Midterm 2 will consists of 3-4 problems from the following three areas:

1. linear systems with constant coefficients $x^{\prime}=A x+f(t)$ (for general matrix A) and the second order systems $x^{\prime \prime}+A x=f(t)$ for a symmetric matrix A;
2. higher-order linear equations with constant coefficients $x^{(m)}+a_{1} x^{(m-1)}+\ldots+a_{m} x=f(t) ;$
3. Jordan form for matrices; skew-adjoint matrices (Section 2.11 in the textbook; orthogonal matrices (Section 2.12 in the textbook).

Sample problems:

1. Let $a, b, c \in(0, \infty)$ and consider equation $a u^{\prime \prime \prime \prime}-b u^{\prime \prime}+c u=0$ in \mathbf{R} for a complex-valued function $u=u(x)$. Let X be the space of all solutions of the equation and let $X_{+}=\left\{u \in X, \limsup _{x \rightarrow \infty}|u(x)|<\infty\right\}$ and $X_{-}=\{u \in$ $\left.X, \limsup \operatorname{sim}_{x \rightarrow-}|u(x)|<\infty\right\}$. Determine the dimensions $\operatorname{dim} X_{+}, \operatorname{dim} X_{-}$and decide whether $X=X_{+} \oplus X_{-}$.
2. Consider the system

$$
\begin{aligned}
x_{1}^{\prime \prime}+2 x_{1}+x_{2} & =0 \\
x_{2}^{\prime \prime}+x_{1}+2 x_{2} & =\cos \omega t
\end{aligned}
$$

Find all values ω for which all solutions of the system in the interval $(0, \infty)$ remain bounded.
3. Consider the system of equations

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2}-x_{1}, \\
x_{2}^{\prime} & =x_{3}-x_{2}, \\
x_{3}^{\prime} & =x_{1}-x_{3} .
\end{aligned}
$$

Show that for each solution $x(t)$ and each $j=1,2,3$ we have $x_{j}(t) \rightarrow \frac{x_{1}(0)+x_{2}(0)+x_{3}(0)}{3}$ as $t \rightarrow \infty$.
4. Assume that A is an $n \times n$ complex matrix with characteristic polynomial of the form $\operatorname{det}(A-\lambda I)=(\alpha-\lambda)^{n}$ for some $\alpha \in \mathbf{C}$. Show that $e^{t A}$ is given by

$$
e^{t A}=e^{\alpha t}\left(I+t(A-\alpha I)+\frac{t^{2}}{2!}(A-\alpha I)^{2}+\ldots+\frac{t^{n-1}}{(n-1)!}(A-\alpha I)^{n-1}\right) .
$$

(The main point is that the sum is finite.)

