1. We recall that $\frac{d}{d x} \arctan x=\frac{1}{1+x^{2}}$ and hence
$\int_{0}^{y} \frac{d x}{1+x^{2}}=\arctan y-\arctan 0=\arctan y$.
Alternatively, one can use the substitution $x=\tan t$. Then $d x=d(\tan t)=$ $\left(1+\tan ^{2} t\right) d t, \quad \frac{d x}{1+x^{2}}=d t$ and letting $s=\arctan y$, we have $\int_{0}^{y} \frac{d x}{1+x^{2}}=\int_{0}^{s} d t=s$.
2. We recall that $\frac{d}{d x} \arcsin x=\frac{1}{\sqrt{1-x^{2}}}$ and hence
$\int_{0}^{y} \frac{d x}{\sqrt{1-x^{2}}}=\arcsin y-\arcsin 0=\arcsin y$.
Alternatively, one can use the substitution $x=\sin t$. Then $\frac{d x}{\sqrt{1-x^{2}}}=d t$ and letting $s=\arcsin y$ we have $\int_{0}^{y} \frac{d x}{\sqrt{1-x^{2}}}=\int_{0}^{s} d t=s$.
In this problem the value of y is restricted to $|y| \leq 1$. ${ }^{1}$
3. We recall that $\frac{d}{d x} \operatorname{arcsinh} x=\frac{1}{\sqrt{1+x^{2}}}$ and hence
$\int_{0}^{y} \frac{d x}{\sqrt{1+x^{2}}}=\operatorname{arcsinh} y-\operatorname{arcsinh} 0=\operatorname{arcsinh} y=\log \left(y+\sqrt{y^{2}+1}\right)$.
Alternatively, one can use the substitution $x=\sinh t$. Then $\frac{d x}{\sqrt{1+x^{2}}}=d t$ and letting $s=\operatorname{arcsinh} y$ we have $\int_{0}^{y} \frac{d x}{\sqrt{1+x^{2}}}=\int_{0}^{s} d t=s$.
4. (i) $\frac{d}{d t} \log |\sec t|=-\frac{d}{d t} \log |\cos t|=\frac{\sin t}{\cos t}=\tan t$. (Here we have used $\frac{d}{d x} \log |x|=$ $\frac{1}{x}$.) The formula valid in the classical sense only in intervals where $\cos t$ does not vanish.
Alternatively, in the integral $\int \tan t d t$ we can set $\cos t=x$ Then $(\sin t) d t=-d x$ and $\int \tan t d t=\int-\frac{d x}{x}=-\log x=\log \frac{1}{x}=\log \sec x$, where $t \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right.$ and all equalities are considered modulo a constant. (Extension to other intervals is obvious.)
(ii) $\frac{d}{d t} \log |\sec t+\tan t|=\frac{1}{\sec t+\tan t}\left(\sec ^{\prime} t+\tan ^{\prime} t\right)=\frac{\cos t}{1+\sin t}\left(\frac{\sin t}{\cos ^{2} t}+\frac{1}{\cos ^{2} t}\right)=\frac{1}{\cos t}$.

If we wish to calculate $\int \sec t d t$ "from scratch" there are several substitutions which can be used. For example, the classical substitution $\tan \frac{t}{2}=x$ used for trigonometric integrals gives sec $t d t=\frac{2 d x}{1-x^{2}}$ and hence $\int \sec t d t=\int \frac{2 d x}{1-x^{2}}=$ $\int\left(\frac{1}{1+x}+\frac{1}{1-x}\right) d x=\log \left(\frac{1+x}{1-x}\right)=\log (\sec t+\tan t)$, assuming $t \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, and taking all the equalities with the integrals modulo a constant. Another way to do the integral is $\int \sec t d t=\int \frac{\cos t d t}{\cos ^{2} t}=\int \frac{\cos t d t}{1-\sin ^{2} t}$ which after the substitution $\sin t=x$ becomes $\int \frac{-d x}{1-x^{2}}=-\frac{1}{2} \log \frac{1-x}{1+x}=\log \frac{1+x}{\sqrt{1-x^{2}}}=\log (\sec t+\tan t)$, where we assumed $t \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ during the calculation and the equalities are taken modulo constants.

