Questions are equally weighted. Give the essential explanations and justifications: a large part of each question is determination of the crucial points. Do not make assumptions which trivialize the problems. **Put part I solutions in blue books separate from part II solutions.** Write your codename on your exam, NOT your name.

Part I

I.1 Let S, T be linear transformations of a finite dimensional vector space V over an algebraically closed field k. Suppose that $ST = TS$. Show that S, T have a simultaneous eigenvector, that is, a non-zero vector v such that $Sv = \lambda v$ and $Tv = \mu v$ for λ, μ in k.

I.2 Let ζ be a primitive 35^{th} root of unity in \mathbb{C}. Determine all the intermediate fields between the rationals \mathbb{Q} and the extension field $\mathbb{Q}(\zeta)$, and describe the Galois groups.

I.3 Let k be a field $\alpha_1, \ldots, \alpha_n$ distinct elements of k. Let $Q(x) \in k[x]$ have degree $< n$. Show that there are unique $c_1, \ldots, c_n \in k$ so that

$$
\frac{Q(x)}{(x - \alpha_1) \ldots (x - \alpha_n)} = \frac{c_1}{x - \alpha_1} + \cdots + \frac{c_n}{x - \alpha_n}
$$

I.4 Show that $x^6 + x^3 + 1$ factors into two irreducible cubics over the 49-element field \mathbb{F}_{49}.

I.5 Show that $x^5 + y^5 + z^5$ is irreducible as a polynomial in $\mathbb{C}[x, y, z]$.

Part II

II.1 Let $f(x) \in \mathbb{Q}[x]$ be of prime degree p, and irreducible. Assume that $f(x) = 0$ has $p - 2$ real roots and 2 complex roots. Prove that the splitting field of f over \mathbb{Q} has Galois group the full symmetric group on p letters.

II.2 Let k be a field and p a prime number. Let $a \in k$ such that a is not a p^{th} power. Show that $x^p - a$ is irreducible in $k[x]$.

II.3 Let G be a group of order p^2q where p and q are distinct primes. Show that G is not simple (that is, show that G has a non-trivial normal subgroup).

II.4 Let k be a field, $f(x) \in k[x]$ a quartic with 4 distinct roots $\mu_1, \mu_2, \mu_3, \mu_4$ in an algebraic closure \overline{k} of k. Let $F = k(\mu_1, \mu_2, \mu_3, \mu_4)$. Let

$$
\alpha = \mu_1\mu_2 + \mu_3\mu_4 \quad \beta = \mu_1\mu_3 + \mu_2\mu_4 \quad \gamma = \mu_1\mu_4 + \mu_2\mu_3
$$

Let $E = k(\alpha, \beta, \gamma)$. Show that $\text{Gal}(E/k) \cong G/(G \cap H)$ where $G = \text{Gal}(F/k)$, and $H = \{1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)\} \subset S_4$ where we identify G with a subgroup of S_4 by its permutation action on $\mu_1, \mu_2, \mu_3, \mu_4$.

II.5 Let R be a commutative ring with 1. Let I, J be ideals in R. Let

$$(I : J) = \{r \in R : rJ \subset I\}$$

Recall: an ideal U is primary if $xy \in U$ and $x \not\in U$ implies $y^n \in U$ for some $n > 0$. And recall that the radical \sqrt{U} is $\{r \in R : r^n \in U$ for some positive integer $n\}$. Prove that if I is primary and if J is not a subset of I then $(I : J)$ is primary, and, further, that $\sqrt{(I : J)} = \sqrt{I}$.