1. The characteristic polynomial of the homogeneous equation $u^{\prime \prime}+u^{\prime}+u=0$ is $\lambda^{2}+\lambda+1=0$. The roots are $\lambda_{1,2}=\frac{-1 \pm i \sqrt{3}}{2}=e^{ \pm \frac{2 \pi i}{3}}$. The general solution of the homogeneous equation is $C_{1} e^{\lambda_{1} t}+C_{2} e^{\lambda_{2} t}$. (There are other equivalent expressions, such as $\left[c_{1} e^{-\frac{t}{2}} \cos \left(\frac{\sqrt{3}}{2} t\right)+c_{2} e^{-\frac{t}{2}} \sin \left(\frac{\sqrt{3}}{2} t\right)\right]$ or $\left.C e^{-\frac{t}{2}} \cos \left(\frac{\sqrt{3}}{2}\left(t-t_{0}\right)\right).\right)$ We need to find a particular solution for the inhomogeneous equation. As $3 \sin (\sigma t)=3 \operatorname{Im} e^{i \sigma t}$, we can first solve $u^{\prime \prime}+u^{\prime}+u=3 e^{i \sigma t}$ and then take the imaginary part. As we did in class, we seek the solution of the last equation as $A e^{i \sigma t}$. This gives $A=\frac{3}{1-\sigma^{2}+i \sigma}$ and hence a particular solution of the inhomogeneous equation is $v(t)=3 \operatorname{Im} \frac{e^{i \sigma t}}{1-\sigma^{2}+i \sigma}=\frac{-3 \sigma}{\left(1-\sigma^{2}\right)^{2}+\sigma^{2}} \cos \sigma t+\frac{3\left(1-\sigma^{2}\right)}{\left(1-\sigma^{2}\right)^{2}+\sigma^{2}} \sin \sigma t$. The general solution of the inhomogeneous equation then is $u(t)=v(t)+C_{1} e^{\lambda_{1} t}+C_{2} e^{\lambda_{2} t}$. (This expression can again be written in several ways.) One can also find the solution of the inhomogeneous equation by starting from $a \cos \sigma t+b \sin \sigma t$. When we substitute this expression into the equation, we get a system of two equations for the two unknowns a, b, which we can solve and arrive at $a=\frac{-3 \sigma}{\left(1-\sigma^{2}\right)^{2}+\sigma^{2}}, b=\frac{3\left(1-\sigma^{2}\right)}{\left(1-\sigma^{2}\right)^{2}+\sigma^{2}}$, confirming the previous calculation.
2. We need to maximize $|A|$ from the previous problem. This is the same as minimizing $\left(1-\sigma^{2}\right)^{2}+\sigma^{2}$. Setting $\sigma^{2}=\tau$, we need to minimize $g(\tau)=(1-\tau)^{2}+\tau$ over $\tau \geq 0$. We can write $g(\tau)=\left(\frac{1}{2}-\tau\right)^{2}+\frac{3}{4}$ from which we see that the minimum is attained at $\tau=\frac{1}{2}$. (Instead of completing the square, we can work with the equation $g^{\prime}(\tau)=0$.) Going back to σ we obtain $\sigma= \pm \frac{\sqrt{2}}{2}$. If we work in the real setting, writing the solution in the form $a \cos \sigma t+b \sin \sigma t$, we need to use the fact the the amplitude of the function given by the last expression is $\sqrt{a^{2}+b^{2}}$. (This can be seen several ways, for example by writing $a \cos \sigma t+b \sin \sigma t=\operatorname{Re}(a-i b) e^{i \sigma t}$, or $a \cos \sigma t+b \sin \sigma t=\sqrt{a^{2}+b^{2}} \cos \sigma(t+s)$ for a suitable s.)
3. We will solve $x^{\prime \prime}+x=e^{i t}$ and take the imaginary part. The general solution of the homogeneous equation is $x(t)=C_{1} e^{i t}+C_{2} e^{-i t}$. To calculate a solution of the inhomogeneous equation, we can use the variation of constant, see lecture 10 in the lecture log. In the last expression we consider C_{1} and C_{2} as functions of t and set $C_{1}^{\prime} e^{i t}+C_{2}^{\prime} e^{-i t}=0$. The inhomogeneous equation then gives $i C_{1}^{\prime} e^{i t}-i C_{2}^{\prime} e^{-i t}=e^{i t}$. Solving for $C_{1}^{\prime}, C_{2}^{\prime}$ (by using Cramer's rule, for example), we obtain $C_{1}^{\prime}=-\frac{i}{2}, C_{2}^{\prime}=\frac{i}{2} e^{2 i t}$. Hence we can take $C_{1}=$ $-\frac{i t}{2}, C_{2}=\frac{1}{4} e^{2 i t}$. Then $C_{1} e^{i t}+C_{2} e^{-i t}=e^{i t}\left(-\frac{i t}{2}+\frac{1}{4}\right)$. Noticing that $e^{i t}$ is a solution of the homogeneous equation, we can take for our particular solution the function $-\frac{i t}{2} e^{i t}$. To obtain a particular solution of $x^{\prime \prime}+x=\sin t$, we take the imaginary part of $-\frac{i t}{2} e^{i t}$, obtaining $-\frac{1}{2} t \cos t$. One can check directly that this is a particular solution of our equation. The general solution then is $x(t)=-\frac{1}{2} t \cos t+C_{1} e^{i t}+C_{2} e^{-i t}$ here C_{j} are now constants, or, alternatively, $x(t)=-\frac{1}{2} t \cos t+c_{1} \cos t+c_{2} \sin t$, where c_{1}, c_{2} are again constants. One can
also do the variation of constants starting from $c_{1} \cos t+c_{2} \sin t$, considering c_{1}, c_{2} as functions of t. If you do it this way, you may obtain expressions such as, for example, $x(t)=-\frac{1}{2} t \cos t+\frac{1}{4} \sin 2 t \cos t+\frac{1}{2} \sin ^{3} t$. ${ }^{1}$ This may at first look different than the expression obtained above, but it describes the same solutions: we note that $\frac{1}{4} \sin 2 t \cos t+\frac{1}{2} \sin ^{3} t=\frac{1}{2} \sin t \cos ^{2} t+\frac{1}{2} \sin t \sin ^{2} t=\frac{1}{2} \sin t$ and the last function solves the homogeneous equation.
