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The bi-Hamiltonian structure for a large class of one-dimensional hyberbolic systems of 
conservation laws in two field variables, including the equations of gas dynamics, shallow 
water waves, one-dimensional elastic media, and the Bom-Infeld equation from nonlinear 
electrodynamics, is exhibited. For polytropic gas dynamics, these results lead to a quadri­
Hamiltonian structure. New higher-order entropy-flux pairs (conservation laws) and higher­
order symmetries are exhibited. 

I. HAMILTONIAN SYSTEMS OF CONSERVATION LAWS 

With Gardner's discovery of the Hamiltonian structure 
of the Korteweg-de Vries equation,l and Amol'd's deter­
mination of the Lie-Poisson structure underlying the Euler 
equations of fluid flow,2 the range of applications of the 
Hamiltonian formalism embraced truly infinite-dimension­
al systems. Subsequent progress in the field has been rapid, 
especially after Magri proved his remarkable theorem on the 
complete integrability of bi-Hamiltonian systems.3 This has 
led to a large number of papers on the applications of Hamil­
tonian methods to the integrable soliton systems arising as 
models for nonlinear wave phenomena. More recently, a 
number of researchers have exploited Amol'd's original idea 
to vastly broaden the range of Hamiltonian systems in fluids, 
plasmas, and relativity.4 Yet a third branch of infinite-di­
mensional Hamiltonian mechanics was opened with the in­
vestigations of Man in, 5 Cavalcante and McKean,6 Dubrovin 
and Novikov,7 and Nutku,8 into the Hamiltonian structures 
arising in first-order quasilinear systems of partial differen­
tial equations, known as "systems of hydrodynamic type." 
These are beginning to have applications to the analysis of 
hyperbolic conservation laws, and the study of discontin­
uous (shock wave) solutions.9

-
11 

This paper represents a further investigation of the last 
class of equations, with two-component hyperbolic systems 
of conservation laws in one spatial variable being the type of 
system under consideration, and with particular attention 
being paid to gas dynamics and some model equations aris­
ing in elasticity. Our results build on earlier work of Shef­
tel',12,13 who was primarily concerned with the symmetry 
structure of these systems. We connect Sheftel's results with 
the Hamiltonian framework via Magri's theorem, and de­
duce the bi-Hamiltonian structure of a broad class of sys­
tems of conservation laws, as well as the quadri-Hamiltonian 
structure of the equations of polytropic gas dynamics them­
selves. New conservation laws (entropy-flux pairs), sub­
stantially extending earlier results of Verosky,l4 are also 
found. Interesting examples of incompatible bi-Hamiltonian 
systems are found. Indeed, the fundamental message of this 
paper is that, in the case of two-dimensional Hamiltonian 
systems, and particularly for polytropic gas dynamics, na­
ture appears to be overly generous in the amount of structure 

she provides. Why these systems should be this way remains 
mysterious. We hope to return to this topic, and to applica­
tions of these results to the analysis of smooth solutions and 
shock waves in a subsequent paper. As a prerequisite for 
studying this paper, we assume that the reader is familiar 
with the fundamentals of symmetry groups, Hamiltonian 
systems of evolution equations, conservation laws, and Ma­
gri's theorem, as presented, for instance, in Olver. 15 

The general form of a two-component hyperbolic sys­
tem of conservation laws of Hamiltonian type is as follows. 
The unknowns u(x,t) = ef:::n depend on the real-valued 
temporal and spatial variables t and x. The Hamiltonian 
functional or energy is 

Jf"[u] = f H(u,v)dx, 

where the integrand or Hamiltonian density H(u,v) is a 
smooth, but otherwise arbitrary function of u and v. The 
system takes the explicit form 

(1.1 ) 

with the sUbscripts denoting partial derivatives. We can also 
write it in the convenient vector format 

u, =H'ux ' 

where 

( 1.2) 

0.3) 

and a l = (~ 6J. The system (1.2) is in the elementary Hamil­
tonian form 

U, = 9'oE[H]. (1.4 ) 

Here E = ED denotes the Euler operator or variational de­
rivative, and the Hamiltonian operator is the matrix differ­
entialoperator 

9'0 = a1'Dx = (;x ( 1.5) 

The corresponding Poisson bracket is 
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{F,H} = f E(F)'!P oE(H)dx 

= f {Eu (F). DxEv (H) + Ev (F)DxEu (H) }dx, 

which arises in a number of physically important systems. 
There are three important examples. The equations of 

gas dynamics 16 

U, + UUx + f(v)vx = 0, v, + (UV)x = 0, (1.6) 

are of theform (1.1), with 

H(u,v) = - (!u2v + F(v»), where f(v) = F"(v). 
( 1.7) 

In physical applications, u(x,t) represents the velocity, and 
v(x,t) the density (more customarily denoted by p) of the 
fluid; the function f( v) is related to the physical pressure 
P(v) according to the equationf(v) = P'(v)lv. The equa­
tions of polytropic gas dynamics correspond to the choice 
F(v) = vYlr(r - 1) for some exponent r#O,1. In particu­
lar, the special case F(v) = !v2 also arises in shallow water 
theory.6 A second important example is provided by the 
Hamiltonian 

H(u,v) = ulv + vlu, ( 1.8) 

in which case ( 1.1 ) is equivalent to the Bom-Infeld equation 
from nonlinear electrodynamics. 17.18 Finally, we mention 
the simple model 

u, = [u(v) lx, v, = Ux' (1.9) 

for a one-dimensional nonlinear elastic medium.9, 10,19 In this 
case, the Hamiltonian density is 

H(u,v) = !u2 + F(v), ( 1.10) 

whereF'(v) = u(v). The case when uis a monotone func­
tion of v corresponds to an ideal fluid or elastic solid; models 
of phase transitions arise with more general functions u, the 
most interesting being that of a van der Waals fluid, where 
u(v) = cl(v - b) - alv2. Furthermore, the case u(v) 
= (1 + v) - (I + Y) corresponds to the Euler equation arising 

in nonlinear acoustics. 20 

II. A PROTOTYPE: THE RIEMANN EQUATION 

A remarkable feature of the two-component Hamilto­
nian system ( 1.1) is that, suitably interpreted, all the struc­
ture already manifests itself in the simple scalar nonlinear 
wave equation 

(2.1 ) 

This equation has many names (Riemann, inviscid Burgers', 
Hopf, etc.), and serves as a prototype for so many of the 
phenomena associated with hyperbolic systems, that its role 
in the Hamiltonian structure and conservation laws will not 
be surprising. See Whitham 16 for a good review of the classi­
cal theory of this equation. 

