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Abstract. This paper compares two models of the equivariant homotopy type
of the smash powers of a spectrum, namely the “Bökstedt smash product” and

the Hill-Hopkins-Ravenel norm.

1. Introduction

In any symmetric monoidal category C, a basic construction of a Cn-equivariant
object arises from the smash power

X 7→ X⊗n = X ⊗X ⊗ . . .⊗X︸ ︷︷ ︸
n

.

The homotopical analysis of such constructions in the category of spaces and spec-
tra is of classical importance. For instance, Steenrod operations arise from the
homotopy coinvariants C∗(X×n)hΣn of X×n with respect to the Σn-action. More
general power operations arise from the analysis of this kind of construction in the
category of spectra.

Our focus in this paper is the analysis of the smash power construction in the
equivariant stable category. In contrast to the setting of spaces, there are two dis-
tinct fixed-point functors in the category of equivariant spectra: for a G-equivariant
X and subgroup H ⊂ G, we can construct “categorical fixed points” XH and “geo-
metric fixed points” ΦHX. The interplay and contrast between these two functors
encodes much of the complexity of the equivariant stable category.

An important application of the smash power construction of spectra arises in
the study of trace methods for computing algebraic K-theory. Algebraic K-theory
has been revolutionized in the last 20 years by the development of trace methods.
Following ideas of Goodwillie [7], first Bökstedt [2] and then Bökstedt, Hsiang, and
Madsen [3] constructed topological analogues of Hochschild homology and negative
cyclic homology, called topological Hochschild homology, THH(R), and topological
cyclic homology, TC(R). They also constructed a “cyclotomic” trace map

K(R) −→ TC(R) −→ THH(R)
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lifting the classical Dennis trace K(R) → HH(R). The relationship between rel-
ative K-theory and relative TC is well understood (after p-completion) in many
circumstances [16, 4]. The target of the trace, TC(R), is constructed from an
equivariant structure that arises on THH(R); exploiting the tools of equivariant
homotopy theory makes TC(R) relatively computable.

The equivariant structure on THH(R) arises from the interpretation of (topolog-
ical) Hochschild homology as the cyclic bar construction. In the category of spaces,
for a group-like topological monoid M there is an equivalence N cycM ' LBM ,
where for a space X, LX = Map(S1, X) is the free (unbased) loop space on X.
The S1-action on LX has an unusual property. For a finite subgroup H ⊂ S1,
S1/H ∼= S1, and pulling back along this isomorphism induces a homeomorphism of
S1-spaces

Map(S1, X)H ∼= Map(S1, X).

In the category of S1-spectra, the analogue of this structure is called a cyclotomic
structure. In this context, THH being a cyclotomic spectrum boils down to having
(suitably coherent) “diagonal” equivalences of geometric fixed points

ΦCn(X∧n) ' X.

Bökstedt introduced THH(R) before the invention of symmetric monoidal cat-
egories of spectra; he invented coherence machinery (which anticipated the devel-
opment of symmetric spectra, as explained in [18]) to handle the smash product
and proved that his model of smash powers had the right homotopy type. After
the invention of modern categories of spectra, it became possible to give definitions
of THH(R) that simply computed the cyclic bar construction in the usual way,
circumventing the complexity of Bökstedt’s coherence machinery. However, it was
believed that the smash-power in this context did not have the right fixed points,
and so a direct construction of THH(R) as an equivariant spectrum using the mod-
ern categories of spectra was thought to be out of reach (e.g., see [12, 2.5.9] and [6,
§IX.3.9]).

Very recently, the solution to the Kervaire invariant one problem by the fourth
author, Hopkins, and Ravenel involved development of a “norm” functor NG

H from
H-spectra to G-spectra which has the correct diagonal fixed points [9]. In particu-
lar, there is an equivalence

R −→ ΦGNG
e R

for any finite group G and cofibrant R. When G = Ck, the underlying spectrum of
NCk
e R is precisely the smash power R∧k.
This behavior strongly suggests that the norm should agree with Bökstedt’s

version of the smash powers. The purpose of this paper is to make this precise, by
constructing an explicit comparison between the two as equivariant spectra. We
build on earlier analysis by Shipley [18] which interpreted the Bökstedt construction
in terms of a “detection functor” in symmetric spectra, and is somewhat related to
analysis done by Lunøe-Nielsen and Rognes [11].

