Crash Course on Lie groupoid theory

Rui Loja Fernandes

Departamento de Matemática
Instituto Superior Técnico

University of Minnesota 2012
A **groupoid** is a small category where every morphism is an isomorphism.
A **groupoid** is a small category where every morphism is an isomorphism.

\[G \equiv \text{set of arrows} \quad M \equiv \text{set of objects}. \]
A **groupoid** is a small category where every morphism is an isomorphism.

\[G \equiv \text{set of arrows} \quad M \equiv \text{set of objects.} \]

- **source** and **target** maps:

\[\begin{array}{ccc}
 g & \leftrightarrow \ & M \\
 t(g) & \leftarrow \ & s(g)
\end{array} \]

- **product**:

\[G^{(2)} = \{ (h, g) \in G \times G : s(h) = t(g) \} \]

\[m : G^{(2)} \to G \]
A **groupoid** is a small category where every morphism is an isomorphism.

\[\mathcal{G} \equiv \text{set of arrows} \quad M \equiv \text{set of objects}. \]

- **source** and **target** maps:

\[\begin{align*}
 t(g) & \quad \bullet \quad s(g) \\
 \mathcal{G} & \quad \begin{array}{c}
 \xrightarrow{t} \\
 \xleftarrow{s}
 \end{array} \\
 & \quad M
\end{align*} \]

- **product**:

\[\begin{align*}
 t(h) & \quad \bullet \quad s(h) = t(g) \quad \bullet \quad s(g) \\
 h & \quad \begin{array}{c}
 \swarrow
 \end{array} \\
 g & \quad \begin{array}{c}
 \searrow
 \end{array}
\end{align*} \]

\[g^{(2)} = \{(h, g) \in \mathcal{G} \times \mathcal{G} : s(h) = t(g)\} \]

\[m : g^{(2)} \rightarrow \mathcal{G} \]
A **groupoid** is a small category where every morphism is an isomorphism.

\[\mathcal{G} \equiv \text{set of arrows} \quad \quad M \equiv \text{set of objects}. \]

- **Identity:**
 \[u : M \rightarrow G \]

- **Inverse:**
 \[\iota : G \rightarrow G \]

\[g \quad g^{-1} \]

\[t(g) \quad s(g) \]
A **groupoid** is a small category where every morphism is an isomorphism.

\[G \equiv \text{set of arrows} \quad M \equiv \text{set of objects.} \]

- **identity:**

 \[u : M \rightarrow G \]

- **inverse:**

 \[t(g) \bullet \xleftarrow{g} \bullet s(g) \]

\[g^{-1} \]
A **groupoid** is a small category where every morphism is an isomorphism.

A **morphism of groupoids** is a functor $\mathcal{F} : \mathcal{G} \rightarrow \mathcal{H}$.
A **groupoid** is a small category where every morphism is an isomorphism.

A **morphism of groupoids** is a functor $\mathcal{F} : \mathcal{G} \to \mathcal{H}$.

This means we have a map $\mathcal{F} : \mathcal{G} \to \mathcal{H}$ between the sets of arrows, and a map $f : M \to N$ between the sets of objects, such that:

- if $g : x \to y$ is in \mathcal{G}, then $\mathcal{F}(g) : f(x) \to f(y)$ in \mathcal{H}.
- if $g, h \in \mathcal{G}$ are composable, then $\mathcal{F}(gh) = \mathcal{F}(g)\mathcal{F}(h)$.
- if $x \in M$, then $\mathcal{F}(1_x) = 1_{f(x)}$.
- if $g : x \to y$, then $\mathcal{F}(g^{-1}) = \mathcal{F}(g)^{-1}$.

Rui Loja Fernandes

Crash Course on Lie groupoid theory
Groupoids: basic concepts

- **right multiplication by** $g : y \leftarrow x$ is a bijection between s-fiber:
 \[R_g : s^{-1}(y) \rightarrow s^{-1}(x), \quad h \mapsto hg. \]

- **left multiplication by** $g : y \leftarrow x$ is a bijection between t-fibers:
 \[L_g : t^{-1}(x) \rightarrow t^{-1}(y), \quad h \mapsto gh. \]

- the **isotropy group at** x:
 \[G_x = s^{-1}(x) \cap t^{-1}(x). \]

- the **orbit through** x:
 \[O_x := t(s^{-1}(x)) = \{ y \in M : \exists g : x \rightarrow y \} \]
Groupoids: basic concepts

