1. Let us consider for example $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 0 \\ 1 & 0\end{array}\right)$. Then $e^{t A}=\left(\begin{array}{cc}1 & t \\ 0 & 1\end{array}\right), e^{t B}=\left(\begin{array}{cc}1 & 0 \\ t & 1\end{array}\right)$ and $e^{t A} e^{t B}=\left(\begin{array}{cc}1+t^{2} & t \\ t & 1\end{array}\right)$. Let $C=$ $A+B$. Then $C^{2}=I$ and therefore $e^{t(A+B)}=e^{t C}=I+t C+\frac{t^{2}}{2!} I+\frac{t^{3}}{3!} C+\ldots=$ $\left(\begin{array}{cc}\cosh t & \sinh t \\ \sinh t & \cosh t\end{array}\right)$. We see that $e^{t A} e^{t B} \neq e^{t(A+B)}$ for each $t \neq 0$.
In the context of this problem one should mention the following classical calculation. Let A, B be any two $n \times n$ matrices. Expanding the exponentials, we obtain $e^{t A} e^{s B}-e^{t A+s B}=\frac{s t}{2}(A B-B A)+O\left(t^{2}+s^{2}\right)^{\frac{3}{2}}, \quad s, t \rightarrow 0$. We see that for small s, t the left-hand side can vanish only when $A B-B A=0$, i. e. the matrices A, B commute. Therefore for any two non-commuting matrices A, B and sufficiently small $s, t \neq 0$ the matrices $t A, s B$ give an example with the desired property.

2.

Matrix A_{1}
$\operatorname{det}\left(A_{1}-\lambda I\right)=(2-\lambda) \lambda^{2}$. Hence the eigenvalues are $\lambda_{1}=2$ and $\lambda_{2}=\lambda_{3}=0$.
The equation $(A-2 I) x=0$ is easily seen to be satisfied by $x^{(1)}=e_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$.
From general theory we know that in the situation above the eigenspace of λ_{1} must be one-dimensional, and hence, up to a multiplicative factor, e_{2} is the only eigenvector corresponding to $\lambda_{1}=1$. This is of course seen in many other ways. The matrix $A_{1}-\lambda_{2} I=A_{1}-0 I=A_{1}$ has rank two, and hence there is only onedimensional eigenspace associated with the double eigenvalue 0 . The eigenvector can be obtained by solving $A_{1} x=0$ and is given (up to a multiplicative factor) by $x^{(2)}=\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)$.

Matrix A_{2}
$\operatorname{det}\left(A_{2}-\lambda I\right)=(1-\lambda)^{2}(2-\lambda)$. The eigenvalues therefore are $\lambda_{1}=2$ and $\lambda_{2}=\lambda_{3}=1$. The eigenvector corresponding to λ_{1} is easily seen to be $x^{(1)}=e_{2}$ and the eigenvector corresponding the $\lambda_{1}=1$ is easily seen to be $x^{(2)}=e_{1}$.

Matrix A_{3}
$\operatorname{det}\left(A_{3}-\lambda I\right)=(1-\lambda)^{3}$. Hence we have $\lambda_{1}=\lambda_{2}=\lambda_{3}=1$. The eigenspace is easily seen to be one-dimensional, spanned by $x^{(1)}=\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)$. The dimension
of the eigenspace corresponding to an eigenvalue λ is called the geometric multiplicity of λ.

We recall that the multiplicity of the eigenvalue taken as the multiplicity of the root of the characteristic polynomial is called the algebraic multiplicity.
3. For each of the matrices above and each of the eigenvalues λ the dimension of the kernel of $A-\lambda I$ is one. In other words, all eigenspaces of all the matrices are one-dimensional, or, equivalently, the geometric multiplicity of each of the eigenvalues is 1 . Therefore in the Jordan canonical form of each of the matrices each Jordan cell is "full", of the form ${ }^{1} J_{k}(\lambda)$, where k is the algebraic multiplicity (=the multiplicity of the eigenvalue taken as the multiplicity of the root of the characteristic polynomial). This means that the minimal polynomials of A_{1}, A_{2}, A_{3} coincide with their characteristic polynomials.
We now calculate the generalized eigenspaces.
Matrix A_{1}
We solve $\left(A_{1}-0 I\right) x^{(3)}=x^{(2)}$ (where $x^{(2)}$ was determined above). The generalized eigenspace of the double eigenvalue 0 will then be given by the linear span of $x^{(2)}$ and $x^{(3)}$. (Note that $x^{(3)}$ is determined only up to $t x^{(2)}, t \in \mathbf{C}$.) One easily sees that one can take for example $x^{(3)}=\left(\begin{array}{c}\frac{1}{2} \\ 0 \\ \frac{1}{2}\end{array}\right)$.