In the sequel to this paper, we use this comparison to show that the norm con-

struction NS1

e R for a cofibrant ring spectrum R directly yields a model of THH(R)
as a cyclotomic spectrum. This new model of THH in terms of the norm allows us
to define new “relative” versions of TC; in one, we work with the smash product
over a commutative ring spectrum A, and in the other, we start with ring or-
thogonal Cn-spectra as input. The computational machinery developed in [9] then
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can be applied to provide new approaches for computation, ultimately leading to
calculations in algebraic K-theory.

To state our main results, we begin by fixing some notation and definitions
for our indexing categories. Let I denote Bökstedt’s indexing category, i.e., the
category with objects n = {1, 2, . . . , n} and morphisms all injections. Let J denote
the subcategory of I with the same objects but maps the subset inclusions. Notice
that J has a unique map from m to n for m < n.

Recall the following definition of the Bökstedt smash product:

Definition 1.1. Let X(1), X(2), . . . , X(k) be symmetric spectra in spaces. We
define the orthogonal Bökstedt smash product to the be orthogonal spectrum with
W th space

(
X(1)

B
∧ . . .

B
∧ X(k)

)
W

= hocolim
(n1,...,nk)∈Ik

Ωn1+...+nk
(
X(1)n1

∧ . . . ∧X(k)nk ∧ SW
)
.

Note that more generally we get a continuous functor from finite based CW -
complexes to spaces by plugging in a space A in place of SW ; by restriction, we can
extract an orthogonal spectrum or symmetric spectrum.

Fix a complete Ck-universe U . For our model of the equivariant stable category,
we use the category of orthogonal Ck-spectra [13]. Specializing to the case of the

smash-power of a single spectrum X, observe that X
B
∧k becomes a Ck-equivariant

orthogonal spectrum indexed on U as we let W vary through the finite-dimensional
Ck-inner product spaces that embed in U . Here Ck acts by conjugation on the
mapping space, permutation on the indexing category, and the action on SW .

The following is the main theorem of this paper.

Theorem 1.2. Let X be a cofibrant orthogonal spectrum, and let X̃ denote the un-
derlying symmetric spectrum (of topological spaces). Then there is an isomorphism
in the homotopy category of Ck-equivariant orthogonal spectra

X̃
B
∧k ∼= NCk

e X,

where NCk
e X is the Hill-Hopkins-Ravenel norm.

Moreover, this isomorphism is induced by a zig-zag of maps natural in X.

To explain the proof, we introduce some further notation. Let J denote the
category of finite dimensional real inner product spaces V in R∞, with morphisms
the inclusions V →W in R∞. We regard this as a discrete category. We will denote
by NCk

e both the norm from spectra to Ck-spectra as well as the norm from spaces
to Ck-spaces; the usage will be clear from context.
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Let ρ denote the regular representation of Ck. We now have the following main
comparison diagram in the category of Ck-spaces:

(1.3) (X̃
B
∧k)W

=

��

hocolim
Ik

Ωn1+...+nk(X̃n1
∧ . . . ∧ X̃nk ∧ SW )

hocolim
I

Ωkn(X̃n ∧ . . . ∧ X̃n ∧ SW ) = hocolim
I

Ωkn(NCk
e (X̃n) ∧ SW )

∆

OO

hocolim
J

Ωkn(NCk
e (X̃n) ∧ SW )

D1

OO

D2

��

hocolim
J

ΩV⊗ρ(NCk
e (XV ) ∧ SW )

The map labeled ∆ is the diagonal inclusion. The maps labeled Di are induced
from the natural inclusion J → I and the functor J → J given (on objects) by
m 7→ Rm.

The proof of the main theorem amounts to showing that all of the vertical
maps assemble to weak equivalences of equivariant orthogonal spectra. There are
essentially three parts of the argument:

(1) establishing a stable equivalence of equivariant orthogonal spectra{
W 7→ hocolim

J
ΩV⊗ρ(NCk

e (XV ) ∧ SW )

}
' (NCk

e X)

(Section 2.2),
(2) establishing the comparisons associated to changing the indexing category

(Section 3), and
(3) studying the diagonal map ∆ (Section 4).

The authors would like to thank the American Institute of Mathematics (AIM)
for its support through the SQuaREs program and MSRI for its hospitality while
some of this work was being done. The authors would like to thank Mike Mandell
for his assistance, as well as Lars Hesselholt and Mike Hopkins for interesting and
useful conversations.