- **right multiplication by** $g : y \leftarrow x$ is a bijection between s-fiber
 \[R_g : s^{-1}(y) \rightarrow s^{-1}(x), \quad h \mapsto hg. \]

- **left multiplication by** $g : y \leftarrow x$ is a bijection between t-fibers:
 \[L_g : t^{-1}(x) \rightarrow t^{-1}(y), \quad h \mapsto gh. \]

- **the isotropy group at** x:
 \[G_x = s^{-1}(x) \cap t^{-1}(x). \]

- **the orbit through** x:
 \[O_x := t(s^{-1}(x)) = \{ y \in M : \exists g : x \rightarrow y \} \]
Groupoids: basic concepts

- **right multiplication by** $g : y \leftarrow x$ is a bijection between s-fiber

 $\begin{align*}
 R_g : s^{-1}(y) &\longrightarrow s^{-1}(x), \quad h \mapsto hg.
 \end{align*}$

- **left multiplication by** $g : y \leftarrow x$ is a bijection between t-fibers:

 $\begin{align*}
 L_g : t^{-1}(x) &\longrightarrow t^{-1}(y), \quad h \mapsto gh.
 \end{align*}$

- the **isotropy group at** x:

 $G_x = s^{-1}(x) \cap t^{-1}(x)$.

- the **orbit through** x:

 $O_x := t(s^{-1}(x)) = \{ y \in M : \exists g : x \rightarrow y \}$
Groupoids: basic concepts

- **right multiplication by** $g : y \leftarrow x$ is a bijection between s-fiber
 \[R_g : s^{-1}(y) \rightarrow s^{-1}(x), \quad h \mapsto hg. \]

- **left multiplication by** $g : y \leftarrow x$ is a bijection between t-fibers:
 \[L_g : t^{-1}(x) \rightarrow t^{-1}(y), \quad h \mapsto gh. \]

- the **isotropy group at** x:
 \[G_x = s^{-1}(x) \cap t^{-1}(x). \]

- the **orbit through** x:
 \[O_x := t(s^{-1}(x)) = \{ y \in M : \exists g : x \rightarrow y \} \]
Definition

A **Lie groupoid** is a groupoid $\mathcal{G} \Rightarrow M$ whose spaces of arrows and objects are both manifolds, the structure maps s, t, u, m, i are all smooth maps and such that s and t are submersions.

Basic Properties For a Lie groupoid $\mathcal{G} \Rightarrow M$ and $x \in M$, one has that:

1. The isotropy groups \mathcal{G}_x are Lie groups;
2. The orbits O_x are (regular immersed) submanifolds in M;
3. The unit map $u : M \to \mathcal{G}$ is an embedding;
4. $t : s^{-1}(x) \to O_x$ is a principal \mathcal{G}_x-bundle.
A Lie groupoid is a groupoid $\mathcal{G} \rightrightarrows M$ whose spaces of arrows and objects are both manifolds, the structure maps s, t, u, m, i are all smooth maps and such that s and t are submersions.

Basic Properties For a Lie groupoid $\mathcal{G} \rightrightarrows M$ and $x \in M$, one has that:

1. the isotropy groups \mathcal{G}_x are Lie groups;
2. the orbits \mathcal{O}_x are (regular immersed) submanifolds in M;
3. the unit map $u : M \to \mathcal{G}$ is an embedding;
4. $t : s^{-1}(x) \to \mathcal{O}_x$ is a principal \mathcal{G}_x-bundle.
A picture of a Lie groupoid

\[t-fibers \]

\[s-fibers \]

\[t(h) \quad s(h)=t(g) \quad s(g) \]

\[G \quad M \]

\[s(g) \quad t(g) \]

\[h, g, hg \]
A picture of a Lie groupoid
A picture of a Lie groupoid
Lie groupoids vs (infinite dimensional) Lie groups

Definition

A **bisection** of a Lie groupoid $\mathcal{G} \rightrightarrows M$ is a smooth map $b : M \to \mathcal{G}$ such that $s \circ b : M \to M$ and $t \circ b : M \to M$ are diffeomorphisms.
Lie groupoids vs (infinite dimensional) Lie groups

Definition

A **bisection** of a Lie groupoid \(\mathcal{G} \rightrightarrows M \) is a smooth map \(b : M \to \mathcal{G} \) such that \(s \circ b : M \to M \) and \(t \circ b : M \to M \) are diffeomorphisms.
Lie groupoids vs (infinite dimensional) Lie groups

Definition

A **bisection** of a Lie groupoid \(\mathcal{G} \rightrightarrows M \) is a smooth map \(b : M \to \mathcal{G} \) such that \(s \circ b : M \to M \) and \(t \circ b : M \to M \) are diffeomorphisms.

