth the vertex is
- \(\rho\) determines the orientation of the graph
- \(m\) translates the graph
In Commodity market

- Commodity Data
 - Corn (liquid)
 - Live Cattle (somewhere in between)
 - Milk (illiquid)
Find Implied Volatility

- Bisection not Newton’s method
- Only out-of-money data

![Graphs of Corn and Milk](image_url)
Fitting the SVI Model

- Use the method of least square
 - Minimize the objective function:
 \[\sum (\sigma_{SVI} - \sigma_{Mkt})^2 \]
 where
 \[\sigma_{SVI} = \text{var}(k; a, b, \sigma, \rho, m) = a + b\left\{ \rho(k - m) + \sqrt{(k - m)^2 + \sigma^2} \right\} \]
 - No constraints imposed
Fitting the SVI Model

Use the method of least square to minimize the objective function:

\[\sum_{k=1}^{n} \left(\sigma_{SVI}(k, a, b, m) - \sigma_{SVI, Mkt}(k) \right)^2 \]

where no constraints imposed.
Fitting the SVI Model

Use the method of least square

Minimize the objective function: where

No constraints imposed

Fitting the SVI Model

Sep11 Corn
Replicating digital options

- Bull call spread to replicate digital call
Replicating digital options

- Bull call spread to replicate digital call
- Bear put spread to reproduce digital put
Replicating digital options

- Equation for pricing digital call
 \[-\frac{\partial C}{\partial K} - \text{Vega} \cdot \frac{\sigma_1 - \sigma_2}{K_1 - K_2}\]
Replicating digital options

- Equation for pricing digital call
 \[-\frac{\partial C}{\partial K} - \text{Vega} \cdot \frac{\sigma_1 - \sigma_2}{K_1 - K_2} \]

- Equation for pricing digital put
 \[\frac{\partial P}{\partial K} + \text{Vega} \cdot \frac{\sigma_1 - \sigma_2}{K_1 - K_2} \]
Replicating digital options

- Equation for pricing digital call
 \[-\frac{\partial C}{\partial K} - \text{Vega} \cdot \frac{\sigma_1 - \sigma_2}{K_1 - K_2} \]

- Equation for pricing digital put
 \[\frac{\partial P}{\partial K} + \text{Vega} \cdot \frac{\sigma_1 - \sigma_2}{K_1 - K_2} \]

- Relation with Black-Scholes
 - Call: \[-D_{BS} - \text{Vega} \cdot \frac{\sigma_1 - \sigma_2}{K_1 - K_2} \]
 - Put: \[D_{BS} + \text{Vega} \cdot \frac{\sigma_1 - \sigma_2}{K_1 - K_2} \]
Formula difference

Method #1 Black Scholes

\[C = e^{-rT} \Phi(d_2). \]

Method #2 Replication

\[C = \lim_{\epsilon \to 0} \frac{C_v(K - \epsilon) - C_v(K)}{\epsilon} = -\frac{dC_v}{dK} \]
\[= -\frac{dC_v(K, \sigma(K))}{dK} - \frac{\partial C_v}{\partial K} \frac{\partial \sigma}{\partial K} \]
\[- \frac{\partial C_v}{\partial K} = - \frac{\partial (S \Phi(d_1) - Ke^{-rT} \Phi(d_2))}{\partial K} = e^{-rT} \Phi(d_2) = C_{noskew} \]

Option Vega

Slope of volatility skew
Comparison

CZ0 Volatility Skew

ATM Corn Price Difference

![CZ0 Volatility Skew Graph](image1)

![ATM Corn Price Difference Graph](image2)

Team 2 Final Report
Comparison

CZ0 Volatility Skew

OTM Corn Price Difference
Comparison

CZ0 Volatility Skew

Deep OTM Corn Price Difference

![Graph of CZ0 Volatility Skew](image)

![Graph of Deep OTM Corn Price Difference](image)
Comparison

LCM1 Volatility Skew

ATM LCM1 Price Difference

![Graph showing LCM1 Volatility Skew]

![Graph showing ATM LCM1 Price Difference]

Team 2 Final Report
Comparison

DAJ1 Volatility Skew

OTM LCM1 Price Difference

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
0 0.05 0.1 0.15 0.175 0.17 0.165 0.16 0.155 0.15 0.145 0.14 0.135

Vol (%) vs log(K/S)

10^-3 10^-2 10^-1 10^0 10^1 10^2 10^3
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Digital option price vs Tick Size

Moderately out of the money (Live Cattle)
Comparison

DAJ1 Volatility Skew

Deep OTM LCM1 Price Difference
Comparison

DAJ1 Volatility Skew

DAJ1 ATM Price Difference

Team 2 Final Report
Comparison

DAJ1 Volatility Skew

DAJ1 OTM Price Difference
In equity market

Where we have volatility surface
Fitting SVI curve

- Unconstrained Optimization
 - MATLAB – fminsearch

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>B</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.23</td>
<td>4.01</td>
<td>0.28</td>
</tr>
<tr>
<td>ρ</td>
<td>-1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>-0.68</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fitting SVI curve

- **Constrained Optimization**
 - MATLAB – fmincon
 - \(a > 0, b > 0, |\rho| < 1 \)

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>3.77</td>
<td>-0.22</td>
</tr>
<tr>
<td>(\rho)</td>
<td>-1</td>
<td>-0.55</td>
<td></td>
</tr>
</tbody>
</table>
Fitting SVI curve

- **Constrained Optimization**
 - **MATLAB – fmincon**
 - $|\rho| < 1$

Table

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-26.58</td>
<td>13.44</td>
<td>-2.05</td>
</tr>
<tr>
<td>ρ</td>
<td>-0.26</td>
<td>-0.54</td>
<td></td>
</tr>
</tbody>
</table>

Graph

![Graph of SVI curve fitting](image)

Team 2 Final Report
Implied Volatility Skews for Equities
Implied Volatility Skews for Equities

![Graph of implied volatility skews for April 11 and June 11.](image)
Implied Volatility Skews for Equities

Sep 11

Dec 11

Vol (%) vs log(\$S)
SVI Volatility Surface

- Forward Volatility
 - Thanks Jason’s team
Summary of what we have done

- Find implied volatility for commodities
- Parameterize SVI variance curves
- Price digital options with volatility skew
- Build SVI implied volatility skews for SPX
- Get the volatility surface from forward volatility
- Price SPX digital
- Compare between Black-Scholes pricing evaluation and replication pricing mechanism.
Constructing a no-arbitrage volatility surface in liquid and illiquid commodity markets
QUESTIONS
& COMMENTS