2. A brief review of equivariant orthogonal spectra and the norm

We begin with a very rapid review of the details of the theory of equivariant
orthogonal spectra that we need. The authoritative source on this subject is [13];
we also require a number of the refinements of the foundations developed in [9].
See also [1, §2] for a concise review.
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2.1. Basic definitions. Fix a finite group G. A G-universe U is a G-inner product
space isomorphic to

⊕
n∈N V for some finite-dimensional representation V which

contains a trivial representation [13, II.1.1]. We say U is complete when it contains
all irreducible representations of G. Denote by V = V(U) the collection of all finite-
dimensional G-inner product spaces that are isomorphic to sub-G-inner product
spaces of U [13, II.2.1].

Given two representations V,W ∈ V, we define IG(V,W ) to be the G-space of
non-equivariant isometric isomorphisms V → W . This construction allows us to
regard V as the objects of a category IG enriched in G-spaces. An orthogonal
G-spectrum is now defined to be an enriched functor X from IG to the category
of G-spaces equipped with an equivariant natural transformation

XV ∧ SW −→ XV⊕W

that satisfies the obvious transitivity property [13, §II.2].

Remark 2.1. A convenient aspect of this definition is that any continuous (i.e.,
enriched) functor from G-spaces of the homeomorphism type of finite G-CW com-
plexes to G-spaces gives rise to an orthogonal G-spectrum by restriction of the
domain. This observation is relevant to our work because many of the orthogonal
G-spectra we study arise in this fashion.

The category of orthogonal G-spectra has a symmetric monoidal structure in-
duced by the Day convolution. In order to describe this, we recall an alternate
description of the category of orthogonal G-spectra [13, §II.4]. For representations
V and W , let JG(V,W ) denote the Thom space of the orthogonal complement
G-bundle of linear isometries V →W . We now have a category JG with the same
objects as IG, and an orthogonal G-spectrum is precisely an enriched functor from
JG to G-spaces. Now the Day convolution defines the symmetric monoidal struc-
ture, with unit the sphere spectrum S.

This description of orthogonal G-spectra is also useful because it provides an
explicit description of the adjoint of the evaluation functors. For a G-representation
V and a based G-space X, we define the shift-desuspension spectrum S−V ∧X to
have W ’th space JG(V,W ) ∧ X [13, II.4.6]. Of particular importance are the
negative V -spheres S−V .

We now turn to the homotopy theory of orthogonal G-spectra. The category of
orthogonal G-spectra admits a model structure such that the homotopy category
is equivalent to the equivariant stable category. To describe this model structure,
we need to review the notion of equivariant stable homotopy groups.

The homotopy groups of an orthogonal G-spectrum X are defined for a subgroup
H ⊂ G and an integer q by

πHq (X) =

 colimV ∈J πq
(
(ΩVXV )H

)
if q ≥ 0,

colimR−q⊂V ∈J π0

(
(ΩV−R

−q
XV )H

)
if q < 0

(see [13, §III.3.2]). We define the stable equivalences to be the maps X → Y that
induce isomorphisms for all homotopy groups. There is a cofibrantly-generated
monoidal model structure on orthogonal G-spectra in which the weak equivalences
are the stable equivalences [13, §IV.2].

The stable equivalences are chosen so that the canonical map

S−V ∧ SV −→ S0
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is a stable equivalence for all V [13, III.4.5]. In particular, this means that for any
G-space X, we have a stable equivalence

(2.2) S−V ∧ SV ∧X −→ Σ∞X.

We now recall an elementary properties of shifts of orthogonal spectra. For an
orthogonal G-spectrum X, recall that ΩVX denotes the orthogonal G-spectrum
with

(ΩVX)W = ΩV (XW ).

Proposition 2.3. If X is a G-space, then we have a natural stable equivalence

S−V ∧X −→ ΩV Σ∞X

of orthogonal G-spectra.

Proof. The map in question is the adjoint of the stable equivalence given by Equa-
tion 2.2:

S−V ∧X −→ ΩV Σ∞X.

By [13, III.3.6], a map f of orthogonal G-spectra is a stable equivalence if and only
if ΣV f is a stable equivalence. Therefore, it suffices to check that

SV ∧ S−V ∧X −→ ΣV ΩV Σ∞X.