The purpose of this introductory section is to list some 
basic results for the Riemann equation (2.1), all of which 
have direct counterparts in the equations for polytropic gas 
dynamics (1.6) and the model elasticity equations (1.9), 
and many of which have counterparts for more general two-

1611 J. Math. Phys., Vol. 29, No.7, July 1988 

dimensional hyperbolic systems. The rather easy proofs are 
left to the reader, as they serve as good warm-up exercises for 
the much harder calculations in two dimensions. 

( 1) There is an infinite sequence of zeroth-order con­
served densities 

Hn (u) = un, n = 1,2,3,... . (2.2) 

In fact, any function F( u) is a conserved density for (2.1). 
[By the orderofafunction F [u] = F(u,ux"")' we mean the 
highest order derivative of u on which it depends.] 

(2) The equation admits three first-order Hamiltonian 
operators 

!Po = Dx' !PI = 2u'Dx + Ux' !P2 = u2'Dx + uUx' 
(2.3 ) 

and so can be written in Hamiltonian form in three distinct 
ways: 

u, = !Po'E(i,H3) = !PI'E(i,H2) = !P2·E(H1). 

Moreover, since 

!P2#!P I·!PO-I.!p I' 

these Hamiltonian operators are not trivially related.21 

(3) The three Hamiltonian operators !P 0' !P I' !P 2' are 
compatible, meaning that any two of them form a Hamilto­
nian pair in the sense of Magri's theorem.3,22 Therefore, Eq. 
(2.1) is a "tri-Hamiltonian system." The resulting recursion 
operators 

fit I=!P I'!PO- I, flt2 = !P2·!PO-I, flt3 = !P2'!P ii, 
(2.4 ) 

which map symmetries to symmetries, are trivially related 
by 

flt2 = flt 3·flt l, 

but are otherwise independent "integrodifferential opera­
tors." 

( 4) There is an infinite sequence of commuting Hamil­
tonian flows corresponding to the evolutionary vector fields 
Vn = Qn [u] ·au, with characteristics Qn [u] = un·ux' The 
nth flow can be written in Hamiltonian form in three distinct 
ways: 

u, = Qn [u] = un·ux 

= !Po'E([(n + 2)(n + 1)]-IHn+2) 

= !P 1'E([(2n + l)(n + l)]-IHn+d 

= !P2'E(n-2Hn), (2.5) 

whose Hamiltonians Hn are given by (2.2). These Hamilto­
nians are in involution with respect to any of the three Pois­
son brackets determined by the Hamiltonian operators: 

{Hn,Hm}j = f E(Hn)'!PjE(Hm)dx=O, j=0,1,2. 

The recursion operators (2.4) reproduce the hierarchy of 
Hamiltonian flows, 

fltl(Qn) = [(2n + 3)/(n + l)]Qn+I' 

flt 2(Qn) = [(n + 2)/(n + I)]Qn+2' 

Thus, starting with the initial flow (2.1 ), fit 1 produces every 
flow in the hierarchy (2.5), whereas fit 2 produces every oth-
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er one. Interestingly, even though there are two independent 
recursion operators, the two hierarchies of zeroth-order con­
served densities and corresponding first-order symmetries of 
(2.1) guaranteed by Magri's theorem happen to coincide. 
However, this remark is special to the polynomial hierarchy 
(2.2); on other hierarchies of Hamiltonian densities Hn (u) 
defined by the recursion relation, starting with a nonpolyno­
mial function Ho(u), these recursion operators will act dif­
ferently. 

(5) The equation admits an additional third-order 
Hamiltonian operator 

(2.6) 

Each of the Hamiltonian systems (2.5) can be written in this 
new Hamiltonian form using the Hamiltonian operator 1&', 

(6) The Hamiltonian operators ~ 0 and I&' are compati­
ble; however, I&' is not compatible with either ~ I or ~ 2' 
Thus, the Riemann equation, and its higher degree general­
izations (2.5) are in the rather anomalous position of being 
"quadri-Hamiltonian systems," meaning there are four dis­
tinct local Hamiltonian structures, but of the six different 
possible pairs of Hamiltonian operators, four are compati­
ble, whereas two are not! 

(7) The recursion operator 

fJ)=I&'.~-I=D '(I/u )'D '(l/u) o x x x x' 

is the square of a simpler first-order recursion operator 

(2.7) 

This latter operator acts on the first-order flows according to 

~(Qn) = nQn_1> 

and so, up to multiple, "inverts" the first-order recursion 
operator ~ I' [Again, as in part (4), this is special to the 
polynomial hierarchy (2.5).] 

(8) There is a rational second-order generalized sym­
metry v2 = Q2·aU = ux-

2 ·uxx ·au with corresponding flow 
governed by the evolution equation 

A- 2 
ut = Q2 = uxx/ux· 

Thus the recursion operator ~ generate~ an additional hier­
archy of higher order symmetries vn = Qn ·au , where 

(2.8) 

(9) The third-order generalized symmetry V3 in the 
hierarchy (2.8) is Hamiltonian relative to the first-order 
Hamiltonian operator ~ o' Thus there is a rational first­
order conserved density 

HI = l/ux 
such that the third-order evolution equation 

A- 2 4 
u/ = Q3 = (ux 'Uxxx - 3uxx )/ux (2.9) 

corresponding to V3 is in fact bi-Hamiltonian 
A- A-

u/ = ~o'E(HI) = l&"E(Ho)' 

Here 
A- 2 
Ho=xu + ~tu 
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is a (time-dependent) zeroth-order conserved density for 
(2.1 ). Consequently, every other member of the hierarchy 
(2.8), i.e., the vector fields v2n + I' is bi-Hamiltonian, corre­
sponding to a hierarchy of higher-order rational conserved 
densities H n' n = 0,1,2, .... 

