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Bicklund's theorem, which characterizes contact transformations, is generalized
to give an analogous characterization of “internal symmetries™ of systems of
differential equations. For a wide class of systems of differential equations, we prove
that every internal symmetry comes from a first order generalized symmetry and,
conversely, every first order generalized symmetry satisfying certain explicit contact
conditions determines an internal symmetry. We analyze the contact conditions in
detail, deducing powerful necessary conditions for a system of differential equations
that admit “genuine” internal symmetries, i.e, ones which do not come from
classical “external” symmetries. Applications include a direct proof that both the
internal symmetry group and the first order generalized symmetries of a remarkable
differential equation due to Hilbert and Cartan are the noncompact real form of the
exceptional simple Lie group G,. € 1993 Academic Press, Inc.

1. INTRODUCTION

Classically, the symmetry group of a system of differential equations is a
local group of point transformations, meaning local diffeomorphisms on
the space of independent and dependent variables, which map solutions of
the system to solutions. Connected symmetry groups are effectively
calculated using Lie’s infinitesimal method and have numerous applica-
tions, including integration of ordinary differential equations, group-
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invariant solutions of partial differential equations, conservation laws,
bifurcation theory, etc.; cf. [8,15,17]. Over the years, a number of
different generalizations of the concept of a symmetry group of a system
of differential equations have been proposed. One of the principal purposes
of this paper is to interconnect several of these generalizations.

Lie himself [13] regarded symmetries of differential equations as groups
of contact transformations, which are local diffeomorphisms of the nth
order jet bundle J" which preserve the contact ideal. In general, so as to
distinguish Lie’s type of symmetries from others, we call them external
symmelries, since they are also defined external to the system of differential
equations. Unfortunately, contact transformations do not significantly
extend point transformations except in the special case of one dependent
variable, since , according to Backlund’s theorem [1, 8], any contact trans-
formation on J” is the prolongation of a first order contact transformation,
or, if the fiber dimension (number of dependent variables) is greater than
one, of an ordinary point transformation.

A second significant generalization of classical symmetries, which
includes Lie’s contact symmetries, is the generalized symmetries first
introduced by E. Noether [14] in her famous theorem relating variational
symmetries and conservation laws; these have received renewed attention
due to the role they play in completely integrable (soliton} nonlinear partial
differential equations; cf. [15]. Here, as with contact transformations, the
infinitesimal generators are allowed to depend on derivatives of the
dependent variables, but one relaxes the restriction that the vector field
generates a one-parameter transformation group on any finite order jet
space. In the case of one dependent variable, every first order generalized
symmetry determines a contact symmetry and conversely, whereas higher
order generalized symmetries, or first order generalized symmetries in the
case of several dependent variables, provide examples of non-geometrical
symmetries.

An alternative, more geometrical, generalization of the symmetry group
concept is the internal symmetry groups which appear in the works of Elie
Cartan (cf. [2-4]); they are also known in the literature as “dynamical
symmetries” (cf. [17]). Recall that a (reasonable) system of nth order
differential equations will determine a submanifold of the nth order jet
bundle: # < J”. Since one is usually only interested in the action of a
symmetry group on the solutions of the system of differential equations,
one really need only consider its (prolonged) action restricted to the
submanifold #, and so the conditions that the transformation preserve
the contact ideal need only be imposed on #. Thus, an internal symmetry
of the system is defined as a transformation which maps the equation
submanifold to itself and also preserves the contact ideal restricted to the
submanifold. The restrictions of Bicklund’s theorem no longer apply to
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internal symmetries, and there are examples of internal symmetry trans-
formations which are not prolongations of first order transformations;
see Example 8 below. Note that every external symmetry of a system of
differential equations gives rise to an internal symmetry by restricting to
the equation manifold. In many cases, all internal symmetries arise this
way; see Cartan [2] for the case of a single parabolic partial differential
equation, Gardner and Kamran [5] for the hyperbolic and elliptic cases,
and Krasil'shchik, Lychagin, and Vinogradov [ 127 and the final section of
this paper for general normal systems of partial differential equations.

The principal objective of this paper is to interrelate the above symmetry
concepts. Specifically we are interested in the precise relationship between
internal symmetries and generalized symmetries so as to generalize the
connection between contact transformations and first order generalized
symmetries. This program was motivated by a highly intriguing under-
determined ordinary differential equation studied by Hilbert [6] and Cartan
[3, 4]. The Hilbert-Cartan equation, which is just v’ = (1”)?, was shown by
Cartan, as a consequence of his work on Pfaffian systems in five variables
[2], to have as its internal symmetry group the exceptional simple Lie
group G,. In answer to a question posed by Robert Bryant, the first order
generalized symmetry group of the Hilbert—Cartan equation was calculated
and was found to be the same group G,. This paper arose out of an
attempt to understand why these two computations gave the same answer.

Our results answer this question in general and can be summarized as
follows. First, and obvious, is the fact that every external symmetry
restricts to an internal symmetry. In many cases, all internal symmetries
arise in this way, although the Hilbert-Cartan equation is a significant
exception; in the final section we present some preliminary results in this
direction. Second, under a certain condition on the system, which we
name the “descent property,” we prove that every internal symmetry comes
from a first order generalized symmetry, a result that significantly
ameliorates the computation of these symmetries. The systems covered by
this result include all second order systems of differential equations, all
normal systems of partial differential equations, and a wide class of higher
order underdetermined ordinary differential equations; the principal excep-
tional cases are the normal systems of ordinary differential equations of
order three or more. Finally, we prove that every first order generalized
symmetry which satisfies additional contact conditions is equivalent to an
internal symmetry. In certain cases, such as the “codimension 1” ordinary
differential equations, of which the Hilbert-Cartan equation is a particular
example, there are no contact restrictions, hence there is a one-to-one
correspondence between internal symmetries and first order generalized
symmetries. This explains the aforementioned calculations for the
Hilbert-Cartan equation. More generally, in the case of systems of
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ordinary differential equations, the contact conditions naturally split into
“tangential” and “normal” components. First order generalized symmetries
which satisfy the tangential contact conditions give rise to internal sym-
metries. In the case of systems of partial differential equations, the contact
conditions are much more restrictive and, in many cases, preclude the
existence of any “genuine” internal symmetries, meaning ones that do not
come from restriction of an external symmetry. In particular, we prove that
every internal symmetry of a normal system of partial differential equations
(meaning a system that can be placed into Cauchy-Kovalevskaya form) of
order at least two extends to an external symmetry, hence only for first
order normal systems of partial differential equations can interesting new
internal symmetries arise. Further results based on analysis of the charac-
teristic variety of the system for the existence of non-extendable internal
symmetries are discussed, including a few examples. However, the complete
analysis of the contact conditions remains a significant open problem.

Qur principal results can be regarded as a generalization of Backlund’s
theorem to systems of differential equations, in that contact transforma-
tions can be viewed as “internal symmetries” of the entire jet space. Internal
symmetries form an intermediate and interesting class of symmetries
between the classical external symmetry groups and completely general
generalized symmetries and are the most general local geometrical transfor-
mation groups which map the space of solutions to a system of differential
equations to itself. Applications of internal symmetries toward the integra-
tion of differential equations and the determination of explicit solutions
remain to be investigated in depth.

There are two possible expository styles available for the presentation of
our results, the first being a concrete approach using local coordinates and
explicit calculations, and the second a more abstract, invariant formulation.
In the present paper, results are proved in local coordinates, allowing for
concrete calculations and leading to immediate applications; however, this
approach is slightly restrictive in that the theorems are not as general as
can be proved using a more powerful coordinate-free machinery. We
believe that the two approaches are complementary, the first having the
advantage of being immediately applicable to most practical examples,
whereas the second leads to more synthetic, general formulations of the key
results. However, to make the results understandable by as wide an
audience as possible, we have chosen to adopt the less abstract mode.

2. POINT SYMMETRIES

We begin with a brief review of the classical local theory of symmetry
groups of differential equations and refer the reader to [15, 17] for more
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detailed treatments. Consider a system of differential equations in p
independent variables x = (x', ..., x*), which form local coordinates on the
base space X, and g dependent variables u=(u', .., u%), which are fiber
coordinates on the space U, the total space being the trivial bundle
E=XxU over X. The derivatives of the u’s are denoted by u%= 8’u*/dx’,
where J=(j,, .., j,), 1<j.,<p, is a symmetric multi-index of order
n=#J. We let «" denote all derivatives of orders <n, which provide
(fiber) coordinates on the jet space J"=J"F over X.
A system of nth order differential equations

4.(x, u"")=0, k=1,..,r, (2.1)

is nondegenerate if it is of maximal rank and is locally solvable [15,
Sect. 2.6]. The maximal rank condition is that the full Jacobian matrix of
the system have rank r,

A,
rank (6 < aA">=r, (2.2)

i 2
ox'’ du

at each (x, u™) satisfying (2.1). In this case, (2.1) defines a submanifold
Ac<J", and a solution uw= f(x) of (2.1) can then be identified with a
smooth section of the bundle E the graph of whose »n-jet {nth prolongation)
u'=j, f(x) is contained in #. The system is locally solvable if, for every
point (x,, ") e R, there is a solution u = f(x) defined in a neighborhood
of x, such that u{"=j,f(x,). Local solvability in particular implies that
the system is “involutive,” ie., has no integrability conditions. We also
assume that the system contains no equations involving solely the inde-
pendent variables, meaning that the projection £ — X is onto. We define
the kth prolongation of the system (2.1) to be the system of partial
differential equations

Dyd,.(x,u"™)=0, k=1,..,r, 0< #K<k, (2.3)
obtained by differentiating the equations up to order k. Here
d d d
Di=—+ Y Ui (2.4)
ox' 7 #Jzzo o3

denotes the total derivative with respect to x', and Dx=D, D,,... D, , the
corresponding mth order total derivative . We assume that each prolon-
gation of 2 is also nondegenerate, so, for each k>0, (2.3) defines the
prolonged submanifold pr'® # < J+*,

A “classical” symmetry group of the system (2.1) is a (local) group G
of point transformations ¢: E — E which map solutions of the system to
solutions. Assuming local solvability, this is equivalent to the requirement
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that the prolonged transformation pr'”’ @:J” — J” preserve the equation
manifold 4, i.e.,
pr' &: R — A

Assuming connectivity of the group, we can check this condition using
Lie’s infinitesimal criterion for invariance. Let @, be a one-parameter
susbgroup of G and let

P

=3 &ix, u)é’ -+ Z @*(x, u) (2.5)
i=1 x=1
be the infinitesimal generator of @,. The prolonged vector field

pr'™y = z é' + 2 Y @) 6 (2.6)

i=1 x=1#J<n

is the infinitesimal generator of the corresponding prolonged one-parameter
subgroup pr'”’ @,. Here the coefficients ¢3 are determined recursively via
the standard prolongation formula [15, (2.44)]

(p.o;.l'zbi(pj Z D ékujk (27)

THEOREM 1. Suppose the system of partial differential equations (2.1)
is nondegenerate. Then a connected group of point transformations G is a
symmetry group of the system if and only if the “determining equations”

prv(4,)=0, k=1,..,r, (2.8)

vanish whenever u= f(x) is a solution to (2.1) for every infinitesimal
generator v of G.

