1. (i) This is a matter of straightforward calculation. A nice way to write the calculation is to use the identity $w=\operatorname{det}\left(x, x^{\prime}\right)$, where $x=\binom{x_{1}}{x_{2}}$ and $x^{\prime}=\binom{x_{1}^{\prime}}{x_{2}^{\prime}}$ and then systematically use that $\operatorname{det}(y, y)=0$ for any vector y. We have $w^{\prime}=\operatorname{det}\left(x^{\prime}, x^{\prime}\right)+\operatorname{det}\left(x, x^{\prime \prime}\right)=\operatorname{det}\left(x,-p x^{\prime}-q x\right)=-p \operatorname{det}\left(x, x^{\prime}\right)-$ $q \operatorname{det}(x, x)=-p \operatorname{det}\left(x, x^{\prime}\right)=-p w$.
(ii) The general solution of $w^{\prime}+p(t) w=0$ is $w=C e^{P(t)}$, where P is a primitive of p. This function can vanish at t_{0} only when $C=0$ in which case we clearly have $w(t)=0$ for each t.
2. The homogeneous equation is $x^{\prime \prime}+\frac{x^{\prime}}{t}=0$. Letting $x^{\prime}=y$, we can write $y^{\prime}=-\frac{y}{t}$ which gives $y=\frac{C_{1}}{t}$. The integration of $x^{\prime}=y$ then gives $x=C_{1} \log t+C_{2}$. We now have to find a particular solution of the inhomogeneous equation. This can either be done by (educated) guessing, or by variations of constants. To make a good guess, we note that when applied to $x(t)=t^{m}$, both terms $x^{\prime \prime}$ and $\frac{x^{\prime}}{t}$ lower the degree of the polynomial by 2 . In particular, the quadratic polynomial t^{2} is taken into a constant, so $c t^{2}$ will be a particular solution of equation (3) for a suitable constant c. One now checks easily that we must take $c=\frac{1}{4}$.
If we do the variation of constant instead, we seek the solution of the inhomogeneous solution as $x(t)=C_{1} \log t+C_{2}$, where C_{j} are now considered as functions of t and, moreover, one has $x^{\prime}(t)=C_{1}(\log t)^{\prime}+C_{2}(1)^{\prime}=\frac{C_{1}}{t}$. This means that $C_{1}^{\prime} \log t+C_{2}^{\prime}=0$ and - after using the equation - that $\frac{C_{1}^{\prime}}{t}=1$. Hence we can take $C_{1}=\frac{1}{2} t^{2}$ and $C_{2}=-\int t \log t=-\frac{1}{2} t^{2} \log t+\frac{1}{4} t^{2}$ and $x(t)=\frac{1}{4} t^{2}$.
Yet another way to find the solution is to write the equation as $\left(t x^{\prime}\right)^{\prime}=t$ which implies $t x^{\prime}=\frac{1}{2} t^{2}+c_{1}$, hence $x(t)=\int\left(\frac{1}{2} t+\frac{c_{1}}{t}\right) d t+c_{2}$.
No matter which method we use, the general solution we obtain will be $x(t)=\frac{1}{4} t^{2}+C_{1} \log t+C_{2}$.
3. Substituting $x=\frac{y}{t}$ into our equation we obtain $\left(\frac{y}{t}\right)^{\prime \prime}+\frac{2}{t}\left(\frac{y}{t}\right)^{\prime}+\frac{y}{t}=0$. Using Leibnitz rule, we can write the expression on the left-hand side as $\frac{y^{\prime \prime}}{t}-\frac{2 y^{\prime}}{t^{2}}+\frac{2 y}{t^{3}}+\frac{2}{t} \frac{y^{\prime}}{t}-\frac{2}{t} \frac{y}{t^{2}}+\frac{y}{t}=\frac{y^{\prime \prime}}{t}+\frac{y}{t}$ and the equation simplifies to $y^{\prime \prime}+y=0$, with the general solution $y(t)=C_{1} \cos t+C_{2} \sin t$. The general solution of the original equation then is $x(t)=C_{1} \frac{\cos t}{t}+C_{2} \frac{\sin t}{t}$.

4*. 1. Let $b_{i j}=\delta_{i j}+s a_{i j}$, with the usual definition $\delta_{i j}=1$ for $i=j$ and $\delta_{i j}=0$ for $i \neq j$. We have $\operatorname{det}(I+s A)=\operatorname{det} B=\sum \operatorname{sign}\left(i_{1} \ldots i_{n}\right) b_{1 i_{1}} \ldots b_{n i_{n}}$, where the sum is taken over all permutations $i_{1} \ldots i_{n}$. This expression is clearly a polynomial in s, of the form $1+p_{1} s+p_{s} s^{2}+\ldots p_{n} s^{n}$. We need to show that $p_{1}=\operatorname{Tr} A$. For any permutation $i_{1} \ldots i_{n}$ which is different from the trivial permutation $1,2, \ldots, n$ the expression $b_{1 i_{1}} \ldots b_{n i_{n}}$ contains at least two
off-diagonal elements, and hence it will depend on s with the power s^{m} for $m \geq 2$. Therefore the contribution to p_{1} can come only from $b_{11} b_{22} \ldots b_{n n}=$ $\left(1+s a_{11}\right)\left(1+s a_{22}\right) \ldots\left(1+s a_{n n}\right)$. This expression can be written as a sum of 2^{n} terms of the form $1, s a_{k k}, s^{2} a_{k k} a_{l l}, s^{3} a_{k k} a_{l l} a_{m m}$, etc. Only the terms $s a_{k k}$ can contribute to $p_{1} s$, and their total contribution is easily seen to be $s a_{11}+\ldots s a_{n n}=s \operatorname{Tr} A$.
2. In the notation above, we have $\left.\frac{d}{d s} B(s)\right|_{s=0}=p_{1}=\operatorname{TrA}$.
3. $\left.\frac{d}{d s}\right|_{s=0} \operatorname{det} C(s)=\left.\frac{d}{d s}\right|_{s=0} \operatorname{det}\left(C(s) C^{-1}(0)\right) \operatorname{det} C(0)=\operatorname{Tr}\left(C^{\prime}(0) C^{-1}(0)\right) \operatorname{det} C(0)$.