(to) For any solution to the general first-order flow 
(2.5) corresponding to the vector field Vn , each of the high­
er-order quantities S H m [u] dx is a linear function of t (pro­
vided that the integral converges). In fact, if H(u) is any 
zeroth-order conserved density, with flow U t = DxE(H), 
then 

A- a2m + IH 
H +t---

m au2m + I 

is a conserved density for such a flow. In particular, Hm is a 
conserved density for Vn whenever 2m>n - 1. 

There are some additional facts concerning higher order 
symmetries and conservation laws for (2.1) which do not 
appear to have counterparts for the equations of gas dynam­
ics. [This demonstrates that one must be careful when decid­
ing which of the properties of (2.1) one wishes to generalize 
to two-dimensional systems in general, and gas dynamics in 
particular.] The proof of the following complete characteri­
zation of symmetries and conservation laws is not difficult. 

Theorem 2.1: Define the rational differential functions 

Ko = U, KI = X - tu, K2 = u/ux - x, K3 = uxx/u;, 

Kn + I = (l/ux )DxKn, n>3. 

(i) T[ u] is conserved density of (2.1) if and only if 

T= UX ·F(Ko,KI,K2, ... ,Kn), 

where F is an arbitrary smooth function of the differential 
functions Ko, ... ,Kn • 

(ii) Q [ u] is the characteristic of a generalized symme­
try vQ = Q·au of (2.1) if and only if 

Q = Ux ·G(Ko,KI,K2,· .. ,Kn ), 

where G is an arbitrary smooth function of the functions 
Ko,· .. ,Kn • 

III. ZEROTH-ORDER CONSERVED DENSITIES 

We now return to the general two-component Hamilto­
nian system ( 1.1), and investigate its symmetries, conserved 
densities, and Hamiltonian structures. We will follow the 
basic outline of the properties for the elementary one-dimen­
sional wave equation (2.1) discussed in Sec. II. We therefore 
begin by discussing item (1), the existence of zeroth-order 
conserved densities. Much of this material is well­
known.5.13.23 

Associated with each hyperbolic system (1.1) is a sec­
ond-order linear partial differential equation 

A(u,v)Fuu =B(u,v)Fvv ' (3.1) 

with A = Hvv, B = Huu' The solutions of (3.1) are the ze­
roth-order conserved densities (entropies) for the hyperbo­
lic system (1.1 ).10.13 

Proposition 3.1: A functional Y[u] = SF(u,v)dx is 
conserved for the Hamiltonian system (1.1) if and only if F 
is a solution to Eq. (3.1). 

Note that H itself is always a solution to (3.1). Also, if F 
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is a conserved density for the Hamiltonian system governed 
by H, then, reciprocally, H is a conserved density for the 
Hamiltonian system governed by F. In addition, we always 
have four elementary solutions given by the functions 

1, u, v, U·V. (3.2) 

These are conserved densities for any Hamiltonian system of 
the form ( 1.1 ). 

The most important class of Hamiltonian systems ( 1.1 ) 
are those for which the corresponding partial differential 
equation (3.1) admits a separation of variables in the rectan­
gular (u,v) coordinates. 

Definition 3.2: A Hamiltonian density H(u,v) is called 
separable if (a) the second-order partial derivatives H uu and 
Hvv do not vanish identically, and (b) there exist functions 
A(U) and,u(v) such that 

HuJHvv = A(U)/,u(v). (3.3) 

If the Hamiltonian density is separable, then Eq. (3.1) 
determining the zeroth-order conserved densities takes the 
form 

(3.4) 

In this paper, we will deal exclusively with separable Hamil­
tonian systems (1.1); an interesting open question is how 
many of these results can be generalized to the nonseparable 
cases. Gas dynamics, (1.6), is an example of a separable 
system, where 

A ( U ) == 1 and ,u ( v) = F" (v) = f( v) = P' ( v) . 
v V v2 

In fact, the special case when A == 1 has added importance. 
Definition 3.3: Let H(u,v) be a Hamiltonian density. If 

the ratio HuJHvv = ,u(v) is a function ofv alone, then His 
said to be a generalized gas dynamics Hamiltonian density. 

The elastic models ( 1. 9) are of gas dynamics type, with 
,u ( v) = (1' ( v ). The Born-Infeld Hamiltonian (1. 8) is sep­
arable, with A (u) = U -4 and,u (v) = v-4, but not of gas dy­
namics type. [However, Verosky24 noticed that the transfor­
mation 

U = - (u- 2 + v- 2 ), v = !UV, (3.5) 

will change the Born-Infeld system into a polytropic gas 
dynamics system with adiabatic index r = - 1, i.e., 
F( v) = 1/2v. This remarkable transformation will be dis­
cussed in more detail in a forthcoming publication. 17] 

In the separable case, there are four fundamental hierar­
chies of solutions to the wave equation (3.4). Each of them 
takes the form 

n 

H,,(u,v) = L F;(u)'Gn_;(v), 
;=0 

where the functions F; and G; are generated by the recursion 
relations 

aZp. 
au2' = A(u)F;_I' (3.6) 

and normalized so that 

F;(O) =F;(O) =0, G;(O) =G;(O) =0. 

The hierarchies depend on the initial selection of 
Ho = Fo' Go, and there are four obvious possibilities, given 
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by the four elementary conserved densities (3.2): 

Ho = 1, Fo = Go = 1, 

Ho=u, Fo=u, Go =l, 

Ho = v, Fo = 1, Go = v, 

Ho = uv, Fo = u, Go = v. 