But using Equation 2.2 again, we can reduce to the question of whether the unit

Σ∞X −→ ΣV ΩV Σ∞X

is a weak equivalence, which follows by [13, III.3.8]. �

2.2. Canonical Homotopy Presentations. Up to stable equivalence, there is a
convenient way of expressing the homotopy type of an orthogonal G-spectrum in
terms of its spaces; this is referred to as the “canonical homotopy presentation”
in [9, B.1.5]. Specifically, let

. . . ⊂ Vn ⊂ Vn+1 ⊂ . . .
be an exhausting sequence of orthogonal G-representations (by which we mean that
every finite dimensional G-representation V in V(U) can be embedded in some Vn)
and write Wn for the orthogonal complement of Vn in Vn+1. We obtain zig-zags of
the form

S−Vn ∧XVn S−(Vn⊕Wn) ∧ SWn ∧XVn
'oo // S−Vn+1 ∧XVn+1

and taking the homotopy colimit over the first m stages we get something equivalent
to S−Vm ∧XVm . Therefore, we write

hocolim
Vn

S−Vn ∧XVn

to denote the homotopy colimit over this zig-zag. The result is stably equivalent to
X.

Combining this with Proposition 2.3 gives a convenient description of orthogonal
spectra.

Lemma 2.4. If X is an orthogonal G-spectrum and {Vn} is an exhausting sequence
of orthogonal G-representations, then we have a stable equivalence

X '
(
W 7→ hocolim

Vn
ΩVn

(
XVn ∧ SW

))
.
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The exhausting sequences also provide a way to prove that the map D2 of (1.3)
is an equivalence. Any choice of exhausting sequence Vn in R∞ defines a functor
J → J by

n 7→ Vn.

Stated in this way, the sequence being exhausting is the same thing as the homotopy
cofinality of this functor (e.g., see [10, A.5]).

Lemma 2.5. Let X be an orthogonal G spectrum. For any exhausting sequence Vn
in R∞, the map

hocolim
n∈J

ΩVn⊗ρ(XVn⊗ρ ∧ SW )
D2 // hocolim

V ∈J
ΩV⊗ρ(XV⊗ρ ∧ SW )

is an equivariant equivalence.
In particular, the map D2 is always an equivalence.

Proof. The map D2 is an equivariant equivalence because the inclusion J → J
is homotopy cofinal and passage to fixed points commutes with filtered homotopy
colimits. �

2.3. The Hill-Hopkins-Ravenel norm. We now review the special case of the
norm construction that we need. Given a non-equivariant orthogonal spectrum
X, the smash power X∧n can be given a Cn-action and regarded as an orthogonal
Cn-spectrum indexed on the universe containing only trivial representations (which
we denote by R∞). In order to obtain an orthogonal Cn-spectrum indexed on the
complete Cn-universe U , we simply apply the point-set change-of-universe functor
IUR∞ [13, §V.1]. This composite defines the norm as

NCn
e X = IUR∞X∧n,

and more generally the analogous construction can be used to define NG
e X for any

finite group G. There is a more complicated general construction of the norm NG
HX

which takes orthogonal H-spectra to orthogonal G-spectra for arbitrary subgroups
H ⊂ G, but since we do not need that herein we refer the interested reader to [9,
§A.4] for details.

A key technical insight of Hill-Hopkins-Ravenel is that the norm NG
e preserves

weak equivalences between cofibrant orthogonal G-spectra and, in fact, cofibrant
(commutative) ring orthogonal G-spectra [9, §B.2]. That is, cofibrant replacement
allows us to compute the derived functor of the norm.

We need one further fact about the norm, which relates the norm to a description
in terms of the canonical homotopy presentation and the norm functor on spaces [9,
§2.3.2]. For a space A, define

NG
e (A) =

∧
G

A,

regarded as a G-space via the permutation action. Then we have the following
description of the norm:

NG
e (X) = hocolim

Vn
S−Vn⊗ρ ∧NG

e (XVn),

where ρ is the regular representation and Vn is an increasing sequence of subspaces
of R∞. Note that as above, the hocolim notation hides the fact that the diagram
has backwards weak equivalences.



8 V. ANGELTVEIT, A.J. BLUMBERG, T. GERHARDT, M.A.HILL, AND T. LAWSON

Since for any exhausting sequence Vn for R∞, the sequence Vn⊗ ρ is exhausting
for a complete universe, the canonical homotopy presentation allows us another
description of the norm.

Corollary 2.6. If X is a cofibrant orthogonal spectrum, then there is a stable
equivalence of orthogonal G-spectra

NG
e (X) '

(
W 7→ hocolim

V ∈J
ΩV⊗ρ

(
NG
e (XV ) ∧ SW

))
.