![Diagram of Lie groupoids and bisections](image_url)
Lie groupoids vs (infinite dimensional) Lie groups

Definition

A **bisection** of a Lie groupoid $\mathcal{G} \rightrightarrows M$ is a smooth map $b : M \to \mathcal{G}$ such that $s \circ b : M \to M$ and $t \circ b : M \to M$ are diffeomorphisms.
Lie groupoids vs (infinite dimensional) Lie groups

Definition

A **bisection** of a Lie groupoid $\mathcal{G} \rightrightarrows M$ is a smooth map $b : M \to \mathcal{G}$ such that $s \circ b : M \to M$ and $t \circ b : M \to M$ are diffeomorphisms.
Lie groupoids vs (infinite dimensional) Lie groups

Definition

A **bisection** of a Lie groupoid $\mathcal{G} \rightrightarrows M$ is a smooth map $b : M \to \mathcal{G}$ such that $s \circ b : M \to M$ and $t \circ b : M \to M$ are diffeomorphisms.
Lie groupoids vs (infinite dimensional) Lie groups

Definition

A **bisection** of a Lie groupoid $\mathcal{G} \rightrightarrows M$ is a smooth map $b : M \to \mathcal{G}$ such that $s \circ b : M \to M$ and $t \circ b : M \to M$ are diffeomorphisms.
Lie groupoids vs (infinite dimensional) Lie groups

Definition

A **bisection** of a Lie groupoid $\mathcal{G} \rightrightarrows M$ is a smooth map $b : M \to \mathcal{G}$ such that $s \circ b : M \to M$ and $t \circ b : M \to M$ are diffeomorphisms.

- The group of bisections $\Gamma(\mathcal{G})$ is a Lie group (usually, infinite dimensional):
Lie groupoids vs (infinite dimensional) Lie groups

Definition

A **bisection** of a Lie groupoid $\mathcal{G} \rightrightarrows M$ is a smooth map $b : M \to \mathcal{G}$ such that $s \circ b : M \to M$ and $t \circ b : M \to M$ are diffeomorphisms.

- The group of bissections $\Gamma(\mathcal{G})$ is a Lie group (usually, infinite dimensional):
 - If $\mathcal{G} = G \rightrightarrows \{\ast\}$, then $\Gamma(\mathcal{G}) = G$;
Lie groupoids vs (infinite dimensional) Lie groups

Definition

A **bisection** of a Lie groupoid \(\mathcal{G} \rightrightarrows M \) is a smooth map \(b : M \to \mathcal{G} \) such that \(s \circ b : M \to M \) and \(t \circ b : M \to M \) are diffeomorphisms.

- The group of bissections \(\Gamma(\mathcal{G}) \) is a Lie group (usually, infinite dimensional):
 - If \(\mathcal{G} = G \rightrightarrows \{\ast\} \), then \(\Gamma(\mathcal{G}) = G \);
 - If \(\mathcal{G} = M \times M \rightrightarrows M \), then \(\Gamma(\mathcal{G}) = \text{Diff}(M) \);
Lie groupoids vs (infinite dimensional) Lie groups

Definition

A bisection of a Lie groupoid $\mathcal{G} \rightrightarrows M$ is a smooth map $b : M \to \mathcal{G}$ such that $s \circ b : M \to M$ and $t \circ b : M \to M$ are diffeomorphisms.

- The group of bissections $\Gamma(\mathcal{G})$ is a Lie group (usually, infinite dimensional):

- One can use bissections to defined the groupoid of jets $J^k\mathcal{G} \rightrightarrows M$ of a Lie groupoid $\mathcal{G} \rightrightarrows M$.
Some classes of groupoids

A Lie groupoid $\mathcal{G} \rightrightarrows M$ is called:

- **source k-connected** if the s-fibers $s^{-1}(x)$ are k-connected for every $x \in M$. When $k = 0$ we say that \mathcal{G} is a **s-connected groupoid**, and when $k = 1$ we say that \mathcal{G} is a **s-simply connected groupoid**.

