Corrections to

Kogan, I.A., and Olver, P.J., The invariant variational bicomplex, Contemp. Math. 285 (2001), 131-144.

In (30), the second formula is missing a summation over i :

$$
\begin{equation*}
d_{\mathcal{V}} I^{\alpha}=\sum_{\beta=1}^{q} \mathcal{A}_{\beta}^{\alpha}\left(\vartheta^{\beta}\right), \quad d_{\mathcal{V}} \varpi^{j}=\sum_{i=1}^{p} \sum_{\beta=1}^{q} \mathcal{B}_{i, \beta}^{j}\left(\vartheta^{\beta}\right) \wedge \varpi^{i}, \tag{30}
\end{equation*}
$$

A sign error in the third displayed equation on page 142 propagated. The corrected version of the affected text follows:

Further,

$$
\begin{aligned}
& d_{\mathcal{V}} \varpi^{1}=-\kappa^{1} \vartheta \wedge \varpi^{1}+\frac{1}{\kappa^{1}-\kappa^{2}}\left(\mathcal{D}_{1} \mathcal{D}_{2}-Z_{2} \mathcal{D}_{1}\right) \vartheta \wedge \varpi^{2} \\
& d_{\mathcal{V}} \varpi^{2}=\frac{1}{\kappa^{2}-\kappa^{1}}\left(\mathcal{D}_{2} \mathcal{D}_{1}-Z_{1} \mathcal{D}_{2}\right) \vartheta \wedge \varpi^{1}-\kappa^{2} \vartheta \wedge \varpi^{2}
\end{aligned}
$$

which yields the Hamiltonian operator complex

$$
\begin{aligned}
& \mathcal{B}_{1}^{1}=-\kappa^{1}, \\
& \mathcal{B}_{2}^{2}=-\kappa^{2},
\end{aligned} \quad \mathcal{B}_{2}^{1}=\frac{1}{\kappa^{1}-\kappa^{2}}\left(\mathcal{D}_{1} \mathcal{D}_{2}-Z_{2} \mathcal{D}_{1}\right)=\frac{1}{\kappa^{1}-\kappa^{2}}\left(\mathcal{D}_{2} \mathcal{D}_{1}-Z_{1} \mathcal{D}_{2}\right)=-\mathcal{B}_{1}^{2}
$$

Therefore, according to our fundamental formula (9.24), the Euler-Lagrange equation for a Euclidean-invariant variational problem is

$$
\begin{aligned}
0=\mathbf{E}(L)=[& \left.\left(\mathcal{D}_{1}+Z_{1}\right)^{2}-\left(\mathcal{D}_{2}+Z_{2}\right) \cdot Z_{2}+\left(\kappa^{1}\right)^{2}\right] \mathcal{E}_{1}(\widetilde{L}) \\
& +\left[\left(\mathcal{D}_{2}+Z_{2}\right)^{2}-\left(\mathcal{D}_{1}+Z_{1}\right) \cdot Z_{1}+\left(\kappa^{2}\right)^{2}\right] \mathcal{E}_{2}(\widetilde{L})+\kappa^{1} \mathcal{H}_{1}^{1}(\widetilde{L})+\kappa^{2} \mathcal{H}_{2}^{2}(\widetilde{L}) \\
& +\left[\left(\mathcal{D}_{2}+Z_{2}\right)\left(\mathcal{D}_{1}+Z_{1}\right)+\left(\mathcal{D}_{1}+Z_{1}\right) \cdot Z_{2}\right] \cdot\left(\frac{\mathcal{H}_{2}^{1}(\widetilde{L})-\mathcal{H}_{1}^{2}(\widetilde{L})}{\kappa^{1}-\kappa^{2}}\right) .
\end{aligned}
$$

As before, $\mathcal{E}_{\alpha}(\widetilde{L})$ are the invariant Eulerians with respect to the principal curvatures κ^{α}, while $\mathcal{H}_{j}^{i}(\widetilde{L})$ are the invariant Hamiltonians. In particular, if $\widetilde{L}\left(\kappa^{1}, \kappa^{2}\right)$ does not depend on any differentiated invariants, the Euler-Lagrange equation reduces to

$$
\left[\left(\mathcal{D}_{1}^{\dagger}\right)^{2}+\mathcal{D}_{2}^{\dagger} \cdot Z_{2}+\left(\kappa^{1}\right)^{2}\right] \frac{\partial \widetilde{L}}{\partial \kappa^{1}}+\left[\left(\mathcal{D}_{2}^{\dagger}\right)^{2}+\mathcal{D}_{1}^{\dagger} \cdot Z_{1}+\left(\kappa^{2}\right)^{2}\right] \frac{\partial \widetilde{L}}{\partial \kappa^{2}}-\left(\kappa^{1}+\kappa^{2}\right) \widetilde{L}=0
$$

For example, the problem of minimizing surface area has invariant Lagrangian $\widetilde{L}=1$, and so has the well-known Euler-Lagrange equation $\mathbf{E}(L)=-\left(\kappa^{1}+\kappa^{2}\right)=-2 H=0$, and hence minimal surfaces have vanishing mean curvature. The mean curvature Lagrangian $\widetilde{L}=H=\frac{1}{2}\left(\kappa^{1}+\kappa^{2}\right)$ has Euler-Lagrange equation

$$
\frac{1}{2}\left[\left(\kappa^{1}\right)^{2}+\left(\kappa^{2}\right)^{2}-\left(\kappa^{1}+\kappa^{2}\right)^{2}\right]=-\kappa^{1} \kappa^{2}=-K=0 .
$$

