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Abstract. We introduce a new notion of regularity for structured ring spec-

tra, and we prove, in the presence of this condition, the existence of new
Blumberg–Mandell-type localization sequences for algebraic K-theory. In par-

ticular, we confirm a conjecture of Ausoni–Rognes on the behavior of K(KO)

as well as a natural generalization of this conjecture to K(Tmf).

An early success of Quillen’s algebraic K-theory was his localization sequence
[Qui73, §5]. This sequence shows that algebraic K-theory enjoys a strong excision
property that permits one to cut out certain subvarieties. For example, suppose R
a regular noetherian ring, and suppose x ∈ R an element such that the quotient
R/x is also regular. Then the localization sequence takes the form of a long exact
sequence

· · · Kn(R/x) Kn(R) Kn(R[x−1]) Kn−1(R/x) · · · .
The aim of this short paper is to identify a regularity property for structured ring
spectra that allows one to prove a natural analogue of Quillen’s theorem in this
context.

To obtain Quillen’s sequence, one may begin with a localization sequence

· · · Kn(Nil(R,x)) Gn(R) Gn(R[x−1]) Kn−1(Nil(R,x)) · · ·
where Nil(R,x) is the category of finitely generated, x-nilpotent R-modules. This
sequence is exact irrespective of any regularity hypotheses on R and x; for example,
it is an instance of the Fibration Theorem of Waldhausen [Wal85, Th. 1.6.4]. The
regularity condition actually enters twice to convert this sequence into the sequence
above. First, one deduces isomorphisms

G∗(R/x) ∼= K∗(R/x), G∗(R) ∼= K∗(R), and G∗(R[x−1]) ∼= K∗(R[x−1])

from corresponding equivalences of derived categories. Second, one uses Quillen’s
Dévissage Theorem [Qui73, Th. 4] to identify K∗(Nil(R,x)) and G∗(R/x).

What’s remarkable about Quillen’s Dévissage Theorem is that it provides an
equivalence of K-theories that is not induced by an equivalence of derived cate-
gories. Results of this kind are rare commodities, but the work of Blumberg and
Mandell [BM08] provides another Dévissage Theorem: they show that for any con-
nective E1 ring Λ, the algebraic K-theory of the category of Λ-modules with finitely
generated homotopy and finite Postnikov towers is the same as the algebraic K-
theory of π0Λ. A version of the Blumberg–Mandell Dévissage Theorem can, for ex-
ample, be deduced from the Theorem of the Heart for Waldhausen K-theory [Bar],
which states that the inclusion A ♥ ⊂ A of the heart of a bounded t-structure on
a stable ∞-category A induces an isomorphism

K∗(A
♥) ∼= K∗(A ).
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In this paper, we introduce a notion of regularity on E1 rings (aka associative
S-algebras, aka E1 rings, aka A∞ rings). Then, for a regular E1 ring Λ, we use the
Blumberg–Mandell Dévissage Theorem of to identify the fiber term of a localization
sequence

K(Acyc(L)) K(Λ) K(L(Λ))

as the K-theory of the ordinary ring π0Λ. Here L is any smashing localization on
Λ-modules with the property that a perfect Λ-module is L-acyclic if and only if
it has only finitely many nontrivial homotopy groups. The result is a long exact
sequence

· · · Kn(π0Λ) Kn(Λ) Kn(L(Λ)) Kn−1(π0Λ) · · ·

The value of such a result is that it provides a description of the K-theory of a
nonconnective ring spectrum L(Λ) entirely in terms the K-theory of connective
ring spectra.

Let us now briefly describe regularity for (suitably finite) connective structured
ring spectra Λ. We’ll say that a left Λ-module M is coherent if it has only finitely
many nonzero homotopy groups, all of which are finitely generated as π0Λ-modules.
Now Λ will be said to be regular if π0Λ is a regular (commutative) ring, and every
coherent left Λ-module is a retract of a finite cell module. If Λ is regular, then the
G-theory of Λ — which is the K-theory of the category of coherent Λ-modules —
maps naturally to the K-theory of Λ, and the Dévissage Theorem of Blumberg–
Mandell identifies G∗(Λ) with G∗(π0Λ), which is in turn K∗(π0Λ). This is the key
to identifying the fiber term of the fiber sequence above.

Our regularity condition sounds quite abstract, but in fact it can be checked
entirely in terms of π0Λ-modules: Λ is regular just in case π0Λ is regular and
Hπ0Λ ∧Λ Hπ0Λ is a retract of a finite cell Hπ0Λ-module. This condition allows us
to check regularity in several examples.

