
Math 5525 Homework Assignment 2 - solutions Spring 2013

1. The characteristic polynomial of the homogeneous equation u′′+u′+u = 0 is

λ2+λ+1 = 0. The roots are λ1,2 = −1±i
√
3

2 = e±
2πi
3 . The general solution of the

homogeneous equation is C1e
λ1t + C2e

λ2t . (There are other equivalent expres-

sions, such as
[
c1e

− t
2 cos

(√
3
2 t

)
+ c2e

− t
2 sin

(√
3
2 t

)]
or Ce−

t
2 cos(

√
3
2 (t− t0)) .)

We need to find a particular solution for the inhomogeneous equation. As
3 sin(σt) = 3 Im eiσt, we can first solve u′′+u′+u = 3eiσt and then take the imag-
inary part. As we did in class, we seek the solution of the last equation as Aeiσt.
This gives A = 3

1−σ2+iσ and hence a particular solution of the inhomogeneous

equation is v(t) = 3 Im eiσt

1−σ2+iσ = −3σ
(1−σ2)2+σ2 cosσt+

3(1−σ2)
(1−σ2)2+σ2 sinσt. The gen-

eral solution of the inhomogeneous equation then is u(t) = v(t)+C1e
λ1t+C2e

λ2t .
(This expression can again be written in several ways.) One can also find the
solution of the inhomogeneous equation by starting from a cosσt + b sinσt.
When we substitute this expression into the equation, we get a system of
two equations for the two unknowns a, b, which we can solve and arrive at

a = −3σ
(1−σ2)2+σ2 , b = 3(1−σ2)

(1−σ2)2+σ2 , confirming the previous calculation.

2. We need to maximize |A| from the previous problem. This is the same as
minimizing (1−σ2)2+σ2. Setting σ2 = τ , we need to minimize g(τ) = (1−τ)2+τ
over τ ≥ 0. We can write g(τ) = ( 12 − τ)2 + 3

4 from which we see that the
minimum is attained at τ = 1

2 . (Instead of completing the square, we can

work with the equation g′(τ) = 0.) Going back to σ we obtain σ = ±
√
2
2 . If

we work in the real setting, writing the solution in the form a cosσt + b sinσt,
we need to use the fact the the amplitude of the function given by the last
expression is

√
a2 + b2. (This can be seen several ways, for example by writing

a cosσt+ b sinσt = Re (a− ib)eiσt, or a cosσt+ b sinσt =
√
a2 + b2 cosσ(t+ s)

for a suitable s.)

3. We will solve x′′ + x = eit and take the imaginary part. The general
solution of the homogeneous equation is x(t) = C1e

it + C2e
−it. To calculate a

solution of the inhomogeneous equation, we can use the variation of constant,
see lecture 10 in the lecture log. In the last expression we consider C1 and
C2 as functions of t and set C ′

1e
it + C ′

2e
−it = 0. The inhomogeneous equation

then gives iC ′
1e

it − iC ′
2e

−it = eit. Solving for C ′
1, C

′
2 (by using Cramer’s rule,

for example), we obtain C ′
1 = − i

2 , C ′
2 = i

2e
2it. Hence we can take C1 =

− it
2 , C2 = 1

4e
2it . Then C1e

it + C2e
−it = eit(− it

2 + 1
4 ). Noticing that eit is a

solution of the homogeneous equation, we can take for our particular solution
the function − it

2 e
it. To obtain a particular solution of x′′ + x = sin t, we

take the imaginary part of − it
2 e

it, obtaining −1
2 t cos t. One can check directly

that this is a particular solution of our equation. The general solution then is
x(t) = −1

2 t cos t + C1e
it + C2e

−it here Cj are now constants, or, alternatively,
x(t) = − 1

2 t cos t + c1 cos t + c2 sin t, where c1, c2 are again constants. One can
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also do the variation of constants starting from c1 cos t + c2 sin t, considering
c1, c2 as functions of t. If you do it this way, you may obtain expressions such
as, for example, x(t) = − 1

2 t cos t+
1
4 sin 2t cos t+

1
2 sin

3 t.1 This may at first look
different than the expression obtained above, but it describes the same solutions:
we note that 1

4 sin 2t cos t +
1
2 sin

3 t = 1
2 sin t cos

2 t + 1
2 sin t sin

2 t = 1
2 sin t and

the last function solves the homogeneous equation.

4. We have (tr)′ = rtr−1 and (tr)′′ = r(r−1)tr−2. Substituting these expression
into the equation, we get ar(r − 1) + br + c = 0. Alternatively, we can use the
substitution t = es. Our equation then changes to ax′′ + (b− a)x′ + cx = 0 and
the function tr changes to ers. The characteristic equation for r will now be
ar2 + (b− a)r + c = 0, which is the same as ar(r − 1) + br + c = 0.

5. The linear space of the solutions of the homogeneous equation has dimen-
sion 2 in this case. Hence we only have to show that the functions tr1 and
tr2 are linearly independent over C in (0,∞). Let us consider the equation
C1t

r1 +C2t
r2 = 0 for some constants C1, C2. Assuming the equation is satisfied

at t = t1 > 0 and at t = t2 > 0, t2 ̸= t1, we see that the constants C1, C2 must

vanish when det

(
tr11 tr21
tr12 tr22

)
= tr11 tr22 − tr12 tr21 ̸= 0. Letting t1

t2
= s, we see

that the determinant will not vanish when sr1 ̸= sr2 , which is the case as long
as s ̸= 1 and r1 ̸= r2. Hence when r1 ̸= r2 the the expression C1t

r1 + C2t
r2 is

a general solution. Alternatively, we can use the change of variables t = es to
reduce our example to the case of the equation with the constant coefficients.

6. We have d
dtE(t) = mẋẍ+ V ′(x)ẋ = ẋ(mẍ+ V ′(x)) = −αẋ2 ≤ 0.

7∗. (Optional) Substituting p(z) = Cρ(z) into the equation dp
dz = −g(z)ρ(z),

we obtain dρ
dz = −g(z)ρ(z) 1

C , which is the same as dρ
ρ = − g(z)dz

C . Integrating
between ρ0 and ρ on the left-hand side and between 0 and z on the right-hand
side, we obtain log ρ

ρ0
= − 1

C (V (z) − V (0)), where V (z) = − κM
(R+z) . This gives

ρ = ρ0e
−V (z)−V (0)

C . Then limz→∞ ρ(z) = ρ0e
V (0)
C > 0, and hence the mass of the

atmosphere cannot be finite (assuming the atmosphere is at equilibrium). When
g is constant, a similar (an, in fact, easier) calculation gives ρ = ρ0e

− gz
C , which

is equivalent to replacing V (z)− V (0) by V ′(0)z in the formula for variable g.

8∗. (Optional) We have x′(t) = p(x(t)). Hence x′′ = dp
dxx

′ = p dp
dx . Hence

x′′ = f(x, x′) gives p dp
dx = f(x, p).

1Other forms are possible, depending on how we choose the constants of integration.
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