The effective computation of symmetry groups using this result is well
known [8, 15, 17] and has been applied to many examples of interest.
Algorithms for computing symmetry groups have been successfully
implemented in a number of computer algebra systems, including
MacsyMa, REDUCE, and SCRATCHPAD; see [9, 16].

3. CoNTACT TRANSFORMATIONS AND EXTERNAL SYMMETRIES

The nth order contact ideal I'™ is the differential ideal on J" annihilated
by all n-jets of sections u = f(x) of E. In local coordinates, 7" is generated
by the contact forms

14
Or=du’— Y u3,dx’, a=1,.,q9 O0<#J<n (3.1

i=1
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A contact transformation is a (locally defined) map
v Jr - Jn
which preserves the contact ideal
g = pon, (3.2)

Any contact transformation on J” has a natural prolongation to any higher
order jet space J"**, k> 0. In particular, any prolonged point transforma-
tion will determine a contact transformation. Backlund’s theorem (cf. [1])
imposes significant restrictions on the possible further types of contact
transformations.

THEOREM 2. Let ¥:J" —~ J" be a contact transformation, where J" = J"E
is the n-jet space of the bundle E which has q-dimensional fibers. If g=1,
then ¥ is the (n— 1)st prolongation of a first order contact transformation
JIE If g> 1, then ¥ is the nth prolongation of a point transformation on E.

The infinitesimal generator of a one-parameter group of contact transfor-
mations is a vector field

P
=3 &x,u")y— 6 —+ Z Y @ixu (3.3)
i=1

a=1 #J<n

on J". The infinitesimal version of the contact condition (3.2) is that the
Lie derivative of any contact form with respect to X is contained in the
contact ideal

X(I'"™) < I, (3.4)

The standard infinitesimal proof of Bicklund theorem (cf. [8,17])
proceeds in outline as follows. (See the proof of Theorem 15 below for
details.) Applying X to the contact form (3.1) implies that the coefficients
@’ of X are related by the prolongation formula (2.7). Close inspection of
these conditions coupled with the fact that these coefficients can depend
on at most nth order derivatives of the w’s leads to the fact that X is
the prolongation of the infinitesimal generator of a first order contact
transformation

Y= i Ex, u") i (x, u

1 .

+ Z Z @X(x,u (3.5)

a=1i=1



60 ANDERSON, KAMRAN, AND OLVER

In order that Y preserve the contact ideal /'), the coefficients ¢* must be
given by

do* Lot L a&! P4 ;
Ql=—"+ ) F_ ——ur—y Z ,u u?, (3.6)
4o o’ ,:1‘7-" P ﬂ_l(" u

and, moreover, the coefficients &', ¢* must satisfy the contact conditions

14 5 i
Z é (3.7)

Note that (3.6), (3.7) are equivalent to the usual prolongation formula
(2.7), ie.,

P
=D,p"~ Y D&u, (38)

i=1

and the requirement that the right-hand side of this formula only depend
on first order derivatives. If g> 1, the integrability conditions for the
system of partial differential equations (3.7) will require that ¢, ¢* depend
only on x, u, and so every contact transformation reduces to a point
transformation.

The condition that a contact transformation or vector field define a
symmetry of a system of differential equations is the same as that discussed
above, and the infinitesimal symmetry criterion of Theorem 1 holds as
before. We call a group of contact transformations which preserves a given
system of differential equations an external symmetry group as the transfor-
mations are (locally) defined on (open subsets of ) the jet space J”, so as
to contrast them with internal symmetry groups to be considered later.

4. GENERALIZED SYMMETRIES

To further generalize the symmetry group concept, we allow the coef-
ficients &’ and ¢@* of the vector field v given by (2.5) to depend on higher
derivatives u'”, but we relax the requirement that its prolongation generate
a geometrical transformation group on the jet space J". Thus a kth order
generalized vector field is a first order partial differential operator of the
form

&'(x, u“");{

(4.1)

1 x=1

-
Il
I M
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The prolongation of v has the same form as that above; cf. (2.6), (2.7).
There is, however, a more convenient representation for this prolongation
formula; cf. [15]. Define the characteristic of v to be the g-tuple of
functions Q =(Q’, ..., 0¥) with

ou*

- =1,.,q. 42
ax,, a=1,.,q. (42)

4
Q’(x, u'k))=(p \T u(k) Z (k)

By definition, the evolutionary vector field

VQ—Z Q% (x,

a=1

(4.3)

is called the “evolutionary form” of v. Note that v, has elementary
prolongation

pr'v, Z Y (D,;Q.) a a. (4.4)

=1 #J<n

Then v itself has prolongation

14
prWv=prv,+ Y E(x, u) D, (4.5)

i=1

where D, denotes the nth order truncation of the total derivative, i.e., we
sum (2.4) only for #J<n.

The condition that v be a generalized symmetry of the system of differen-
tial equations (2.1) is the same as that given in Theorem 1. Note that, when
verifying the symmetry condition (2.8), one must take into account not
only the system (2.1), but also its kth prolongation, (2.3). Once one fixes
the order of derivatives upon which the coefficient functions &' and ¢* in
(4.1) can depend, the determining equations (2.8) can, in most cases, be
solved, although the computations are even more tedious than those in the
case of point or contact symmetries. There is, however, one simplification
which can be effected in this generalized context. Since any linear combina-
tion of the total derivatives 3" &'D, is trivially a generalized symmetry of
any system of partial differential equations, we deduce using (4.5) that v is
a generalized symmetry of a system of partial differential equations if and
only if its evolutionary form v,, is.

An evolutionary vector field v, is a trivial symmetry of (2.1) if the
characteristic Q(x, u'"') vanishes on all solutions to (2.1). Two generalized
symmetries v and w are equivalent if their respective evolutionary forms
differ by a trivial evolutionary symmetry.

A generalized vector field is not usually a well-defined vector field on any
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jet bundle J” since its nth prolongation will involve derivatives of orders up
to k£ + n, which is greater than n. Beyond prolonged points transformations,
the only exceptions to this are the infinitesimal contact transformations,
which correspond to first order generalized symmetries in the case g = 1.

THEOREM 3. Let v, be an evolutionary vector field. Then v is the
evolutionary form of an infinitesimal contact transformation if and only if its
characteristic Q(x, u'") depends on at most first order derivatives, and there
exist functions E(x, u''"), i =1, .., p, which satisfy the contact conditions

aQ*

‘&l—ﬁ+5;§i=0. (4.6)

Proof. Indeed. if (4.6) holds, we can define

»
¢ =0+ ) &u; (47)
i=1
and see that (4.6) is equivalent to the contact conditions (3.7). In the case
of one dependent variable, ¢ =1, the contact conditions (4.6) serve to
define the coefficients ¢’ Thus, any first order generalized symmetry will
give rise to a contact transformation. Indeed, the characteristic Q(x, u'")
can be identified with the negative of Lie’s characteristic function [13]
(hence the name). For more than one dependent variable, ¢>1, the
integrability conditions for (4.6) will imply that the £’s are independent of
the derivatives «?, and hence the symmetry is just the evolutionary form of
a point transformation.

5. INTERNAL SYMMETRIES

Any external symmetry group G of a nondegenerate system of differential
equations is characterized by two conditions: (1)the prolonged group
transformations map the equation manifold # to itself, and (2) they
preserve the contact ideal on J". Backlund’s theorem demonstrates that the
second condition is very restrictive. However, since we are usually only
interested in what a transformation in G does to solutions of the system of
differential equations, and hence its restriction to the equation submanifold
Z, it makes sense to relax the second condition and only require that the
transformation preserve the contact ideal on #, rather than all of J". This
leads to the definition of an internal symmetry.

DErFINITION 4. Let #<J” be a system of differential equations. An
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internal symmetry of the system is an invertible transformation ¥: # — #
which maps Z to itself and which preserves the restriction (pull-back) of
the contact ideal to #:

YD | Ry I'™| R (5.1)

Here, and below, we use the notation |# to denote the pull-back of
differential forms to the submanifold £.

Note that internal symmetries also map solutions of the system to solu-
tions. Clearly any external symmetry restricts to an internal symmetry, but
it is not necessarily true that an internal symmetry can be extended off the
solution manifold to a contact transformation. Indeed, Bicklund’s theorem
in its original form no longer holds for internal symmetries, and, as we
shall see, there are nth order internal symmetries which are not the
prolongation of any lower order contact map.

In the case of connected local Lie groups of internal symmetries, we can
again work infinitesimally. Let X be a vector field which is tangent to the
equation submanifold #. In local coordinates, X takes the form

(5.2)

X= Zé(x, "”)a,+z Y @ix,u

i=1 a=1 #J<n

where the coefficients ¢’ and ¢ are just defined on #. Moreover, they must
satisfy the tangency (symmetry) condition

X(4.)=0 on (21), «&=1,.,r (5.3)

In addition, in analogy with (3.4), X must preserve the restriction of the
contact ideal to the submanifold 2,

X(I"| R) < I'™| R, (5.4)

where the left-hand side refers to the Lie derivative with respect to X. Note
that the projection of X to the bundle E determines an nth order
generalized vector field

q

v=n(X)= Z Ex, u™) Z o*(x, u'™) 8i°" (5.5)

It is not difficult to see that v is a generalized symmetry of the system
whose prolongation agrees with X when restricted to #. Moreover, since
the coefficients &', ¢* are only defined on £, the generalized vector field v
is only defined up to a trivial generalized symmetry.