First, for real K-theory, we have

K(Z) K(ko) K(KO).

Andrew Blumberg has informed us that Vigleik Angeltveit originally demonstrated
how to prove this using the results of [BM08] at a conference in 2008 [BR09]. It
confirms a conjecture of Christian Ausoni and John Rognes.

Next, for topological modular forms, we have a fiber sequence

K(Z) K(tmf) K(Tmf).

Here tmf is the connective topological modular forms spectrum, and Tmf is the
nonconnective, nonperiodic version associated to the compactified moduli of elliptic
curves. We are unsure whether this fiber sequence was expected by others.

Finally, let BP〈n〉 denote a truncated Brown–Peterson spectrum, and BP〈n〉∗
denote the homotopy limit of the E1 rings S−1BP〈n〉 for S ⊂ {v1, . . . , vn}, S 6= ∅.
(This is the localization away from (v1, . . . , vn) in the sense of [GM95].) We obtain
fiber sequences

K(Z(p)) K(BP〈n〉) K(BP〈n〉∗).
In particular, when n = 1 this specializes to a p-local version of the localization
sequence of Blumberg-Mandell [BM08].

Acknowledgements. We thank Andrew Blumberg and John Rognes for their
thorough comments and corrections.
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1. Regularity

In effect, regularity for E1 rings is a finiteness property. There is a host of finite-
ness properties for E1 rings and their modules that one may consider. We quickly
call a few of these to mind here. For more details, we refer to Jacob Lurie’s discus-
sion in [Lur, §8.2.5]

Recall [Lur, Pr. 8.2.5.16] that a connective E1 ring Λ is said to be left coherent
if π0Λ is left coherent as an ordinary ring, and if for any n ≥ 1, the left π0Λ-module
πnΛ is finitely presented.

A left module M over a left coherent E1 ring Λ is almost perfect just in case
πmM = 0 for m� 0 and for any n, the left π0Λ-module πnM is finitely presented
[Lur, Pr. 8.2.5.17].

1.1. Definition. Suppose Λ a left coherent E1 ring, and suppose M a left Λ-module.
We say that M is truncated if πmM = 0 for m � 0. We will say M is coherent if
it is both truncated and almost perfect.

Recall [Lur, Pr. 8.2.5.21] that a left module M over a connective E1 ring Λ is of
finite Tor-amplitude if there exists an integer n such that for any right Λ-module
N with πiN = 0 for i 6= 0, one has πi(N ∧Λ M) = 0 for i ≥ n.

We will repeatedly use the observation of Lurie [Lur, Pr. 8.2.5.23(4)] that if Λ is
a left coherent E1 ring, then a left Λ-module is perfect just in case it is both almost
perfect and of finite Tor-amplitude.

In [BM08], Blumberg and Mandell prove for any left coherent E1 ring Λ, the
G-theory of Λ (i.e., the algebraic K-theory of the category of coherent left Λ-
modules) agrees with the G-theory of π0Λ. In general, coherent Λ-modules need
not be perfect, but when this does happen, Λ is said to be almost regular :

1.2. Definition. A left coherent E1 ring Λ is said to be almost regular if any
coherent left Λ-module has finite Tor-amplitude.

To prove that an E1 ring is almost regular, it’s enough to check that any coherent
left Λ-module is of finite Tor-amplitude.

1.3. Proposition. A left coherent E1 ring Λ such that π0Λ is a regular (com-
mutative) ring is almost regular just in case the left Λ-module Hπ0Λ is of finite
Tor-amplitude (and hence perfect).

Proof. One implication is clear. Since the class of perfect modules forms a thick
subcategory of left Λ-modules, it follows that Λ is almost regular just in case every
almost perfect Λ-module concentrated in degree 0 is perfect. In other words, it
suffices to show that for any left π0Λ-module M of finite presentation, the left
Λ-module HM is perfect. Now since π0Λ is regular and coherent, HM is perfect
when regarded as an Hπ0Λ-module, and since the E1 map Λ Hπ0Λ has finite
Tor-amplitude, HM is perfect when regarded as a Λ-module as well. �

1.4. Definition. We’ll say that a left coherent E1 ring is regular if π0Λ is a regular
(commutative) ring, and Hπ0Λ has finite Tor-amplitude as a Λ-module.