3. Changing diagrams

In this section, we show that the “change of indexing diagram” maps are equi-
variant stable equivalences.

To study D1, we need to establish an equivariant version of Bökstedt’s telescope
lemma comparing homotopy colimits over I to homotopy colimits over J (i.e.,
telescopes). For this, we need to recall that in equivariant homotopy, there is
a refined notion of “connectedness” which records the behavior of fixed points
for subgroups (as opposed to the coarser notion of “inducing an isomorphism of
homotopy groups through a range”). Let ν be a function from conjugacy classes
of subgroups of G to N ∪ {∞}. A G-equivariant map f : X → Y is said to be
“ν-connected” if

fH : XH −→ Y H

is ν(H)-connected for all subgroups H ⊂ G. With this language, we can give
an equivariant refinement of the telescope lemma. We use the formulation of the
telescope lemma due to Schlichtkrull [17, 2.2]. In the following, we will refer to a
functor X : I → TopG as an I −G-space.

Lemma 3.1. Let X be an I −G-space and suppose that each morphism n1 → n2

in I with n1 ≥ n induces a νn-connected map

X(n1) −→ X(n2).

Then given any m ≥ n, the natural map

X(m) −→ hocolim
I

X(i)

is at least (νn − 1)-connected.
In particular, if for each H, νn(H) goes to infinity, then

hocolim
J

X(i) −→ hocolim
I

X(i)

is an equivariant equivalence.

Proof. Since the group G does not act on I, we know that the fixed points commute
with the homotopy colimit: there is a natural equivalence

hocolim
I

(X(i)H)
'−→
(

hocolim
I

X(i)
)H
,

where the map is induced from the natural inclusion X(i)H → X(i).
By assumption, for all n1 → n2 and n1 ≥ n and for all H, we have

X(n1)H −→ X(n2)H

is νn(H)-connected. By the usual telescope lemma [17, 2.2], we conclude that

X(m)H −→ hocolim
I

X(i)H
'−→
(

hocolim
I

X(i)
)H
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is (νn(H)− 1)-connected.
The proof of the second part is immediate from the first, since by elementary

cofinality arguments in J , we see that under the given assumptions, the map

hocolim
J

X(j) −→ hocolim
I

X(i)

is infinitely equivariantly connected. �

We will need some simple observations about the connectivity of a norm in spaces
or of the norm of a map between spaces.

Lemma 3.2. The equivariant connectivity of NG
e (X) is given by

νX(H) = |G|
|H| (conn(X) + 1)− 1 ≥ |G||H| conn(X),

while for a map f : X → Y ,

νf (H) = conn(f) + ( |G||H| − 1)(conn(X) + 1).

Proof. Both results rely on the diagonal: if Y has the trivial action, the map

Y |G|/|H| = NG
H (Y ) −→ NG

e (Y )

is a homeomorphism on H-fixed points for any normal subgroup H. Standard
arguments about the connectivity of non-equivariant smash powers of a map then
show that the equivariant connectivity of NG

e (X) and NG
e (f) is given by the listed

formulas. (See also [3, 3.12] for discussion of this phenomenon.) �

Similarly, we recall a small result about the connectivity of an equivariant map-
ping space (e.g., see [8, 2.5]).

Lemma 3.3. Suppose X and Y are G-spaces with X having the structure of an
H-CW complex. Then

(3.4) conn(Map(X,Y )H) ≥ min
K⊂H

(
conn(Y K)− dim(XK)

)
.

This will allow us to easily get very coarse lower bounds.

Proposition 3.5. Let G = Ck. For a space X, the suspension map

Emρ : NG
e X −→ ΩmρΣmρNG

e X

has connectivity at least

ν(H) = 2 k
|H| conn(X).

Proof. We use the equivariant Freudenthal suspension theorem1. Recall that if V
is a representation of G, then the suspension map

EV : Y −→ ΩV ΣV Y

is νV -connected for any νV satisfying

(1) For all H such that V H 6= {0}, we have νV (H) ≤ 2 conn(Y H) + 1.
(2) For all K ⊂ H with V K 6= V H , we have νV (H) ≤ conn(Y K).