In practice, it is expedient to combine the first and second, 
and the third and fourth hierarchies, leading to two funda­
mental hierarchies of conserved densities, which we denote 
by Hn andHn, respectively, sothatH2n is the nth member of 
the first hierarchy, H2n + I is the nth member of the second 
hierarchy, H2n is the nth member of the third hierarchy, and 
H2n + I is the nth member of the fourth hierarchy. 

For reference, we list the first few members of each se­
quence in the gas dynamics case A == 1: 

Ho= 1, 

HI = U, HI = uv, 

H2 = !u2 + GI (v), H2 = ~U2V + GI (v), 
3 - 3 -H3 = Au + uGI(v), H3 = Au v + uGI(v), 

H4 = f4u4 + !U
2GI (v) + G2 (v), 

- 4 2- -
H4 = f4U V + u GI (v) + G2(v), 

etc., where, according to (3.6), 

GI (v) = f (v - w) ',u(w)dw, 

G2 (v) = f (v - w) ',u(w) 'GI (w)dw, 

GI(v) = f (v-w)'w',u(w)dw, 

G2 (v) = f (v - w) ',u(w) ·GI(w)dw. 

(3.7) 

Note that the elastic Hamiltonian (1.10) appears in the first 
hierarchy as H 2, whereas the gas dynamics Hamiltonian 
(1.7) appears in the alternative hierarchy as - H2• 

Lemma 3.4: Let H(u,v) be a generalized gas dynamics 
Hamiltonian. If F(u,v) is a conserved density, then so is 
aF/au. 

In fact, the hierarchies (3.7) satisfy 

aHn 
--=H I au n- , (3.8) 

and similarly for H". 
For a general separable system, each of the Hamiltonian 

functions generates a Hamiltonian flow, governed by the 
corresponding evolutionary system (1.1). We let 

Qn =.@oE [Hn] = Hn 'Ux (3.9) 

[cf. (1.3) and (1.5)] denote the right-hand side of this equa­
tion, which is also the characteristic for the symmetry vector 
field Vn = Qn ·au· We define Mn, Qn, and vn from the alter­
native hierarchy Hn similarly. In particular, Qo = QI 
= Qo = 0, meaning that the densities Ho, HI' Ho determine 

distinguished functionals (Casimirs) for the Hamiltonian 
structure (1.5), while Q\ = Ux is the common translational 
symmetry of the systems. All the Hamiltonians Hn and Hn 
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are in involution with respect to the Poisson bracket deter­
mined by the Hamiltonian operator (1.5), i.e., 

{Hn,Hm} = {Hn,Hm} = {Hn,Hm} = 0, 

for all n, m. Consequently, the vector fields v n and v m all 
mutually commute. 

IV. FIRST-ORDER HAMILTONIAN STRUCTURES: 
POLYTROPIC GAS DYNAMICS 

We have already seen the first Hamiltonian structure of 
the gas dynamics system ( 1.6). We now turn to a discussion 
of the other first-order Hamiltonian structures in the case of 
polytropic gas dynamics. These results correspond to items , 

(2)-( 4) for the one-dimensional equation (2.1). Strangely, 
these results do not seem to generalize to the general gas 
dynamics system, much less the more general hyperbolic 
system (1.1). 

Nutku8 has shown that, in the case of polytropic gas 
dynamics, there are two additional first-order Hamiltonian 
structures. Using the Hamiltonian hierarchies (3.7), we find 
that we can write the polytropic gas dynamics equations 
(1.6), with f(v) = vY- 2, in the alternative Hamiltonian 
form 

U, = IiJ I'E(y-IHI), (4.1 ) 

where IiJ I is the Hamiltonian operator 

IiJ _ x x 
( 

vY-2'D +D 'vy - 2 

1- (y_ l)u'Dx + (y_ 2)ux 

(y- l)u'Dx + Ux). 

v'Dx +Dx'v 

They have yet another Hamiltonian form, 

u, = IiJ 2'E(Ho), 

where 

(4.2) 

(

UVY- 2.DX +Dx'UVY-2 

IiJ 2 = 
{!(y-l)u2+2[vY- I/(y-1)]}'Dx 

+ (y- 2)uux + vY- 2vx 

{!(y - 1)u
2 + 2[v

y
-

I
/(y - 1) ]}.DX) 

+ uUx + vY- 2vx 
uV'Dx + Dx ·uv . 

The Hamiltonian operators IiJ 0' IiJ I' IiJ 2 are mutually com­
patible, leading to three distinct Hamiltonian pairs. The cor­
responding recursion operators are just as in (2.4), i.e., 

~I=IiJI·IiJO-I, ~2=IiJ2·IiJO-I, ~3=IiJ2·IiJI-I, 
(4.3) 

and, as before, are trivially related by the identity 
~ 2 = ~ 3' ~ I' but are otherwise distinct. Nevertheless, they 
both give rise to the same series of gas dynamics Hamilto­
nians, since 

~I(Qn) =Qn+I' ~2(Qn) =Qn+2' 

and similarly for the alternative hierarchy v n' In other 
words, just as with the one-dimensional prototype (2.1), ~ 2 

leads to every other member of the hierarchies (3.9), and so 
for some reason ~ 3 acts the same as ~ I on these hierarchies. 
(As with the Riemann equation recursion operators, these 
recursion operators will act differently on other hierar­
chies.) Strangely, there does not appear to be a counterpart 
of these two recursion operators in the general nonpolytro­
pic case, i.e., when the pressure is not proportional to a pow­
er of the density. We do not fully understand why this should 
be the case. 

A similar situation exists for the "polytropic" versions 
of the elasticity models (1.9), i.e., when 
F(v)=vy

-
I/(y-2)'(y-1), y:;f0,1,2. Here we can 

write it in a second Hamiltonian form 

(4.4 ) 

However, even though this system cannot be written in 
Hamiltonian form using the operator IiJ 2' nevertheless it 
still admits all three recursion operators (4.3). 

