Happy Birthday eh!

Minneapolis May 17-20, 2012

Mark Fels
Utah State University
June 2011
Part 1

Symmetry, Congruence and Reconstruction
$\Delta = 0$ a system of differential equations.

S the solution space.

G a symmetry group of $\Delta = 0$ (G acts on S)

I will think $\Delta = 0$ as

$\text{EDS } I \subset \Omega^* (\mathcal{M})$

Solutions:

$S = \{ s : \mathbb{N} \to \mathcal{M} \}$

Symmetry:

$\mu : G \times \mathcal{M} \to \mathcal{M}$,

$g \ast I = I \Rightarrow G$ acts on S

MOVING FRAMES: Can't think of a good reference...

Given $\mu : G \times \mathcal{M} \to \mathcal{M}$, submanifolds $s_1 : \mathbb{N} \to \mathcal{M}$ and $s_2 : \mathbb{N} \to \mathcal{M}$ are G-congruent if $s_2 = g \circ s_1$.

Are two solutions to $\Delta = 0$ G-congruent?
• $\Delta = 0$ a system of differential equations.
• $\Delta = 0$ a system of differential equations.
• \mathcal{S} the solution space.
• $\Delta = 0$ a system of differential equations.
• S the solution space.
• G a symmetry group of $\Delta = 0$ (G acts on S)
SYMMETRIES OF DIFFERENTIAL EQUATIONS: GTM Book

- \(\Delta = 0 \) a system of differential equations.
- \(S \) the solution space.
- \(G \) a symmetry group of \(\Delta = 0 \) (\(G \) acts on \(S \))

I will think \(\Delta = 0 \) as
• $\Delta = 0$ a system of differential equations.
• \mathcal{S} the solution space.
• G a symmetry group of $\Delta = 0$ (G acts on \mathcal{S})

I will think $\Delta = 0$ as

• EDS $\mathcal{I} \subset \Omega^*(M)$
SYMMETRIES OF DIFFERENTIAL EQUATIONS: GTM Book

- \(\Delta = 0 \) a system of differential equations.
- \(S \) the solution space.
- \(G \) a symmetry group of \(\Delta = 0 \) (\(G \) acts on \(S \))

I will think \(\Delta = 0 \) as

- EDS \(\mathcal{I} \subset \Omega^*(M) \)
- Solutions: \(S = \{ s : N \to M, \ s^*\mathcal{I} = 0 \} \)
• $\Delta = 0$ a system of differential equations.
• S the solution space.
• G a symmetry group of $\Delta = 0$ (G acts on S)

I will think $\Delta = 0$ as

• EDS $\mathcal{I} \subset \Omega^*(M)$
• Solutions: $S = \{s : N \rightarrow M, \ s^*\mathcal{I} = 0\}$
• Symmetry: $\mu : G \times M \rightarrow M, \ g^*\mathcal{I} = \mathcal{I} \implies G$ acts on S
• \(\Delta = 0 \) a system of differential equations.
• \(S \) the solution space.
• \(G \) a symmetry group of \(\Delta = 0 \) (\(G \) acts on \(S \))

I will think \(\Delta = 0 \) as

• EDS \(\mathcal{I} \subset \Omega^*(M) \)
• Solutions: \(S = \{s : N \to M, \ s^*\mathcal{I} = 0\} \)
• Symmetry: \(\mu : G \times M \to M, \ g^*\mathcal{I} = \mathcal{I} \implies G \) acts on \(S \)

MOVING FRAMES: Can’t think of a good reference...
• \(\Delta = 0 \) a system of differential equations.
• \(S \) the solution space.
• \(G \) a symmetry group of \(\Delta = 0 \) (\(G \) acts on \(S \))

I will think \(\Delta = 0 \) as

• EDS \(\mathcal{I} \subset \Omega^*(M) \)
• Solutions: \(S = \{ s : N \to M, \ s^*\mathcal{I} = 0 \} \)
• Symmetry: \(\mu : G \times M \to M, \ g^*\mathcal{I} = \mathcal{I} \implies G \) acts on \(S \)

MOVING FRAMES: Can’t think of a good reference...

Given \(\mu : G \times M \to M \), submanifolds \(s_1 : N \to M \) and \(s_2 : N \to M \) are \(G \)-congruent if

\[
 s_2 = g \circ s_1.
\]
SYMMETRIES OF DIFFERENTIAL EQUATIONS: GTM Book

- \(\Delta = 0 \) a system of differential equations.
- \(S \) the solution space.
- \(G \) a symmetry group of \(\Delta = 0 \) (\(G \) acts on \(S \))

I will think \(\Delta = 0 \) as

- EDS \(\mathcal{I} \subset \Omega^*(M) \)
- Solutions: \(S = \{ s : N \to M, \ s^*\mathcal{I} = 0 \} \)
- Symmetry: \(\mu : G \times M \to M, \ g^*\mathcal{I} = \mathcal{I} \implies G \) acts on \(S \)

MOVING FRAMES: Can't think of a good reference...

Given \(\mu : G \times M \to M \), submanifolds \(s_1 : N \to M \) and \(s_2 : N \to M \) are \(G \)-congruent if

\[
 s_2 = g \circ s_1.
\]

Are two solutions to \(\Delta = 0 \) \(G \)-congruent?
At the end of this part, I’ll give necessary and sufficient conditions that two solutions s_1, s_2 to a system of differential equations are G-congruent.
At the end of this part, I’ll give necessary and sufficient conditions that two solutions s_1, s_2 to a system of differential equations are G-congruent.

Start with a simple example.
At the end of this part, I’ll give necessary and sufficient conditions that two solutions s_1, s_2 to a system of differential equations are G-congruent.

Start with a simple example.

Let $G = \{(a, b) \mid a \in \mathbb{R}^*, b \in \mathbb{R}\}$ act on $J^2(\mathbb{R}, \mathbb{R}) - \{v_x = 0\}$ by

$$(a, b) \cdot (x, v, v_x, v_{xx}) = (x, av + b, av_x, a v_{xx})$$
At the end of this part, I’ll give necessary and sufficient conditions that two solutions s_1, s_2 to a system of differential equations are G-congruent.

Start with a simple example.

Let $G = \{(a, b) \mid a \in \mathbb{R}^*, b \in \mathbb{R}\}$ act on $J^2(\mathbb{R}, \mathbb{R}) - \{v_x = 0\}$ by

$$(a, b) \cdot (x, v, v_x, v_{xx}) = (x, av + b, av_x, a v_{xx})$$

The infinitesimal generators are

$$X_a = v \partial_v + v_x \partial_{v_x} + v_{xx} \partial_{v_{xx}}, \quad X_b = \partial_v.$$
At the end of this part, I’ll give necessary and sufficient conditions that two solutions s_1, s_2 to a system of differential equations are G-congruent.

Start with a simple example.

Let $G = \{(a, b) \mid a \in \mathbb{R}^*, b \in \mathbb{R}\}$ act on $J^2(\mathbb{R}, \mathbb{R}) - \{v_x = 0\}$ by

$$(a, b) \cdot (x, v, v_x, v_{xx}) = (x, av + b, av_x, a v_{xx})$$

The infinitesimal generators are

$$X_a = v \partial_v + v_x \partial_{v_x} + v_{xx} \partial_{v_{xx}}, \quad X_b = \partial_v.$$

The invariants are

$$x, \quad \frac{v_{xx}}{v_x}$$
At the end of this part, I’ll give necessary and sufficient conditions that two solutions s_1, s_2 to a system of differential equations are G-congruent.

Start with a simple example.

Let $G = \{(a, b) \mid a \in \mathbb{R}^*, b \in \mathbb{R}\}$ act on $J^2(\mathbb{R}, \mathbb{R}) - \{v_x = 0\}$ by

$$(a, b) \cdot (x, v, v_x, v_{xx}) = (x, av + b, av_x, a v_{xx})$$

The infinitesimal generators are

$$X_a = v \partial_v + v_x \partial_{v_x} + v_{xx} \partial_{v_{xx}}, \quad X_b = \partial_v.$$

The invariants are

$$x, \quad \frac{v_{xx}}{v_x}$$

The quotient $q : J^2(\mathbb{R}, \mathbb{R}) \to J^2(\mathbb{R}, \mathbb{R})/G$ is given in terms of the invariants as

$$q(x, v, v_x, v_{xx}) = \left(x, \hat{\xi} = \frac{v_{xx}}{v_x}\right)$$
The method of moving frames in this example tells us that

\[s_1(x) = g \cdot s_2(x) \]
The method of moving frames in this example tells us that

\[s_1(x) = g \cdot s_2(x) \]

if and only if

\[\hat{\xi}_2 = \frac{v_{xx}}{v_x} = \frac{(s_2)''}{(s_2)'} = \frac{(s_1)''}{(s_1)'} = \hat{\xi}_1(x). \]
The method of moving frames in this example tells us that

\[s_1(x) = g \cdot s_2(x) \]

if and only if

\[\hat{\xi}_2 = \frac{v_{xx}}{v_x} = \frac{(s_2)''}{(s_2)'} = \frac{(s_1)''}{(s_1)'} = \hat{\xi}_1(x). \]

So what about the "prescribed curvature problem"?
The method of moving frames in this example tells us that

\[s_1(x) = g \cdot s_2(x) \]

if and only if

\[\hat{\xi}_2 = \frac{v_{xx}}{v_x} = \frac{(s_2)''}{(s_2)'} = \frac{(s_1)''}{(s_1)'} = \hat{\xi}_1(x). \]

So what about the "prescribed curvature problem"?

