Differential Signatures and Algebraic Curves

Michael Ruddy,
Max Planck Institute
Monday, November 25, 2019 - 10:10am to 11:10am
Vincent Hall 203A

For the action of a group on the plane, the group equivalence problem for curves can be stated as: given two curves, decide if they are related by an element of the group. The signature method, using differential invariants, to answer the local group equivalence problem for smooth curves and its application to image science has been extensively studied. For planar algebraic curves under subgroups of the general linear group, we show that this provides a method to associate a unique algebraic curve to each equivalence class, the algebraic curve's signature curve. However, computing the implicit equation of the signature curve is a challenging problem. In this talk we consider signatures of algebraic curves, show how to compute the degree without computing its defining polynomial explicitly, and present some results on the structure of signature curves for generic algebraic curves of fixed degree. Additionally we show that this leads to a method to solve the group equivalence problem for algebraic curves using numerical algebraic geometry.