4. We have $\left(t^{r}\right)^{\prime}=r t^{r-1}$ and $\left(t^{r}\right)^{\prime \prime}=r(r-1) t^{r-2}$. Substituting these expression into the equation, we get $\operatorname{ar}(r-1)+b r+c=0$. Alternatively, we can use the substitution $t=e^{s}$. Our equation then changes to $a x^{\prime \prime}+(b-a) x^{\prime}+c x=0$ and the function t^{r} changes to $e^{r s}$. The characteristic equation for r will now be $a r^{2}+(b-a) r+c=0$, which is the same as $a r(r-1)+b r+c=0$.
5. The linear space of the solutions of the homogeneous equation has dimension 2 in this case. Hence we only have to show that the functions $t^{r_{1}}$ and $t^{r_{2}}$ are linearly independent over \mathbf{C} in $(0, \infty)$. Let us consider the equation $C_{1} t^{r_{1}}+C_{2} t^{r_{2}}=0$ for some constants C_{1}, C_{2}. Assuming the equation is satisfied at $t=t_{1}>0$ and at $t=t_{2}>0, t_{2} \neq t_{1}$, we see that the constants C_{1}, C_{2} must vanish when $\operatorname{det}\left(\begin{array}{cc}t_{1}^{r_{1}} & t_{1}^{r_{2}} \\ t_{2}^{r_{1}} & t_{2}^{r_{2}}\end{array}\right)=t_{1}^{r_{1}} t_{2}^{r_{2}}-t_{2}^{r_{1}} t_{1}^{r_{2}} \neq 0$. Letting $\frac{t_{1}}{t_{2}}=s$, we see that the determinant will not vanish when $s^{r_{1}} \neq s^{r_{2}}$, which is the case as long as $s \neq 1$ and $r_{1} \neq r_{2}$. Hence when $r_{1} \neq r_{2}$ the the expression $C_{1} t^{r_{1}}+C_{2} t^{r_{2}}$ is a general solution. Alternatively, we can use the change of variables $t=e^{s}$ to reduce our example to the case of the equation with the constant coefficients.
6. We have $\frac{d}{d t} E(t)=m \dot{x} \ddot{x}+V^{\prime}(x) \dot{x}=\dot{x}\left(m \ddot{x}+V^{\prime}(x)\right)=-\alpha \dot{x}^{2} \leq 0$.
7^{*}. (Optional) Substituting $p(z)=C \rho(z)$ into the equation $\frac{d p}{d z}=-g(z) \rho(z)$, we obtain $\frac{d \rho}{d z}=-g(z) \rho(z) \frac{1}{C}$, which is the same as $\frac{d \rho}{\rho}=-\frac{g(z) d z}{C}$. Integrating between ρ_{0} and ρ on the left-hand side and between 0 and z on the right-hand side, we obtain $\log \frac{\rho}{\rho_{0}}=-\frac{1}{C}(V(z)-V(0))$, where $V(z)=-\frac{\kappa M}{(R+z)}$. This gives $\rho=\rho_{0} e^{-\frac{V(z)-V(0)}{C}}$. Then $\lim _{z \rightarrow \infty} \rho(z)=\rho_{0} e^{\frac{V(0)}{C}}>0$, and hence the mass of the atmosphere cannot be finite (assuming the atmosphere is at equilibrium). When g is constant, a similar (an, in fact, easier) calculation gives $\rho=\rho_{0} e^{-\frac{g z}{C}}$, which is equivalent to replacing $V(z)-V(0)$ by $V^{\prime}(0) z$ in the formula for variable g.

8*. (Optional) We have $x^{\prime}(t)=p(x(t))$. Hence $x^{\prime \prime}=\frac{d p}{d x} x^{\prime}=p \frac{d p}{d x}$. Hence $x^{\prime \prime}=f\left(x, x^{\prime}\right)$ gives $p \frac{d p}{d x}=f(x, p)$.

[^0]
[^0]: ${ }^{1}$ Other forms are possible, depending on how we choose the constants of integration.