THEOREM 5. Ler X be an internal symmetry for the nth order system

607:100:1-3
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of differential equations R<J". Let v=n(X). Then v is a generalized
symmetry of the system and, moreover, X = pr™ v on pr' .

Proof. Let w=X —pr'v, so that w has the form

W=

o

I ™=

0
Y Wsx U —.
1 1< #J<n ous

Since w has no d/dx’ or ¢/0u* components, the Lie derivative of the zeroth
order contact form 0% with respect to w is given by

W(0%) = w (du“ Y dxf> — _Syrav

This is required to vanish on pr™ 2, and since the dx’ are independent on
A, this implies =0 on pr'” #. Continuing to the first order contact
forms, we find

w(OT)=dyr—) ¢, dx’. (5.6)

J

Note that since Yy*=0 on pr'” #, the differentials dyy?=0 vanish on
pr #, hence for (5.6) to vanish on pr” #, we must have Y} ;=0 on
pr'" # also. The induction step is now clear, and the proof is easily
completed.

6. NORMAL SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

Rather than study internal symmetries in general straightaway, it is
perhaps easier to work our a few specific examples in detail first. We begin
with the simplest case, which is that of a normal system of ordinary
differential equations (as opposed to the underdetermined systems to be
treated in the next section). By definition, a normal system of ordinary
differential equations is one of the form

w = F*(x,u" "), a=1,..,q, (6.1)

in which the number of equations is the same number of unknowns, and
we have solved for the top order derivatives. (Here u= D’ u*) Note that
by differentiating the system, we can re-express the nth and higher order
derivatives of the u's in terms of (x,u"" V). For example, u?,,
F3(x,u” V), where

) S aF* & oF*
Fa,, (n—1} =—4 4 —_— Fﬁ . (n—1) - 6.2
T(x, u ) ox g; jgl Ly a“/['i+a=1 (x, u )5u5¥1 (6.2)
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Therefore, when restricted to the system, the prolongation of any
generalized vector field is equivalent to a vector field on J” which still
preserves the contact ideal restricted to the system and so is an internal
symmetry. Thus the following elementary converse to Theorem 5 is easily
established:

THEOREM 6. Any generalized symmetry of a normal system of ordinary
differential equations restricts to an internal symmetry. Conversely, any
internal symmetry is equivalent to a generalized symmetry of order at most
n—1.

Note that while the nth order truncated total derivative

,_é;+z Z 1+laa (6.3)

a=1 j=1

is not a vector field on J” (it also involves the (n + 1)st order derivatives),
it nevertheless restricts to a vector field

d, "—q-{- i Zzu 0 Z F*(x,u" ") 0
ox a=1 j=1 j*]a “ o= au:*I
J o n—1) a
+a§lFl(x,u )au: (6.4)

on the system (6.1). The vector field (6.4) is trivially an internal symmetry.
(Note that (6.2) is the same as F}=d_F,, and, indeed, u*,,=F;=d*F,
on solutions.) Moreover, any multlple of the truncated total derivative,
E(x, u” 1) D_, also restricts to an internal symmetry &(x, u**~ ) d, of the
system. These should be thought of as “trivial” internal symmetries, with
two internal symmetries equivalent if they differ by a trivial one. (We
remark that this notion of trivial internal symmetries does not extend to
underdetermined systems of ordinary differential equations or to systems of
partial differential equations.) Geometrically, the trivial internal symmetries
have the following interpretation. Since we are dealing with a system of
ordinary differential equations, the submanifold # will be “foliated” by the
prolongations (n-jets) of the solution curves u'"’=pr" f(x). The vector
field d, is then just the infinitesimal generator of the translation group along
these solution curves: the group element ¥,=exp(ed,) takes the point
(x, u')=(x, pr'" f(x)) e & to the point ¥ (x, u"™)=(x+e, pr'’™ f(x +¢))
on the same curve. A more general trivial internal symmetry &(x, «"~ '} d,
will accordingly determine a reparametrized translation along the same
solution curves of the system,

Thus, the correspondence between internal symmetries and generalized
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symmetries is not one-to-one in the case of normal systems of ordinary
differential equations. (See also Stephani [17, (12.2.1), p. 114].) Moreover,
not every internal symmetry comes from a first order generalized
symmetry; a simple counterexample is provided by the third order equation
u” =0, which has the second order generalized symmetry v=u"J,. Note
that, in view of the equation, pr'*’ v=v, so the symmetry is internal, as
guaranteed by Theorem 6, but is clearly not equivalent to any first order
generalized symmetry. More generally, suppose we rewrite the nth order
system (6.1) as an equivalent first order system of ordinary differential
equations in the standard manner by introducing new variables repre-
senting the derivatives of the u*’s up to order n — 1. Then any symmetry of
the first order system will correspond to a generalized symmetry of order
<n—1 of the original system (6.1). But, at least away from singular points,
any first order system of ordinary differential equations has infinitely many
symmetries, [15], so we conclude that, locally, any normal system of
ordinary differential equations has an infinite number of generalized
symmetries of order <n—1.

7. UNDERDETERMINED SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

Theorem 6 completes the general determination of internal symmetries
of a normal system of ordinary differential equations. We now shift our
attention to the case of underdetermined systems of ordinary differential
equations. Our general results are easier to understand if we begin by
considering the following instructive example, which includes the
remarkable Hilbert—Cartan equation as a special case.

THEOREM 7. For a single underdetermined second order equation

u'=F(x,u,u,v,0,0"), (7.1)
in two unknowns, there is a one-to-one correspondence between first order
generalized symmetries and internal symmetries.

It should be emphasized that the correspondence between first order
generalized symmetries and internal symmetries is genuinely one-to-one;
there are no trivial symmetries of either type because (a) the equation is of
second order, and (b) the total derivative does not truncate to form an
internal symmetry as in the normal case discussed above.

Proof. First suppose
v=0(x, u,v,u, 0 )0, + R(x,u,v,u’,v') 0, (7.2)
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is a first order generalized symmetry, which we assume, without loss of
generality, to be in evolutionary form. Its prolongation to J? is

pr¥v=00,+R6,+D . Q0,+D, R0, +D2>Q3, +D2RJ,.,

which may depend on third order derivatives. The goal is to find an
equivalent generalized symmetry whose prolongation, when restricted to
the equation submanifold # determined by (7.1), depends only on second
order derivatives. Note that we have the freedom of (a) using the equation
and its derivatives to replace second and higher order derivatives of », and
(b) using the equivalence condition between generalized vector fields to
add on any multiple £5, of the second order truncated total derivative to
pr¥y.
First of all, differentiating the equation, we find that

u” =D F=F,v" +0(2),

where O(k) indicates terms that depend only on kth and lower order
derivatives of u and v. Hence »” can be rewritten in terms of the variables
x, u, v, u, v, u", v”, v”. Therefore, to obtain a genuine vector field on the
equation manifold, we need only eliminate the v” dependency in pr'*'v.
Second, since

D2R=R,u"+R.v"+0(2)=(R,F,+R,) "+ 0(2),

we see that, when restricted to the equation (7.1),

pr?v=(R,Fo+R)0" 8, +(QuF+Qu) 0" 0, +X,

where the coefficients of X only depend on x, u, v, ¥', v, t” and so Xisa
genuine vector field on J2 The first term can be absorbed by a suitable
multiple of the truncated total derivative, so, on the equation (7.1),

pr¥v=(R, F.+R,) D,
+ [(Qu Fv“ + Qv') - (Ru Fn" + Rr‘) Fv”] v" au + x»
where X is also a genuine vector field on J°. The first term on the right-

hand side is a trivial generalized symmetry. Therefore, if we can prove that
the second term vanishes, i.e., show that

Qu‘ Fv" + QU' = (RuFl + Rr’) Fr”! (73)

then we can deduce that pr'® v is equivalent to the internal symmetry X.
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(Note that X preserves the contact ideal on #, because both pr'®’v and D,
do.) In fact, we can then replace v by the equivalent generalized symmetry

V= _(RuFL + Rl") a\'
+ [Q - u’(Ru'Fv” + Ru')] au + [R - v‘(Ru'Fu” + Rv')] aw (74)
so that v is the evolutionary form of ¥. The prolongation formula (4.5)
shows that
pr?y=X on A&, (7.5)
so X is an internal symmefry which is equal to the prolongation of the
generalized symmetry V.
To prove (7.3), we use the symmetry condition (2.8). Applying pr'?' v to
the equation, we deduce that
D2Q=pr?vF)=D2R-F, +0(2)

N

on (7.1). The coefficient of v in this equation is just

Qu'Fl‘” + Ql" = (Ru'Fv” + Rv') Fx"'9

which is exactly the condition (7.3), as required.

Conversely, given an internal symmetry, its projection onto E will be
a generalized vector field. The problem now is to show that there is an
equivalent first order generalized symmetry; cf. Theorem 5. In fact, we will
prove that, on the equation, the characteristic of the internal symmetry is
necessarily a function depending on at most first order derivatives. Let

X=¢(8,4+00,+yd,+0' '8, +¥'d. .+ 0, +y?0, (7.6)

be a vector field on #. Since (x, u, v, &', v, v") provide local coordinates for
the points of #, we can assume that all the coefficients depend on these
variables. Moreover, according to the tangency condition (5.3), the
coefficient

¢’ =X[F] (7.7)

is automatically determined from the other coefficients of X. The
characteristic of the projection

v=n(X)=¢d,.+pd,+y 0,
is the pair of functions

Q=¢-ul R=y—v&
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The goal is to prove that these are defined on J', i.e, they do not depend
on v”.
The contact ideal /'® is generated by the one-forms

du—u' dx, dv — v’ dx, du' —u" dx, dv’ —v" dx.
Requiring that X preserve the contact ideal on £ says, for instance,
Xfdu—u dx]
=dp—¢@'dx—u' d¢
={d,o—uwd i—o¢'}dx+ {p,.—uwé,.}dv" modI?|R,
where
d. =0, +u o, +v 0, +Flx,u,v,u,v,0")0, +v" ¢,

is the restriction of the total derivative to # (cf. (6.4}). This will lic in
1P| if and only if the two conditions

p'=d.o—uwdi

and
@ — u,él'” = 61.‘(‘p - u,é) = Qv" =0

hold. Similarly, using the contact form dv — v’ dx, we deduce that
yl=dy—vdy
and
Vo~ =8 —v'E) = R, =0,

Thus Q and R only depend on x, u, v, u', v'. Finally, the conditions that
X(du' — u” dx) and X(dv' — v" dx) also lie in I'®|# imply, respectively, the
tangency condition (7.7), the prolongation formula for the coefficient y?,
and, upon eliminating £, the top order symmetry conditions (7.3).
Together, these all imply that the generalized vector field

X-¢d4,=Q00,+RE, +...
coincides with the prolongation of the first order generalized symmetry
v=00,+R70,.