Given \(\hat{\xi} = G(x) \) how do we find a curve with given curvature \(G(x) \)?
The method of moving frames in this example tells us that

\[s_1(x) = g \cdot s_2(x) \]

if and only if

\[\hat{\xi}_2 = \frac{v_{xx}}{v_x} = \frac{(s_2)''}{(s_2)'} = \frac{(s_1)''}{(s_1)'} = \hat{\xi}_1(x). \]

So what about the "prescribed curvature problem"?

Given \(\hat{\xi} = G(x) \) how do we find a curve with given curvature \(G(x) \)?

I will call this the Reconstruction problem.
The method of moving frames in this example tells us that

\[s_1(x) = g \cdot s_2(x) \]

if and only if

\[\hat{\xi}_2 = \frac{v_{xx}}{v_x} = \frac{(s_2)''}{(s_2)'} = \frac{(s_1)''}{(s_1)'} = \hat{\xi}_1(x). \]

So what about the "prescribed curvature problem"?

Given \(\hat{\xi} = G(x) \) how do we find a curve with given curvature \(G(x) \)?

I will call this the **Reconstruction** problem.

The curve will be unique up to congruence.
The method of moving frames in this example tells us that

\[s_1(x) = g \cdot s_2(x) \]

if and only if

\[\hat{\xi}_2 = \frac{v_{xx}}{v_x} = \frac{(s_2)''}{(s_2)'} = \frac{(s_1)''}{(s_1)'} = \hat{\xi}_1(x). \]

So what about the "prescribed curvature problem"?

Given \(\hat{\xi} = G(x) \) how do we find a curve with given curvature \(G(x) \)?

I will call this the Reconstruction problem.

The curve will be unique up to congruence.

Look at three different methods for finding the such a curve.
Method 1

Given $\dot{\xi} = \frac{v_{xx}}{v_x} = G(x)$, it is a curve in $(x, \dot{\xi})$ space

$$\bar{s}(x) = (x, \dot{\xi} = G(x)).$$
Method 1

Given \(\hat{\xi} = \frac{v_{xx}}{v_x} = G(x) \), it is a curve in \((x, \hat{\xi})\) space

\[\bar{s}(x) = (x, \hat{\xi} = G(x)). \]

1. choose a curve \(\hat{s} : \mathbb{R} \to J^2(\mathbb{R}, \mathbb{R}) \) such that \(q \circ \hat{s} = \bar{s} \). For example,

\[\hat{s}(x) = (x, v = 0, v_x = 1, v_{xx} = G(x)) \]
Method 1

Given $\hat{\xi} = \frac{v_{xx}}{v_x} = G(x)$, it is a curve in $(x, \hat{\xi})$ space

$$\bar{s}(x) = (x, \hat{\xi} = G(x)).$$

1. Choose a curve $\hat{s}: \mathbb{R} \to J^2(\mathbb{R}, \mathbb{R})$ such that $q \circ \hat{s} = \bar{s}$. For example,

$$\hat{s}(x) = (x, v = 0, v_x = 1, v_{xx} = G(x))$$

Note that \hat{s} is not the prolongation of a curve $s_0: \mathbb{R} \to \mathbb{R}$
Method 1

Given $\hat{\xi} = \frac{\nu_{xx}}{\nu_x} = G(x)$, it is a curve in $(x, \hat{\xi})$ space

$$\bar{s}(x) = (x, \hat{\xi} = G(x)).$$

1. choose a curve $\hat{s} : \mathbb{R} \to J^2(\mathbb{R}, \mathbb{R})$ such that $q \circ \hat{s} = \bar{s}$. For example,

$$\hat{s}(x) = (x, \nu = 0, \nu_x = 1, \nu_{xx} = G(x)).$$

Note that \hat{s} is not the prolongation of a curve $s_0 : \mathbb{R} \to \mathbb{R}$.

If so the contact system $d\nu - \nu_x dx, d\nu_x - \nu_{xx} dx$ would vanish on \hat{s}, but

$$\hat{s}^*(d\nu - \nu_x dx) \neq 0, \quad \hat{s}^*(d\nu_x - \nu_{xx} dx) \neq 0.$$
Method 1

Given $\hat{\xi} = \frac{v_{xx}}{v_x} = G(x)$, it is a curve in $(x, \hat{\xi})$ space

$$\bar{s}(x) = (x, \hat{\xi} = G(x)).$$

1. Choose a curve $\hat{s} : \mathbb{R} \to J^2(\mathbb{R}, \mathbb{R})$ such that $q \circ \hat{s} = \bar{s}$. For example,

$$\hat{s}(x) = (x, v = 0, v_x = 1, v_{xx} = G(x))$$

Note that \hat{s} is not the prolongation of a curve $s_0 : \mathbb{R} \to \mathbb{R}$.

If so the contact system $dv - v_x dx$, $dv_x - v_{xx} dx$ would vanish on \hat{s}, but

$$\hat{s}^*(dv - v_x dx) \neq 0, \quad \hat{s}^*(dv_x - v_{xx} dx) \neq 0.$$

2. Perturb \hat{s} by a curve $\gamma : \mathbb{R} \to G$.

Method 1

Given $\hat{\xi} = \frac{v_{xx}}{v_x} = G(x)$, it is a curve in $(x, \hat{\xi})$ space

$$\bar{s}(x) = (x, \hat{\xi} = G(x)).$$

1. choose a curve $\hat{s} : \mathbb{R} \to J^2(\mathbb{R}, \mathbb{R})$ such that $q \circ \hat{s} = \bar{s}$. For example,

$$\hat{s}(x) = (x, \nu = 0, \nu_x = 1, \nu_{xx} = G(x))$$

Note that \hat{s} is not the prolongation of a curve $s_0 : \mathbb{R} \to \mathbb{R}$

If so the contact system $dv - v_x dx, dv_x - v_{xx} dx$ would vanish on \hat{s}, but

$$\hat{s}^*(dv - v_x dx) \neq 0, \quad \hat{s}^*(dv_x - v_{xx} dx) \neq 0.$$

2. Perturb \hat{s} by a curve $\gamma : \mathbb{R} \to G$

$$s(x) = \mu(\gamma(x), \hat{s})$$

$$= (a(x), b(x)) \cdot (x, \nu = 0, \nu_x = 1, \nu_{xx} = G(x))$$

$$= (x, b(x), a(x), a(x)G(x))$$
Method 1

Given $\hat{\xi} = \frac{v_{xx}}{v_x} = G(x)$, it is a curve in $(x, \hat{\xi})$ space

$$\bar{s}(x) = (x, \hat{\xi} = G(x)).$$

1. choose a curve $\hat{s} : \mathbb{R} \to J^2(\mathbb{R}, \mathbb{R})$ such that $q \circ \hat{s} = \bar{s}$. For example,

$$\hat{s}(x) = (x, v = 0, v_x = 1, v_{xx} = G(x))$$

Note that \hat{s} is not the prolongation of a curve $s_0 : \mathbb{R} \to \mathbb{R}$

If so the contact system $dv - v_x dx, dv_x - v_{xx} dx$ would vanish on \hat{s}, but

$$\hat{s}^*(dv - v_x dx) \neq 0, \quad \hat{s}^*(dv_x - v_{xx} dx) \neq 0.$$

2. Perturb \hat{s} by a curve $\gamma : \mathbb{R} \to G$

$$s(x) = \mu(\gamma(x), \hat{s})$$

$$= (a(x), b(x)) \cdot (x, v = 0, v_x = 1, v_{xx} = G(x))$$

$$= (x, b(x), a(x), a(x)G(x))$$

requiring s satisfies the contact conditions (the curve is a prolongation).
Method 1

Given $\hat{\xi} = \frac{v_{xx}}{v_x} = G(x)$, it is a curve in $(x, \hat{\xi})$ space

$$\bar{s}(x) = (x, \hat{\xi} = G(x)).$$

1. **Choose a curve** $\hat{s} : \mathbb{R} \rightarrow J^2(\mathbb{R}, \mathbb{R})$ such that $q \circ \hat{s} = \bar{s}$. For example,

$$\hat{s}(x) = (x, v = 0, v_x = 1, v_{xx} = G(x))$$

Note that \hat{s} is not the prolongation of a curve $s_0 : \mathbb{R} \rightarrow \mathbb{R}$.

