Math 5525 Homework Assignment 1 - solutions Spring 2013

1. We recall that -~ arctan:n = + —— and hence

Oy 1122 = arctany —arctan (0 = arctany.

Alternatively, one can use the substitution x = tant. Then dx = d(tant) =

(1 +tan®t)dt, % = dt and letting s = arctany, we have

Y dx __ S _
01+:1:2_f0 dt =s.
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2. We recall that —arcsinz = i and hence

Jo 7=

Alternatlvely, one can use the substltutlon x = sint. Then \/% = dt and

arcsmy —arcsin(Q = arcsmy

letting s = arcsiny we have fo W _ f(f dt=s.
In this problem the value of y is restricted to |y| < 1. 1

1

3. We recall that - arcsmhm = e and hence

foy \/1‘117 = arcsmhy — arcsinh 0 = arcsinh y = log(y + /4% + 1).
Alternatively, one can use the substitution # = sinht. Then —%— = dt and

Vita?

letting s = arcsinh y we have [’ \/fl_‘:? = [ dt=s.

4. (i) 4 log|sect| = —4 log|cost| = S2L — tan¢. (Here we have used - log |z| =
1) The formula vahd 1n the classical sense only in intervals where cost does
not vanish.

Alternatively, in the integral f tant dt we can set cost = x Then (sint)dt = —dx
and [tantdt = [ -9 = —logz = log L = logsecz, where t € (—%,Z and all
equalities are considered modulo a constant. (Extension to other intervals is
obvious.)

(ii) & log|sect+tant| = (sec’ t+tan't) = ceost (sint 4 1y 1

1+sint \cos?t cos? t cost *

1
sect+tant
If we wish to calculate f sectdt “from scratch” there are several substitutions

which can be used. For example, the classical substitution tan% = z used for

trigonometric integrals gives sectdt = 12_d$2 and hence [sectdt = 12_d;”2 =
f(m + 1) dz = log (H'I) = log (sect + tant), assuming ¢t € (—%, %), and
taking all the equalities with the integrals modulo a constant. Another way to
do the integral is [sectdt = [ Cgsstzdtt = [ £=ldt which after the substitution
sint = x becomes [ 1_”?2 =1 log 1+z = log \/H'ir = log(sect + tant), where

we assumed ¢t € (=5, %) durlng the calculation and the equalities are taken
modulo constants.

LA side remark: one can play with extending the formula beyond this range, but it requires
some complex analysis. For example, we have arcsiny = % log(y/1 — y?+iy) and this formula
could be used to extend the integral for |y| > 1. The extension is not unique, as the function
arcsin y is a multi-valued function when considered in the complex plane, with branch points
at y = £1.



(iii) [4(sect tant)] +sect = tan’t sect +sect (1 + tan®t) + sect =
= 2sect(1+tan®t) = 2sec? t. If we wish to calculate “from scratch” we can write
[secdtdt = [ (1‘3053151;1’;)2 S/ (1_d9” > =125+ Llog <1+9”> = Lsecttant +

™

+ 1 [sectdt, where we used (ii). Again, we first work with t € (—%, %) and
then extend the formula to the remaining intervals.

5. We can write \/jfﬁ = dt. Recalling the integral f \/jfﬁ from Problem 3,
integrating between 0 and z on left-hand side and between 0 and ¢ on the right-
hand side, we obtain arcsinh z = ¢ which is the same as x = sinht. It is easy to
verify by direct calculation that this function indeed solves our problem.

6. Letting 8 = -, we can write gi‘év = dt. Integrating over (0,v) on the left-

hand side and over (0,¢) on the right-hand side, we obtain —1 5 log (== 5") =t
Solving for v, we obtain v = %(1 — e Pt). We see that the solutlon approaches

4 (from below) as ¢ — oo (and this can be in fact seen without calculation, by
looking at the phase diagram as discussed in Lecture 4), and therefore it makes
sense to call % the terminal velocity.

Optional part: we can Write = dt. We have fo

_ _ VE+
= 3 ls (e * ffv> d”_zwfalog\f
be equal to the integral of the right-hand side over (0,t), which is t. An easy

;%. We can see that v — /< (from
below) as t — co. This can be seen again without calculation, from the phase
portrait. The equation in the optional part is sound from the point of view of

physics only for v > 0, although it can be solved also for negative values of v.

g— 0'1)2_

. This expression should

calculation now shows v =

7*. (Optional) We can write 1"”5 = —adt and integrating on both sides we

have 12° — 12§ = —at. Hence z(t) = (z§ — cat)t for t € [O,:—E], with z(t)

vanishing at endpoint of this interval, while being strictly positive inside. We
can also write x(t) = xo(1 — 5%)%. Recalling that (1 —ey)s — e ¥ ase — 0,
0

and using that € — xf is increasing to 1 as € decreases to 0, we see that for
cach small § > 0 we have e ™9 < lim inf._,o, 2(t) <limsup,_,o, () < e .
Taking & — 04, we obtain the required result. Alternatively, we can calculate
log z(t) = log zg + 1 log(1 — E;—é) and use log(1 —y) = —y + O(y?) for y — 0, or

calculate the limit of the expression I log(1 — e4t) from 'Hopital’s rule.
0

8*. (Optional) Writing —a(t )dt and integrating on both sides we have
x(t) = xoe M, with A(t fo s)ds and the conclusion is clear from this
formula. Alternatively, we could argue as follows: clearly x(t) — 0 for ¢t — T if
and only if log () — —oo for ¢ — T. The intergartion of % = —a(t)dt gives
log z(t) = log g — A(t), the statement follows.



