Homology class of Deligne-Lusztig varieties

Dongkwan Kim
University of Minnesota
Monday, September 23, 2019 - 2:30pm to 3:30pm
Ford Hall 110

Since first defined by Deligne and Lusztig, a Deligne-Lusztig variety has become unavoidable when studying the representation theory of finite groups of Lie type. This is a certain subvariety of the flag variety of the corresponding reductive group, and its cohomology groups are naturally endowed with the action such finite groups, which in turn gives a decomposition of irreducible representations called Lusztig series. In this talk, I will briefly discuss the background of Deligne-Lusztig theory and provide a formula to calculate the homology class of Deligne-Lusztig varieties in the Chow group of the flag variety. If time permits, I will also discuss their analogues.