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Classical Invariant Theory and the Equivalence Problem 
for Particle Lagrangians. I. Binary Forms 

PETER J. OLVER* 

The problem of equivalence of binary forms under linear changes of variables is 

shown to be a special case of the problem of equivalence of particle Lagrangians 
under the pseudogroup of transformations of both the independent and dependent 
vartables. The latter problem has a complete solution based on the equivalence 

method of Cartan. There are two particular rational covariants of any binary form 

which arc related by a “universal function.” The main result is that two binary 
forms are equivalent if and only if their universal functions arc identical. Construc- 

tion of the universal function from the syzygies of the covariants. and explicit 
reconstruction of the form from its universal function are also discussed. New 

results on the symmetries of forms, and necessary and sufficient conditions for the 
equwalcnce of a form to a monomial, or to a sum of two rtth powers are conse- 

quences of this result. Fmally, we employ some syzygies due to Stroh to relate our 
result to a theorem of Clebsch on the equivalence of binary forms. ( IWO k.Kkrn,~ 

PW\\. IllC 

1. INTRODUCTION 

The general equivalence problem is to determine when two geometric 
objects expressed in local coordinates are really both the same object under 
an appropriate change of coordinates. Cartan [2] developed a general 
algorithm, based on the theory of differential forms, which provides a 
systematic procedure for determining the necessary and sufficient condi- 
tions for the equivalence of geometric objects. Although it is a powerful 
explicit computational method, it has only recently begun to be applied to 
problems of interest, including differential equations [7. 15, 161, symmetry 
groups [ 141, control theory [S], and problems in the calculus of variations 
[7, 173. The full range of applications to mathematics, physics, and 
engineering will, I believe, be quite extensive. and remains to be fully 
explored. This paper will describe a new and unexpected application of the 
equivalence method to classical invariant theory and the theory of poly- 
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nomials. Surprisingly, the application originates as an equivalence problem 
in the calculus of variations. 

The particular equivalence problem to be treated is to determine when 
two first order scalar variational problems, 

can be transformed into each other by a change of variables of the form 

1 = q(s, u), ii = $(.u, 11). 

Cartan, in [3], actually solved this problem as a special case of a more 
general equivalence problem arising in differential geometry. It constitutes 
only one of at least four possible mathematically interesting equivalence 
problems for particle Lagrangians, which are formulated and solved in 
[17]. In Section 2 we outline Cartan’s solution to the problem when the 
Lagrangian depends only on the derivative p = du1d.q which is the case of 
interest for classical invariant theory. In this case there is precisely one 
invariant for the problem, denoted by 1, and one nontrivial “derived 
invariant,” denoted by J. These two invariants are related by a single 
“universal function,” denoted by F, whereby J= F(Z). In essence, the 
fundamental result of Cartan is that two Lagrangians L(p) and z(g) are 
equivalent if and only if their universal functions are identical: F=F. See 
Theorems 2.4 and 2.5 for the precise formulation of this result. 

Classical invariant theory is concerned with the properties of 
homogeneous polynomials or forms which are unchanged by linear coor- 
dinate transformations. A large amount of effort has been devoted to the 
determination of complete systems of invariants and covariants, which are 
well understood for forms of low degree, but become far too complicated 
as soon as the degree becomes even moderately large. One key use of the 
invariants and covariants is to investigate the equivalence problem ,for 

forms, which is to determine when two homogeneous polynomials can be 
transformed into each other by an appropriate linear transformation. A 
solution to this problem has important applications, not only to invariant 
theory itself, but also to the determination of canonical forms for poly- 
nomials. 

The heart of this paper appears in Section 4. The fundamental observa- 
tion is that the equivalence problem for binary forms can be recast as a 
special case of the Lagrangian equivalence problem, and hence has a com- 
plete solution based on Cartan’s results. As a consequence of the solution 
to the Lagrangian equivalence problem, we deduce the result that for any 
binary form there are two fundamental absolute rational covariants, 
denoted 1* and J*, which completely characterize the complex equivalence 
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problem. Assuming that the form is not the nth power of a linear form, 
there are two distinct cases: first, if I* is constant. then I* must have the 
same constant value in order that the forms be complex-equivalent: 
otherwise, there is a mivrisd ,firrlction relating the two covariants: 
J* = F*(Z*), and two such forms are complex-equivalent if and only if 
their universal functions are identical: F* = F*. The equivalence problem 
for real polynomials can also be solved by the same methods, and, sur- 
prisingly, the solution requires only one or two additional sign restrictions, 
depending on the sign of the Hessian of the form and, if the degree is even, 
the sign of the form itself. Given the well-known proliferation of covariants 
and invariants as the degree of the form increases, the fact that the 
equivalence problem is solved using only two rational covariants is quite 
striking. The universal function F* must store a lot of information! See 
Theorems 4.2, 4.3 for the details. 

Actually, in the classical literature, Clebsch [4] gave a different solution 
to the complex-equivalence problem for binary forms, based on their 
absolute invariants and associated linear covariants. In Section 7, we show 
how our main theorem is related to Clebsch’s original result by appealing 
to some classical results on syzygies of the covariants of a binary form due 
to Stroh [26. 271. This provides an alternative mechanism for constructing 
the universal function. 