1For the interested reader, the first condition following is perhaps what one would expect:

the connectivity is exactly what the usual Freudenthal suspension theorem would predict, just for

each of the fixed points. The second condition is somewhat less obvious: this condition guarantees
that the connectivity of H-equivariant maps between two spaces is the same as the ordinary maps

between their H-fixed points.
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We now consider V = mρ and Y = NG
e (X). For all subgroupsH ofG, V H 6= {0},

and if K ( H, then V K 6= V H . If we let ν be as in the proposition statement,
then the essential condition to check is the second one. So we must show that for
all K ( H,

ν(H) = 2 k
|H| conn(X) ≤ conn(Y K) = k

|K|
(

conn(X) + 1
)
− 1.

However, since K 6= H, we know that this holds. Thus by the equivariant Freuden-
thal suspension theorem, the map Emρ is ν-connected. �

To prove that the map D1 is an equivariant equivalence, we will directly verify
the needed connectivity hypotheses to apply Lemma 3.1.

Theorem 3.6. Let X be a cofibrant orthogonal spectrum with underlying symmetric
spectrum X̃. Then the maps

hocolim
J

Ωkn(NCk
e

(
X̃n) ∧ SW

) D1 // hocolim
I

Ωkn
(
NCk
e (X̃n) ∧ SW

)
are equivalences of Ck-spaces and therefore assemble to a stable equivalence of or-
thogonal Ck-spectra.

Proof. The first part of the conclusion implies the second; since we show that the
map D1 establishes level equivalences of equivariant orthogonal spectra, it gives an
equivariant stable equivalence.

Since X̃ is the restriction of an orthogonal spectrum, it is a semistable sym-
metric spectrum [18]. Thus Shipley’s version of Bökstedt’s Telescope Lemma ([18,
Corollary 3.1.7]) shows that D1 induces an underlying equivalence.

Since both sides of the map preserve stable equivalences of orthogonal G-spectra
(i.e., see [18, 2.1.9] for the righthand side), we can simplify our analysis using the
canonical homotopy presentation. Both the domain and range commute with fil-
tered homotopy colimits in X because Snρ is compact, and the canonical homotopy
presentation allows us to express X as a filtered homotopy colimit of objects of the
form S−V ∧ Y . Therefore, it suffices to prove this result for orthogonal spectra of
the form X = S−V ∧ Y with Y cofibrant and V a d-dimensional vector space. In
this case, the underlying symmetric spectrum has X̃n = J (V,Rn) ∧ Y .

To show that D1 induces an equivariant equivalence, we verify that the I −Ck-
space

n 7→ Ωnρ
(
NCk
e (X̃n) ∧ SW

)
has the appropriate connectivity properties for Lemma 3.1. Here we have replaced
the more traditional Ωkn with the visibly equal functor Ωnρ to strengthen the
equivariant connection in the reader’s mind.

The presence of SW does not affect the structure of the argument; since it is
constant relative to I, having it will perform an affine shift of the connectivities
we compute (in fact, making them increasingly connective). We can therefore get
a lower bound by calculating in the case that W = 0.

The connectivity of X̃n is at least the connectivity (2n − 2d − 1) of the Thom

space J (V,Rn). Similarly, the connectivity of the structure map Sm∧X̃n → X̃m+n

is at least (n+m− 2d).
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Let n1 → n2 be a map in I, and consider the following factorization of the
structure map in the Bökstedt I −G-space:

Ωn1ρ
(
NCk
e (X̃n1) ∧ SW

)
Ωn1ρE(n2−n1)ρ

�� ,,

Ωn1ρΩρ(n2−n1)Σ(n2−n1)ρ
(
NCk
e (X̃n1

) ∧ SW
)

Ωn2ρN
Ck
e σ

// Ωn2ρ
(
NCk
e (X̃n2

) ∧ SW
)

where E(n2−n1)ρ is the equivariant suspension and where σ is the structure map in
X: Σ(n2−n1)Xn1

→ Xn2
.

The structure map in the I −G-space is at least as connected as

min
(

conn(Ωn1ρE(n2−n1)ρ), conn(Ωn2ρNCk
e σ)

)
,

and we analyze each piece individually.
We first analyze the connectivity of Ωn1ρE(n2−n1)ρ. Applying Proposition 3.5

and Lemma 3.3, we get a lower bound for the connectivity of the map Ωn1ρE(n2−n1)ρ:

ν1(H) = conn
(
(Ωn1ρE(n2−n1)ρ)H

)
≥ min
K⊂H

(
2 k
|K| conn(X̃n1)− k

|K|n1

)
≥ k
|H|
(
3n1 − 4d− 2

)
.