The previous proposition tells us that a regular E1 ring is almost regular. The
following proposition allows us to reduce the question of regularity even further to
a question about the left Hπ0Λ-module Hπ0Λ ∧Λ Hπ0Λ.
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1.5. Proposition. Suppose Λ a left coherent E1 ring such that π0Λ is regular (com-
mutative). Then Λ is regular just in case the left Hπ0Λ-module Hπ0Λ ∧Λ Hπ0Λ is
of finite Tor-amplitude (hence perfect).

Proof. The forward implication is clear.
For the reverse implication, we observe that the left Λ-module Hπ0Λ is of finite

Tor-amplitude, since for any Λ-module N such that πiN = 0 for i 6= 0, we have

N ∧Λ Hπ0Λ ' N ∧Hπ0Λ (Hπ0Λ ∧Λ Hπ0Λ),

and since Hπ0Λ ∧Λ Hπ0Λ is of finite Tor-amplitude, the proof is complete. �

2. Dévissage and localization

The main value of the almost regularity hypothesis is that it gives a natural map

K(π0Λ) ' G(π0Λ) ' G(Λ) K(Λ),

since every coherent module is perfect. Note that, for ordinary rings R, every
perfect module is coherent, and so this form of regularity gives an equivalence
G(R) ' K(R). The same thing happens for connective E1 rings with only finitely
many nontrivial homotopy groups, so a regular E1 ring Λ with only finitely many
nontrivial homotopy groups has the same K-theory as π0Λ. However, for E1 rings
with infinitely many homotopy groups, this isn’t the case.

Nevertheless, regularity coupled with the Blumberg–Mandell Dévissage Theorem
gives an identification of K(π0Λ) with the K-theory of the category of bounded
perfect (left) modules on Λ, whence we obtain the following localization theorem
[Bar, Th. 8.8]:

2.1. Theorem. Suppose Λ a regular E1 ring, and suppose

L : Mod(Λ) Mod(Λ)

a smashing localization functor. Assume that a perfect left Λ-module M is L-acyclic
just in case it is truncated. Then there is a fiber sequence of infinite loop spaces

(2.1.1) K(π0Λ) K(Λ) K(L(Λ)).

2.2. Note that if Λ is a regular E1 ring and if L : Mod(Λ) Mod(Λ) is a smashing
localization such that a left Λ-module is L-acyclic just in case it is truncated, then
L is necessarily finite. Indeed, every truncated Λ-module can be written as a filtered
colimit of coherent Λ-modules, which are compact objects of Mod(Λ).

There is a relevant special case to consider here. First, recall that if Λ is an E1

ring and if S ⊂ π∗Λ is a multiplicatively closed set of homogeneous elements, then
a left Λ-module M is said to be S-nilpotent if for every x ∈ π∗M , there exists s ∈ S
such that sx = 0.

2.3. Corollary. Suppose Λ a regular E1 ring, and suppose S ⊂ π∗Λ a multiplica-
tively closed collection of homogeneous elements satisfying the left Ore condition
[Lur, Df. 8.2.4.1] with the additional property that a left Λ-module M is S-nilpotent
just in case it is truncated. Then there is a fiber sequence of infinite loop spaces

(2.3.1) K(π0Λ) K(Λ) K(S−1Λ).
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2.4. More generally, we may consider the following circumstance. If Λ is an E1

ring and if S = {Sj}j∈J is a finite family of multiplicatively closed subsets of
homogeneous elements of π∗Λ, then a left Λ-module M will be said to be S -
nilpotent if it is Sj-nilpotent for every j ∈ J .

For any nonempty subset I ⊂ J , we can consider the smallest multiplicatively
closed set SI ⊂ π∗Λ of homogenous elements containing Si for every i ∈ I, and
we have the smashing localization functor LSI

: M S−1
I M on the ∞-category

Mod(Λ).
Now if P∗(J) is the poset of nonempty subsets of J , then the assignment I LSI

defines a diagram

NP∗(J) Fun(Mod(Λ),Mod(Λ))

of localization functors. The (homotopy) limit of this functor will be denoted
LS : Mod(Λ) Mod(Λ). Using the characterization of [Lur09, Pr. 5.2.7.4(3)]
and the fact that both localization functors and colimits in stable ∞-categories are
exact, we deduce that LS is again a smashing localization functor. Furthermore,
the ∞-category of LS -acyclics is the ∞-category of S -nilpotent Λ-modules.

When Λ is E∞ and each Sj is generated by a homogeneous element βj ∈ π∗Λ,
the localization LS agrees with the localization away from the finitely generated
ideal (βj)j∈J in the sense of [GM95, §5].

