due April 8, 2013, at the beginning of class, 2:30pm

1. Give an example of two 2×2 matrices A, B such that

$$
e^{A+B} \neq e^{A} e^{B}
$$

A proof that for your example the two sides are indeed different should be a part of the solution.
2. Exercise 1, page 115
3. Exercise 2, page 115
4. For all the three matrices A_{1}, A_{2}, A_{3} in Problem 2 find their Jordan canonical form.
$\mathbf{5}^{*}$. (Optional) Calculate $e^{t A_{j}} j=1,2,3$ for all the three matrices in Problem 2.
6* (Optional) Let A be a complex $n \times n$ matrix such that all its eigenvalues have a strictly positive real part. Prove that

$$
\int_{0}^{\infty} e^{-t A} d t=A^{-1}
$$

Remark: Here we integrate a matrix-values function of t. By definition, the identity $\int_{t_{1}}^{t_{2}} M(t) d t=B$ for some smooth matrix valuedfunction $M(t)$ and a matrix B of the same size simply means that $\int_{t_{1}}^{t_{2}} m_{i j}(t) d t=b_{i j}$ for all indices i, j.

