
Math 5525 Homework Assignment 1 - solutions Spring 2013

1. We recall that d
dx arctanx = 1

1+x2 and hence∫ y

0
dx

1+x2 = arctan y − arctan 0 = arctan y .
Alternatively, one can use the substitution x = tan t. Then dx = d(tan t) =
(1 + tan2 t) dt , dx

1+x2 = dt and letting s = arctan y, we have∫ y

0
dx

1+x2 =
∫ s

0
dt = s .

2. We recall that d
dx arcsinx = 1√

1−x2
and hence∫ y

0
dx√
1−x2

= arcsin y − arcsin 0 = arcsin y .

Alternatively, one can use the substitution x = sin t . Then dx√
1−x2

= dt and

letting s = arcsin y we have
∫ y

0
dx√
1−x2

=
∫ s

0
dt = s .

In this problem the value of y is restricted to |y| ≤ 1. 1

3. We recall that d
dxarcsinhx = 1√

1+x2
and hence∫ y

0
dx√
1+x2

= arcsinh y − arcsinh 0 = arcsinh y = log(y +
√
y2 + 1).

Alternatively, one can use the substitution x = sinh t. Then dx√
1+x2

= dt and

letting s = arcsinh y we have
∫ y

0
dx√
1+x2

=
∫ s

0
dt = s .

4. (i) d
dt log | sec t| = − d

dt log | cos t| =
sin t
cos t = tan t. (Here we have used d

dx log |x| =
1
x .) The formula valid in the classical sense only in intervals where cos t does
not vanish.
Alternatively, in the integral

∫
tan t dt we can set cos t = x Then (sin t)dt = −dx

and
∫
tan t dt =

∫
−dx

x = − log x = log 1
x = log secx , where t ∈ (−π

2 ,
π
2 and all

equalities are considered modulo a constant. (Extension to other intervals is
obvious.)

(ii) d
dt log | sec t+tan t| = 1

sec t+tan t (sec
′ t+tan′ t) = cos t

1+sin t (
sin t
cos2 t+

1
cos2 t ) =

1
cos t .

If we wish to calculate
∫
sec t dt “from scratch” there are several substitutions

which can be used. For example, the classical substitution tan t
2 = x used for

trigonometric integrals gives sec t dt = 2dx
1−x2 and hence

∫
sec t dt =

∫
2dx
1−x2 =∫

( 1
1+x + 1

1−x ) dx = log
(

1+x
1−x

)
= log (sec t + tan t) , assuming t ∈ (−π

2 ,
π
2 ), and

taking all the equalities with the integrals modulo a constant. Another way to
do the integral is

∫
sec t dt =

∫
cos t dt
cos2 t =

∫
cos t dt
1−sin2 t

which after the substitution

sin t = x becomes
∫ −dx

1−x2 = − 1
2 log

1−x
1+x = log 1+x√

1−x2
= log(sec t + tan t), where

we assumed t ∈ (−π
2 ,

π
2 ) during the calculation and the equalities are taken

modulo constants.

1A side remark: one can play with extending the formula beyond this range, but it requires

some complex analysis. For example, we have arcsin y = 1
i
log(

√
1− y2+iy) and this formula

could be used to extend the integral for |y| > 1. The extension is not unique, as the function
arcsin y is a multi-valued function when considered in the complex plane, with branch points
at y = ±1.
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(iii)
[
d
dt (sec t tan t)

]
+ sec t = tan2 t sec t+ sec t (1 + tan2 t) + sec t =

= 2 sec t(1+tan2 t) = 2 sec3 t. If we wish to calculate “from scratch” we can write∫
sec3 t dt =

∫
cos t dt

(1−sin2 t)2
=

∫ −dx
(1−x2)2 = 1

2
x

1−x2 + 1
4 log

(
1+x
1−x

)
= 1

2 sec t tan t+

+ 1
2

∫
sec t dt , where we used (ii). Again, we first work with t ∈ (−π

2 ,
π
2 ) and

then extend the formula to the remaining intervals.

5. We can write dx√
x2+1

= dt. Recalling the integral
∫

dx√
x2+1

from Problem 3,

integrating between 0 and x on left-hand side and between 0 and t on the right-
hand side, we obtain arcsinhx = t which is the same as x = sinh t. It is easy to
verify by direct calculation that this function indeed solves our problem.

6. Letting β = α
m , we can write dv

g−βv = dt. Integrating over (0, v) on the left-

hand side and over (0, t) on the right-hand side, we obtain − 1
β log( g−βv

g ) = t.

Solving for v, we obtain v = g
β (1− e−βt). We see that the solution approaches

g
β (from below) as t → ∞ (and this can be in fact seen without calculation, by

looking at the phase diagram as discussed in Lecture 4), and therefore it makes
sense to call g

β the terminal velocity.

Optional part: we can write dv
g−σv2 = dt. We have

∫ v

0
dv

g−σv2 =

= 1
2
√
g

∫ v

0

(
1√

g+
√
σv

+ 1√
g−

√
σv

)
dv = 1

2
√
gσ log

√
g
σ+v√
g
σ−v

. This expression should

be equal to the integral of the right-hand side over (0, t), which is t. An easy

calculation now shows v =
√

g
σ

1−e−2
√

gσt

1+e−2
√

gσt . We can see that v →
√

g
σ (from

below) as t → ∞. This can be seen again without calculation, from the phase
portrait. The equation in the optional part is sound from the point of view of
physics only for v ≥ 0, although it can be solved also for negative values of v.

7∗. (Optional) We can write dx
x1−ε = −adt and integrating on both sides we

have 1
εx

ε − 1
εx

ε
0 = −at. Hence x(t) = (xε

0 − εat)
1
ε for t ∈ [0,

xε
0

εa ] , with x(t)
vanishing at endpoint of this interval, while being strictly positive inside. We
can also write x(t) = x0(1− ε at

xε
0
)

1
ε . Recalling that (1− εy)

1
ε → e−y as ε → 0+

and using that ε → xε
0 is increasing to 1 as ϵ decreases to 0, we see that for

each small δ > 0 we have e−
at

(1−δ) ≤ lim infε→0+ x(t) ≤ lim supε→0+ x(t) ≤ e−at.
Taking δ → 0+, we obtain the required result. Alternatively, we can calculate
log x(t) = log x0 +

1
ε log(1− ε at

xε
0
) and use log(1− y) = −y+O(y2) for y → 0, or

calculate the limit of the expression 1
ε log(1− ε at

xε
0
) from l’Hôpital’s rule.

8∗. (Optional) Writing dx
x = −a(t)dt and integrating on both sides we have

x(t) = x0e
−A(t), with A(t) =

∫ t

0
a(s)ds and the conclusion is clear from this

formula. Alternatively, we could argue as follows: clearly x(t) → 0 for t → T+ if
and only if log x(t) → −∞ for t → T+. The intergartion of dx

x = −a(t)dt gives
log x(t) = log x0 −A(t), the statement follows.
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