The only other case of (1.9) which appears to admit a 
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I 
second Hamiltonian structure is the curious choice 
l1(v) = eO. Here we have the Hamiltonian operator 

IiJ _ ( u'e"'Dx + Dx 'u'e" (e" + !u2
) 'Dx + Dx .e"), 

1- e"'Dx +Dx'(e"+!u2) u'Dx +Dx'u 

and the equation can be written as 

u, = IiJI'E(Ho)' 

Interestingly, the resulting recursion operator ~ I 
= IiJ I . IiJ 0- I alternates between the two hierarchies of con­
served densities (3.7), i.e., 

~I(Qn) =Qn+2' ~I(Qn) =Qn+2' 

Note that this also implies that the gas dynamics equations 
(1.6), withf(v) = eO, can also be written in the Hamiltonian 
form u, = IiJI·E(HI). Apart from obvious rescalings and 
translations of v, this appears to be the only nontrivial case 
where this happens. 

V. HIGHER-ORDER HAMILTONIAN STRUCTURE 

In this section, we present the second Hamiltonian 
structure of a general separable Hamiltonian system (1.2). 
We begin by exhibiting the analog of the third-order Hamil­
tonian operator (2.6), thereby finding analogies to items (5) 
and (6) of Sec. II. We will then show how to write the system 
itself in bi-Hamiltonian form. 

Following Sheftel' , 13 define the functions 

L(u) = f A.(s)ds, M(v) = f f1-(s)ds, 

and the matrix variables 
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(
u M(V») (L(U) 

U(u,v) = v L(u) , V(u,v) = v 

Note that CTI ' U = VT·CTI, where CTI = (~ ~). Let 

(
Ux P(V)Vx ) (U t P(V)V I ) 

Ux = and UI = 
Vx A(U)Ux Vt A(U)U I 

denote the total x and t derivatives of the matrix U; define Vx 
and Vt analogously. Also let 

U x-I = ~(A(U)Ux -P(V)Vx), 
() - Vx Ux 

V - I = ~(Ux -P(V)Vx) 
x () -Vx A(U)Ux ' 

() = A(u) ·u; -p(v) 'v;, 

denote the matrix inverses of Ux and Vx ' 

The basic third-order Hamiltonian operator for a gen­
eral separable Hamiltonian system can be written compactly 
as follows. 

Theorem 5.1: The operator 

g' = Dx' Vx-I'Dx ' U x-I'CTI'Dx 

= Dx' V x-I'Dx 'CTI ' V x- T'Dx (5.2) 

is Hamiltonian. 
Proof The fact that g' is a skew-adjoint differential op­

erator follows immediately from the second formula in 
(5.2). Rather than prove the Poisson form22 of the Jacobi 
identity for g', it is simpler to prove that the symplectic two­
form 

0= J {dUT 1\ g'-I du}dx, 

is closed25
: dO = O. Let (fJ, tPdenote potential functions for u, 

v, respectively, so 

(fJx = u, tPx = v. 

Thus, formally, 

D x-l(d(fJ) = du, D x-l(dtP) = dv, 

and hence 

0= J {(vx d(fJ + Ux dtP) 

I\D x-I(A(U)Ux d(fJ + p(v)vx dtP)}dx 

= J {( tPxx d(fJ + (fJxx dtP) 

I\D x-I(A((fJx )(fJxx d(fJ + p(tPx )tPxx dtP)}dx. 

Let L, Mbe as in (5.1), and let 

L(u) = Iou s'A(s)ds, 

L(u) = Iou (u - s)A(s)ds = uL(u) - L(u), 

M(u) = r s'p(s)ds, 

M(u) = Iou (u - s)p(s)ds = uM(u) - M(u). 

Performing an inspired series ofintegration by parts, we find 

0= - J {(tPxd(fJ+(fJxdtP)I\(A((fJx)(fJxxd(fJ+p(tPx)tPxxdtP) 

+ d((fJx tPx) 1\ D x- I(A((fJx )(fJxx d(fJ + p( tPx) tPxx dtP)}dx 

= J {((fJxA((fJx)(fJxx - tPxp(tPx)tPxx)d(fJl\dtP 

- d((fJx tPx) 1\ (L((fJx )d(fJ + M(tPx )dtP) + d((fJxtPx) I\D x- ld (L((fJx) + M(tPx »)}dx, 

= J {(-L((fJx) +M(tPx»(d(fJxl\dtP+d(fJl\dtPx) 

- d((fJx tPx) 1\ (L((fJx )d(fJ + M(tPx )dtP) + d((fJxtPx) I\D x- ld (L((fJx) + M(tPx) )}dx. 

Therefore, 

dO = J { -(fJx A ((fJx )d(fJx 1\ d(fJ 1\ dtPx 

+ tPxp(tPx)dtPx I\d(fJx I\dtP 

+ d((fJx tPx) 1\ (A ((fJx )d(fJx 1\ d(fJ 

+ f-l (tPx )dtPx 1\ dtP)}dx, 

which clearly vanishes. This completes the proof that 0 is 
closed, and hence g' is a Hamiltonian operator. 

Proposition 5.2: The operators g' and IiJ 0 form a Hamil­
tonian pair. 

Proof' Here it is more convenient to use Poisson meth-
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ods.22 Let () = (~) be the basis univectors associated with 
the variables u = (~). Since we already know that g' andIiJ 0 

are Hamiltonian operators, we need only verify the addi­
tional compatibility condition26 

pr vY ,,(! (0w ) + pr VW(! (09 ,,) = 0, 

where 

0 go = ~ J (}TI\IiJo((})dx= J sl\'1/x dx 

(5.3 ) 

is the functional bivector associated with the Hamiltonian 
operator IiJ 0' and 
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0[5' = ~ f ° T 1\ 'l/(O)dx 

= ~ f [V"-TO]Tl\at'D,, [V,,-TO]dx 

is the bivector associated with the Hamiltonian operator 'l/. 
Now 0yJ" is a constant coefficient bivector, and hence 

pr VfI() (0,,),,) = 0, 

automatically. Thus, to verify (S.3), we need only compute 

pr v.'2J
o

() (0g> ) 

= f [prV.'iJo()(V"-T)·O]Tl\at·D,, [V;-T'O]dx, 

= - f [V,,-T·prv.'2Jo()(V~)·V,,-T·O]T 
l\a)'D,,[V,,-T'O]dx, 

where 

= (A(U)''Y/"" +A:(U)'U",'Y/" 

f.l(v) 's"" + f.l (v) 'V" 's" 

(S.4) 

It now appears that the only recourse is a rather long calcula­
tion to check that the functional trivector (S.4) vanishes. We 
will not reproduce this calculation here, but just remark 
that, after several integrations by parts, the final result only 
depends on the four basis trivectors 

(S.S) 

S" I\s"" I\'Y/"", 'Y/" I\s"" I\'Y/"". 
Thus one need only check that the coefficient of each of these 
trivectors is zero, an exercise we leave to the reader. 