- **étale** if its source map s is a local diffeomorphism.

- **proper** if the map $(s, t) : \mathcal{G} \to M \times M$ is a proper map.

Remark. Proper groupoids are the analogue of compact groups in Lie groupoid theory.
From Lie groupoids to Lie algebroids

\[s(h) = t(g) \]
\[s(g) \]
\[t(h) \]
\[h \]
\[g \]
\[t\text{-fibers} \]
\[s\text{-fibers} \]

\[t(h)g = s(h)t(g) \]
From Lie groupoids to Lie algebroids

A = Ker d s |_M
From Lie groupoids to Lie algebroids

\[A = \text{Ker } d_s \bigg|_M \]

\[s(h) = t(g) \]

\[t(h) \]

\[h, g \]

\[t \text{-fibers} \]

\[s \text{-fibers} \]

\[G \]

\[M \]

\[M \]

Rui Loja Fernandes

Crash Course on Lie groupoid theory
From Lie groupoids to Lie algebroids

\[A = \ker d s \mid_M \]

\[R_g \]

\[s(h) = t(g) \]

\[t(h) \]

\[s(g) \]

\[s\text{-fibers} \]

\[t\text{-fibers} \]

\[G \]

\[M \]

\[h g \]

\[h \]

\[g \]

\[\rho \]

\[X, X \]

\[\beta \]

\[\alpha, \beta \]

\[\rho \]

\[R \]
From Lie groupoids to Lie algebroids

A = \ker d s \big|_M

[\alpha, \beta] = [X^\alpha, X^\beta]
From Lie groupoids to Lie algebroids

\[A = \text{Ker } d\, s \bigg|_M \quad \rho = dt \bigg|_A \quad [\alpha, \beta] = [X^\alpha, X^\beta] \]
A Lie algebroid is a vector bundle $A \to M$ with:

(i) a Lie bracket $[\cdot,\cdot]_A : \Gamma(A) \times \Gamma(A) \to \Gamma(A)$;

(ii) a bundle map $\rho : A \to TM$ (the anchor);

such that:

$$[\alpha, f\beta]_A = f[\alpha, \beta]_A + \rho(\alpha)(f)\beta, \quad (f \in C^\infty(M), \alpha, \beta \in \Gamma(A)).$$

- $\text{Im} \rho \subset TM$ is integrable \Rightarrow characteristic foliation of M;
- For each $x \in M$, $\text{Ker} \rho_x$ is a finite dim Lie algebra (isotropy Lie algebra).
A Lie algebroid is a vector bundle $A \to M$ with:

(i) a Lie bracket $[\ , \]_A : \Gamma(A) \times \Gamma(A) \to \Gamma(A)$;

(ii) a bundle map $\rho : A \to TM$ (the anchor);

such that:

$$[\alpha, f\beta]_A = f[\alpha, \beta]_A + \rho(\alpha)(f)\beta, \quad (f \in C^\infty(M), \alpha, \beta \in \Gamma(A)).$$

- $\text{Im} \rho \subset TM$ is integrable \Rightarrow characteristic foliation of M;
- For each $x \in M$, $\text{Ker} \rho_x$ is a finite dim Lie algebra (isotropy Lie algebra).
The space of sections $\Gamma(A)$ is a Lie algebra (usually infinite dimensional):

- If $A = g \rightarrow \{\ast\}$, then $\Gamma(A) = g$;
- If $A = TM$, then $\Gamma(A) = \mathfrak{X}(M)$;

Rmk. If $G \rightrightarrows M$ is a Lie groupoid with Lie algebroid $A \rightarrow M$ one can define the **exponential map** $\exp : \Gamma(A) \rightarrow \Gamma(G)$.
From Lie algebroids to Lie groupoids

Theorem (Lie I)

Let \mathcal{G} be a Lie groupoid with Lie algebroid A. There exists a unique (up to isomorphism) source 1-connected Lie groupoid $\tilde{\mathcal{G}}$ with Lie algebroid A.

Theorem (Lie II)

Let \mathcal{G} and \mathcal{H} be Lie groupoids with Lie algebroids A and B, where \mathcal{G} is source 1-connected. Given a Lie algebroid homomorphism $\phi : A \to B$, there exists a unique Lie groupoid homomorphism $\Phi : \mathcal{G} \to \mathcal{H}$ with $(\Phi)_* = \phi$.