If so the contact system $dv - v_x dx, dv_x - v_{xx} dx$ would vanish on \hat{s}, but

$$\hat{s}^*(dv - v_x dx) \neq 0, \quad \hat{s}^*(dv_x - v_{xx} dx) \neq 0.$$

2. **Perturb \hat{s} by a curve** $\gamma : \mathbb{R} \rightarrow G$

$$s(x) = \mu(\gamma(x), \hat{s})$$

$$= (a(x), b(x)) \cdot (x, v = 0, v_x = 1, v_{xx} = G(x))$$

$$= (x, b(x), a(x), a(x)G(x))$$

requiring s satisfies the contact conditions (the curve is a prolongation).

3. **Solve the resulting ODE for** $\gamma : \mathbb{R} \rightarrow G$.

From above

\[s(x) = \mu(\gamma(x), \hat{s}) = (x, \ v = b(x), \ v_x = a(x), \ v_{xx} = a(x)G(x)) \] \quad (1)
From above

\[s(x) = \mu(\gamma(x), \hat{s}) = (x, \ v = b(x), \ v_x = a(x), \ v_{xx} = a(x)G(x)) \]

(1)

the contact conditions are

\[\frac{db}{dx} = a(x), \quad \frac{da}{dx} = a(x)G(x) \]

(2)
From above

\[s(x) = \mu(\gamma(x), \hat{s}) = (x, v = b(x), v_x = a(x), v_{xx} = a(x)G(x)) \]

(1)

the contact conditions are

\[\frac{db}{dx} = a(x), \quad \frac{da}{dx} = a(x)G(x) \]

(2)

If we include the initial condition \(a(0) = 1, b(0) = 0 \) then the solutions is

\[a(x) = e^{\int_{\gamma}^{x} G(t) dt}, \quad b(x) = \int_{0}^{x} \left(e^{\int_{s}^{x} G(t) dt} \right) ds. \]
From above

\[s(x) = \mu(\gamma(x), \hat{s}) = (x, v = b(x), v_x = a(x), v_{xx} = a(x)G(x)) \] \hspace{1cm} (1)

the contact conditions are

\[\frac{db}{dx} = a(x), \hspace{0.5cm} \frac{da}{dx} = a(x)G(x) \] \hspace{1cm} (2)

If we include the initial condition \(a(0) = 1, b(0) = 0 \) then the solutions is

\[a(x) = e^{\int_0^x G(t)dt}, \hspace{0.5cm} b(x) = \int_0^x \left(e^{\int_0^s G(t)dt} \right) ds. \]

Giving the curve \(s(x) \) in (1) to be

\[v(x) = b(x) = \int_0^x \left(e^{\int_0^t G(s)ds} \right) dt \]
From above

\[s(x) = \mu(\gamma(x), \hat{s}) = (x, v = b(x), v_x = a(x), v_{xx} = a(x)G(x)) \]

(1)

the contact conditions are

\[\frac{db}{dx} = a(x), \quad \frac{da}{dx} = a(x)G(x) \]

(2)

If we include the initial condition \(a(0) = 1, b(0) = 0 \) then the solutions is

\[a(x) = e^{\int_0^x G(t)dt}, \quad b(x) = \int_0^x \left(e^{\int_0^s G(t)dt} \right) ds. \]

Giving the curve \(s(x) \) in (1) to be

\[v(x) = b(x) = \int_0^x \left(e^{\int_0^t G(s)ds} \right) dt \]

Remark: Equations (2) are equations of Lie type.
Method 2

Again we have prescribed

\[
\frac{v_{xx}}{v_x} = \hat{\xi} = G(x)
\]
Method 2

Again we have prescribed

\[
\frac{v_{xx}}{v_x} = \hat{\xi} = G(x)
\]

Consider \(P \subset J^2(\mathbb{R}, \mathbb{R}) \) where

\[
P = q^{-1}(\bar{s}(x)) = q^{-1}(x, \hat{\xi} = G(x)) = (x, v, v_x, v_{xx} = G(x)v_x)
\]
Method 2

Again we have prescribed
\[\frac{v_{xx}}{v_x} = \hat{\xi} = G(x) \]

Consider \(P \subset J^2(\mathbf{R}, \mathbf{R}) \) where
\[P = q^{-1}(\bar{s}(x)) = q^{-1}(x, \hat{\xi} = G(x)) = (x, v, v_x, v_{xx} = G(x)v_x) \]

On \(P \) the coordinates are \((x, v, v_x)\) and the contact system is
\[I = \langle \theta = dv - v_x dx, \quad \theta_x = dv_x - G(x)v_x dx \rangle. \]
Method 2

Again we have prescribed
\[
\frac{v_{xx}}{v_x} = \hat{\xi} = G(x)
\]

Consider \(P \subset J^2(\mathbb{R}, \mathbb{R}) \) where
\[
P = q^{-1}(\bar{s}(x)) = q^{-1}(x, \hat{\xi} = G(x)) = (x, v, v_x, v_{xx} = G(x)v_x)
\]

On \(P \) the coordinates are \((x, v, v_x)\) and the contact system is
\[
\mathcal{I} = \langle \theta = dv - v_x dx, \quad \theta_x = dv_x - G(x)v_x dx \rangle.
\]

\(\mathcal{I} \) is completely integrable so find two independent first integrals \(f_i(x, v, v_x) \), for \(\mathcal{I} \),
\[
df_i \in \text{span}\{\theta, \theta_x\}.
\]
Method 2

Again we have prescribed
\[
\frac{v_{xx}}{v_x} = \hat{\xi} = G(x)
\]

Consider \(P \subset J^2(\mathbb{R}, \mathbb{R}) \) where
\[
P = q^{-1}(\bar{s}(x)) = q^{-1}(x, \hat{\xi} = G(x)) = (x, v, v_x, v_{xx} = G(x)v_x)
\]

On \(P \) the coordinates are \((x, v, v_x)\) and the contact system is
\[
\mathcal{I} = \langle \theta = dv - v_x dx, \theta_x = dv_x - G(x)v_x dx \rangle.
\]

\(\mathcal{I} \) is completely integrable so find two independent first integrals \(f_i(x, v, v_x) \), for \(\mathcal{I} \),
\[
df_i \in \text{span}\{\theta, \theta_x\}.
\]

The solutions \(s : \mathbb{R} \rightarrow P \) satisfying the contact conditions \(s^*\mathcal{I} = 0 \) lie on level sets
\[
f_i(x, v, v_x) = c_i.
\]
Method 2

Again we have prescribed

\[\frac{v_{xx}}{v_x} = \xi = G(x) \]

Consider \(P \subset J^2(\mathbb{R}, \mathbb{R}) \) where

\[P = q^{-1}(\bar{s}(x)) = q^{-1}(x, 0, 0, v_{xx} = G(x)v_x) = (x, v, v_x, v_{xx} = G(x)v_x) \]

On \(P \) the coordinates are \((x, v, v_x)\) and the contact system is

\[\mathcal{I} = \langle \theta = dv - v_x dx, \quad \theta_x = dv_x - G(x)v_x dx \rangle. \]

\(\mathcal{I} \) is completely integrable so find two independent first integrals \(f_i(x, v, v_x) \), for \(\mathcal{I} \),

\[df_i \in \text{span}\{\theta, \theta_x\}. \]

The solutions \(s : \mathbb{R} \to P \) satisfying the contact conditions \(s^*\mathcal{I} = 0 \) lie on level sets

\[f_i(x, v, v_x) = c_i. \]

\(G \) is solvable so the first integrals can be found by quadratures.
Here is how: The infinitesimal generators of $av + b$ action on P are

$$X_a = v \partial_v + v_x \partial_{v_x}, \quad X_b = \partial_v.$$
Here is how: The infinitesimal generators of $av + b$ action on P are

$$X_a = v\partial_v + v_x\partial_{v_x}, \quad X_b = \partial_v.$$

Find $\omega^i \in \mathcal{I}$ satisfying $\omega^i(X_j) = \delta^i_j$.
Here is how: The infinitesimal generators of \(av + b \) action on \(P \) are
\[
X_a = v \partial_v + v_x \partial_{v_x}, \quad X_b = \partial_v.
\]