We now show how to combine the two Hamiltonian 
operators 'l/ and fj) 0 to make a separable Hamiltonian sys­
tem bi-Hamiltonian. 

Theorem 5.3: Let H(u,v) be a separable Hamiltonian 
density. Then there exists a second zeroth-order conserved 
density H*(u,v) such that the corresponding Hamiltonian 
system (1.1) can be written in bi-Hamiltonian form 

u, =llJoE[H] = 'l/E[H*]. ( S.6) 

Proof Here, all the calculations are local, i.e., over a 
suitably small domain in (u,v) space. Let H *(u,v) be a sep­
arable density satisfying the same equation (3.3) as H. A 
straightforward calculation using (3.3) shows that 

'l/ E [H*] = Dx(H:uvIA). 
H uvv1f.l 

This will coincide with ( 1.1) provided H * satisfies 

Hv = H~uvIA, Hu = H~vvlf.l' (S.7) 

Note first that, given H *, we can always determine a corre­
sponding Hamiltonian density H, satisfying (3.3), since the 
compatibility conditions for (S.7), i.e., 
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a~ ~V (H}u ) = :u (H Juv ) 

= :v ( H;vv ) = a~:v (:~v). (S.8) 

are clearly satisfied sinceH* solves (3.3). Conversely, given 
H(u,v), which satisfies (3.3), we need to show that there 
exists a function H*(u,v), which also satisfies (3.3), and 
satisfies (S. 7). To accomplish this, we first determine a func­
tion G(u,v) which satisfies 

Gu = AHv' Gv = f.lHu· 

This is possible (locally) by virtue of (3.3). Further, let 
F(u,v) be any function such that 

Fuv = G. 

Now according to (S.7), we will have H:v = G also, hence 

H*(u,v) = F(u,v) + p(u) + a(v) (S.9) 

for certain functions p (u) and a( v) of one variable. We only 
need to determinep and aso that H* satisfies (3.3). Now, 
according to (S.8) 

a~:v (F;u - ~v) = 0, 

hence 

FuulA - Fvv1f.l = q;(u) + t/J(v). (S.lO) 

If we choose p and a to satisfy 

p" = - A'q;, a" = - f.l.t/J, 

then it is not hard to see that H*, as determined by (S.9), 
satisfies (3.3), since 

H~u H~v. Fuu p" Fvv a" 
---=-+-----=0 

A f.l A A f.l f.l 
by virtue of (S.lO). This completes the construction of the 
appropriate density H *, and hence proves the theorem. 

If the Hamiltonian density H in Theorem S.3 is one of 
the densities H" in the hierarchy (3.7), then it is not hard to 
see that the corresponding density H * (u,v) can be taken to 
be the density H" + 2; similarly, if H = H", then 
H * = H" + 2' (See also Lemma 6.2 below.) 

Example 5.4: Consider Eqs. (1.6) of polytropic gas dy­
namics, so that f(v) = Vl'-2. Here A(U) = 1, and 
f.l(v) = vl'- 3. Therefore the matrix variables (S.I) coincide 

U= V=(~ vl'-2/~r-2»). 

According to the proof of Theorem S.3, we can write the gas 
dynamics equations in the new Hamiltonian form 

u, = 'l/ E [H*]. 

The Hamiltonian operator is 

'l/ =Dx'Ux-t'Dx'Ux-l'at'Dx' 

and the new Hamiltonian is 

H*(u,v) =H4(u,v) =f.,u4v+u2·vl'lr(r-1) 

+ v2
1'- t/2r( r - 1 )2(2r - 1), 

provided r=l= ~ (otherwise the last summand is logarithmic). 
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Similar formulas hold for non polytropic gas dynamics. 
As discussed in Sec. IV, polytropic gas dynamics has 

two additional Hamiltonian structures. A similar, but even 
lengthier, calculation along the lines of that in Proposition 
5.2 shows that for polytropic gas dynamics, the Hamiltonian 
operators if and iiJ 1 are not compatible, nor are the Hamil­
tonian operators if and iiJ 2' [In this case, there are other 
basis trivectors besides the ones listed in (5.5) which show 
up in the compatibility conditions (5.3), e.g., s/\ '/]X /\sxx, 
and one checks that the coefficient of at least one of these 
trivectors does not vanish.] Thus, as with the one-dimen­
sional Riemann equation (2.1), the polytropic gas dynamic 
equations form a quadri-Hamiltonian system with four com­
patible and two incompatible Hamiltonian pairs. 

VI. RECURSION OPERATORS AND HIGHER-ORDER 
SYMMETRIES 

We now tum to items (7) and (8) of Sec. II, and discuss 
the higher-order symmetries for hyperbolic systems. We be­
gin by invoking Magri's theorem3 to construct recursion op­
erators from the Hamiltonian pairs of differential operators. 
The first consequence of the developments in the preceding 
section is the following result of Sheftel'. 13 

Proposition 6.1: The operator 

§k = if· iiJ 0- 1 = D x . V x- I. D x . U;: 1 (6.1) 

is a recursion operator for the separable Hamiltonian 
system (1.1 ). 