... but Lie III does not hold!
Theorem (Lie I)
Let \mathcal{G} be a Lie groupoid with Lie algebroid A. There exists a unique (up to isomorphism) source 1-connected Lie groupoid $\tilde{\mathcal{G}}$ with Lie algebroid A.

Theorem (Lie II)
Let \mathcal{G} and \mathcal{H} be Lie groupoids with Lie algebroids A and B, where \mathcal{G} is source 1-connected. Given a Lie algebroid homomorphism $\phi : A \to B$, there exists a unique Lie groupoid homomorphism $\Phi : \mathcal{G} \to \mathcal{H}$ with $(\Phi)_* = \phi$.

... but Lie III does not hold!
A non-integrable Lie algebroid

- Fix $\omega \in \Omega^2(M)$, closed, and take the associated Lie algebroid $A = TM \oplus \mathbb{R}$.

Theorem

The Lie algebroid A integrates to a Lie groupoid \mathcal{G} iff the group of spherical periods of ω:

$$N_x := \left\{ \int_\gamma \omega \mid \gamma \in \pi_2(M, x) \right\} \subset \mathbb{R}$$

is discrete.

Example

If $M = S^2 \times S^2$ and $\omega = dA \oplus \lambda dA$, then N_x is discrete iff $\lambda \in \mathbb{Q}$.
A non-integrable Lie algebroid

Fix $\omega \in \Omega^2(M)$, closed, and take the associated Lie algebroid $A = TM \oplus \mathbb{R}$.

Theorem

The Lie algebroid A integrates to a Lie groupoid G iff the group of spherical periods of ω:

$$N_x := \{ \int_\gamma \omega \mid \gamma \in \pi_2(M, x) \} \subset \mathbb{R}$$

is discrete.

Example

If $M = S^2 \times S^2$ and $\omega = dA \oplus \lambda dA$, then N_x is discrete iff $\lambda \in \mathbb{Q}$.
A non-integrable Lie algebroid

- Fix $\omega \in \Omega^2(M)$, closed, and take the associated Lie algebroid $A = TM \oplus \mathbb{R}$.

Theorem

The Lie algebroid A integrates to a Lie groupoid \mathcal{G} iff the group of spherical periods of ω:

$$N_x := \{ \int_{\gamma} \omega \mid \gamma \in \pi_2(M, x) \} \subset \mathbb{R}$$

is discrete.

Example

If $M = S^2 \times S^2$ and $\omega = dA \oplus \lambda dA$, then N_x is discrete iff $\lambda \in \mathbb{Q}$.
Obstructions to integrability

Theorem (Crainic & RLF, 2003)

For a Lie algebroid A, there exist monodromy groups $N_x \subset A_x$ such that A is integrable iff the groups N_x are uniformly discrete for $x \in M$.

Each N_x is the image of a monodromy map:

$$\partial : \pi_2(L, x) \to \widetilde{G(g_x)}$$

with L the leaf through x and $g_x := \text{Ker } \rho_x$ the isotropy Lie algebra.

Corollary

A Lie algebroid A is integrable provided either of the following hold:

(i) All leaves have finite π_2;
(ii) The isotropy Lie algebras have trivial center.
Obstructions to integrability

Theorem (Crainic & RLF, 2003)

For a Lie algebroid A, there exist monodromy groups $N_x \subset A_x$ such that A is integrable iff the groups N_x are uniformly discrete for $x \in M$.

Each N_x is the image of a monodromy map:

$$\partial : \pi_2(L,x) \to \widehat{G(g_x)}$$

with L the leaf through x and $g_x := \text{Ker } \rho_x$ the isotropy Lie algebra.

Corollary

A Lie algebroid A is integrable provided either of the following hold:

(i) All leaves have finite π_2;

(ii) The isotropy Lie algebras have trivial center.
Obstructions to integrability

Theorem (Crainic & RLF, 2003)

For a Lie algebroid A, there exist monodromy groups $N_x \subset A_x$ such that A is integrable iff the groups N_x are uniformly discrete for $x \in M$.

Each N_x is the image of a monodromy map:

$$\partial : \pi_2(L, x) \to \widetilde{G(g_x)}$$

with L the leaf through x and $g_x := \text{Ker} \rho_x$ the isotropy Lie algebra.