Find \(\omega^i \in \mathcal{I} \) satisfying \(\omega^i(X_j) = \delta^i_j \)
\[
\omega^1 = \theta - \frac{1}{v_x} \theta_x = dv - v_x dx - \frac{v}{v_x} (dv_x - G(x) v_x dx)
\]
\[
\omega^2 = \frac{1}{v_x} \theta_x = \frac{1}{v_x} (dv_x - G(x) v_x dx)
\]
Here is how: The infinitesimal generators of $av + b$ action on P are

$$X_a = v \partial_v + v_x \partial_{v_x}, \quad X_b = \partial_v.$$

Find $\omega^i \in \mathcal{I}$ satisfying $\omega^i(X_j) = \delta^i_j$

$$\omega^1 = \theta - \frac{1}{v_x} \theta_x = dv - v_x dx - \frac{v}{v_x} (dv_x - G(x)v_x dx)$$

$$\omega^2 = \frac{1}{v_x} \theta_x = \frac{1}{v_x} (dv_x - G(x)v_x dx)$$

These satisfy

$$d\omega^1 = -\omega^1 \wedge \omega^2, \quad d\omega^2 = 0$$
Here is how: The infinitesimal generators of $a v + b$ action on P are

$$X_a = v \partial_v + v_x \partial_{v_x}, \quad X_b = \partial_v.$$

Find $\omega^i \in I$ satisfying $\omega^i(X_j) = \delta^i_j$

$$\omega^1 = \theta - \frac{1}{v_x} \theta_x = dv - v_x dx - \frac{v}{v_x} (dv_x - G(x)v_x dx)$$

$$\omega^2 = \frac{1}{v_x} \theta_x = \frac{1}{v_x} (dv_x - G(x)v_x dx)$$

These satisfy

$$d\omega^1 = -\omega^1 \wedge \omega^2, \quad d\omega^2 = 0$$

therefore

$$\omega_2 = df_2(x, v, v_x), \quad \omega^1 = e^{f_2} df_1$$
Here is how: The infinitesimal generators of $av + b$ action on P are

$$X_a = v \partial_v + v_x \partial_{v_x}, \quad X_b = \partial_v.$$

Find $\omega^i \in \mathcal{I}$ satisfying $\omega^i(X_j) = \delta^i_j$

$$\omega^1 = \theta - \frac{1}{v_x} \theta_x = d\nu - v_x dx - \frac{\nu}{v_x} (dv_x - G(x)v_x dx)$$

$$\omega^2 = \frac{1}{v_x} \theta_x = \frac{1}{v_x} (dv_x - G(x)v_x dx)$$

These satisfy

$$d\omega^1 = -\omega^1 \wedge \omega^2, \quad d\omega^2 = 0$$

therefore

$$\omega_2 = df_2(x, \nu, v_x), \quad \omega^1 = e^{f_2} df_1$$

where (using DeRham homotopy for example),

$$f_2 = \log v_x - \int G(x) dx, \quad f_1 = \frac{\nu}{v_x} e^{\int G(x) dx} - \int e^{\int G(x) dx} dx.$$
Here is how: The infinitesimal generators of $av + b$ action on P are

$$X_a = v \partial_v + v_x \partial_{v_x}, \quad X_b = \partial_v.$$

Find $\omega^i \in \mathcal{I}$ satisfying $\omega^i(X_j) = \delta^i_j$

$$\omega^1 = \theta - \frac{1}{v_x} \theta_x = dv - v_x dx - \frac{v}{v_x} (dv_x - G(x)v_x dx)$$

$$\omega^2 = \frac{1}{v_x} \theta_x = \frac{1}{v_x} (dv_x - G(x)v_x dx)$$

These satisfy

$$d\omega^1 = -\omega^1 \wedge \omega^2, \quad d\omega^2 = 0$$

therefore

$$\omega_2 = df_2(x, v, v_x), \quad \omega^1 = e^{f_2} df_1$$

where (using DeRham homotopy for example),

$$f_2 = \log v_x - \int G(x) dx, \quad f_1 = \frac{v}{v_x} e^{\int G(x) dx} - \int e^{\int G(x) dx} dx.$$

With the initial conditions $f_1(0, 0, 1) = 0, f_2(0, 0, 1) = 0$ we have

$$f_2 = \log v_x - \int_0^x G(t) dt, \quad f_1 = \frac{v}{v_x} e^{\int_0^x G(t) dt} - \int_0^x e^{\int_0^s G(t) dt} ds.$$
With

\[f_2 = \log v_x - \int_0^x G(t) dt, \quad f_1 = \frac{V}{v_x} e^{\int_0^x G(t) dt} - \int_0^x \left(e^{\int_s^0 G(t) dt} \right) ds \]
With

\[f_2 = \log v_x - \int_0^x G(t)dt, \quad f_1 = \frac{V}{v_x} e^{\int_0^x G(t)dt} - \int_0^x \left(e^{\int_0^s G(t)dt} \right) ds \]

the level set \(f_1 = 0, \ f_2 = 0 \) is

\[v_x = e^{\int_0^x G(t)dt}, \quad v(x) = \int_0^x \left(e^{\int_0^s G(t)dt} \right) ds \]
With

\[f_2 = \log v_x - \int_0^x G(t) dt, \quad f_1 = \frac{v}{v_x} e^{\int_0^x G(t) dt} - \int_0^x \left(e^{\int_0^s G(t) dt} \right) ds \]

the level set \(f_1 = 0, \ f_2 = 0 \) is

\[v_x = e^{\int_0^x G(t) dt}, \quad v(x) = \int_0^x \left(e^{\int_0^s G(t) dt} \right) ds \]

The same solution as Method 1.
With
\[f_2 = \log v_x - \int_0^x G(t) \, dt, \quad f_1 = \frac{v}{v_x} e^{\int_0^x G(t) \, dt} - \int_0^x \left(e^{\int_0^s G(t) \, dt} \right) \, ds \]

the level set \(f_1 = 0, \ f_2 = 0 \) is
\[v_x = e^{\int_0^x G(t) \, dt}, \quad v(x) = \int_0^x \left(e^{\int_0^s G(t) \, dt} \right) \, ds \]

The same solution as Method 1.

The group action is not needed with this method, only the infinitesimal generators and the DeRham homotopy formula.
Method 3

We have from Method 2 the differential forms on $P = q^{-1}(\bar{s}(x))$,

\[\omega^1 = \theta - \frac{1}{\nu_x} \theta_x = d\nu - \nu_x dx - \frac{\nu}{\nu_x} (d\nu_x - G(x) \nu_x dx) \]

\[\omega^2 = \frac{1}{\nu_x} \theta_x = \frac{1}{\nu_x} (d\nu_x - G(x) \nu_x dx) \]
Method 3

We have from Method 2 the differential forms on \(P = q^{-1}(\bar{s}(x)) \),

\[
\omega^1 = \theta - \frac{1}{v_x} \theta_x = dv - v_x dx - \frac{v}{v_x} (dv_x - G(x)v_x dx)
\]

\[
\omega^2 = \frac{1}{v_x} \theta_x = \frac{1}{v_x} (dv_x - G(x)v_x dx)
\]

which satisfy,

\[
d\omega^1 = -\omega^1 \wedge \omega^2, \quad d\omega^2 = 0.
\]
Method 3

We have from Method 2 the differential forms on $P = q^{-1}(\bar{s}(x))$,

$$\omega^1 = \theta - \frac{1}{v_x} \theta_x = dv - v_x dx - \frac{v}{v_x} (dv_x - G(x)v_x dx)$$

$$\omega^2 = \frac{1}{v_x} \theta_x = \frac{1}{v_x} (dv_x - G(x)v_x dx)$$

which satisfy,

$$d\omega^1 = -\omega^1 \wedge \omega^2, \quad d\omega^2 = 0.$$

Find $\rho : P \to G$ with $\rho^* \tau^i = \omega^i$ where τ^i are the Maurer Cartan forms

$$\tau^a = \frac{da}{a}, \quad \tau^b = db - \frac{b}{a} da.$$
Method 3

We have from Method 2 the differential forms on $P = q^{-1}(\bar{s}(x))$,

$$\omega^1 = \theta - \frac{1}{v_x} \theta_x = dv - v_x dx - \frac{v}{v_x} (dv_x - G(x)v_x dx)$$

$$\omega^2 = \frac{1}{v_x} \theta_x = \frac{1}{v_x} (dv_x - G(x)v_x dx)$$

which satisfy,

$$d\omega^1 = -\omega^1 \wedge \omega^2, \quad d\omega^2 = 0.$$

Find $\rho : P \to G$ with $\rho^* \tau^i = \omega^i$ where τ^i are the Maurer Cartan forms

$$\tau^a = \frac{da}{a}, \quad \tau^b = db - \frac{b}{a} da.$$

The map ρ can be found by quadratures (like finding the first integrals)

$$a = v_x e^{-\int_0^x G(t)dt}, \quad b = v - v_x e^{-\int_0^x G(t)dt} \int_0^x \left(e^{\int_s^x G(t)dt} \right) ds$$

where we have chosen $\rho(0,0,1) = (1,0) = e \in G$
With $\rho : P \to G$ given, any choice of a curve $\hat{s} : \mathbb{R} \to P$ gives

$$s(x) = \mu(\rho(\hat{s}(x))^{-1}, \hat{s}(x))$$

is a solution.
With $\rho : P \to G$ given, any choice of a curve $\hat{s} : \mathbb{R} \to P$ gives

$$s(x) = \mu(\rho(\hat{s}(x))^{-1}, \hat{s}(x))$$

is a solution.

From previous slide, $\rho(x, v, v_x) \to (a, b)$ is

$$a = v_x e^{-\int_0^x G(t)dt}, \quad b = v - v_x e^{-\int_0^x G(t)dt} \int_0^x \left(e^{\int_0^s G(t)dt} \right) ds$$
With $\rho : P \to G$ given, any choice of a curve $\hat{s} : \mathbb{R} \to P$ gives

$$s(x) = \mu(\rho(\hat{s}(x))^{-1}, \hat{s}(x))$$

is a solution.