2.5. Corollary. Suppose Λ a regular E1 ring, and suppose S = {Sj}j∈J a fi-
nite family of multiplicatively closed subsets of homogeneous elements of π∗Λ, and
suppose that for each nonempty subset I ⊂ J , the multiplicative subset SI ⊂ π∗Λ
satisfies the left Ore condition [Lur, Df. 8.2.4.1]. Suppose additionally that a left Λ-
module M is S -nilpotent just in case it is truncated. Then there is a fiber sequence
of infinite loop spaces

(2.5.1) K(π0Λ) K(Λ) K(LS Λ).

When the first author wrote [Bar], he was unable to verify the almost regularity
of various interesting E1 rings, and so was unable to prove that (2.1.1) was a
fiber sequence in many interesting cases. In this paper, armed with the regularity
criteria of the first section, we produce such localization sequences for KO, Tmf,
and BP〈n〉∗.

3. A localization sequence for KO

3.1. Proposition. The connective real K-theory spectrum ko is regular.

Proof. The theorem of Reg Wood [Ada64, p. 206] says that there is a cofiber se-
quence

Σko
η

ko ku

of ko-modules. The long exact sequence on homotopy groups implies that there is
a cofiber sequence

Σ2ku
β

ku HZ,

where β ∈ π2(ku) is the Bott element. Therefore, HZ is a perfect ko-module. �

Now since a perfect ko-module M is nilpotent with respect to the periodicity
generator β4 ∈ π8(ko) just in case it is truncated, the previous result gives the
following special case of (2.3.1).
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3.2. Corollary. The canonical E∞ ring morphisms ko HZ and ko KO give
a K-theory fiber sequence

K(Z) K(ko) K(KO),

recovering the result discussed in the introduction.

3.3. This confirms a conjecture posed by Christian Ausoni and John Rognes in
[AR12, Rk. 3.7]. Indeed, as a consequence of their rational computation of K(ko),
we obtain a rational computation of K(KO). In particular, Borel’s computation of
K∗(Z)⊗Q implies that the Poincaré series for K(Z) is

1 +
t5

1− t4
,

and in [AR12, Rk. 3.4] it is shown that the Poincaré series for K(ko) is

1 +
2t5

1− t4
;

hence the Poincaré series for K(KO) is

1 + t+
2t5 + t6

1− t4
,

which agrees with the expectation of Ausoni–Rognes.
Furthermore, it is observed in loc. cit. that the natural map

K(ko) ∧HQ (K(ku) ∧HQ)hZ/2

is a rational equivalence. Since the action of Z/2 on K(Z) is trivial, we obtain a
morphism of fiber sequences

K(Z) ∧HQ K(ko) ∧HQ K(KO) ∧HQ

F (B(Z/2)+,K(Z) ∧HQ) (K(ku) ∧HQ)hZ/2 (K(KU) ∧HQ)hZ/2

where the lower fiber sequence is the homotopy fixed-point sequence of the ratio-
nalization of Blumberg-Mandell’s localization sequence [BM08]. Since the left-hand
vertical map is an equivalence, it follows that, similarly, the natural map

K(KO) ∧HQ (K(KU) ∧HQ)hZ/2

is a rational equivalence. This confirms the expectation of Ausoni–Rognes, and
confirms in this case the suspicion that rationalized K-theory should satisfy Galois
descent, even in the derived algebro-geometric context.

4. A localization sequence for Tmf

4.1. Proposition. The topological modular forms spectrum tmf is regular.

Proof. We have shown in Proposition 1.3 that it is necessary and sufficient that
HZ ∧tmf HZ be of finite Tor-amplitude. As Z has finite projective dimension, this
is the case if and only if it is truncated.

The ring π∗tmf[1/6] is Z[1/6, c4, c6] and tmf is commutative, so we may construct
cofibration sequences of tmf-modules

Σ8tmf[1/6]
c4

tmf[1/6] tmf[1/6]/c4
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and

Σ12tmf[1/6]/c4
c6

tmf[1/6]/c4 HZ[1/6].

Therefore, HZ∧tmfHZ has trivial homotopy groups above degree 22 after inverting
6.

The higher homotopy groups therefore consist of 6-torsion. Applying the long
exact sequence associated to the cofibration sequence HZ HZ HZ/p twice
each for the primes 2 and 3, we find that the higher homotopy groups vanish if
and only if the higher homotopy groups of HZ/2∧tmf HZ/2 and HZ/3∧tmf HZ/3
vanish.

