Manifolds and Topology

Tuesday, August 28, 2018

Please use separate blue books for parts A and B, and clearly label each blue book of its content.

Most solutions to these problems should be accompanied by proofs. Give the essential explanations and justifications: a large part of each question is demonstration that you understand the context and issues involved. Do not make assumptions or choose contexts which make the problems trivial. If you use a theorem, state it fully and concisely, or identify it clearly. To receive full credit for a problem, the answer must be complete and correct.

This exam is closed-book: no notes or outside assistance is permitted.

All problems carry equal weight.
Part A

(1) Let f and g be continuous maps from \mathbb{S}^1 to \mathbb{S}^1. Show that the composition maps $f \circ g$ and $g \circ f$ are homotopic.
(2) Show that \mathbb{S}^n is simply connected for $n > 1$.
(3) Show that $f : \mathbb{S}^n \to \mathbb{S}^n$ has $\deg(f) = (-1)^{n+1}$ if it has no fixed points.
(4) Determine $\pi_1(X)$ if X is a smooth quotient of \mathbb{S}^{2n}.
(5) Show that $m = n$ if \mathbb{R}^m and \mathbb{R}^n are homeomorphic.
(6) Compute the singular homology groups $H_*(X, \mathbb{Z})$ for $X = \mathbb{S}^2 \times \mathbb{S}^2$.
(7) Let M^n be a smooth compact connected n–dimensional submanifold of \mathbb{R}^m with $m \geq n + 2$. Show that $\mathbb{R}^m \setminus M^n$ is connected.
(8) Show that there is no compact three manifold with boundary being the real projective space $\mathbb{R}P^2$.
Part B

(1) Let \(M = \{(x, y, \sqrt{x^2 + y^2}) \in \mathbb{R}^3; x, y \in \mathbb{R}\} \). Is \(M \) a smooth manifold with the induced topology from \(\mathbb{R}^3 \)? Justify your answer.

(2) Let \(A, B \) and \(C \) be mutually disjoint closed subsets of a smooth manifold \(M \). Show that there exists a smooth function \(f : M \to \mathbb{R} \) such that \(f = 0 \) on \(A \), \(f = \frac{1}{2} \) on \(B \), and \(f = 1 \) on \(C \).

(3) Let \(f \) be a strictly convex smooth function on \(\mathbb{R}^3 \) with minimum value 0. Show that the level set \(\{f = 1\} \) is a smooth manifold and diffeomorphic to \(S^2 \).

(4) Let \(X \) be a smooth vector field on manifold \(M \). Demonstrate the formula

\[
L_X = d i_X + i_X d,
\]

where \(L_X \) is the Lie derivative and \(i_X \) the interior product acting on smooth forms.

(5) Write down explicit formulas for the vector fields \(X \) and \(Y \) which represent the infinitesimal generators of rotations about the \(x- \) and \(y- \) axes respectively and compute their Lie bracket.

(6) Let \(\varphi : S^2 \to T^3 \) be a smooth map. Show that for any top de Rham class \([\nu] \in H^2(T^3)\), we have \(\varphi^* [\nu] = 0 \).

(7) Suppose \(\alpha \) is a closed two-form on \(S^4 \). Show that \(\alpha \wedge \alpha \) must vanish at some point.

(8) Show that for any smooth function \(f(x_1, x_2) \), \(D = \ker(dx_3 - x_1 dx_2) \cap \ker(dx_1 - f(x_1, x_2) dx_2) \subset T\mathbb{R}^4 \) is an integrable distribution.