[^0](iii) $\left[\frac{d}{d t}(\sec t \tan t)\right]+\sec t=\tan ^{2} t \sec t+\sec t\left(1+\tan ^{2} t\right)+\sec t=$ $=2 \sec t\left(1+\tan ^{2} t\right)=2 \sec ^{3} t$. If we wish to calculate "from scratch" we can write $\int \sec ^{3} t d t=\int \frac{\cos t d t}{\left(1-\sin ^{2} t\right)^{2}}=\int \frac{-d x}{\left(1-x^{2}\right)^{2}}=\frac{1}{2} \frac{x}{1-x^{2}}+\frac{1}{4} \log \left(\frac{1+x}{1-x}\right)=\frac{1}{2} \sec t \tan t+$ $+\frac{1}{2} \int \sec t d t$, where we used (ii). Again, we first work with $t \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and then extend the formula to the remaining intervals.
5. We can write $\frac{d x}{\sqrt{x^{2}+1}}=d t$. Recalling the integral $\int \frac{d x}{\sqrt{x^{2}+1}}$ from Problem 3, integrating between 0 and x on left-hand side and between 0 and t on the righthand side, we obtain $\operatorname{arcsinh} x=t$ which is the same as $x=\sinh t$. It is easy to verify by direct calculation that this function indeed solves our problem.
6. Letting $\beta=\frac{\alpha}{m}$, we can write $\frac{d v}{g-\beta v}=d t$. Integrating over $(0, v)$ on the lefthand side and over $(0, t)$ on the right-hand side, we obtain $-\frac{1}{\beta} \log \left(\frac{g-\beta v}{g}\right)=t$. Solving for v, we obtain $v=\frac{g}{\beta}\left(1-e^{-\beta t}\right)$. We see that the solution approaches $\frac{g}{\beta}$ (from below) as $t \rightarrow \infty$ (and this can be in fact seen without calculation, by looking at the phase diagram as discussed in Lecture 4), and therefore it makes sense to call $\frac{g}{\beta}$ the terminal velocity.
Optional part: we can write $\frac{d v}{g-\sigma v^{2}}=d t$. We have $\int_{0}^{v} \frac{d v}{g-\sigma v^{2}}=$
$=\frac{1}{2 \sqrt{g}} \int_{0}^{v}\left(\frac{1}{\sqrt{g}+\sqrt{\sigma} v}+\frac{1}{\sqrt{g}-\sqrt{\sigma} v}\right) d v=\frac{1}{2 \sqrt{g \sigma}} \log \frac{\sqrt{\frac{g}{\sigma}}+v}{\sqrt{\frac{g}{\sigma}}-v}$. This expression should be equal to the integral of the right-hand side over $(0, t)$, which is t. An easy calculation now shows $v=\sqrt{\frac{g}{\sigma}} \frac{1-e^{-2} \sqrt{g \sigma t}}{1+e^{-2 \sqrt{g \sigma t}}}$. We can see that $v \rightarrow \sqrt{\frac{g}{\sigma}}$ (from below) as $t \rightarrow \infty$. This can be seen again without calculation, from the phase portrait. The equation in the optional part is sound from the point of view of physics only for $v \geq 0$, although it can be solved also for negative values of v.
7^{*}. (Optional) We can write $\frac{d x}{x^{1-\varepsilon}}=-a d t$ and integrating on both sides we have $\frac{1}{\varepsilon} x^{\varepsilon}-\frac{1}{\varepsilon} x_{0}^{\varepsilon}=-a t$. Hence $x(t)=\left(x_{0}^{\varepsilon}-\varepsilon a t\right)^{\frac{1}{\varepsilon}}$ for $t \in\left[0, \frac{x_{0}^{\varepsilon}}{\varepsilon a}\right]$, with $x(t)$ vanishing at endpoint of this interval, while being strictly positive inside. We can also write $x(t)=x_{0}\left(1-\varepsilon \frac{a t}{x_{0}^{\varepsilon}}\right)^{\frac{1}{\varepsilon}}$. Recalling that $(1-\varepsilon y)^{\frac{1}{\varepsilon}} \rightarrow e^{-y}$ as $\varepsilon \rightarrow 0_{+}$ and using that $\varepsilon \rightarrow x_{0}^{\varepsilon}$ is increasing to 1 as ϵ decreases to 0 , we see that for each small $\delta>0$ we have $e^{-\frac{a t}{(1-\delta)}} \leq \liminf _{\varepsilon \rightarrow 0_{+}} x(t) \leq \lim \sup _{\varepsilon \rightarrow 0_{+}} x(t) \leq e^{-a t}$. Taking $\delta \rightarrow 0_{+}$, we obtain the required result. Alternatively, we can calculate $\log x(t)=\log x_{0}+\frac{1}{\varepsilon} \log \left(1-\varepsilon \frac{a t}{x_{0}^{\varepsilon}}\right)$ and use $\log (1-y)=-y+O\left(y^{2}\right)$ for $y \rightarrow 0$, or calculate the limit of the expression $\frac{1}{\varepsilon} \log \left(1-\varepsilon \frac{a t}{x_{0}^{\varepsilon}}\right)$ from l'Hôpital's rule.

8*. (Optional) Writing $\frac{d x}{x}=-a(t) d t$ and integrating on both sides we have $x(t)=x_{0} e^{-A(t)}$, with $A(t)=\int_{0}^{t} a(s) d s$ and the conclusion is clear from this formula. Alternatively, we could argue as follows: clearly $x(t) \rightarrow 0$ for $t \rightarrow T_{+}$if and only if $\log x(t) \rightarrow-\infty$ for $t \rightarrow T_{+}$. The intergartion of $\frac{d x}{x}=-a(t) d t$ gives $\log x(t)=\log x_{0}-A(t)$, the statement follows.

[^0]: ${ }^{1} \mathrm{~A}$ side remark: one can play with extending the formula beyond this range, but it requires some complex analysis. For example, we have $\arcsin y=\frac{1}{i} \log \left(\sqrt{1-y^{2}}+i y\right)$ and this formula could be used to extend the integral for $|y|>1$. The extension is not unique, as the function $\arcsin y$ is a multi-valued function when considered in the complex plane, with branch points at $y= \pm 1$.