Matrix A_{2}
The generalized eigenspace of the double eigenvalue 1 will be spanned by $x^{(2)}$ and a vector $x^{(3)}$ with $\left(A_{2}-I\right) x^{(3)}=x^{(2)}$. One can take for example $x^{(3)}=e_{3}$.

Matrix A_{3}.

The generalized eigenspace of the triple eigenvalue 1 will be all \mathbf{C}^{3}. For the later use we calculate vectors $x^{(2)}, x^{(3)}$ with $\left(A_{3}-I\right) x^{(2)}=x^{(1)}$ and $\left(A_{3}-I\right) x^{(3)}=x^{(2)}$. It is easy to check that one can take for example
$x^{(2)}=\left(\begin{array}{c}0 \\ \frac{1}{2} \\ 0\end{array}\right)$ and $x^{(3)}=\left(\begin{array}{c}\frac{1}{12} \\ 0 \\ \frac{1}{12}\end{array}\right)$.
4. The Jordan forms ${ }^{2}$ are $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ for $A_{1},\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$ for A_{2}, and $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$ for A_{3}, each taken with respect to the basis of the generalized

[^0]eigenvector $x^{(1)}, x^{(2)}, x^{(3)}$ calculated above for the corresponding matrix. In other words, we have
\[

\left.$$
\begin{array}{c}
A_{1}=\left(\begin{array}{rrr}
0 & 1 & \frac{1}{2} \\
1 & 0 & 0 \\
0 & -1 & \frac{1}{2}
\end{array}\right)\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{rrr}
0 & 1 & \frac{1}{2} \\
1 & 0 & 0 \\
0 & -1 & \frac{1}{2}
\end{array}\right)^{-1}, \\
A_{2}
\end{array}
$$=\left($$
\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}
$$\right)\left($$
\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}
$$\right)\left($$
\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}
$$\right)^{-1}, \quad, \quad $$
\begin{array}{rrr}
1 & 0 & \frac{1}{12} \\
0 & \frac{1}{2} & 0 \\
-1 & 0 & \frac{1}{12}
\end{array}
$$\right)\left($$
\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}
$$\right)\left($$
\begin{array}{rrc}
1 & 0 & \frac{1}{12} \\
0 & \frac{1}{2} & 0 \\
-1 & 0 & \frac{1}{12}
\end{array}
$$\right)^{-1} . .
\]

$\mathbf{5}^{*}$. Recalling the formula for $e^{t J_{k}(\lambda)}$ (see, for example, the lecture \log, (362), p. 68), we obtain

$$
\begin{aligned}
e^{t A_{1}} & =\left(\begin{array}{rrr}
0 & 1 & \frac{1}{2} \\
1 & 0 & 0 \\
0 & -1 & \frac{1}{2}
\end{array}\right)\left(\begin{array}{rrr}
e^{2 t} & 0 & 0 \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
0 & 1 & \frac{1}{2} \\
1 & 0 & 0 \\
0 & -1 & \frac{1}{2}
\end{array}\right)^{-1}, \\
e^{t A_{2}} & =\left(\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
e^{2 t} & 0 & 0 \\
0 & e^{t} & t e^{t} \\
0 & 0 & e^{t}
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}, \\
e^{t A_{3}} & =\left(\begin{array}{rrr}
1 & 0 & \frac{1}{12} \\
0 & \frac{1}{2} & 0 \\
-1 & 0 & \frac{1}{12}
\end{array}\right) e^{t}\left(\begin{array}{rrr}
1 & t & \frac{t^{2}}{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & \frac{1}{12} \\
0 & \frac{1}{2} & 0 \\
-1 & 0 & \frac{1}{12}
\end{array}\right)^{-1}
\end{aligned}
$$