Corollary

A Lie algebroid A is integrable provided either of the following hold:

(i) All leaves have finite π_2;

(ii) The isotropy Lie algebras have trivial center.
The Maurer-Cartan Form on a Lie Groupoid

- For a Lie group G the Maurer-Cartan form is the right-invariant g-valued 1-form:

$$\omega_{\text{MC}}(\xi) = (d_g R_{g^{-1}})(\xi) \in g.$$

It satisfies the Maurer-Cartan equation:

$$d\omega_{\text{MC}} + \frac{1}{2}[\omega_{\text{MC}}, \omega_{\text{MC}}] = 0.$$

- For a Lie groupoid \mathcal{G}, right translation by g is a diffeomorphism

$$R_g : s^{-1}(t(g)) \to s^{-1}(s(g)),$$

so the Maurer-Cartan form is a s-foliated 1-form.
The Maurer-Cartan Form on a Lie Groupoid

- For a Lie group G the Maurer-Cartan form is the right-invariant \mathfrak{g}-valued 1-form:
 \[\omega_{MC}(\xi) = (d_g R_{g^{-1}})(\xi) \in \mathfrak{g}. \]

 It satisfies the Maurer-Cartan equation:
 \[d\omega_{MC} + \frac{1}{2} [\omega_{MC}, \omega_{MC}] = 0. \]

- For a Lie groupoid \mathcal{G}, right translation by g is a diffeomorphism
 \[R_g : s^{-1}(t(g)) \rightarrow s^{-1}(s(g)), \]
 so the Maurer-Cartan form is a s-foliated 1-form.
The Maurer-Cartan Form on a Lie Groupoid

Definition

The **Maurer-Cartan form on** \mathcal{G} **is the s-foliated** A-valued 1-form defined by

$$\omega_{MC}(\xi) = (d_g R_{g^{-1}})(\xi) \in A_{t(g)}, \quad \xi \in T^s_{g}\mathcal{G}$$

The Maurer-Cartan form satisfies the Maurer-Cartan equation:

$$d\nabla \omega_{MC} + \frac{1}{2} [\omega_{MC}, \omega_{MC}]_{\nabla} = 0.$$
The Maurer-Cartan Form on on a Lie Groupoid

Definition

The **Maurer-Cartan form on** \(G \) **is the** \(s \)-**foliated** \(A \)-**valued 1-form**

\[
\omega_{MC}(\xi) = (dgR_{g^{-1}})(\xi) \in A_{t(g)}, \quad \xi \in T^s_{g}G
\]

- The Maurer-Cartan form satisfies the Maurer-Cartan equation:

\[
d\nabla \omega_{MC} + \frac{1}{2}[\omega_{MC}, \omega_{MC}]_{\nabla} = 0.
\]

for an auxiliary connection \(\nabla \).
Overlook

There is a huge body of results on Lie groupoid theory, developed in the last 15 years, which include, e.g.,:

- Normal form results and slice theorems for proper Lie groupoids.
- Van Est type theorems for Lie groupoid cohomology and vanishing theorems for cohomology of proper Lie groupoids.
- Equivariant cohomology and classifying spaces for Lie groupoids.
- Deformation cohomology, stability and rigidity results for Lie algebroids.
- Stratification structure for the orbit space of a proper Lie groupoid.

[...]
Choose local coordinates \((x^1, \ldots, x^d)\) on \(X\) and local basis of sections \(\{e_1, \ldots, e_n\}\) of \(A \to M\). Then:

\[
[e_i, e_j] = C^k_{ij}(x)e_k, \quad \rho(e_i) = B^a_i \frac{\partial}{\partial x^a}.
\]

Then:

- The Jacobi identity for \([\cdot, \cdot]_A\) gives:

\[
B^a_j \frac{\partial C^i_{k,l}}{\partial x^a} + B^a_k \frac{\partial C^i_{l,j}}{\partial x^a} + B^a_i \frac{\partial C^i_{j,k}}{\partial x^a} = (C^i_{m,j} C^m_{k,l} + C^i_{m,k} C^m_{l,j} + C^i_{m,l} C^m_{j,k})
\]

- The fact that \(\rho : \Gamma(A) \to \mathfrak{X}(M)\) preserves Lie brackets gives:

\[
B^b_i \frac{\partial B^a_j}{\partial x^b} - B^b_j \frac{\partial B^a_i}{\partial x^b} = C^l_{i,j} B^a_l.
\]