From previous slide, $\rho(x, v, v_x) \to (a, b)$ is

$$a = v_x e^{-\int_0^x G(t)dt}, \quad b = v - v_x e^{-\int_0^x G(t)dt} \int_0^x \left(e^{\int_0^s G(t)dt}\right) ds$$

then with $\hat{s}(x) = (x, v = 0, v_x = 1)$,

$$\rho(\hat{s}(x)) = \begin{pmatrix} a = e^{-\int_0^x G(t)dt}, b = -e^{-\int_0^x G(t)dt} \int_0^x \left(e^{\int_0^s G(t)dt}\right) ds \end{pmatrix}$$
With $\rho : P \to G$ given, any choice of a curve $\hat{s} : \mathbb{R} \to P$ gives

$$s(x) = \mu(\rho(\hat{s}(x))^{-1}, \hat{s}(x))$$

is a solution.

From previous slide, $\rho(x, v, v_x) \to (a, b)$ is

$$a = v_x e^{-\int_0^x G(t)dt}, \quad b = v - v_x e^{-\int_0^x G(t)dt} \int_0^x \left(e^{\int_0^s G(t)dt}\right) ds$$

then with $\hat{s}(x) = (x, v = 0, v_x = 1)$,

$$\rho(\hat{s}(x)) = \left(a = e^{-\int_0^x G(t)dt}, b = -e^{-\int_0^x G(t)dt} \int_0^x \left(e^{\int_0^s G(t)dt}\right) ds\right)$$

and

$$s(x) = \mu(\rho(\hat{s}(x))^{-1}, \hat{s}(x))$$

$$= \left(x, \quad v = -\frac{b}{a} = \int_0^x \left(e^{\int_0^s G(t)dt}\right) ds, \quad v_x = \frac{1}{a} = e^{\int_0^x G(t)dt}\right)$$
With \(\rho : P \to G \) given, any choice of a curve \(\hat{s} : \mathbb{R} \to P \) gives

\[
s(x) = \mu(\rho(\hat{s}(x))^{-1}, \hat{s}(x))
\]

is a solution.

From previous slide, \(\rho(x, v, v_x) \to (a, b) \) is

\[
a = v_x e^{-\int_0^x G(t)dt}, \quad b = v - v_x e^{-\int_0^x G(t)dt} \int_0^x \left(e^{\int_0^s G(t)dt} \right) ds
\]

then with \(\hat{s}(x) = (x, v = 0, v_x = 1) \),

\[
\rho(\hat{s}(x)) = \left(a = e^{-\int_0^x G(t)dt}, b = -e^{-\int_0^x G(t)dt} \int_0^x \left(e^{\int_0^s G(t)dt} \right) ds \right)
\]

and

\[
s(x) = \mu(\rho(\hat{s}(x))^{-1}, \hat{s}(x))
\]

\[
= \left(x, \quad v = -\frac{b}{a} = \int_0^x \left(e^{\int_0^s G(t)dt} \right) ds, \quad v_x = \frac{1}{a} = e^{\int_0^x G(t)dt} \right)
\]

Same as before.
Remark: If instead we worked on $J^3(\mathbb{R}, \mathbb{R})$ with

$$X_c = v^2 \partial_v + 2vv_x \partial_{v_x} + 2(v_x^2 + vv_{xx}) \partial_{v_{xx}} + 2(3v_x v_{xx} + vv_{xxx}) \partial_{v_{xxx}}$$

(so $\mathfrak{sl}(2)$) then the invariant would be the Schwartzian,
Remark: If instead we worked on $J^3(\mathbb{R}, \mathbb{R})$ with

$$X_c = v^2 \partial_v + 2vv_x \partial_v + 2(v_x^2 + vv_{xx}) \partial_{v_{xx}} + 2(3v_x v_{xx} + vv_{xxx}) \partial_{v_{xxx}}$$

(so $\mathfrak{sl}(2)$) then the invariant would be the Schwartzian,

$$\hat{\xi} = \frac{v_{xxx}}{v_x} - \frac{3}{2} \left(\frac{v_{xx}}{v_x} \right)^2$$

(Or curves into \mathbb{RP}^1 with global $SL(2)$ action)
Remark: If instead we worked on $J^3(\mathbb{R}, \mathbb{R})$ with

\[X_c = v^2 \partial_v + 2vv_x \partial_{v_x} + 2(v_x^2 + vv_{xx}) \partial_{v_{xx}} + 2(3v_xv_{xx} + vv_{xxx}) \partial_{v_{xxx}} \]

(so \(\mathfrak{sl}(2) \)) then the invariant would be the Schwartzian,

\[\hat{\xi} = \frac{v_{xxx}}{v_x} - \frac{3}{2} \left(\frac{v_{xx}}{v_x} \right)^2 \]

(Or curves into \(\mathbb{RP}^1 \) with global \(SL(2) \) action)

The reconstruction problem - given \(\hat{\xi} = G(x) \) a curve exists and its determination is an equation of Lie type for \(SL(2) \). Generically these can’t be integrated by quadratures.
Theorem: Let G act freely and regularly on M, and as a symmetry of Pfaffian system \mathcal{I} generated by $I \subset T^*M$ satisfying

$$\Gamma_G \cap \text{annihilator}(I) = 0.$$
Theorem: Let G act freely and regularly on M, and as a symmetry of Pfaffian system \mathcal{I} generated by $I \subset T^*M$ satisfying

$$\Gamma_G \cap \text{annihilator}(I) = 0.$$

Congruence: Two integral manifolds $s_1, s_2 : N \rightarrow M$ with N connected, are congruent if and only if the projection $q \circ s_1 = q \circ s_2$ are the same solutions to the quotient

$$\bar{\mathcal{I}} = \{ \bar{\theta} \in \Omega^*(M/G) \mid q^*\bar{\theta} \in \mathcal{I}, \quad q : M \rightarrow M/G \}. $$
Theorem: Let G act freely and regularly on M, and as a symmetry of Pfaffian system \mathcal{I} generated by $I \subset T^*M$ satisfying

$$\Gamma_G \cap \text{annihilator}(I) = 0.$$

Congruence: Two integral manifolds $s_1, s_2 : N \to M$ with N connected, are congruent if and only if the projection $q \circ s_1 = q \circ s_2$ are the same solutions to the quotient

$$\tilde{\mathcal{I}} = \{ \tilde{\theta} \in \Omega^*(M/G) \mid q^* \tilde{\theta} \in \mathcal{I}, \quad q : M \to M/G \}.$$

Reconstruction: Given a solution $\tilde{s} : N \to M/G$ of \mathcal{I}/G, a (local) solution to \mathcal{I} on M can be found by solving a system of equations of Lie type (using one of the 3 methods outlined in the example). If the group G is solvable, these can be integrated by quadratures.
Theorem: Let G act freely and regularly on M, and as a symmetry of Pfaffian system \mathcal{I} generated by $I \subset T^*M$ satisfying

$$\Gamma_G \cap \text{annihilator}(I) = 0.$$

Congruence: Two integral manifolds $s_1, s_2 : N \to M$ with N connected, are congruent if and only if the projection $q \circ s_1 = q \circ s_2$ are the same solutions to the quotient

$$\mathcal{I} = \{ \bar{\theta} \in \Omega^*(M/G) \mid q^*\bar{\theta} \in \mathcal{I}, \quad q : M \to M/G \}.$$

Reconstruction: Given a solution $\bar{s} : N \to M/G$ of \mathcal{I}/G, a (local) solution to \mathcal{I} on M can be found by solving a system of equations of Lie type (using one of the 3 methods outlined in the example). If the group G is solvable, these can be integrated by quadratures.

In our example

$$I = \text{span}\{dv - v_x dx, dv_x - v_{xx} dx\} ; \quad \mathcal{I} = \langle \theta, \theta_x, d\hat{\xi} \wedge dx \rangle,$$
Theorem: Let G act freely and regularly on M, and as a symmetry of Pfaffian system \mathcal{I} generated by $I \subset T^*M$ satisfying

$$\Gamma_G \cap \text{annihilator}(I) = 0.$$

Congruence: Two integral manifolds $s_1, s_2 : N \to M$ with N connected, are congruent if and only if the projection $q \circ s_1 = q \circ s_2$ are the same solutions to the quotient

$$\bar{\mathcal{I}} = \{ \bar{\theta} \in \Omega^*(M/G) \mid q^*\bar{\theta} \in \mathcal{I}, \ q : M \to M/G \}.$$

Reconstruction: Given a solution $\bar{s} : N \to M/G$ of \mathcal{I}/G, a (local) solution to \mathcal{I} on M can be found by solving a system of equations of Lie type (using one of the 3 methods outlined in the example). If the group G is solvable, these can be integrated by quadratures.