Therefore, every internal symmetry of (7.1) comes from a first order
generalized symmetry, and the proof is complete.



70 ANDERSON, KAMRAN, AND OLVER

ExaMpLE 8 (The Hilbert—Cartan equation). The underdetermined
ordinary differential equation

v = (u")? (7.8)

was introduced by Hilbert [6] as an example of an equation whose general
solution cannot be expressed in terms of an arbitrary function and a finite
number of its derivatives. Subsequently, Cartan [3, 4], as an example of his
theory of Pfaffian systems in five variables [2], proved that this equation
has, as an internal symmetry group, the real noncompact form of the 14
dimensional exceptional Lie group G,. We verify this result directly using
Theorem 7. We begin with the calculation of the first order generalized
symmetries.

THEOREM 9. Every first order evolutionary generalized symmetry of the
Hilbert-Cartan equation is a linear constant coefficient combination of the
symmetries

vi=Guw—3u)d, +(3v° — 3w "+ duu"?) 0,
vo=(3x%v — Ix%' P+ 2xun’ — 2u?) 0,

+ (2xu'v —2uv + 3xu"? — 4

$x%'u" 2 + 2xuu"? — $u' ) @,
vy=(x%0— 3xu' 2+ 2uu’) 0,

+ v+ 2" + Ix%u 3 —Sxuwu?) 6,
va=(xv—3u'?)é,+ Gxu"’ = 5u'u"?) 0,
v5=v6,,+§u”36,,

=iud,+vd,
v7=(§x u' —3xu)o,+ (Ax*u"? —2u?) o,

xu' —3u)d,+xu"?0,

(7.9)

vo=u'0,+u"?d,
Vie=ix?8, 4+ 2(xu' —u)é,
v, =3x20,+2u'd,
Vip=x0,

vi3=0,

vl4=au'
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Proof. We implement the standard algorithm [15, Chap. 5]. Let
v=070,+R3,

be a first order evolutionary symmetry, so Q, R are functions of x, u, v, u’,
v'. Since we need only work modulo trivial symmetries, though, we
can replace v’ by (#”)?, and it is slightly simpler to assume that Q, R are
functions of x, u, v, v', u” instead. The infinitesimal symmetry condition is

D.R=2u"D2Q, (7.10)
which is required to hold whenever
v'=(u")? and v =2u"u". (7.11)

Note first that each of the 14 vector fields (7.9) satisfies this condition and
so defines a symmetry. We now expand the total derivatives in (7.10), using
(7.11) to eliminate v’ and v”, and equate the various coefficients of the
derivatives of u and v to zero. The coefficient of v shows that Q is
independent of u”. The coefficients of u”° and «”* imply that

Q=A(x,u)v+ B(x, u, u').

Now since ¢, commutes with the total derivative D, and the substitutions
given by (7.11), we can differentiate the symmetry conditions with respect
to v to deduce that

D_tR,,=2u"Df.Qv, Dvav=0

(subscripts on @ and R indicating derivatives). The second of these implies
that R, is a constant, say c,. Substituting the consequential form of R and
the previous form of Q into the first equation leads, after some fairly
routine calculations, to the fact that ¢ and R have the forms

Q=[3cu+gc;x> +3esx? +egx+es]v+ S(x, u, u'),

R=1ec,0?+ [20,(xt' —u)+2c;u" + cg o+ T(x, u, u', u"),
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where ¢y, ..., ¢, are constants. However, from the table of symmetries we see
that

V=C1V, 4+ oV + 03V + Vi +CsVs+ gV + ¥,
where

V=0(x,u,u')d,+ R(x, u, u’,u")d, (7.12)

is a first order generalized symmetry which does not depend explicitly on
v. Substituting (7.12) into the symmetry conditions (7.10), the coefficients
of u” and u”? now imply that

J=A(x,u) ' + B(x, u), R=A(x, u)u"?+ C(x, u, u').
The coeffictent of 4" ? in the symmetry condition implies that
A,=24,.+B.=8B,,=0,
and the symmetry condition has reduced to
Co+uwC,+u"C,p=2u"[WA  +B . +2uB,] (7.13)
It is now straightforward to solve (7.13) explicitly; the general solution is

2 3, 3
A=c;x3+cgx+cg, B=—3coxu—3coutleox®+5e,x2+epnx+eys,

C= —2c,u'22c,o(x*u —u)+ 2¢,,t' + ¢4,

which yields the remaining eight symmetries, completing the proof. (This
computation was subsequently reverified by P. H. M. Kersten using his
REDUCE symmetry package [9].)

Since each of the vector fields in Theorem 9 corresponds to a unique
internal symmetry, we deduce that these vector fields close under the Lie
bracket operation to form a Lie algebra when restricted to the equation;
however, on the entire jet space they may not close. For example,

[Va, ¥s1=30'(v" — u"?) O, + B[/ (v" — 2u"u") = 2u"(v' —u"?)] G,

which is not in the span of v, .., v, but which vanishes on the equation
and so forms a trivial generalized symmetry.
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The corresponding internal symmetries are, according to (7.4), the
prolongations of

X\ =G —uu") o, + Guv+ 3u' > —uw'v") 0, + (302 — Luu"?) 8,
X,=(x% = 2xu~4x°u") 0, + (3x%v+ $x%u'? — 27 ~ 1x*w'u”) 0,

+ (2xu'v —2uv — ix*u" — Bu' ) 4,
Xy=0xw' —2u—xu") ., + (dx% + $xu' 2 — x*u'u") 0,

+ 2ou’ — {x%u"?) 8,
Xo=Gu —2xu") 0.+ (xv+3u'?—2xu'u") 0, — 3xu""> 0,
Xs= —2u" &+ (v— 20"} &y — 2u" 0,
Xe=3ud,+vd, (7.14)
X,=—ix?8,—3xud,—2u'?0,
X¢= —xd,—3ud,
X, = —2,
Xo=2ix8,+2(xu'"—u)d,

X, =ix?0,+2u' 0,

x]2=x eu
xl3=au
X, =0,

Note that only the vector fields X;, X, X5, X5, X3, X4 are external
symmetries; the remaining eight vector fields provide genuine internal
symmetries.

We now determine the structure of the 14 dimensional Lie algebra g
spanned by these vector fields. Note that we must use the “generalized Lie
bracket” [ -, -1* defined by

[pr'® X, pr® X, ]=pr?([X,, X,]*%),

in order to recover the usual Lie bracket of the associated internal
symmetries. The commutators are shown in Table L.



TABLE 1

X, X% X X, X X X X X, X, X, X, X, Xue
X, 0 0 0 0 0 —~X, 0 0 0 —iX, —1X; —iX, —1Xy —X¢
X, 0 0 0 X, -iX, 0 X, -X, 0 0 -3X, 2X,—2X, X0
X; 0 —-4X, 0 _%xl “%xz %X3 -X, %X, %Xg-ZXG 2X, —-Xi
X, 0 0 -1X, —2X; -1Xy —Xq —iX, X +2X, —3X, 0 —-X5
X; 0 —1X; -3X, —-1X; 0 —2X;-2X, 2X, 0 0 —Xi3
X, 0 0 0 0 —iXyo —1Xu —iX,, —3X03 —Xi4
X, 0 X, X, 0 X0 2X,, X, 0
Xy 0 X, —3Xyo -iXy 51Xz X 0
X, 0 Xy, X, X, 0 0
X0 0 0 0 X, 0
X, 0 -2X,, 0 0
X, 0 0 0
X, 0 0
X4 0

pL

YIAIO ANY ‘NVIWVY ‘NOSHIANY
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The Kiiling form for this Lie algebra is

00 00 O00O0OO0O0O OO 00O
00 00 0O0O0OOO 0O 016
00 00 O0O0O0OO O00-160
00 060 0O0O0O0O0 016 00
00 00 0O0O0O0OO0O-160 00
00 00 04000 0O 00
K 00 00 O0O0O0O0I12 00 00
"1 00 0O O0O0O0O120 00 00
00 00 001200 00 00
00 00-160000 00 00
00 016 00000 0O 00
00-16 0 00000 O0O0 00
016 00 000006 00 00
-40 00 0O0O0OO OO O00O

QOO OO OO

75

which is patently nondegenerate, and hence g is a semi-simple Lie algebra.
Moreover, K is indefinite, so g is noncompact real form of the associated
complex semi-simple Lie algebra. We now investigate the structure of this

Lie algebra using standard methods; cf. [7].

LeMMA 10. The two dimensional subalgebra g, spanned by {X, X} is a

Cartan subalgebra of g.

Proof. The multiplication table shows that g, is an abelian subalgebra.
Thus we need to check that it is a maximal abelian subalgebra, by proving

that if

14
X=Y aXegqg
i=1
satisfies
[Xs, X]1=0 and [X;5, X]=0,

then X € g,. However, since

X6, X;1=4,X,, where A,#0fori#6,7, 8,9,
and

(Xg, X, ]=uX,, where u,#0fori#1,6,8, 14,

(1.15)

(7.16)

(7.17)

Egs. (7.15) hold if and only if a;=0 for i #6,8. Thus X eg,. Moreover,
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Eqgs. (7.16) and (7.17) also show that for every element X € g,, its adjoint
representation ad X is diagonal with respect to the given basis.

LEMMA 11.  The roots of the Lie algebra g are

ool () ()

2 4’4 1274
o _(ﬁ ! (3 1) o
4 — 12 74 3 wS_ 4 ’4 ] wﬁ- )
3 3
(1)7:(--\2'—“, O), (1)8=O, w9=(_6——'9 0>, (7~18)
3 1
wm_<__f_,__), w“=<_£,_z), o= (1),
4 4 12 4 12 4

Proof. For the Cartan subalgebra g, from the previous lemma, the
restriction of the Killing form X to g, is

4 0
K":(o 12)'
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We normalize our basis for g, by letting

Ly,

1
el=§xéa €, =

Then with respect to this basis K is the identity.
Each basis element X, for g defines a linear functional w, on g, by

[X’ Xi]=wi(x)xl'9 Xeg()'
For example, if X = ae, + be,, then

[X, X J=ale,, X,]+b[e,, X,1=136X,,

and so w,=(0, }). From the commutator table, we verify the roots given
by (7.18). This completes the proof of the lemma.

