A machine learning-driven crude oil data analysis, with applications in continuous-time quadratic hedging

Indranil SenGupta
North Dakota State University
Friday, February 12, 2021 - 12:00pm to 1:00pm
Zoom: https://umn.zoom.us/j/94564033758

In this presentation, a refined Barndorff-Nielsen and Shephard (BN-S) model is implemented to find an optimal hedging strategy for commodity markets. The refinement of the BN-S model is obtained through various machine and deep learning algorithms. The refinement leads to the extraction of a deterministic parameter from the empirical data set. The analysis is implemented to the Bakken crude oil data and the aforementioned deterministic parameter is obtained for a wide range of data sets. With the implementation of this parameter in the refined model, it is shown that the resulting model performs much better than the classical stochastic models.

Short bio: Indranil SenGupta is an Associate Professor at the Department of Mathematics at North Dakota State University (NDSU). He is currently the mathematics graduate program director at NDSU. He received his Ph.D. in mathematics from Texas A&M University in 2010. His research interests include mathematical finance, stochastic processes, and data-science. He was the Associate Editor-in-Chief of the journal Mathematics, 2014-2019. Currently, he is an associate editor in the area of finance and risk management for the Journal of Modelling in Management. He is in the editorial board for several other journals.