In our example

$$I = \text{span}\{dv - v_x dx, dv_x - v_{xx} dx\} ; \quad \mathcal{I} = \langle \theta, \theta_x, d\hat{\xi} \wedge dx \rangle$$

and

$$\mathcal{I}/G = \text{span}\{d\hat{\xi} \wedge dx\}$$
Theorem: Let G act freely and regularly on M, and as a symmetry of Pfaffian system \mathcal{I} generated by $I \subset T^*M$ satisfying

$$\Gamma_G \cap \text{annihilator}(I) = 0.$$

Congruence: Two integral manifolds $s_1, s_2 : N \to M$ with N connected, are congruent if and only if the projection $q \circ s_1 = q \circ s_2$ are the same solutions to the quotient

$$\bar{\mathcal{I}} = \{ \bar{\theta} \in \Omega^*(M/G) \mid q^* \bar{\theta} \in \mathcal{I}, \quad q : M \to M/G \}.$$

Reconstruction: Given a solution $\bar{s} : N \to M/G$ of I/G, a (local) solution to \mathcal{I} on M can be found by solving a system of equations of Lie type (using one of the 3 methods outlined in the example). If the group G is solvable, these can be integrated by quadratures.

In our example

$$I = \text{span}\{dv - v_x dx, dv_x - v_{xx} dx\} ; \quad \mathcal{I} = \langle \theta, \theta_x, d\hat{\xi} \wedge dx \rangle$$

and

$$\mathcal{I}/G = \text{span}\{d\hat{\xi} \wedge dx\}$$

A solution to the quotient is just prescribing $\hat{\xi} = G(x)$.
Part 2

The Cauchy Problem
Let’s continue the example with

\[G = \{ (a, b) \mid a \in \mathbb{R}^*, b \in \mathbb{R} \} \]
Let’s continue the example with

\[G = \{ (a, b) \mid a \in \mathbb{R}^*, b \in \mathbb{R} \} \]

now acting diagonally on \(J^2(\mathbb{R}, \mathbb{R}) \times J^2(\mathbb{R}, \mathbb{R}) \),

\[
(a, b) \cdot (x, v, v_x, v_{xx}; y, w, w_y, w_{yy}) = (x, av + b, av_x, av_{xx}; y, aw - b, aw_y aw_{yy})
\]
Let’s continue the example with

\[G = \{ (a, b) \mid a \in \mathbb{R}^*, b \in \mathbb{R} \} \]

now acting diagonally on \(J^2(\mathbb{R}, \mathbb{R}) \times J^2(\mathbb{R}, \mathbb{R}) \),

\[(a, b) \cdot (x, \nu, \nu_x, \nu_{xx}; y, w, w_y, w_{yy}) = (x, av + b, av_x, av_{xx}; y, aw - b, aw_yaw_{yy}) \]

The invariants are (using the action commutes with total differentiation),

\[x, y, u = x - \frac{\nu + w}{\nu_x}, \quad u_x = D_x(u) = \frac{(\nu + w)\nu_{xx}}{\nu_x^2}, \quad u_y = D_y(u) = -\frac{w_y}{\nu_x}, \ldots \]
Let's continue the example with

\[G = \{ (a, b) \mid a \in \mathbb{R}^*, b \in \mathbb{R} \} \]

now acting diagonally on \(J^2(\mathbb{R}, \mathbb{R}) \times J^2(\mathbb{R}, \mathbb{R}) \),

\[(a, b) \cdot (x, \nu, \nu_x, \nu_{xx}; y, w, w_y, w_{yy}) = (x, av + b, av_x, av_{xx}; y, aw - b, aw_y aw_{yy})\]

The invariants are (using the action commutes with total differentiation),

\[x, y, u = x - \frac{v + w}{v_x}, u_x = D_x(u) = \frac{(v + w)v_{xx}}{v_x^2}, u_y = D_y(u) = -\frac{w_y}{v_x}, \ldots \]

We also have the relation (syzygy),

\[u_{xy} = D_y(u_x) = D_x(-\frac{w_y}{v_x}) = \frac{w_y v_{xx}}{v_x^2} = \frac{u_x u_y}{u - x} \]
Let’s continue the example with

\[G = \{ (a, b) \mid a \in \mathbb{R}^*, b \in \mathbb{R} \} \]

now acting diagonally on \(J^2(\mathbb{R}, \mathbb{R}) \times J^2(\mathbb{R}, \mathbb{R}) \),

\[(a, b) \cdot (x, \nu, \nu_x, \nu_{xx}; y, w, w_y, w_{yy}) = (x, av + b, av_x, av_{xx}; y, aw - b, aw_y aw_{yy}) \]

The invariants are (using the action commutes with total differentiation),

\[x, y, u = x - \frac{\nu + w}{\nu_x}, \quad u_x = D_x(u) = \frac{(\nu + w)\nu_{xx}}{\nu_x^2}, \quad u_y = D_y(u) = -\frac{w_y}{\nu_x}, \ldots \]

We also have the relation (syzygy),

\[u_{xy} = D_y(u_x) = D_x(-\frac{w_y}{\nu_x}) = \frac{w_y \nu_{xx}}{\nu_x^2} = \frac{u_x u_y}{u - x} \]

So \(J^2 \times J^2/G_{\text{diag}} \) gives rise to the PDE in the equation above.
We have the projection maps coming from each $J^2(\mathbb{R}, \mathbb{R}) \to J^2(\mathbb{R}, \mathbb{R})/G$,

$$
q_1(x, v, v_x, v_{xx}) = \left(x, \hat{\xi} = \frac{v_{xx}}{v_x} \right), \quad q_2(y, w, w_y, w_{yy}) = \left(y, \hat{\xi} = \frac{w_{yy}}{w_y} \right)
$$
We have the projection maps coming from each $J^2(\mathbb{R}, \mathbb{R}) \to J^2(\mathbb{R}, \mathbb{R})/G$,

$$q_1(x, v, v_x, v_{xx}) = \left(x, \hat{\xi} = \frac{v_{xx}}{v_x} \right), \quad q_2(y, w, w_y, w_{yy}) = \left(y, \bar{\xi} = \frac{w_{yy}}{w_y} \right)$$

Producing the big diagram

\[
\begin{array}{c}
\left(x, v, v_x, v_{xx}, v_{xxx} ; \ y, w, w_y, w_{yy} \right) \\
\downarrow q \circ G_{\text{diag}} \\
\left(\ x, y, u = x - \frac{v+w}{v_x}, u_x = \frac{(v+w)v_{xx}}{v_x^2}, u_y = -\frac{w_y}{v_x}, u_{xx} = D_x(u_x), u_{yy} = -\frac{w_{yy}}{v_x} \right)
\end{array}
\]

where $(q_1, q_2) = (p_1 \circ q \circ G_{\text{diag}}, p_2 \circ q \circ G_{\text{diag}})$.

Remark: The maps p_i are not group quotients.
We have the projection maps coming from each $J^2(R, R) \rightarrow J^2(R, R)/G$,

$$
q_1(x, v, v_x, v_{xx}) = \left(x, \hat{\xi} = \frac{v_{xx}}{v_x} \right), \quad q_2(y, w, w_y, w_{yy}) = \left(y, \hat{\xi} = \frac{w_{yy}}{w_y} \right)
$$

Producing the big diagram

where $(q_1, q_2) = (p_1 \circ q_{G_{\text{diag}}}, p_2 \circ q_{G_{\text{diag}}})$.

Remark: The maps p_i are not group quotients.
Take the Cauchy data S for $u_{xy} = (u_x u_y)(u - x)^{-1}$ along $y = x$

$u = f(x), u_x = g(x), u_y = f'(x) - g(x), u_{xx} = g' - \frac{g(f' - g)}{f - x}, u_{yy} = f'' - g' - \frac{g(f' - g)}{f - x}$
Take the Cauchy data S for $u_{xy} = (u_x u_y)(u - x)^{-1}$ along $y = x$

$u = f(x), u_x = g(x), u_y = f'(x) - g(x), u_{xx} = g' - \frac{g(f' - g)}{f - x}, u_{yy} = f'' - g' - \frac{g(f' - g)}{f - x}$

Using the lower part of the previous diagram

$$\left(x, y, u = x - \frac{v+w}{v_x}, u_x = \frac{(v+w)v_{xx}}{v_x^2}, u_y = -\frac{w_y}{v_x}, u_{xx} = D_x(u_x), u_{yy} = -\frac{w_{yy}}{v_x} \right)$$

\textbf{P}_1

$$\left(x, \hat{\xi} = \frac{v_{xx}}{v_x} = \frac{u_x}{x-u}, \right)$$

\textbf{P}_2

$$\left(y, \tilde{\xi} = \frac{w_{yy}}{w_y} = \frac{u_{yy}}{u_y} \right)$$
Take the Cauchy data S for $u_{xy} = (u_x u_y) (u - x)^{-1}$ along $y = x$

\[u = f(x), \quad u_x = g(x), \quad u_y = f'(x) - g(x), \quad u_{xx} = g' - \frac{g(f' - g)}{f - x}, \quad u_{yy} = f'' - g' - \frac{g(f' - g)}{f - x} \]

Using the lower part of the previous diagram

\[
\begin{align*}
(x, y, u = x - \frac{v+w}{v_x}, u_x = \frac{(v+w)v_{xx}}{v_x^2}, u_y = -\frac{w_y}{v_x}, u_{xx} = D_x(u_x), u_{yy} = -\frac{w_{yy}}{v_x})
\end{align*}
\]