Since our root diagram coincides with the root diagram for G, (cf. [7]),
we conclude that the internal symmetry group of the Hilbert-Cartan
equation is the noncompact real form of the semi-simple Lie algebra G,.
This completes our discussion of the internal symmetries and first order
generalized symmetries of the Hilbert—Cartan equation.

It is of interest to classify the higher order generalized symmetries of the
Hilbert-Cartan equation. A calculation similar to that of Theorem 9 proves
that there are no second order generalized symmetries of (7.8) beyond the
first order ones already found. However, there are new generalized
symmetries of arbitrarily high order. Indeed, note that for k=0, the
function 2u,u,, 5 is an x-derivative, so therefore we can find a ¥, such
that D ., = 2u,us, , 5. (The explicit formula for ¢, is easy to find, but not
required.) Then the generalized vector field

V=Uxy+1 6‘)u_{'—wkav
is a symmetry. For example, we have the third order symmetry

V= um au + (2unu1m _ um 2) av

coming from the case k= 1. (We call v “third order” since we can express
u" in terms of third order derivatives using the second prolongation of the
equation.) In a recent paper Kersten [10] provides a complete charac-
terization of all the generalized symmetries to the Hilbert-Cartan equation
and, in [11], a method for determining all generalized symmetries to a
general underdetermined equation of the form u, = F(x, u'* 1, v'*).

We now present two examples illustrating the difficulty of extending
Theorem 7 to more general systems of ordinary differential equations.
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ExaMpLE 12. The equation
v'u"=w (7.19)

has
v=x23,+20' 0, (7.20)

as a first order generalized symmetry, but there is no internal counterpart.
Indeed,

pr¥v=x?¢,+20' ¢, +2x8,+20" 0, +28,. +20" 3,-,

but there is no way using the equation and its prolongations, or adding in
any multiple of the total derivative, to eliminate all the third order
derivatives in this vector field, so it never restricts to a genuine geometrical
vector field on # « J2. Moreover, this problem persists even if we replace
(7.19) by any (finite order) prolongation.

Let us see what goes wrong if we try to mimic the proof of Theorem 7
for a codimension 2 equation of the form

u'=F(x,u,v,w u, v, w). (7.21)

(For simplicity, we assume that F does not depend on v” or w”, but
the argument carries through more generally.) Consider a first order
generalized vector field

v=008,+R3,+S50,,

where @, R, S depend on x, u, v, w, «’, v, w'. Its second prolongation
pr'®v can depend on third order derivatives, and the goal is to produce an
equivalent vector field which is defined on J?. We replace second and
higher order derivatives of u using the equation. The remaining terms in
pr' v that depends on v, w” are

(Rv(vm+ vaW’W) al+ (Survw + S“.'W,”) a“”.

Now the only remaining freedom is to add in a multiple of the total
derivative. This will eliminate all the offending terms if and only if

R,=S,, R,=S,=0 (7.22)

However, as the above example demonstrates, these conditions are not
guaranteed by the symmetry conditions. Therefore, for higher codimension
underdetermined systems of ordinary differential equations, there can exist
first order generalized symmetries which are not equivalent to internal
symmetries.



SYMMETRY GROUPS 79

ExaMpPLE 13. Consider a third order equation of the form

u"=Flx,u,v,u, v, u",v", 0"). (7.23)

The argument that any first order generalized symmetry gives rise to an
internal symmetry works as before. However, the converse is not
necessarily true. Let

X= é (“"x + @ 514 + l/J 61* + (P] au' + "//] (}r' + (pZ auu + d/;’ av" + (PJ 6u‘" + W3 al

be an internal symmetry, so that the tangency condition ¢* = X[F] holds;
cf. (7.7). As above, the characteristic of v=n(X) is the pair of functions

Q=9¢—uwi,  R=y—vs

and we must ascertain whether Q and R are defined on J', ie., subject to
(7.23), they do not depend on ", v”, or v".
Applying X to the lowest order contact forms yields

X[du—u' dx]
=dp— @' dx—u' d¢
={do—vwdi-¢'Vdx+{p.—ui.}dv” modI™| AR,
where
d.=d,+vw i, +v'é,+u" 0, +v"0,+Fd,.+v"3,

is the restriction of the total derivative to #. This will lie in 7**'| % if and
only if ¢'=d, ¢ —u'd ¢ and

@y — u'ér’” = (?Um((P - u’é) = Ql =0. (724)

Similarly, applying X to the contact form dv—uv'dx implies ¢'=
d.y—v'd ¢ and R,-=0, and our internal symmetry is equivalent to a
second order generalized symmetry. However, at the next order we run into
difficulties. Indeed,

X[du' ~u"dx]={d,@'—u"d . E— ¢} dx
+{o). —u"¢, -} dv”  mod I|R.

Thus we recover the next part of the prolongation formula, namely ¢*=
d.o'—u"d.¢, and, using (7.24),

0 = (pzl - u” = au’”(d.r Q) = Qv" + Fv"‘ Qu" .

607:100:1-6
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Moreover, applying J,. to the latter condition and using (7.24) again, we
find
Fl""v’" Qu" = 0

Consequently, if

0F
——=#0 7.2
(avm)z # ’ ( 5)

then Q,.=Q,-=0, and Q only depends on first order derivatives. Similar
arguments involving the contact form dv’ —v” dx imply that, under the
same condition (7.25), R also only depends on first order derivatives, and
hence the original symmetry is equivalent to a first order generalized
symmetry. The remaining contact forms give the remaining prolongation
formulae and top order symmetry conditions. In conclusion, the condition
(7.25) is sufficient to guarantee that every internal symmetry of (7.23) is
equivalent to unique first order generalized symmetry. Without (7.25), the
result is not evident, and, as we saw, in the normal case, when F does not
depend on v and its derivatives, not true.

8. ConTACT CONDITIONS FOR ORDINARY DIFFERENTIAL EQUATIONS

We now investigate the structure of internal symmetries for a general
system of ordinary differential equations. We derive necessary and sufficient
conditions under which a first order generalized symmetry of a general
system of ordinary differential equations will be equivalent to an internal
symmetry. (The more complicated case of systems of partial differential
equations is similarly analyzed in the next section.) Consider a system of
nth order ordinary differential equations

4,.(x, u™)=0, k=1,.,r (8.1)

We assume a slightly strengthened version of the maximal rank condition
(2.2), namely that the ¢ x r Jacobian matrix

K=(6A"> (8.2)

@
ou’

with respect to the rop order derivatives of u has rank r. (In particular, we
assume that the system is not overdetermined, ie., r < g¢.) This assures us
that we can locally solve for r of the top order derivatives, say u}, .., u.,
leading to a system of ordinary differential equations of the form

ub=F*(x, u” Du ), k=1,.,r (8.3)
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With this choice, we refer to the variables u!, ..., 4" as normal directions,
and the variables " *!, ..., u? as tangential directions. (This is in analogy
with the case of an implicit submanifold of Euclidean space R”, where,
solving for x'=f'(x), i=1,..,r, splits the variables into tangential,
x', .., x", and normal, x"*!, ..., x?, directions, which can be associated with
the tangent and normal spaces to the submanifold.) Every nonsingular » x r
submatrix of the Jacobian matrix K provides a local splitting of the
variables into normal and tangential directions.

LEMMA 14. Let R be a top order maximal rank system of ordinary
differntial equations. If a first order generalized symmetry

il é
Vo= Z Qa(x, u(l))a

2
a=1 u

is equivalent to an internal summetry, then the coefficients Q% must satisfy
the contact conditions

oQ”

é‘u_’i

a : aaAK
+¢o5= Z Az o on#, afi=1,.,4q. (8.4)

k=1

Here ¢, A2, a=1, .., q, k=1, .., r, are unspecified functions defined on the

equation manifold R.

The condition (8.4) may seem a little strange at first glance. The right-
hand side can depend on nth order derivatives, whereas the term 6Q°‘/6u»"‘i
only depends on first order derivatives. The reason that the conditions do
not degenerate for n>2 is that the functions £, 4% can themselves depend
on nth order derivatives and thereby cancel out all the higher order
dependence. For example, in the case of the symmetry vs of the
Hilbert—Cartan equation, the equivalent first order characteristic has
O'=v, 0*=%0"Y2 We verify (8.4) with = —2u", A'= —1, A2=0. (As
there is just one equation, we omit the index «.)

Proof. Let
X=pr'”v,+¢D, (8.5)

be an equivalent generalized vector field on J”, where D_ denotes the nth
order truncation of the total derivative; cf. (4.5). The problem is: when does
X restrict to an ordinary vector field on the submanifold #7? This means
that (i) after using the system and its prolongations, there can be no
(n+ 1)st order derivatives remaining in the formula for X, and (ii) X is
tangent to #. For the proof of the lemma, we just need to analyze the first
of these conditions.



82 ANDERSON, KAMRAN, AND OLVER

The top order terms in the vector field (8.5) take the form

X= i iuﬂ @Jrfu“ +0(n)> d + (8.6)
= Pt n+ 1 au/j n+1 6“; rere .
Since
4 o4,
D.4,=% uﬁ+lgg+0(n), (8.7)
a=1 n

a simple linear algebra lemma shows that we can use the equations
D A4,=0 to eliminate the derivatives of order n+ 1 in (8.6) if and only if
Egs. (8.4) hold.

If the contact conditions (8.4) hold, then X can be identified with a
genuine vector field on J”. The symmetry conditions

prv(4,)=0, on 4,=0,D.A4,=0, k,v=1,..,r, (8.8)

now imply (ii), i.e., that X(4,)=0, on (8.1).

THEOREM 15. Let & be a top order maximal rank system of ordinary
differential equations of order nz=2. Then every internal symmetry is
equivalent to a generalized symmetry of order n—1.

