due April 29, 2013, at the beginning of class, 2:30pm

1. Consider the second order equation with (smooth) variable coefficients

$$
\begin{equation*}
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=0 \tag{1}
\end{equation*}
$$

in an interval $I=\left(t_{1}, t_{2}\right)$. Assume that x_{1}, x_{2} are two solutions of (1) and set

$$
\begin{equation*}
w=x_{1} x_{2}^{\prime}-x_{2} x_{1}^{\prime} \tag{2}
\end{equation*}
$$

The function w is called the Wronskian of the two solutions x_{1}, x_{2}. Show that
(i) w satisfies the equation $w^{\prime}+p(t) w=0$;
(ii) if $w\left(t_{0}\right) \neq 0$ for some $t_{0} \in I$, then $w(t) \neq 0$ for every $t \in I$.
2. Find the general solution of the equation

$$
\begin{equation*}
x^{\prime \prime}+\frac{x^{\prime}}{t}=1 \tag{3}
\end{equation*}
$$

on the interval $(0, \infty)$. (Hint: First solve the homogeneous equation and then either use the variation of constants or try to guess a particular solution.)
3. Consider the equation

$$
\begin{equation*}
x^{\prime \prime}+\frac{2 x^{\prime}}{t}+x=0 \tag{4}
\end{equation*}
$$

in $(0, \infty)$. Show that the substitution $x=\frac{y}{t}$ changes our equation with variable coefficients to an equation with constant coefficients and find a basis of the space of solutions of (4).
4.* (Optional) Exercises 1-3 on page 190.
5.* (Optional) For an \mathbf{R}^{2}-valued function $x=\binom{x_{1}}{x_{2}}$ consider the system

$$
x^{\prime \prime}+\left(\begin{array}{ll}
0 & 1 \tag{5}\\
1 & 0
\end{array}\right) x^{\prime}+x=0
$$

Find all bounded solutions of the system in the interval $(0, \infty)$.
Hint: one can either write our equation as a first order 4×4 system (by setting $x^{\prime}=y$ and writing down the equation satisfied by by $z=\binom{x}{y}$) or one can search directly for solutions of the form $b e^{\lambda t}$ in a way similar to what we have done for first-order systems.