Project Cauchy data S using p_1 and p_2 to the curves

\[
S_1 = p_1(S) = \left(x, \hat{\xi} = \frac{u_x}{x-u} = \frac{g(x)}{x-f(x)}\right)
\]

\[
S_2 = p_2(S) = \left(y, \tilde{\xi} = \frac{u_{yy}}{u_y} = \log(f'(y) - g(y))' - \frac{g(y)}{y-f(y)}\right)
\]
We now apply the reconstruction problem to

\[S_1 = \left(x, \hat{\xi} = \frac{u_x}{x - u} = \frac{g(x)}{x - f(x)} \right) \]

\[S_2 = \left(y, \bar{\xi} = \frac{u_{yy}}{u_y} = \log(f'(y) - g(y))' - \frac{g(y)}{y - f(y)} \right) \]
We now apply the reconstruction problem to

\[S_1 = \left(x, \hat{\xi} = \frac{u_x}{x - u} = \frac{g(x)}{x - f(x)} \right) \]

\[S_2 = \left(y, \tilde{\xi} = \frac{u_{yy}}{u_y} = \log(f'(y) - g(y))' - \frac{g(y)}{y - f(y)} \right) \]

Using the points

\[(x = 0, v = 0, v_x = 1); (y = 0, w = -f(0), w_y = g(0) - f'(0))\]
We now apply the reconstruction problem to

\[S_1 = \left(x, \hat{\xi} = \frac{u_x}{x - u} = \frac{g(x)}{x - f(x)} \right) \]

\[S_2 = \left(y, \hat{\xi} = \frac{u_{yy}}{u_y} = \log(f'(y) - g(y))' - \frac{g(y)}{y - f(y)} \right) \]

Using the points

\((x = 0, v = 0, v_x = 1); (y = 0, w = -f(0), w_y = g(0) - f'(0))\)

the solution to the Lie equation determining \(v\) gives (with \(G(x) = \frac{g(x)}{x - f(x)}\))

\[v(x) = \int_0^x \left(\exp(\int_0^s \frac{g(t)}{t - f(t)} dt) \right) ds \]
We now apply the reconstruction problem to

\[S_1 = \left(x, \hat{\xi} = \frac{u_x}{x - u} = \frac{g(x)}{x - f(x)}\right) \]

\[S_2 = \left(y, \tilde{\xi} = \frac{u_{yy}}{u_y} = \log(f'(y) - g(y))' - \frac{g(y)}{y - f(y)}\right) \]

Using the points

\((x = 0, v = 0, v_x = 1); (y = 0, w = -f(0), w_y = g(0) - f'(0))\)

the solution to the Lie equation determining \(v\) gives (with \(G(x) = \frac{g(x)}{x - f(x)}\))

\[v(x) = \int_0^x \left(\exp\left(\int_0^s \frac{g(t)}{t - f(t)} dt \right) \right) ds \]

While solving the Lie equation determining \(w\) gives

\[w(y) = \int_0^y \left((g(s) - f'(s)) \exp\left(\int_0^s \frac{g(t)}{t - f(t)} dt \right) \right) ds - f(0) \]
With $G(t) = g(t)(t - f(t))^{-1}$
With \(G(t) = g(t)(t - f(t))^{-1} \)

\[
\begin{align*}
\nu(x) &= \int_0^x \left(e^{\int_0^s G(t)dt} \right) ds \\
\omega(y) &= \int_0^y \left((g(s) - f'(s)) e^{\int_0^s G(t)dt} \right) ds - f(0) \\
&= \int_0^y \left((s - f(s)) G(s) - f'(s) e^{\int_0^s G(t)dt} \right) ds - f(0) \\
&= -\int_0^y \left(e^{\int_0^s G(t)dt} \right) ds + (y - f(y)) \int_0^y e^{\int_0^s G(t)dt} ds
\end{align*}
\]
With \(G(t) = g(t)(t - f(t))^{-1} \)

\[
\begin{align*}
v(x) &= \int_0^x \left(e^{\int_0^s G(t) \, dt} \right) \, ds \\
w(y) &= \int_0^y \left((g(s) - f'(s)) e^{\int_0^s G(t) \, dt} \right) \, ds - f(0) \\
&= \int_0^y \left((s - f(s)) G(s) - f'(s) e^{\int_0^s G(t) \, dt} \right) \, ds - f(0) \\
&= -\int_0^y \left(e^{\int_0^s G(t) \, dt} \right) \, ds + (y - f(y)) \int_0^y e^{\int_0^s G(t) \, dt} \, ds
\end{align*}
\]

Combining these together via the diagonal quotient map \(q_{G_{\text{diag}}} \) gives

\[
\begin{align*}
u(x) &= \frac{v(x) + w(y)}{v_x} \\
&= x + (f(y) - y) e^{\int_x^y G(t) \, dt} + e^{-\int_x^x G(t) \, dt} \left(\int_x^y e^{\int_0^s G(t) \, dt} \, ds \right) .
\end{align*}
\]
With \(G(t) = g(t)(t - f(t))^{-1} \)

\[
\nu(x) = \int_0^x \left(e^{\int_0^s G(t) dt} \right) ds
\]

\[
\omega(y) = \int_0^y \left((g(s) - f'(s)) e^{\int_0^s G(t) dt} \right) ds - f(0)
\]

\[
= \int_0^y \left((s - f(s)) G(s) - f'(s) e^{\int_0^s G(t) dt} \right) ds - f(0)
\]

\[
= - \int_0^y \left(e^{\int_0^s G(t) dt} \right) ds + (y - f(y)) \int_0^y e^{\int_0^s G(t) dt} ds
\]

Combining these together via the diagonal quotient map \(q_{G_{\text{diag}}} \) gives

\[
u(x) + \omega(y)
\]

\[
u_x
\]

\[
= x + (f(y) - y) e^{\int_x^y G(t) dt} + e^{- \int_0^x G(t) dt} \left(\int_x^y e^{\int_0^s G(t) dt} ds \right).
\]

Which solves the Cauchy problem \(u = f(x), \ u_x = g(x) \) along \(y = x \).
With $G(t) = g(t)(t - f(t))^{-1}$

$$v(x) = \int_0^x \left(e^{\int_0^s G(t) dt} \right) ds$$

$$w(y) = \int_0^y \left((g(s) - f'(s)) e^{\int_0^s G(t) dt} \right) ds - f(0)$$

$$= \int_0^y \left((s - f(s)) G(s) - f'(s) \right) e^{\int_0^s G(t) dt} ds - f(0)$$

$$= - \int_0^y \left(e^{\int_0^s G(t) dt} \right) ds + (y - f(y)) \int_0^y e^{\int_0^s G(t) dt} ds$$

Combining these together via the diagonal quotient map $q_{G_{\text{diag}}}$ gives

$$u = x - \frac{v(x) + w(y)}{v_x}$$

$$= x + (f(y) - y) e^{\int_x^y G(t) dt} + e^{-\int_0^x G(t) dt} \left(\int_x^y e^{\int_0^s G(t) dt} ds \right).$$

Which solves the Cauchy problem $u = f(x), u_x = g(x)$ along $y = x$. **Remark:**

Analogue to D’Alembert’s formula for the Wave equation.
Darboux Integrability

The equation \(u_{xy} = \frac{u_x u_y}{u-x} \) is Darboux Integrable (Admits intermediate integrals).
Darboux Integrability

The equation \(u_{xy} = \frac{u_x u_y}{u-x} \) is Darboux Integrable (Admits intermediate integrals).

\[
\frac{d}{dy} \hat{\xi} = \frac{d}{dy} \frac{u_x}{u-x} = \frac{u_{xy}}{u-x} - \frac{u_x u_y}{(u-x)^2} = 0
\]
The equation \(u_{xy} = \frac{u_x u_y}{u - x} \) is Darboux Integrable (Admits intermediate integrals).

\[
\frac{d}{dy} \hat{\xi} = \frac{d}{dy} \frac{u_x}{u - x} = \frac{u_{xy}}{u - x} - \frac{u_x u_y}{(u - x)^2} = 0
\]

\[
\frac{d}{dx} \hat{\xi} = \frac{d}{dx} \frac{u_{yy}}{u_y} = \frac{u_{xxy}}{u_y} - \frac{u_{yy} u_{xy}}{u_y^2} = \frac{u_x u_{yy}}{u - x} - \frac{u_{yy} u_x u_y}{u - x} = 0
\]

We call \(G \) the Vessiot group. Theorem: Let \(I \) be a Darboux integrable system. If the Vessiot group \(G \) for \(I \) is solvable then the Cauchy problem for \(I \) can be solved by quadratures.
Darboux Integrability

The equation \(u_{xy} = \frac{u_x u_y}{u-x} \) is **Darboux Integrable** (Admits intermediate integrals).