Proof. Although the proof is considerably simplified by using the solved
form (8.3) for the system, it is better to work directly with the general
expressions (8.1) for the system as the proof then more readily generalizes
to the case of partial differential equations. Also, in anticipation of later
developments, we conduct a more thorough investigations of the contact
conditions than would be required just to prove the theorem as stated. Let

X=t2h T Y gr (8.9)
T ax "’kau: '

k=0 a=1

be any internal symmetry. We begin by extending X to a vector field

NI
v=E+ ) (8.10)

k

defined (locally) in a neighborhood of the submanifold #. This requires
that the coefficients £, @§ of the extension Y agree with the corresponding
coefficients &, @ of X when restricted to #. Apart from this, there are, to



SYMMETRY GROUPS 83

begin with, no restrictions on the coefficients of Y, and we make use of this
flexibility later in the proof. The associated characteristic

0% = ¢*— Eus (8.11)

also agrees with the characteristic Q of X on £.
The contact ideal 7' is generated by the one-forms

0; =dui —uj ., dx, k=0,1,..,n—1, a=1,..,q.

The condition (5.4) that X be an internal symmetry becomes

XU R)=YUI™)| R I'"™| R, (8.12)

which requires that the Lie derivative of any contact form 8% with respect
to the vector field (8.10) equal a linear combination of contact forms when
restricted (pulled back) to the submanifold £.

Now, in general, given a one-form on J®,

n q
w=cdx+ Y Y Bidu,

k=0 a=1

when does it pull back to 0 on %, e, when is w|% =07 There are two
ways in which this could happen: either the coefficients o, f§ vanish on #,
or w is a linear combination of the differentials d4, of the defining
equations (8.1). Thus we have

w|#=0 ifandonlyif w= ) A*dd4,on R, (8.13)

k=1

where by the phrase “on #” in (8.13) we mean that the individual
coeflicients of the basis one-forms dx, duj of T*J” in the equation must
agree when restricted to the submanifold #. (This is different from saying
the pull-backs agree on # since we are maintaining the linear independence
of all the basis one-forms; the fact that they are no longer linearly
independent when pulled back to # has been already taken care of by the
introduction of the coefficients A* in the equation.)

Thus, combining (8.12) and (8.13), we see that the internal contact
conditions are equivalent to the conditions

q n—1 r
Y(0;1=3 Y upi6f+ Y igx¥dd,  ond4,
B=1 j=0 k=1

=0,1,..,0—1, a=1.,4¢, (8.14)
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where the uj4 and 43" are unspecified functions. The left-hand side of
(8.14) takes the form

Y[0:]=dp;—¢5,  dx—ul,  dE

& (8] ¢
+Z<¢;§—uz+,~—§—>du’: mod /™[R,  (8.15)

s \oul ou?
where
. a "zl o4 3}
D =— x 8.16
© Ox i kgo ozgl e Ouy ( )

denotes the (n— 1)st order truncation of the total derivative. On the other
hand

. “ 04,
di, =D 4 dx+ Y = 5dul  mod ™| (8.17)
p=1Hn

Substituting (8.16), (8.17) into (8.14) we conclude that, for each
k=1,.,n—1,a=1,..,q,

¢, =D.¢;—uz, DE~Y iz*D. 4, on#&  (818)
x=1
and
oy 55 Lo, 04,
—Ui 15 5= M AT R. 8.19
Bd M G L g on (8.19)

Multiplying (8.19) by u? , , and summing over §, and then subtracting the
result from (8.18), allow us to conclude that

¢, =D.¢i—ui, D.E—Y 22D, 4, ona,

k=1

or, equivalently, that the coefficients of Y are connected by usual prolon-
gation formula (2.7) when restricted to the prolonged equation

¢:+1=Dx¢z—uZ+IDx5 onpr(”%,
Using (8.11) and a simple induction, this implies that
¢r=Di0"+ui, & onpr® 4, (8.20)

which agrees with the restriction of the prolongation formula (4.5).
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Given a function f(x, u“"") on J/, let

aof
df=Y ——adf
ﬂg, cuf

denote its exterior derivative with respect to the top order derivative
variables. Then, for k<n—1, (8.19) implies that the one-form
d{¢;—u;, £] must vanish when pulled back to %#:

d[¢:—uz, E]|#=0. (8.21)

Condition (8.21) implies that the expression ¢ —uj lf is (locally) inde-
pendent of the top order derivatives «#” when restricted to #. Thus, by
possibly rechoosing the coefficient ¢§ of our extension Y, we can assume
that the @ satisfy

0
oub

[¢:~u;,,E1=0 on (8.22)

Substituting (8.20) into (8.22} yields

0

auB{DfQ“}=O onpr®#,  O<k<n—L (8.23)

In particular, the case k =0 of (8.23) implies that, on #, the characteristic
0 does not depend on nth order derivatives of the u’s, which proves
Theorem 14. (Note that this conclusion only requires that Y preserve the
first order contact forms 8% on #.)

In the case of Biacklund’s theorem, there is no restriction to an equation
manifold, and the conditions (8.23) immediately imply that the charac-
teristic O depends on at most first order derivatives. (This is a simple
consequence of the simple result that the total derivative D, Q of a function
Q has order m if and only if Q has order m — 1.) However, the fact that we
are restricting to a submanifold % makes this result no longer valid. There-
fore, to conclude that every internal symmetry of a system is equivalent to
a first order generalized symmetry necessitates that we impose some
additional conditions on the system. This serves to motivate the following
definition.

DEFINITION 16.  An nth order system of differential equations # is said
to have the descent property if the only (smooth) functions Q(x, u'"~ ') of
order n—1 whose total derivative, when restricted to the system, ie.,
D Q| R, also has order n— 1 are the functions Q(x, «'"~ ') of order n — 2.
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In other words, if the system # has the descent property, and
Q(x, u""~ ") is such that D _Q|# does not depend on derivatives of order
n, then O = Q(x, 1"~ ?) cannot depend on derivatives of order n — 1. As we
remarked above, any open subset of J" has the descent property. On the
other hand, a normal system of ordinary differential equations does nor
have the descent property. Indeed, since we can replace all nth order
derivatives of the u’s by the system, the total derivative of any function
O(x, u" '), when restricted to the system, still has order at most n— 1.
While not every system of ordinary differential equations has the descent
property, there is, however, a significant class of underdetermined systems
which have the descent property.

LemMa 17. Consider an underdetermined system of ordinary differential
equations of the form

wi=Frx, u" D ul L u), Kk=1,.,r (8.24)

If the 3(q—r)(q—r+1)xr tangential Hessian matrix with entries

62F'c

EWEE Jor r+1<i<u<yqg and 1<k<r (8.25)
ul, out

has (maximal) rank r, then the system has the descent property. (In {8.25),
the rows of the matrix are indexed by the pair (4, p), and the columns by «.)

Proof. Let Q=0(x,u""). Then, on the system (8.24);

a
p.0=% w2 Lom-1)
=1 71*1
d aQ 4 . 0Q
= FK A 0 _1
xz;:l au:;fl+1=§+1una:71+ (n !

Now, if D .Q|Z is independent of ath order derivatives of u, then

_ADQ)_ L OFF Q0
0= =L Goe tag - A=rthbee (82
Moreover,
D Q) r 62 K aQ
0= . Au=r+1, .4 27
au out: gauiau“auk, p=r+ 1 (8.27)

Now, the rank assumption on the tangential Hessian implies that
0Q/0u’ _ =0for k=1, .., r, and hence, in view of (8.26), 6Q/6uf,,l =0 for
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A=r+1,..,q, also, which proves that Q has order n— 2, completing the
proof.

Note that even if the Hessian matrix does not have the required rank,
the system may still have the descent property owing to further
integrability conditions among the (overdetermined) system of first
order partial differential equations (8.26), (8.27), which force Q to be
independent of all derivatives of order n— 1. However, the general
necessary and sufficient conditions for a system to have the descent
property appear to be rather more complicated to determine, and we will
not pursue them any further here.

LEMMA 18, Let A be an nth order system of ordinary differential
equations having the descent property. Then, given 0<k<n—1, any
(n— 1)st order function Q(x, u'" V) which satisfies

D' Q| & has order n— 1 for i=0, ..k

necessarily has order n—k—1, ie, Q@ =Q(x,u"” ¥~ ).

Proof. The case k=1 is just the definition of the descent property. For
k> 1, we work by induction, and it suffices to note that if Q has order
m<n—1, then

D.Q= i u ég+0(m).

1
o m+ au;tn
Moreover, since the system is of top order maximal rank, there are no
relations among the derivatives of order <n, and hence D, Q| # has order
m if and only if Q has order m — 1. The details are left to the reader.

DerINITION 19. A first or second order system of differential equations
is said to be fully top order if it has top order maximal rank. An nth order
system of differential equations for n > 3 is said to be fully top order if it has
top order maximal rank and also has the descent property.

The second order case is singled out in view of Theorem 15, which
already implies that any internal symmetry of a top order maximal rank
second order system is equivalent to a first order generalized symmetry.
(The first order case is, of course, trivial.} The higher order case follows
from applying Lemma 18 to the conditions (8.23). We therefore have
proven:

THEOREM 20. Let R be a fully top order system of ordinary differential
equations. Then every internal symmetry is equivalent to a first order
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generalized symmetry which satisfies the contact conditions (8.4) on the
equation manifold A.

Next, in order to generalize Theorem 7, we analyze the contact
conditions (8.4) for a first order generalized symmetry in more detail
Given a decomposition of the dependent variables u into tangential and
normal components, the contact conditions (8.4) correspondingly split into
two subsystems. If u!, .., »" are the normal directions, and u"*!, .., u? the
tangential directions, then the subsystem of (8.4) corresponding to the
range of indices a=1,..,r, f=1,.., q (ie., the equations for the normal
components of the characteristic Q) will be referred to as the normal
contact conditions, while the remaining subsystem, corresponding to

=r+1,.,q9, B=1,..,q, is the tangential contact conditions. It turns out
that, given the tangential contact conditions, the normal contact conditions
are automatic consequences of the symmetry conditions. Therefore, only
the tangential contact conditions impose restrictions on the first order
generalized symmetry in order that it determine an internal symmetry.

THEOREM 21. Let R be a top order maximal rank system of ordinary
differential equations. Then every first order generalized symmetry which
satisfies the tangential contact conditions, ie., (84) for a=r+1,.,4,
B=1, .., 4q, is equivalent to an internal symmetry.