We calculate

$$
\begin{aligned}
\left(\begin{array}{rrr}
0 & 1 & \frac{1}{2} \\
1 & 0 & 0 \\
0 & -1 & \frac{1}{2}
\end{array}\right)^{-1} & =\left(\begin{array}{rrr}
0 & 1 & 0 \\
\frac{1}{2} & 0 & -\frac{1}{2} \\
1 & 0 & 1
\end{array}\right), \\
\left(\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1} & =\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\left(\begin{array}{rrr}
1 & 0 & \frac{1}{12} \\
0 & \frac{1}{2} & 0 \\
-1 & 0 & \frac{1}{12}
\end{array}\right)^{-1} & =\left(\begin{array}{rrr}
\frac{1}{2} & 0 & -\frac{1}{2} \\
0 & 2 & 0 \\
6 & 0 & 6
\end{array}\right)
\end{aligned}
$$

and obtain

$$
e^{t A_{1}}=\left(\begin{array}{rrr}
1+t & 0 & t \\
0 & e^{2 t} & 0 \\
-t & 0 & 1-t
\end{array}\right)
$$

$$
\begin{aligned}
e^{t A_{2}} & =\left(\begin{array}{rrr}
e^{t} & 0 & t e^{t} \\
0 & e^{2 t} & 0 \\
0 & 0 & e^{t}
\end{array}\right) \\
e^{t A_{3}} & =e^{t}\left(\begin{array}{crc}
1+3 t^{2} & 2 t & 3 t^{2} \\
3 t & 1 & 3 t \\
-3 t^{2} & -2 t & 1-3 t^{2}
\end{array}\right) .
\end{aligned}
$$

6*. There are several ways to prove the identity.
Proof 1:
We have $\frac{d}{d t}\left(e^{-t A}\right)=-A e^{-t A}$ and hence $\int_{0}^{\infty}-A e^{-t A} d t=\int_{0}^{\infty} \frac{d}{d t}\left(e^{-t A}\right) d t=$ $\left.e^{t A}\right|_{t=0} ^{t=\infty}=-I$, as $\lim _{t \rightarrow \infty} e^{-t A}=0$. This is the same as $\int_{0}^{\infty} A e^{-t A}=I$ and multiplying this identity by A^{-1} we obtain the result.

Proof 2:
Let us consider the equation $x^{\prime}=-A x+b$ for a constant vector b. This equation has a steady state solution $\bar{x}=A^{-1} b$. By Theorem 6 in lecture 23 (see the lecture \log) and our assumptions we know that every solution approaches \bar{x} as $t \rightarrow \infty$. From the Duhamel's formula we have

$$
\begin{equation*}
x(t)=e^{-t A} x(0)+\int_{0}^{t} e^{-(t-s) A} b d s=e^{-t A} x(0)+\int_{0}^{t} e^{-s A} b d s \tag{1}
\end{equation*}
$$

Taking the limit $t \rightarrow \infty$ we see that

$$
\begin{equation*}
A^{-1} b=\bar{x}=\int_{0}^{\infty} e^{-s A} b d s \tag{2}
\end{equation*}
$$

The validity of (2) for each $b \in \mathbf{C}^{n}$ which we just established is clearly equivalent to the formula in the problem.

Proof 3:
The validity of the formula for A is equivalent to its validity for $P A P^{-1}$ for any non-singular matrix P. Hence we can assume without loss of generality that A is in the Jordan canonical form. We see that it is enough to establish the formula for one Jordan block $J_{k}(\lambda)$ (with $\lambda>0$). Writing $J_{k}(\lambda)=\lambda I+M$ (so that M is the $k \times k$ matrix with 1 's just above the diagonal and zeroes everywhere else), we have $e^{-t(\lambda I+M)}=e^{-\lambda t}\left(I-t M+\ldots+(-1)^{k-1} \frac{t^{k-1}}{(k-1)!} M^{k-1}\right.$. Integrating between 0 and ∞ while using $\int_{0}^{\infty} t^{l} e^{-\lambda t} d t=\lambda^{-(l+1)} l$! we obtain $\int_{0}^{\infty} e^{-t(\lambda I+M)}=$ $\lambda^{-1}\left(I-\lambda^{-1} M+\lambda^{-2} M^{2}-\ldots+(-1)^{k-1} \lambda^{-(k-1)} M^{k-1}\right)=(\lambda I+M)^{-1}$, confirming the formula.
One can in fact avoid using the Jordan blocks of size >1 by using genericity: we note that both sides of the fomula are continuous in A in the set of matrices with positive eigenvalues. Therefore it is enough to establish the formula only in the generic case when A is diagonalizable, when the above calculation reduces to the particularly simple case $k=1$.

[^0]: ${ }^{1}$ See p. 63 of the Lecture Log, formula (334).
 ${ }^{2}$ We note that, in suitable interpretation, A_{2} actually already is in a Jordan form so the manipulations of A_{2} below are not really necessary. The plane spanned by the x_{1}, x_{3} axis is invariant under A_{2} and the restriction of A_{2} to that plane is a Jordan block. In addition e_{2} is an eigenvector of A_{2}.