Thus applying the recursion operator §k to any symme­
try of the gas dynamics system leads to another symmetry. A 
straightforward calculation shows that for the zeroth-order 
conserved densities, this recursion operator does not lead to 
anything new. 

Lemma 6.2: Let v n and v n be the nth-order Hamiltonian 
symmetries determined by the two hierarchies (3.7). Then 
the recursion operator acts on their characteristics accord­
ing to 

§k(Qn) = Qn-2' §k«t) = Qn-2' (6.2) 

In the case of a generalized gas dynamics Hamiltonian, 
so A (u) == 1, the matrix variables (5.1) coincide: 

U=V=(~ M~V»). 
Thus, just as in the one-dimensional case, the recursion oper­
ator (6.1) is the square of a simpler recursion operator13 

::!It =Dx'Ux-
l
, (6.3 ) 

On the zeroth-order symmetries, 

(6.4 ) 

In the polytropic case, !!It is the "inverse" to the recursion 
operator ::!It 1 on the hierarchies (3.7), although as always, 
this is special to these particular hierarchies. 

Since we cannot obtain any higher-order symmetries by 
applying Sheftel's recursion operator to the first-order sym­
metries, we need to look elsewhere for the analogies to the 
higher order rational symmetries of the Riemann equation. 
We begin by stating the basic condition for a generalized 
vector field to be a symmetry of ( 1.1 ) . 
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Proposition 6.3: Thefunction Q [u] = (g~) is the char­
acteristic of a symmetry vector field vQ = Q·au of (1.2) if 
and only if Q [u] satisfies the identity 

DrQ = Dx (H .Q) (6.5) 

on solutions to the system (1.2). 
This result is standard27 using the fact that the operator 

D, - D x • H is the Frechet derivative operator for the system 
of differential equations ( 1.2). As a consequence of Proposi­
tion 6.3 and the usual condition for a recursion operator,28 
we also deduce the following. 

Corollary 6.4: The Frechet derivative and recursion op­
erators commute: 

(6.6) 

This can also be proved directly.13 The commutation 
identity (6.6) also clearly holds for the first-order recursion 
operator (6.3) in the generalized gas dynamics case. 

Theorem 6.5: Let H = H n be a Hamiltonian in the first 
hierarchy constructed in Sec. III, and let v n be the corre­
sponding Hamiltonian vector field. Let v2m denote the gen­
eralized vector field of order 2m with characteristic 

A A 

Q2m = !!Itm(xux )' (6.7) 
Then V2m is a symmetry for the flow generated by v n pro­
vided 2m>n - 1. Similarly, V2m is a symmetry for the flow 
generated by V n corresponding to the Hamiltonian Hn pro­
vided 2m>n. 

Proof: We need to verify the symmetry criterion (6.5) of 
Proposition 6.3. Using the recursion condition (6.6), (6.2), 
and (6.7), we see that, on solutions to (1.2) with H = H n , 

(D, - Dx . Hn )Q2m = (D, - Dx . Hn ). §km(xux ) 

= §km. (D, - Dx 'Hn )(xux ) 

= §km.{x'Dx (u, - Hn 'ux ) - Hn 'ux} 

= -§km(Qn) = -Qn-2m, 

which vanishes if n - 2m..;; 1. The proof for lin is the same, 
but now Qn _ 2m vanishes if n - 2m..;;O. 

In the case of generalized gas dynamics, there is a more 
extensive hierarchy of symmetries because the recursion op­
erator is a first-order differential operator. The same calcula­
tion yields the following theorem. 

Theorem 6.6: Suppose H = Hn be one of the nth-order 
generalized gas dynamics Hamiltonians, as in (3.7), and let 
v n be the corresponding first-order Hamiltonian flow. Let 
v m denote the generalized vector field of order m with char­
acteristic 

(6.8) 

Then v m is a symmetry for the flow generated by v n provided 
m>n - 1. Similarly, v m is a symmetry for the flow generated 
by V n corresponding to the Hamiltonian H = Hn provided 
m>n. 

Finally, we note that in polytropic gas dynamics, we can 
still form additional recursion operators by combining the 
Hamiltonian operator if with the operators iiJ I' iiJ 2' even 
though they are not compatible. 29 However, the resulting 
higher-order symmetries appear to always be nonlocal since 
we cannot explicitly invert !iJ 1 or iiJ 2' 
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VII. HIGHER-ORDER CONSERVATION LAWS FOR 
GENERALIZED GAS DYNAMICS 

Proposition 3.1 gives a complete description of the ze­
roth-order conservation laws for the general Hamiltonian 
system (1.1). For the classical gas dynamics Hamiltonian 
(1.6), Veroskyl4 found an additional first-order conserved 
density, 

'" Vx Vx 
HI [u,v] =-=-----

~ u~ - Ii ( v) . v~ 
(7.1) 

We now show how Verosky's conservation law fits into our 
general framework, and derive analogous laws for general­
ized gas dynamics Hamiltonians. This will complete our ex­
tension of the results of Sec. II to two-dimensional Hamilto­
nian systems. We first note that a generalized gas dynamics 
Hamiltonian system can be cast into a suggestive matrix 
form, which is very reminiscent of the scalar Riemann equa­
tion (2.1). 

Lemma 7.1: Suppose H(u,v) is a generalized gas dy­
namics Hamiltonian. Then the corresponding Hamiltonian 
system (1.2) is equivalent to the matrix equation 

U,=H'Ux' (7.2) 

This follows from an elementary direct computation. 
The key to Verosky's conservation law and its higher order 
generalizations is the following matrix divergence identity. 

Lemma 7.2: Let H(u,v) be a generalized gas dynamics 
Hamiltonian. Then 

D,'(U x-
l

) -Dx(H'Ux-
l

) = - (Hx'Ux-
1 + Ux-I'Hx ) 

(7.3 ) 

holds on solutions to the system (1.2). 
Proof We first note that the matrices Hand Ux com­

mute: 

H'Ux = Ux·H. 