In other words, there is a one-to-one correspondence between internal
symmetries and first order generalized symmetries which satisfy the contact
conditions in the tangential components Q* of the characteristic. There are
two extreme cases. First, if there are no equations, i.e., the equation sub-
manifold & is an open subset of J”, then every direction is tangent, and the
tangential contact conditions (8.4) reduce to the usual contact conditions
(4.6) for a contact transformation. In this case, an “internal symetry of J"”
1s just an ordinary contact transformation, and Theorem 20 reduces to
Theorem 3. In this sense, we are justified in viewing this result as a
generalization of Béacklund’s theorem to systems of (ordinary) differential
equations.

At the other extreme, consider a normal system of ordinary differential
equations, so r=¢ and the Jacobian matrix {8.2) has rank ¢. In this case,
there are no tangential directions, and so every first order generalized
symmetry determines an internal symmetry. In this case, the contact
conditions (8.4) form a system of g equations, with ¢*>+ | undetermined
functions ¢, A%, a, k =1, .., g. Because K has maximal rank, for each value
of the function ¢ we can prescribe ¢ additional functions 4%, o, k=1, ..., g,
so as to satisfy Eqs. (8.4). Therefore, we recover the result (Theorem 6) that
for a determined system of ordinary differential equations, every first order
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generalized symmetry corresponds to an internal symmetry, and moreover
any two such internal symmetries differ by a trivial internal symmetry &d..

In the codimension 1 case discussed in Section 7, we have r=¢g—1 and
K has rank g — 1. There is just one tangential direction, say «?, and so the
tangential contact conditions (8.4) for « = ¢ form a system of ¢ equations
with precisely g undetermined functions &, A%, k =1, ..., ¢ — 1. Therefore, for
each first order generalized symmetry, we can uniquely determine the func-
tions &, A%, k =1, ..., ¢— 1, so as to satisly the tangential contact conditions;
the remaining normal contact conditions will then follow automatically
from the symmetry conditions. We therefore recover our earlier result
{Theorem 7) that there is a one-to-one correspondence between first order
generalized symmetries and internal symmetries for codimension one
systems. For systems of higher codimension, the tangential contact condi-
tions impose additional constraints the first order generalized symmetry
must satisfy in order that it correspond to an internal symmetry. In
general, given a system of rank r (equivalently, codimension g - r), the
tangential contact conditions (8.4) form a system of ¢g(q —r) equations
containing r(q —r)+ 1 undetermined functions &, A2, a=1,..,r, k=1, .
q — r. Therefore there will be g(¢ —r) —r(g—r)—1=(g—r)*— 1 additional
equations a first order generalized symmetry must satisfy in order that it
correspond to an internal symmetry. For instance, any symmetry of a
codimension 2 system (i.e., one of rank ¢ — 2} must satisfy three additional
constraints for it to be an internal symmetry. For example, in the case of
an equation of the form (7.21) it is easy to check that the constraints
imposed by (8.4) are precisely (7.22).

Proof. Suppose we have a generalized symmetry with first order
characteristic Q. According to Lemma 14, if the characteristic Q satisfies all
of the contact conditions (8.4), then v, is equivalent to an internal
symmetry. We have to prove that it is enough for the Q*, a=r+1, .., g, to
satisfy the tangential contact conditions, and to this end we prove that the
top order symmetry conditions and the tangential contact conditions imply
the normal contact conditions, i.e., those for Q% a=1, .., r.

Let v, be a first order generalized symmetry of the system (8.1), written
in evolutionary form. The symmetry condition (2.8) is equivalent to the
equations

pr?'vo(da.d=Y eiD 4, + Y p.d,, k=1,.,r. (8.28)
y=1

v=1

(Note that the ¢’s and p’s can be taken to depend on at most nth order
derivatives since the left-hand side is linear in the u?,,.) Using the
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prolongation formula (4.4), the terms of order n+1 on the left-hand side
of (8.28) are found to be

” ki oA g o4
prv [4,1= Y ¥ D*Q*E= Y D"Q* T4 0(n)
k=0 a=1 auk a=1 aun
: 20" 4,
= f X . 8.
M}Z:lunﬂ é‘uf au:+ (n) (8.29)

Thus, the top order symmetry conditions are

© 94,00° & o4,
)3 o duP X o out’

a=1 v=1

B=1.,q9, x=1,.,r (8.30)

To continue, we introduce some simplifying matrix notation. Along with
the r x ¢ Jacobian matrix K given in (8.2), we introduce the g x ¢ matrix

oQ*
R_<8uf>’ (8.31)
and the ¢ x r and r x r matrices
L=(%), S=(o). (8.32)

Then the contact conditions (8.4) have the matrix form
R+¢l,= LK, (8.33)
where [, denotes the gxg identity matrix. The top order symmetry
conditions (8.30) have the matrix form
KR=SK. (8.34)

Note that L, S, and the scalar function ¢ are undetermined. Now assume
that we have ordered the variables so that ', ..., 4" are normal directions,
and w *!, .,u? are the tangential directions. We split the matrices

accordingly,
R, R, L,
K=K’K)’ Rz( )’ L=( ),
(K, K, R, R, L,

where K,, R,,L,, Sare rxr; K,, R,are rx{g—r); R;, Lyare (g—r)xr;
and R, is (g—r)x (g—r). Also, K, is invertible. The symmetry conditions
(8.34) are

KR, +K;R,=8K,, K, R, + K, R, = 8K,. (8.35)
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Eliminating S we obtain the conditions
K,R,+K,R,=(K,R, +K,R;) K| 'K,. (8.36)
The normal contact conditions from (8.33) are
R, +¢&, =LK, R,=L,K,. (8.37)
Solving for R, by eliminating L, gives
R,=(K[ 'K, + R K[ 'K,. (8.38)
The tangential contact conditions from (8.33) are
R;=L;K,, R, +¢1, ,=L;K,. (8.39)
Solving for R, by eliminating L, gives

Ry= —¢&I,_,+R:K, 'K, (8.40)

Now if we multiply the normal contact conditions (8.38) by K, and add in
the tangential contact conditions (8.40) multiplied by K,, we get exactly
the symmetry conditions (8.36). Since K| is invertible, this implies that the
symmetry conditions plus the tangential contact conditions are enough
to give the normal contact conditions. (Conversely, if we have both the
normal and tangential contact conditions, these imply that the top
order symmetry conditions are satisfied.) This completes the proof of
Theorem 20.

9. CONTACT CONDITIONS FOR PARTIAL DIFFERENTIAL EQUATIONS

For systems of partial differential equations, similar considerations
apply, although the development is complicated by the presence of several
independent variables. Moreover, the conditions for a true internal symmetry
(i.e., one which does not come from an external symmetry) are considerably
more restrictive than those for ordinary differential equations.

THEOREM 22. Let R be an nth order system of differential equations of
top order maximal rank. Then every internal symmetry is equivalent to an
{(n— 1)st order generalized symmetry.

The proof is very similar in outline to that of Theorem 15. Let X
(cf. (5.2)) be the infinitesimal generator of an internal symmetry group.
Extend X to a vector field Y off the submanifold #, and let Q be its charac-
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teristic. Analysis of the contact conditions (5.4) as before will prove that
the coefficients &', ¢% of Y satisfy the usual prolongation formula, modulo

the system and its prolongations,

P -~
¢%.,=D;¢5— Y, D;Eus,, #J<n—1, onpr'"®, (9.1)
k=1

and the additional constraints

u;‘iaﬁé'—' Z= }»;h WA #K= n, on Z. (92)

~ p Pl
¢5=D,0"+ Y &u,, k=#J<n, onpr® A
=1
Further, (9.2) then implies
_5_(0 Q")=0 on pr“"ﬂ’
s K : ’
a=1,.,q, #/=N0<k=#K<n-2. (9.3)
In particular, setting k =0 suffices to prove Theorem 22.
DerINITION 23. An nth order system of partial differential equations #
is said to have the descent property if the only functions Q(x, u”"~ ") of

order n— 1, all of whose total derivatives D;Q| R, i =1, ..., p, restricted to
the system, have order n— 1, are functions Q(x, 1" =) of order n—2.

A system of partial differential equations is called normal if can be placed
in Kovalevskaya form

T

or

=F*(y 1, ;E’), a=1,.,q, (9.4)

by introducing appropriate local coordinates (7, y!, .., ¥?~') on the base.
In (9.4), the right-hand sides may depend on all derivatives of orders <n
except those explicitly appearing on the left-hand sides. In analytic case, the
Kovalevskaya form (9.4} is required for the classical Cauchy—Kovalevskaya
Existence Theorem to hold; see [15; Sect. 2.6].

LeEMMA 24. A normal system of partial differential equations in p>1
independent variables of order n= 2 has the descent property.
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Proof. Let Q=Q(x,u"~"). Note that the total derivatives D0 in the
y-directions do not depend on the derivatives 9"u*/0t" appearing on the
left-hand side of (9.4). Therefore, given any multi-index K of order
#K=n—1, we have

é 80

O0=——D.0=
a0

on &, o=1,.,9, #K=n-—1.

Therefore Q = Q(x, u"”~?) has order n— 2, and the proof is complete.

Inspection of the proof of Lemma 23 shows that, unlike systems of
ordinary differential equations, only rather overdetermined system of
partial differential equations will fail to have the descent property.
Definition 19 of fully top order holds word for word in the case of systems
of partial differential equations. Applying the direct analogue of Lemma 17
to conditions (9.3), we immediately deduce that every internal symmetry of
a fully top order system of partial differential equations is equivalent to a
first order generalized symmetry. As for the converse, we need to determine
the appropriate contact conditions.

Let v, be a first order evolutionary vector field. Then, for v, to be
equivalent to an internal symmetry, there must exist functions &', .., &7
such that the generalized vector field pr' v, + 3 &/D;, when restricted to
the equation manifold 4, can only depend on at most nth order derivatives
of u and hence is an ordinary vector field on #. The only way that higher
order derivatives could appear is in the coefficient of d/0u%, with #J=n,
which is

D,Q*+Y u3,&'=Y M3l ,+0(n), #J=n, (9.5)
J iB

where we define

. 8¢
-Yu; o (9.6)

x 7 6Q°‘ j S
My/=—5+¢ 0=

J

oep*
ou?

On the other hand, the total derivatives of the system (2.1) have the form

0=D;4,=Y 0§ A,.uf ,+ O(n), 9.7)
K
where
éd,
a’““:ﬁ{.‘ (9.8)
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In order that (9.5) only depend on nth order derivatives when (9.7) holds,
we must have the contact conditions

M;‘(”-éf':ZAT'”@;}(’A,\., (9-9)
holding on the equation manifold #, for all a, =1, .., ¢, and all sym-
metric multi-indices J, K of order n. Here the parentheses denote
symmetrization on the (n + 1)st order multi-index (j, K).