5*. Letting $y=x^{\prime}$ and $z=\binom{x}{y}$, so that $z_{1}=x_{1}, z_{2}=x_{2}, z_{3}=y_{1}, z_{4}=y_{2}$, we can write our system as $z^{\prime}=A z$, where

$$
A=\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \tag{1}\\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & -1 \\
0 & -1 & -1 & 0
\end{array}\right)
$$

A direct calculation of $\operatorname{det}(A-\lambda I)$ (e. g. by "developing" the determinant by the first column) gives $\operatorname{det}(A-\lambda I)=\lambda^{4}+\lambda^{2}+1$. To solve the equation $(A-\lambda I) z=0$ for the eigenvalues, one can add the $-\lambda$-multiple of the third row of the matrix $A-\lambda I$ to its first row and add the $-\lambda$-multiple of the the fourth row of $A-\lambda I$ to its second row. This gives

$$
\left(\begin{array}{rrrr}
0 & 0 & \lambda^{2}+1 & \lambda \tag{2}\\
0 & 0 & \lambda & \lambda^{2}+1 \\
-1 & 0 & -\lambda & -1 \\
0 & -1 & -1 & -\lambda
\end{array}\right)\left(\begin{array}{r}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right)=0
$$

Note that this works for any λ, we did not need to calculate $\operatorname{det}(A-\lambda I)$ to get this equivalent form of the equation $(A-\lambda I) z=0$. In fact, we can see from (2) that $\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{rr}\lambda^{2}+1 & \lambda \\ \lambda & \lambda^{2}+1\end{array}\right)=\lambda^{4}+\lambda^{2}+1$, confirming our previous calculation of $\operatorname{det}(A-\lambda I)$. Let $\omega=e^{\frac{2 \pi}{3} i}, \zeta=e^{\frac{\pi}{3} i}$. The roots of the characteristic polynomial $\operatorname{det}(A-\lambda I)=\lambda^{4}+\lambda^{2}+1$ are

$$
\begin{equation*}
\lambda_{1}=\omega, \quad \lambda_{2}=\bar{\omega}, \quad \lambda_{3}=\zeta, \quad \lambda_{4}=\bar{\zeta} \tag{3}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\lambda_{1}^{2}+1=-\lambda_{1}, \quad \lambda_{1}^{2}+1=-\lambda_{2}, \quad \lambda_{3}^{2}+1=\lambda_{3}, \quad \lambda_{4}^{2}+1=\lambda_{4} . \tag{4}
\end{equation*}
$$

The corresponding eigenvectors are now easily seen to be
$z^{(1)}=\left(\begin{array}{r}-\lambda_{1}-1 \\ -\lambda_{1}-1 \\ 1 \\ 1\end{array}\right), z^{(2)}=\left(\begin{array}{r}-\lambda_{2}-1 \\ -\lambda_{2}-1 \\ 1 \\ 1\end{array}\right), z^{(3)}=\left(\begin{array}{r}-\lambda_{3}+1 \\ \lambda_{3}-1 \\ 1 \\ -1\end{array}\right), z^{(4)}=\left(\begin{array}{r}-\lambda_{4}+1 \\ \lambda_{4}-1 \\ 1 \\ -1\end{array}\right)$.

The general solution of our original second-order system is

$$
\begin{equation*}
x(t)=C_{1} e^{\lambda_{1} t}\binom{1}{1}+C_{2} e^{\lambda_{2} t}\binom{1}{1}+C_{3} e^{\lambda_{3} t}\binom{1}{-1}+C_{4} e^{\lambda_{4} t}\binom{1}{-1} . \tag{6}
\end{equation*}
$$

We note that $\operatorname{Re} \lambda_{1}=\operatorname{Re} \lambda_{2}<0$ and $\operatorname{Re} \lambda_{3}=\operatorname{Re} \lambda_{4}>0$. Hence the solution of our system which are bounded in $(0, \infty)$ are exactly the solutions

$$
\begin{equation*}
x(t)=C_{1} e^{\lambda_{1} t}\binom{1}{1}+C_{2} e^{\lambda_{2} t}\binom{1}{1} . \tag{7}
\end{equation*}
$$

Remark: We can also solve the system in this problem directly, without rewriting it as a first order system. In this approach we seek the solutions as $x(t)=e^{\lambda t} b$, where $b \in \mathbf{C}^{2}$ is a fixed vector. Substituting this expression into the equation, we obtain $\lambda^{2} b+\lambda\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right) b+b=0$, which is the same as $\left(\begin{array}{rr}\lambda^{2}+1 & \lambda \\ \lambda & \lambda^{2}+1\end{array}\right) b=0$. This equation can have non-trivial solutions b only when $\operatorname{det}\left(\begin{array}{rr}\lambda^{2}+1 & \lambda \\ \lambda & \lambda^{2}+1\end{array}\right)=0$, which gives the four roots in (4). Calculating the corresponding vectors b, we again obtain the general solution (6).

