Math 5525 Homework Assignment 4 - solutions Spring 2013

1. (i) This is a matter of straightforward calculation. A nice way to write
the calculation is to use the identity w = det(x,2’), where z = ( il ) and
2

x = le
T3

We have w' = det(z/,2’) + det(z,2") = det(z, —pz’ — qx) = —p det(z,2’) —

q det(z,z) = —p det(z,2") = —pw.

(ii) The general solution of w’ 4+ p(t)w = 0 is w = Ce” ! where P is a primitive

of p. This function can vanish at ¢ty only when C' = 0 in which case we clearly

have w(t) = 0 for each ¢.

) and then systematically use that det(y,y) = 0 for any vector y.

P(t)

2. The homogeneous equation is z” + %/ = 0. Letting 2’ = gy, we can
write y' = —¥ which gives y = % The integration of ' = y then gives
x = Cqlogt + Cy. We now have to find a particular solution of the inhomoge-
neous equation. This can either be done by (educated) guessing, or by variations
of constants. To make a good guess, we note that when applied to x(t) = t™,
both terms z” and ””7/ lower the degree of the polynomial by 2. In particular,
the quadratic polynomial ¢2 is taken into a constant, so ct? will be a particular
solution of equation (3) for a suitable constant c. One now checks easily that
we must take ¢ = i.
If we do the variation of constant instead, we seek the solution of the inhomoge-
neous solution as z(t) = Cq logt+ Cy, where C; are now considered as functions

of ¢t and, moreover, one has z'(t) = Cy(logt) + C2(1) = % This means that

Cilogt+ C4 = 0 and — after using the equation — that CT{ = 1. Hence we can
take C1 = $t* and Cp = — [tlogt = —3t*logt + 1t* and z(t) = 3%
Yet another way to find the solution is to write the equation as (¢z')’ = ¢t which
implies ta’ = 12 + ¢1, hence z(t) = [ (3t + <) dt + co.
No matter which method we use, the general solution we obtain will be
z(t) = 3t + Cilogt + Cs .

y

3. Substituting z = ¥ into our equation we obtain (%)”+2 (¥)"+¥ = 0. Using

Leibnitz rule, we can write the expression on the left-hand side as

-”TN - i—-’{ﬁ—%’—l—%% —2y 48 = y?”_’_% and the equation simplifies to 3" +y = 0,
with the general solution y(t) = Cy cost + Cysint. The general solution of the

original equation then is x(t) = C; <5t 4 CpSRL,

4*. 1. Let b;; = 6;5 + sa;;, with the usual definition d;; = 1 for ¢ = j and
0;; = 0 for i # j. We have det(I + sA) =det B = ) _sign (i1...%,) b1iy - - . by,
where the sum is taken over all permutations 4y . ..4%,. This expression is clearly
a polynomial in s, of the form 1 + p1s + pss? + ...pps™. We need to show
that py = TrA. For any permutation iy ...4, which is different from the
trivial permutation 1,2,...,n the expression by;, ... by, contains at least two



off-diagonal elements, and hence it will depend on s with the power s™ for

m > 2. Therefore the contribution to p; can come only from by1bss...by, =

(1 4 sa11)(1 + sasz) ... (1 + san,). This expression can be written as a sum

of 2" terms of the form 1,sax, s?arpra, S5arkGy@mm, etc. Only the terms
sakr can contribute to pis, and their total contribution is easily seen to be
sai1 +...s8ap, = sTr A.

2. In the notation above, we have d%B(s)\S:o =p; =TrA.

3. Ll—odet C(s) = L|,_odet (C(s)C~1(0)) det C(0) = Tr (C’(0)C~1(0)) det C(0).

5*. Letting y = 2’ and z = ( Z ), so that z; = x1, 20 = x2,23 = Y1, 24 = Y2,

we can write our system as z’ = Az, where

0 0 0 1
A= -1 0 0 -1 ' (1)

0 -1 -1 0

A direct calculation of det(A—AI) (e. g. by “developing” the determinant by the
first column) gives det(A—A\I) = A*4+A2+1. To solve the equation (A—\I)z =0
for the eigenvalues, one can add the —A-multiple of the third row of the matrix
A — M to its first row and add the —\-multiple of the the fourth row of A — AJ
to its second row. This gives

0 0 X+4+1 A 2
0 0 A A +1 29 B

-1 0 Y -1 23 =0. (2)
0 -1 -1 Y 24

Note that this works for any A\, we did not need to calculate det(A — A\I) to
get this equivalent form of the equation (A — AI)z = 0. In fact, we can see

A+l A
from (2) that det(A — AI) = det ( NI
our previous calculation of det(A — AI). Let w = €%, ¢ =e5. The roots of
the characteristic polynomial det(A — AI) = A\ + \? 4 1 are

) = A* 4+ \? + 1, confirming

>\1 =w, )‘2 = wa )‘3 = C? )\4 = C (3)
Note that
MAl=-X, M4+l=-Xy AM+l=X3 AN+1=)\. (4)

The corresponding eigenvectors are now easily seen to be

N1 Ao —1 A+l A1
W _ [ —M-1 @ _ | -1 @ _ | As-1 (4) As—1
2= 107~ N o 1

1 1 -1 -1



The general solution of our original second-order system is

1 1 1 1
z(t) = Cle)‘lt( 1 >+02€)\2t( 1 >+03€)\3t( 1 )+C4e’\4t( 1 ) . (6)

We note that Re A\; = Re Xy < 0 and Re A3 = Re A4 > 0. Hence the solution of
our system which are bounded in (0, 00) are exactly the solutions

(t) :Cle)‘lt< | )+02e*2t( | ) : (7)

Remark: We can also solve the system in this problem directly, without re-
writing it as a first order system. In this approach we seek the solutions as
x(t) = e b, where b € C? is a fixed vector. Substituting this expression into

0 1 ) b+ b =0, which is the same as

the equation, we obtain A%b + A ( 10

A 41 A : . . .
A A241 b = 0. This equation can have non-trivial solutions b only
A+l A . . .
when det N A241 )7 0, which gives the four roots in (4). Calculat-

ing the corresponding vectors b, we again obtain the general solution (6).