Similarly, applying the norm NCk
e to the structure map Σn2−n1Xn1 → Xn2 yields

our map

NCk
e σ : Σ(n2−n1)ρNCk

e (Xn1
) ∼= NCk

e (Σn2−n1Xn1
) −→ NCk

e (Xn2
).

By Lemma 3.2, this norm produces a map that, on H-fixed points, has connec-
tivity at least

(n1 + n2 − 2d) + ( k
|H| − 1)

(
(2n1 − 2d− 1) + (n2 − n1) + 1

)
= k
|H| (n1 + n2 − 2d).

By Lemma 3.3 we can also estimate the connectivity of the (n2ρ)-fold loops of
this map, getting

ν2(H) = conn
(
(Ωn2ρNCk

e σ)H
)

≥ min
K⊂H

(
k
|K| (n1 + n2 − 2d)− k

|K|n2

)
= k
|H| (n1 − 2d).

The factorization of the structure map above shows us that the structure map
in the I −G-space has connectivity at least

ν(H) = min
(
ν1(H), ν2(H)

)
≥ min

(
3n1 − 4d− 2, n1 − 2d

)
≥ n1 − 4d− 2.

(and usually a good bit more so).
Since this term goes to infinity, Lemma 3.1 implies that D1 is an equivariant

equivalence, as required. �
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4. Equivariance

The maps D1 and D2 allow us reduce from diagrams over I with a trivial action
to diagrams over J with a trivial action of Ck. But one of the interesting aspects
of the equivariant structure of the Bökstedt smash product is that Ck acts on the
diagram the homotopy colimit is indexed over. In this section, we show that the
“diagonal” map ∆ induces an equivariant equivalence. This allows us to reduce to
the case of homotopy colimits on which the group acts trivially, as analyzed in the
previous section.

The map ∆ = ∆1 is really part of a compatible family of maps, ∆i, indexed on
the divisor poset of k. Analyzing the equivariant homotopy type of the Bökstedt
construction is facilitated by a refinement of Hesselholt-Madsen’s determination of
the fixed points of the Bökstedt construction.

Suppose k = d · s. Then we have a Ck-equivariant diagonal map

(4.1) hocolim
Id

Ωs(n1+...+nd)

(
NCk
Cd

(
d∧
i=1

X̃ni

)
∧ SW

)
∆d

��

hocolim
Ik

Ωn1+...+nk

(
k∧
i=1

X̃ni ∧ SW
)
.

The following proposition describes a key property of this generalized diagonal map.
In this, we fix our model for the homotopy colimit as the two-sided bar construction.

Proposition 4.2. Suppose k = d · s. Then the map of equation (4.1) induces a
homeomorphism on passage to Cr-fixed points for Cs ⊆ Cr ⊆ Ck.

Proof. Our proof is a slight elaboration of that of Hesselholt-Madsen for the case
s = k [8, §2.4]. The model for the homotopy colimit identifies the simplicial space
realizing the homotopy colimit over Id with a (nicely embedded) subsimplicial
space of the homotopy colimit for Ik, and as s varies, these spaces are appropri-
ately nested. Passage to fixed points commutes with geometric realization and with
the products making up the two-sided bar construction for the homotopy colimit.
This is what allows Hesselholt-Madsen to observe that the map ∆1 induces a home-
omorphism on Ck-fixed points. Since ∆1 factors through ∆d for any d, and since
the inclusion is inducing a homeomorphism on fixed points in this case, we learn
that ∆d also induces an homeomorphism of Ck-fixed points (since these are really
statements about fixed subspaces of a big ambient space). Downward induction on
the group provides the rest of the result. �

We use this proposition to show the following:

Theorem 4.3. The map

hocolim
I

Ωkn(NCk
e X̃n ∧ SW )

∆1 // hocolim
Ik

Ωn1+...+nk(X̃n1 ∧ . . . ∧ X̃nk ∧ SW )

induces a stable equivalence of equivariant orthogonal spectra.

Proof. Once again, we show that the map is a weak equivalence of Ck-spaces for
each W ; the maps therefore assemble to form a level equivalence and hence a stable
equivalence of equivariant orthogonal spectra.