At the prime 3, Hill [Hil07] has determined the Hopf algebra of homotopy groups
of HZ/3∧tmf HZ/3, and in particular shown that it is finite-dimensional over Z/3.

At the prime 2, Mathew [Mat] has shown that the map

HZ/2 ∧ tmf HZ/2 ∧HZ/2

is the inclusion of the subalgebra Z/2[ξ
8

1, ξ
4

2, ξ
2

3, ξ4, . . .] of the dual Steenrod algebra;
in particular, the dual Steenrod algebra is a free module over it. By taking the
identity of smash products

HZ/2 ∧tmf HZ/2 ' (HZ/2 ∧HZ/2) ∧HZ/2∧tmf HZ/2

and applying the Künneth spectral sequence of [EKMM97, IV 4.1], we find that

π∗(HZ/2∧tmf HZ/2) is the quotient algebra Z/2[ξ1, ξ2, ξ3]/(ξ
8

1, ξ
4

2, ξ
2

3). In particu-
lar, it is finite-dimensional. �

We note that [Mat], based on work of Hopkins-Mahowald, also establishes that
there is an 8-cell complex DA(1) such that, 2-locally, tmf ∧ DA(1) is a form of
BP〈2〉. However, to make use of this as we did for ko we would need to extend this
to a multiplicative identification.

In any case, we have the following consequence of (2.5.1).

4.2. Corollary. The canonical E∞ ring morphisms tmf HZ and tmf Tmf
give a K-theory fiber sequence

K(Z) K(tmf) K(Tmf).

Proof. Let L = LS (in the notation of 2.4) for the finite family

S = {〈c4〉, 〈∆〉},
where 〈x〉 ⊂ π∗tmf is the multiplicative subset of homogeneous elements generated
by x. A perfect tmf-module is truncated just in case it is both c4-nilpotent and
∆-nilpotent. By the previous results, it suffices to show that Tmf = LS (tmf).

The map tmf Tmf is a connective cover. As the elements of S are generated
by elements of positive degree, this map is automatically an LS -equivalence.

We recall that Tmf is the global section object Γ(M,Oder) of a sheaf of E∞
rings on the compactified moduli of elliptic curves [?]. The vanishing loci of c4 and
∆ have empty intersection on M, and so we obtain a cover

(c−1
4 M)q (∆−1M) M.

Descent for Oder with respect to the associated Čech cover expresses Tmf as the
homotopy pullback of the diagram

c−1
4 Tmf → (c4∆)−1Tmf ← ∆−1Tmf.
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In particular, Tmf is S -local. �

5. A localization sequence for BP〈n〉

Fix a prime p and a generalized truncated Brown–Peterson spectrum BP〈n〉
[LN12, §3] with an E1 MU -algebra structure [Laz03, p. 506]. As π∗BP〈n〉 has
finite projective dimension, a simple argument using the Künneth spectral sequence
immediately implies that the E1 ring BP〈n〉 is regular.

Let L = LS (in the notation of 2.4) for the finite family

S = {〈v1〉, . . . , 〈vn〉},
where 〈vi〉 ⊂ π∗BP〈n〉 is the multiplicative subset of homogeneous elements gener-
ated by vi.

Equivalently, if J denotes the ideal (v1, . . . , vn), and one selects lifts of these
elements to vi ∈ MU∗, then L is the localization away from J in the sense of
[GM95, §5]. Either by the discussion of 2.4 or by [GM95, 5.2], this is a smashing
localization on BP〈n〉-modules. Write BP〈n〉∗ := L(BP〈n〉).

5.1. Proposition. A perfect BP〈n〉-module is L-acyclic if and only if it is truncated.

Proof. By [GM95, 5.1], a left BP〈n〉-module is L-acyclic if and only if it is vk-torsion
for all 1 ≤ k ≤ n. The ring π∗BP〈n〉 is noetherian, so any perfect module M has
π∗M a finitely generated module over it. Therefore, M is L-acyclic if and only if
π∗M has a finite filtration whose subquotients are finitely generated Z(p)-modules,
which occurs precisely when M is truncated. �

Note that as a consequence of this characterization, the functor L is actually inde-
pendent of the choices of the lifts vi.

5.2. Corollary. The E1 ring morphisms BP〈n〉 HZ(p) and BP〈n〉 BP〈n〉∗
give a K-theory fiber sequence

K(Z(p)) K(BP〈n〉) K(BP〈n〉∗).
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