\[
\frac{d}{dy} \hat{\xi} = \frac{d}{dy} \frac{u_x}{u-x} = \frac{u_{xy}}{u-x} - \frac{u_x u_y}{(u-x)^2} = 0
\]

\[
\frac{d}{dx} \hat{\xi} = \frac{d}{dx} \frac{u_{yy}}{u_y} = \frac{u_{xxy}}{u_y} - \frac{u_{yy} u_{xy}}{u^2} = \frac{u_x u_{yy}}{u-x} - \frac{u_{yy} u_x u_y}{u-x} = 0
\]

If \(\mathcal{I} \) is a Darboux integrable system then \(\mathcal{I} \) has a quotient representation.

\[
(\mathcal{I}_1 + \mathcal{I}_2, M_1 \times M_2)
\]

\[
\text{qG}_{\text{diag}}
\]

\[
(\mathcal{I}, M)
\]
Darboux Integrability

The equation \(u_{xy} = \frac{u_x u_y}{u-x} \) is Darboux Integrable (Admits intermediate integrals).

\[
\frac{d}{dy} \xi = \frac{d}{dy} \frac{u_x}{u-x} = \frac{u_{xy}}{u-x} - \frac{u_x u_y}{(u-x)^2} = 0
\]

\[
\frac{d}{dx} \xi = \frac{d}{dx} \frac{u_{yy}}{u_y} = \frac{u_{xxy}}{u_y} - \frac{u_{yy} u_{xy}}{u_y^2} = \frac{u_x u_{yy}}{u-x} - \frac{u_{yy} u_x u_y}{u-x} = 0
\]

If \(\mathcal{I} \) is a Darboux integrable system then \(\mathcal{I} \) has a quotient representation.

\[
(\mathcal{I}_1 + \mathcal{I}_2, M_1 \times M_2)
\]

\[
\downarrow \quad \text{q}_{G_{\text{diag}}}
\]

\[
(\mathcal{I}, M)
\]

\(G \) is a symmetry group of \(\mathcal{I}_i \) acting on \(M_i \), \(\text{q}_{G_{\text{diag}}} \) is the quotient by the diagonal action. See Anderson, Fels, Vasilliou Adv. Math. 2007
Darboux Integrability

The equation $u_{xy} = \frac{u_x u_y}{u-x}$ is Darboux Integrable (Admits intermediate integrals).

\[
\frac{d}{dy} \hat{\xi} = \frac{d}{dy} \frac{u_x}{u-x} = \frac{u_{xy}}{u-x} - \frac{u_x u_y}{(u-x)^2} = 0
\]

\[
\frac{d}{dx} \hat{\xi} = \frac{d}{dx} \frac{u_{yy}}{u_y} = \frac{u_{xyy}}{u_y} - \frac{u_{yy} u_{xy}}{u^2} = \frac{u_x u_{yy}}{u-x} - \frac{u_{yy} u_x u_y}{u-x} = 0
\]

If \mathcal{I} is a Darboux integrable system then \mathcal{I} has a quotient representation.

\[
(I_1 + I_2, M_1 \times M_2) \xrightarrow{\text{q}_{G_{\text{diag}}}} (\mathcal{I}, M)
\]

G is a symmetry group of \mathcal{I}_i acting on M_i, $\text{q}_{G_{\text{diag}}}$ is the quotient by the diagonal action. See Anderson, Fels, Vasiliou Adv. Math. 2007

We call G the Vessiot group.
Darboux Integrability

The equation \(u_{xy} = \frac{u_x u_y}{u - x} \) is Darboux Integrable (Admits intermediate integrals).

\[
\frac{d}{dy} \hat{\xi} = \frac{d}{dy} \frac{u_x}{u - x} = \frac{u_{xy}}{u - x} - \frac{u_x u_y}{(u - x)^2} = 0
\]

\[
\frac{d}{dx} \hat{\xi} = \frac{d}{dx} \frac{u_{yy}}{u_y} = \frac{u_{xxy}}{u_y} - \frac{u_{yy} u_{xy}}{u_y^2} = \frac{u_x u_{yy}}{u - x} - \frac{u_{yy} u_x u_y}{u - x} = 0
\]

If \(\mathcal{I} \) is a Darboux integrable system then \(\mathcal{I} \) has a quotient representation.

\[
(\mathcal{I}_1 + \mathcal{I}_2, M_1 \times M_2)
\]

\[
\xrightarrow{\mathbf{q}_{G_{\text{diag}}}}
\]

\[
(\mathcal{I}, M)
\]

\(G \) is a symmetry group of \(\mathcal{I}_i \) acting on \(M_i \), \(\mathbf{q}_{G_{\text{diag}}} \) is the quotient by the diagonal action. See Anderson, Fels, Vasiliou Adv. Math. 2007

We call \(G \) the Vessiot group.

Theorem: Let \(\mathcal{I} \) be a Darboux integrable system. If the Vessiot group \(G \) for \(\mathcal{I} \) is solvable then the Cauchy problem for \(\mathcal{I} \) can be solved by quadratures.
Proof The proof follows the example.
Proof The proof follows the example.

1 Construct the diagram,

\[(\mathcal{I}_1 + \mathcal{I}_2, M_1 \times M_2)\]

\[
\begin{array}{c}
\pi_1^G \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
(\mathcal{I}, M) \\
\downarrow \quad \downarrow \quad \downarrow \\
(I_1/G, M_1/G) \quad (I_2/G, M_2/G) \\
\end{array}
\]

\[
\begin{array}{c}
\pi_2^G \\
\end{array}
\]

\[q_{G_{\text{diag}}} \]

Project Cauchy data \(S \subset M\) using \(p_1\) and \(p_2\) which are solutions to \(I_1 \big/ G\), \(S_1 = p_1(S)\), \(S_2 = p_2(S)\).

Solve the reconstruction problem for \(I_1 \big/ q_{G_{\text{diag}}} - 1\) \((S_1)\) and \(I_2 \big/ q_{G_{\text{diag}}} - 1\) \((S_2)\) using quadratures (since \(G\) is solvable).

The solution is the projection of the product of the solutions \(u = q_{G_{\text{diag}}} \big/ \mathcal{N} \times \mathcal{N} \big/ \mathcal{N}\).
Proof The proof follows the example.

1. Construct the diagram,

\[(\mathcal{I}_1 + \mathcal{I}_2, M_1 \times M_2)\]

\[
\begin{array}{c}
\pi_1^G \\
\downarrow \\
(\mathcal{I}, M) \\
\downarrow \\
(\mathcal{I}_1/G, M_1/G) \quad \quad (\mathcal{I}_2/G, M_2/G) \\
\pi_2^G \\
\end{array}
\]

\[
\begin{array}{c}
p_1 \\
\downarrow \\
\pi G_{\text{diag}} \\
\downarrow \\
p_2 \\
\end{array}
\]

2. Project Cauchy data \(S \subset M \) using \(p_1 \) and \(p_2 \) which are solutions to \(\mathcal{I}_a/G \),

\[
S_1 = p(S), \quad S_2 = p(S)
\]
Proof The proof follows the example.

1. Construct the diagram,

 $$(\mathcal{I}_1 + \mathcal{I}_2, M_1 \times M_2)$$

 $$\xymatrix{(\mathcal{I}_1/G, M_1/G) \ar[r]_{\pi_1^G} \ar[d]_{\pi_{G,\text{diag}}} \ar[l]_{p_1} & (\mathcal{I}, M) \ar[d]^{\pi_2^G} \ar[l]_{p_2} & (\mathcal{I}_2/G, M_2/G) \ar[l]_{p_2}}$$

2. Project Cauchy data $S \subset M$ using p_1 and p_2 which are solutions to \mathcal{I}_a/G,

 $$S_1 = p(S), \quad S_2 = p(S)$$

3. Solve the reconstruction problem for $\mathcal{I}_1|_{q_1^{-1}(S_1)}$ and $\mathcal{I}_2|_{q_2^{-1}(S_2)}$ using quadratures (since G is solvable).
Proof The proof follows the example.

1. Construct the diagram,

\[(\mathcal{I}_1 + \mathcal{I}_2, M_1 \times M_2)\]

\[
\begin{array}{c}
\pi_1^G \\
\downarrow \\
(\mathcal{I}_1/M_1/G) \\
\uparrow \\
\pi_2^G \\
\downarrow \\
(\mathcal{I}_2/M_2/G)
\end{array}
\]

\[
\begin{array}{c}
\mathbf{p}_1 \\
\mathbf{q}_{G_{\text{diag}}} \\
\mathbf{p}_2
\end{array}
\]

2. Project Cauchy data \(S \subset M \) using \(\mathbf{p}_1 \) and \(\mathbf{p}_2 \) which are solutions to \(\mathcal{I}_a/G \),

\[
S_1 = \mathbf{p}(S), \quad S_2 = \mathbf{p}(S)
\]

3. Solve the reconstruction problem for \(\mathcal{I}_1|_{q_1^{-1}(S_1)} \) and \(\mathcal{I}_2|_{q_2^{-1}(S_2)} \) using quadratures (since \(G \) is solvable).

4. The solution is the projection of the product of the solutions \(N_a \subset q_{a^{-1}}(S_a) \),

\[
u = q_{G_{\text{diag}}} (N_1 \times N_2).
\]
The End.