INTERPRETING THE BÖKSTEDT SMASH PRODUCT AS THE NORM 13

We need to show that the map is an equivalence on Cs-fixed points for each s | k.
Consider the composite

hocolim
I

Ωkn(Xn ∧ . . . ∧Xn ∧ SW )

��

hocolim
Id

Ωs(n1+...+nd)((Xn1 ∧ . . . ∧Xnd)∧s ∧ SW )

��

hocolim
Ik

Ωn1+...+nk(Xn1
∧ . . . ∧Xnk ∧ SW ),

where k = d · s as before. The second map is an equivalence on Cs-fixed points
by Proposition 4.2, and we claim that the first map is an equivalence on Cs-fixed
points as well. Consider the diagram

hocolim
J

Ωkn(
∧
k

Xn ∧ SW ) //

��

hocolim
J d

Ωs(n1+...+nd)((
d∧
i=1

Xni)
∧s ∧ SW )

��

hocolim
I

Ωkn(
∧
k

Xn ∧ SW ) // hocolim
Id

Ωs(n1+...+nd)((
d∧
i=1

Xni)
∧s ∧ SW )

The point is that Cs acts trivially on all the indexing categories in the diagram, and
the diagonal map J → J d is homotopy cofinal. Since the passage to fixed points
commutes with these homotopy colimits, we conclude that the top horizontal map
is a Cs-equivalence.

The left hand side vertical map is an equivariant equivalence by Section 3; the
right hand side vertical map is an equivariant equivalence for the same reason, using
Fubini’s theorem for homotopy colimits (e.g., see [5, 24.9]). �

This completes the proof of Theorem 1.2. We have shown that the vertical maps
in the main comparison diagram (Equation 1.3) from Section 1 do indeed assemble
to weak equivalences of equivariant orthogonal spectra. We have also identified
the orthogonal Ck-spectrum at the bottom of the comparison diagram with the
spectrum NCk

e (X).

Appendix A. On Equivariant Homotopy Colimits and Cofinality

Our proof of the equivalence of the map ∆1 was a direct argument. A more
categorical approach uses an equivariant notion of homotopy cofinality. For our
purposes, we writeG-category to denote an internal category inG-sets. AG-functor
from a G-category C to TopG is a functor which commutes with the G-actions. The
fixed points of a G-category C is an ordinary category, and the restriction of a G-
functor F to CG is an ordinary functor into G-spaces. We stress that the G-action
is not assumed to consist of morphisms in the category. This is essential to ensure
that the resulting homotopy colimits have a G-action. The prototypical example is
G = Ck, C = Ik, and our functor is Bökstedt’s construction.
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The following lemma is essentially obvious (though we remark that it is only
true in spaces), relating the fixed points of a homotopy colimit of a G-functor to
the homotopy colimit of the fixed points.

Lemma A.1. If C is a G-category and F : C → TopG is a G-functor, then the
natural map of G-spaces

hocolim
CG

F (c) −→ hocolim
C

F (c)

is an equivalence on G-fixed points, and the map of spaces

hocolim
CG

F (c)G −→
(

hocolim
C

F (c)
)G

is an equivalence.

Proof. We choose as a model for hocolim the two-sided bar construction B(∗, C, F ).
This is the geometric realization of a simplicial space, and since G-fixed point
functor commutes with geometric realization, we need only show that this equality
is true for the r-simplices of the bar construction for each r. Since we are in spaces,
the fixed point space of a product is the product of the fixed point spaces, and we
conclude

(hocolim
C

F (c))G ∼= hocolim
CG

F (c)G.

In fact, since we have chosen a particular model, these spaces are actually homeo-
morphic. The right most term is visibly (hocolimCG F (c))G. �

The following trivial generalization of the preceding result is surprisingly useful:

Corollary A.2. Suppose that C is a G-category and D is a G-subcategory such
that CG ⊂ D. Then for any G-functor F from C to TopG, we have an equivalence
of fixed points (

hocolim
D

F (d)
)G −→ (

hocolim
C

F (c)
)G
.

Proof. The assumptions on C and D ensure that CG = DG. The result follows from
identifying both with this common colimit. �

To complete the proof of the equivalence of ∆1, we can directly appeal to an
equivariant form of Quillen’s Theorem A [19, Theorem 3.10].

Theorem A.3. Let F : C → D be a functor such that for every d ∈ D, the over-
category F ↓ d is Stab(d)-equivariantly contractible. Then F induces an equivalence
on homotopy colimits.

In our context, this version of Quillen’s Theorem A shows that the natural map
J → J k is equivariantly cofinal. By the Bökstedt Telescope Lemma and the
commutativity of the obvious diagram of homotopy colimits, we conclude that ∆1

is an equivariant equivalence.
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