To express (9.9) in a more transparent form, it is convenient to introduce
some auxiliary variables { = ({,, ..., {,). Define the matrices

4, l ‘
ko-( ¥ Sa) Mo=(LMr) 10

#J=n j=1

where, for J={(j,, .., j,), we set {,={,(, ---{, . The matrix K({) is an
r x ¢ matrix of n'* degree homogeneous polynomials in the {’s. It appears
in the definition of the classical characteristic directions of the system of
partial differential equations (2.1), where the {’s are interpreted as
cotangent bundle coordinates on the base X. The matrix M({) is a gx g
matrix of linear functions of the {’s. According to Theorem 3 and (9.6), an
internal symmetry will extend to an external symmetry if and only if the
corresponding matrix M({) is identically zero. Internal symmetries which
do not extend to external symmetries, i.e., ones for which M({) £ 0, will be
called non-extendable, and these are, in a sense, the only “true” internal
symmetries. For each nth order multi-index we also set

p .
LJ(C)=<Z ,13&{/), #J=n, (9.11)

i=1

so L, is a ¢gxr matrix of linear polynomials in the {’s. The contact
conditions (9.9) can then be written the simple matrix form

LM =L, (0) - K(D).

In other words, for each multi-index J we must find a matrix L,({) of
linear functions of the {’s such that L,({)} K({) is the product of the scalar
monomial {, and the matrix M({). We have thus proven the following
characterization of first order generalized symmetries which are equivalent
to internal symmetries, analogous to Lemma 14.

LEMMA 25. Let (2.1) be a nondegenerate system of differential equations.
Let v be a first order generalized symmetry. Define matrices K({), M({) as
in (9.10). If v, is equivalent to an internal symmetry of the system, then for
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any homogeneous scalar polynomial P({) of degree n, there exists a matrix
of linear polynomials L p({) such that

PO M() =Lx({) - K({). (9.12)

When p =1, the single variable { =, factors out, and (9.12) reduces to
our previous contact conditions (8.4) for ordinary differential equations.
For p> 1, we show that (9.12) is a very restrictive condition, and, in most
cases, we immediately deduce that M({)=0, and hence every internal
symmetry must be extendable to an external symmetry.

THEOREM 26. Let & be a fully top order system of differential equations.
Then every internal symmetry is equivalent to a first order generalized
symmetry which satisfies the contact conditions (9.12) on the equation
manifold A.

The last question to address is to find useful necessary conditions that
allow a system of partial differential equations to possess a non-extendable
internal symmetry. Here we explicitly assume that we are not in the
ordinary differential equation case, i.e., p> 1. The matrix K({) is related to
the characteristic directions for the system of partial differential equations.
In particular, if r=g¢, so that we have the same number of equations as
unknowns, then a complex direction { (which should be thought of a
defining coordinates in the complexified cotangent bundle 72X =
T*X® C) determines a characteristic direction if and only if det K({)=0.
Such a system is called normal if not every direction is characteristic, i.e.,
det K({) #0, and, by introducing appropriate local coordinates, can be
placed in Kovalevskaya form (9.4); cf. [ 15, Theorem 2.79]. We now easily
prove that a normal system of partial differential equations of order at least
2 cannot have any internal symmetries. (Compare Stephani [17, p. 225].)

THEOREM 27. If # is a normal system of partial differential equations in
p>1 independent variables of order n=2, then every internal symmetry
extends to an external symmetry.

Proof. First, according to Lemma 24, any normal system is fully top
order. Next, by Theorem 26, if X is an internal symmetry, then X agrees
with the prolongation of a first order generalized symmetry v, on #. By
Lemma 25, Q satisfies (9.12). Using the cordinates (¢, y), let {=(r, 1) be
the corresponding cotangent bundle coordinates. Since the system is in
Kovalevskaya form (9.4), we have

K(t,n)=1"1+ K(z, n),

where K has degree at most n — 1 in the variable 1, and [ is the ¢ x ¢

607:100:1-7
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identity matrix. Choose the particular polynomial P(z,#)=(n,)" in the
contact conditions (9.12), which then take the form

()" (Mot +Mn + - +M,_n,_,)
=(LOT+L1’1l+ +Ln~lnn—l)(rnI+K(T, ’7))

The only term in this equality involving t"*' is Lyt"*!, hence we must

have L, =0. Then, since n > 2, the only term involving #;t" is L,5,7", which
must also vanish. Therefore L({)=0, which implies that M({{)=0, and
hence the symmetry v, must be external. But this implies X is an external
symmetry, and we are done.

An extension of this argument implies that any higher order system of
partial differential equations must be “considerably” overdetermined to
admit any internal symmetries. To investigate what this means, we restrict
attention to the simplest case of just one unknown, g=1. Consider an
overdetermined system of partial differential equations

4,.(x, ") =0, k=1,.,r, (9.13)

in p>1 independent variables and ¢ =1 dependent variable. Assume, for
simplicity, that the system is fully top order, so we need only consider
internal symmetries which are equivalent to first order generalized
symmetries. Define the characteristic ideal ¥, at a fixed point ze # to
be the homogeneous polynomial ideal generated by the m complex-valued
polynomials determining the entries of the 1 x r characteristic matrix K({):

04

C=%= ) 10D 1D =Y 7"k

K 6 K
The characteristic variety of the system at z is, by definition, the complex

algebraic variety determined by the characteristic ideal, which we can
regard as a subvariety of the projectivized complex cotangent bundle

¥V.=9 ={{eCP? "|y({)=01for all ye €} cn*PT&X,

where 7} denotes the pull-back of the cotangent bundle of X to the
cotangent space of J”. (This reflects the fact that generally, for nonlinear
systems, the characteristics depend on which point on the equation
manifold # is being considered.)

In the case of one dependent variable, the matrix M({) just consists of
a single linear polynomial u({), and (9.12) becomes

PO )= D) xul0), (9.14)

k=1
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for some collection of linear polynomials A,, which may depend on P({).
If the symmetry is not extendable, then u({) is not zero and so vanishes on
a hyperplane. Equation (9.14), which holds for ali polynomials P({),
immediately implies that ¥ must be contained in the hyperplane. Thus an
immediate necessary condition for a system to admit a non-extendable
internal symmetry is that its characteristic variety be contained in a hyper-
plane. This condition already considerable restricts the types of system
which admit non-extendable internal symmetries. Moreover, it can be
easily strengthened.

Let &/0n denote the normal derivative to the given hyperplane.
Explicitly, if u({) =Y u,{;, then, by definition,

0, 9
o g
In particular,
ou L
A= Z I.ui|29
on <
which is a nonzero constant. Define the normal derivative ideal
0
€, = {5’}5 XEE }

and let ¥, = {{|p({) =0 for all pe€,} be its associated variety. Note that
since €,>% we must have ¥,c¥". We show that, in order for a non-
extendable internal symmetry to exist, this inclusion must be strict.

THEOREM 28. [f an overdetermined system of partial differential
equations X in a single unknown admits a non-extendable internal symmetry,
then for each point ze€ X,

1. the characteristic variety is contained in a hyperplane: ¥ < #; and
2. the normal derivative with respect to X is strictly smaller: ¥, #7Y".

Proof. By the above remarks, the first condition is necessary. Applying
the normal derivative to the contact condition (9.14), we find

ou P L (04, , 6;(K)
P5+6nu_k§l<6n Tt A on /)

Now on ¥, . =u=0, while du/0n is a nonzero constant. Since this must
hold for all polynomials P, we conclude that not all the normal derivatives
of the y, vanish on 77, as otherwise the last equation would lead to a
contradiction. This completes the proof of the theorem.
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For example, consider a single partial differential equation of order n>2
for the function u, which is automatically fully top order. At each point, its
characteristic variety 7~ is specified by a single polynomial x({). If ¥ is
contained in a hyperplane, then x({)= (a-{)” must be the nth power of a
linear polynomial. Thus, condition1 of Theorem 28 alone does not
reproduce our earlier result on normal systems of partial differential
equations in this context. However, in this case ¥, =7%", and hence there
are still no internal symmetries, reverifying Theorem 27 in the one
dependent variable case.

A similar argument proves that the nonlinear Monge-Ampére type
equation

Uy Uy — uiv = F(x’ Vs Uy Uy, uy) (915)

has no non-extendable internal symmetries. As before, the characteristic
variety ¥~ is specified by the single polynomial

Z(éa ”) = uyy 62 - 2uxyérl + u.\'.\fr’2 =0.

This will be contained in a hyperplane if and only if y is a perfect square,
which requires that its discriminant vanish:

2 —
du,, —4u,  u, =0.

Thus, unless F vanishes in an open set, we immediately conclude that
{9.13) has no nonextendable internal symmetries. In the particular case of
the equation u.u,, —u}, =0, the first condition of Theorem 27 will not
eliminate the possibility of genuine internal symmetries, since

x(&, 1) = (aé — bn)?, where a’=u,,ab=u,,b’=u,,
and ¥ is the hyperplane af = by. However, the normal derivative ¥/, is the
same hyperplane, and condition 2 of Theorem 28 eliminates the possibility

of non-extendable internal symmetries.
As another example, consider the overdetermined system

u,, —Au,=0, u,, —pu,,=0. (9.16)

Its characteristic variety is a collection of lines given by the intersection of
the two degenerate quadrics

E—-i2=0, n*~pl’=0,

where we view [£, 1, {] as homogeneous coordinates on CP2 For Ay #0,
the characteristic variety is not contained in a hyperplane, so there are no
internal symmetries. If, however, 1 =0, u 5 0, the characteristic variety is a



SYMMETRY GROUPS 99

pair of points contained in the projective line £ =0. However, in this case
d/0n=0/0¢, and ¥, is generated by the polynomials

& nt—ptt

Therefore ¥, =", and hence there are still no internal symmetries.
As an example of a system which does admit internal symmetries,
consider the rather trivial system

u, +u,=0, u,+u,=0. (9.17)

It is easy to see that any vector field of the form

d
v=Sluctu,) =,

where f is any scalar function, prolongs to a true internal symmetry. It is
easy to check that the characteristic variety of this system, which is the line
&+ n =0, satisfies the conditions of Theorem 28.
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