Also, differentiating (7.2) we find 

Ux, = H· Uxx + Hx . Ux' 

Therefore we immediately deduce (7.3): 

D,'(U;:I) -Dx(H'Ux-
l

) 

- U x- I. U
X

, • U x- I - Hx . U x- I 

+ H' U x- I. Uxx . U;: I 

In particular, the (2,1) entry of the matrix identity (7.3) 
reads 

(7.4) 

For the classical gas dynamics Hamiltonian ( 1.7), H uuu == 0, 
and we recover Verosky's conservation law, with density 
(7.1). For more general gas dynamics Hamiltonians, Huuu 
will no longer be 0, and vx /8 will no longer be a conserved 
density; however, we can simply modify it to get a time­
dependent conservation law. 

Theorem 7.4: Let H(u,v) be a gas dynamics Hamilto­
nian. Then the function 

'" Hr = vx/~ + 2tHuuu (7.5) 
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is a conserved density for the corresponding flow (1.1). 
Proof Let T(u,v) = Huuu' Note first that according to 

Lemma 3.4, T(u,v) is a conserved density for the flow. Ac­
cording to (7.4), to prove that (7.5) is also a conserved den­
sity, it suffices to show that there exists a function X(u,v) 
such that the divergence identity 

D,{t· T(u,v») - Dxlt·X(u,v») = T(u,v) (7.6) 

holds. Evaluating the left-hand side of (7.6), and using Eq. 
( 1.1 ), we find that X must satisfy the pair of first-order par­
tial differential equations 

Xu = HuvTu +HuuTv, Xv = HvvTu + HuvTv' 

The integrability condition Xuv = Xvu simplifies to the con­
dition 

(7.7) 

But this follows immediately from Lemma 3.1, using the fact 
that Tis a conserved density. This completes the proof. 

Corollary 7.5: The integral 

~I= IV; dx, 

when it converges, is a linear function of t for any gas dy­
namics Hamiltonian. 

The first-order conserved density HI = vx/~ leads to a 
Hamiltonian flow using the basic Hamiltonian operator 9 o. 
We now connect this flow with the symmetries generated in 
Theorem 6.6. This will allow us to apply the theorem of 
Magri to the Hamiltonian pair'll and 9 0 , and thereby gen­
erate a new hierarchy of higher order conservation laws in 
gas dynamics. The starting point is the following straightfor­
ward result. 

Proposition 7.6: The symmetry V3 is Hamiltonian with 
respect to the Hamiltonian structure determined by 9 0, and 
the corresponding conserved density is - 2 times Verosky's 
density (7.1). 

Proof' According to (6.8), the characteristic for the 
symmetry V3 is given by 

Q'" =!7l2 .(1) = -D 'U- 2 .U .U- I .(I) 
3 0 x x xx x O· 

On the other hand, the Hamiltonian flow corresponding to 
Verosky's density has characteristic 

(
Ev(HI») 

D· '" 
x Eu(HI) . 

Therefore, it suffices to verify that 

(
Ev(HI») (1) 
Eu(H

I
) =2U;:2·Uxx ·Ux-

l
• O· 

We have thus reduced the proposition to a straightforward 
computation, which we leave to the reader. 

Theorem 7.7: For a generalized gas dynamics Hamilto­
nian, there is a hierarchy of higher order Hamiltonian densi­
ties H m' m = 1,2'00" with m indicating the order of deriva­
tives on which they depend, and corresponding commuting 
bi-Hamiltonian systems 

U, = Q2m + I = 9 oE [Hm] = 'll E [Hm _ d, m> 1. 
(7.8) 
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The Hamiltonians are in involution with respect to both the 
~ 0 and 'C Poisson brackets. 

This follows directly from Magri's theorem. 3,22 There is, 
however, a technical point to be resolved: whether we can 
always invert the differential operator ~ 0 to continue the 
recursive construction of the densities from (7.8). However 
this follows from the theorem in Ref. 30 that shows that this 
always is the case when one of the members of a Hamiltonian 
pair is a constant coefficient differential operator. 

A 

Note that if one of the higher-order densities Hm is con-
A 

served, then so is every subsequent density H k , k>m. Thus 
we need only know which is the first conserved density for 
our Hamiltonian system (1.1). 

Theorem 7.8: If H = H n is a Hamiltonian density in the 
first generalized gas dynamics hierarchy, then the higher­
order density ii m is conserved for the Hamiltonian system 
(1.2) provided n<2m + 1. If H = Hn isin the second gener-

A 

alized gas dynamics hierarchy, then Hm is conserved pro-
vided n<2m + 2. 

Proof: We apply the recursion operator &t = !!J?2 to the 
( time-dc;pendent) flow corresponding to the Hamiltonian 
density HT [cf. (7.5)]. Using (3.8) and (6.4), we conclude 
that, as in the one-dimensional case, the function 

A a2m + IH 
H +1---

m au2m + I 

is a conserved density for (1.1) with H = Hn or Hn' In par­
ticular, if 2m + 1 > n, the second summand vanishes; more 
particularly, if H = H n , and n = 2m + 1, then the second 
summand is just a constant multiple of I, and can be ignored. 
This completes the proof. 

For more general separable Hamiltonian systems not of 
gas dynamics type, higher order conservation laws do not 
appear to exist in general. The principal reason for this is that 
the recursion operator (6.1) is second order, and the hierar­
chy of higher-order symmetries (6.7) omits the obvious 
Hamiltonian candidates. However, we do not have a com­
plete proof that these systems do not have higher-order con­
servation laws, and, indeed, Verosky's transformation (3.5) 
shows that at least one special example-the Born-Infeld 
equation-they do exist. This is an area that requires further 
investigation. 

In a later publication, we hope to return to the applica­
tion of our results to physically interesting initial value prob­
lems and discontinuous solutions/shock waves. Another in­
teresting direction for further research is to try to extend 
these results to three-dimensional systems of conservation 
laws, especially those of nonisentropic gas dynamics for 
which Verosky has discovered additional higher order con­
servation laws.31 
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