
Math 5525 Homework Assignment 4 - solutions Spring 2013

1. (i) This is a matter of straightforward calculation. A nice way to write

the calculation is to use the identity w = det(x, x′), where x =

(
x1

x2

)
and

x′ =

(
x′
1

x′
2

)
and then systematically use that det(y, y) = 0 for any vector y.

We have w′ = det(x′, x′) + det(x, x′′) = det(x,−px′ − qx) = −p det(x, x′) −
q det(x, x) = −p det(x, x′) = −pw.
(ii) The general solution of w′+p(t)w = 0 is w = CeP (t), where P is a primitive
of p. This function can vanish at t0 only when C = 0 in which case we clearly
have w(t) = 0 for each t.

2. The homogeneous equation is x′′ + x′

t = 0. Letting x′ = y, we can

write y′ = −y
t which gives y = C1

t . The integration of x′ = y then gives
x = C1 log t + C2. We now have to find a particular solution of the inhomoge-
neous equation. This can either be done by (educated) guessing, or by variations
of constants. To make a good guess, we note that when applied to x(t) = tm,

both terms x′′ and x′

t lower the degree of the polynomial by 2. In particular,
the quadratic polynomial t2 is taken into a constant, so ct2 will be a particular
solution of equation (3) for a suitable constant c. One now checks easily that
we must take c = 1

4 .
If we do the variation of constant instead, we seek the solution of the inhomoge-
neous solution as x(t) = C1 log t+C2, where Cj are now considered as functions
of t and, moreover, one has x′(t) = C1(log t)

′ + C2(1)
′ = C1

t . This means that

C ′
1 log t + C ′

2 = 0 and – after using the equation – that
C′

1

t = 1. Hence we can
take C1 = 1

2 t
2 and C2 = −

∫
t log t = − 1

2 t
2 log t+ 1

4 t
2 and x(t) = 1

4 t
2.

Yet another way to find the solution is to write the equation as (tx′)′ = t which
implies tx′ = 1

2 t
2 + c1, hence x(t) =

∫ (
1
2 t+

c1
t

)
dt+ c2.

No matter which method we use, the general solution we obtain will be
x(t) = 1

4 t
2 + C1 log t+ C2 .

3. Substituting x = y
t into our equation we obtain

(
y
t

)′′
+ 2

t

(
y
t

)′
+ y

t = 0. Using
Leibnitz rule, we can write the expression on the left-hand side as
y′′

t − 2y′

t2 + 2y
t3 +

2
t
y′

t − 2
t

y
t2 +

y
t = y′′

t + y
t and the equation simplifies to y′′+y = 0,

with the general solution y(t) = C1 cos t+ C2 sin t. The general solution of the
original equation then is x(t) = C1

cos t
t + C2

sin t
t .

4∗. 1. Let bij = δij + saij , with the usual definition δij = 1 for i = j and
δij = 0 for i ̸= j. We have det(I + sA) = detB =

∑
sign (i1 . . . in) b1i1 . . . bnin ,

where the sum is taken over all permutations i1 . . . in. This expression is clearly
a polynomial in s, of the form 1 + p1s + pss

2 + . . . pns
n. We need to show

that p1 = TrA. For any permutation i1 . . . in which is different from the
trivial permutation 1, 2, . . . , n the expression b1i1 . . . bnin contains at least two
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off-diagonal elements, and hence it will depend on s with the power sm for
m ≥ 2. Therefore the contribution to p1 can come only from b11b22 . . . bnn =
(1 + sa11)(1 + sa22) . . . (1 + sann). This expression can be written as a sum
of 2n terms of the form 1, sakk, s

2akkall, s
3akkallamm, etc. Only the terms

sakk can contribute to p1s, and their total contribution is easily seen to be
sa11 + . . . sann = sTrA.
2. In the notation above, we have d

dsB(s)|s=0 = p1 = TrA .

3. d
ds |s=0 detC(s) = d

ds |s=0 det
(
C(s)C−1(0)

)
detC(0) = Tr

(
C ′(0)C−1(0)

)
detC(0).

5∗. Letting y = x′ and z =

(
x
y

)
, so that z1 = x1, z2 = x2, z3 = y1, z4 = y2,

we can write our system as z′ = Az, where

A =


0 0 1 0
0 0 0 1

−1 0 0 −1
0 −1 −1 0

 . (1)

A direct calculation of det(A−λI) (e. g. by “developing” the determinant by the
first column) gives det(A−λI) = λ4+λ2+1. To solve the equation (A−λI)z = 0
for the eigenvalues, one can add the −λ-multiple of the third row of the matrix
A− λI to its first row and add the −λ-multiple of the the fourth row of A− λI
to its second row. This gives

0 0 λ2 + 1 λ
0 0 λ λ2 + 1

−1 0 −λ −1
0 −1 −1 −λ




z1
z2
z3
z4

 = 0 . (2)

Note that this works for any λ, we did not need to calculate det(A − λI) to
get this equivalent form of the equation (A − λI)z = 0. In fact, we can see

from (2) that det(A− λI) = det

(
λ2 + 1 λ

λ λ2 + 1

)
= λ4 + λ2 +1, confirming

our previous calculation of det(A − λI). Let ω = e
2π
3 i , ζ = e

π
3 i. The roots of

the characteristic polynomial det(A− λI) = λ4 + λ2 + 1 are

λ1 = ω, λ2 = ω, λ3 = ζ, λ4 = ζ. (3)

Note that

λ2
1 + 1 = −λ1, λ2

1 + 1 = −λ2, λ2
3 + 1 = λ3, λ2

4 + 1 = λ4 . (4)

The corresponding eigenvectors are now easily seen to be

z(1) =


−λ1 − 1
−λ1 − 1

1
1

 , z(2) =


−λ2 − 1
−λ2 − 1

1
1

 , z(3) =


−λ3 + 1
λ3 − 1

1
−1

 , z(4) =


−λ4 + 1
λ4 − 1

1
−1

 .

(5)
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The general solution of our original second-order system is

x(t) = C1e
λ1t

(
1
1

)
+C2e

λ2t

(
1
1

)
+C3e

λ3t

(
1

−1

)
+C4e

λ4t

(
1

−1

)
. (6)

We note that Reλ1 = Reλ2 < 0 and Reλ3 = Reλ4 > 0. Hence the solution of
our system which are bounded in (0,∞) are exactly the solutions

x(t) = C1e
λ1t

(
1
1

)
+ C2e

λ2t

(
1
1

)
. (7)

Remark: We can also solve the system in this problem directly, without re-
writing it as a first order system. In this approach we seek the solutions as
x(t) = eλtb, where b ∈ C2 is a fixed vector. Substituting this expression into

the equation, we obtain λ2b+ λ

(
0 1
1 0

)
b+ b = 0, which is the same as(

λ2 + 1 λ
λ λ2 + 1

)
b = 0. This equation can have non-trivial solutions b only

when det

(
λ2 + 1 λ

λ λ2 + 1

)
= 0, which gives the four roots in (4). Calculat-

ing the corresponding vectors b, we again obtain the general solution (6).
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