Two further applications of the method give additional new results in 
classical invariant theory, which are described in Section 6. The first is an 
explicit necessary and sufficient condition for determining when a binary 
form is equivalent to a monomial, generalizing the well-known vanishing 
Hessian test for when a form is a perfect nth power of a linear form. 
Secondly, the necessary and sufficient condition for determining when a 
binary form is equivalent to a sum of two rrth powers is also found. In the 
final section, we address the problem of how to reconstruct the Lagrangian 
or binary form from the knowledge of its universal function. It turns to rest 
on the solution to a single first order ordinary differential equation. 

Although the present method gives a complete solution to the equivalence 
problem, it does not make much headway with the related canonical form 
problem, which is to determine a complete list of elementary canonical 
forms for binary forms of a given degree. However, as shown in Section 5, 
once the canonical forms are known, the main theorem provides a simple 
mechanism for determining which canonical form (either real or complex) 
a given binary form can be cast into. 

The equivalence problem for ternary forms, or forms involving even 
more variables, can also be related to a Cartan equivalence problem for 
multi-particle Lagrangians [23]. This Lagrangian equivalence problem is 
much less well understood, although recent unpublished results of Bryant 
and Gardner make substantial progress towards the intrinsic solution [6]. 
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The application to the equivalence problem for forms in three or more 
variables will be the subject of the second paper in this series. 

2. THE EQUIVALENCE PROBLEM FOR PARTICLE LACRANCIANS 

Consider a first order scalar variational problem 

6p[u] = f L(.u, u, p) d.Y. (2.1) 

Both real and complex-valued variational problems are of interest, and we 
will discuss both versions of the equivalence problem. However, it is techni- 
cally easier to present the complex case first, and so we begin by assuming 
that the Lagvarzgiarz L(.u. U, p) is an analytic function of three complex 
variables X, II, and p = A/&Y, defined on a domain Q c C’. We say that 
two Lagrangians L and z are eqzlioalent if there exists an analytic change 
of variables 

1 = cp( .I-, u), ii = $(.u, 2~). (2.2) 

mapping one to the other. The change in the derivative is a linear fractional 
transformation 

jj= 
up + h 

cp + d’ 

where the coeffkients 

(2.3) 

(2.4) 

may depend on s and U. Equivalent Lagrangians must be related by the 
basic formula 

L(.Y, u, p) = (cp + d, ,?(.t, 17, ii). 

stemming from the identification of the two one-forms 

(2.5) 

(The proposed equivalence problem is a somewhat restricted version of the 
“true” Lagrangian equivalence problem, in which one has the additional 
freedom of adding in a divergence term; it is, however, more general than 
the fiber-preserving equivalence problem, in which the new independent 
variables depend only on the old independent variables: .?= q(x). These 
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problems can also be solved by the same methods [17] but are not 
immediately relevant to our construction.) 

Cartan developed a powerful algorithm that will solve such equivalence 
problems, leading to explicit necessary and sufficient conditions for equiva- 
lence. A complete solution to the equivalence problem under consideration 
appears in [3]. For the reader’s convenience we will outline the basic 
method, but in the simpler special case when the Lagrangian L = L(p) is 
a function of the derivative alone, as this is the case that is applicable to 
classical invariant theory. The first step in Cartan’s method is to refor- 
mulate the problem in terms of differential forms. We introduce the one- 
forms 

UJ , = du - p d.Y, (92 = L(p) dr, OJ3 = l/p,, 

which, provided the Lagrangian does not vanish, constitute a cofiatne, or 
pointwise basis for the cotangent space T*Q. From now on, we impose the 
condition L(p) #O for all JJEQ, which, except for the completely trivial 
case L = 0, can always be realized by suitably shrinking the domain Q. The 
first basis element is the rotztacz .form, which must be preserved (up to 
multiple) in order that the derivative p transform correctly, as in (2.3). The 
second basis element is the integrand in our variational problem. and the 
third is included just to complete the coframe. Similarly, we introduce the 
corresponding coframe for the transformed Lagrangian E: 

defined on a corresponding domain 0 c @“. 

LEMMA 2.1. TICW twt~l~atzishing Lagratzgiatts L and t arr eyzri~~alet~t 
if‘ and onI>, if there esist complr.u-valued ,f~nctions A, B. C, D, E otl R, 
wirh A, E # 0, attd a d~ffeomorphisttz @: Q 4 f2> such tliut the pulI4ar.k 
@*: T*d --) T*Q tratlsfbrtm the cqfkatues as ,fbllows: 

@*(G,)=Aw,, @*(t3,) = Bto, + 19~. @*(cli,) = Cw, + DLII-, + EuJ,. 

(2.6) 

This condition can be restated more symmetrically as follows. Let G 
denote the complex Lie group consisting of all matrices of the form 

A 0 0 

! 1 

B 10, A,B.C,D,EE@.A.E#O. 
C D E 

Introduce the “lifted” coframes 

8, = Ato,, (I2 = Btu, + UI?, Bi = CtlJ, + Dw, t Et+, (2.7) 
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and 

8, =h,, iT1=BG,,+t3,, 8, = ec-,, + 86, + Eta,, 

which are now differential one-forms living on !2 x G and fix G, respec- 
tively. There is a natural left action of G on these two spaces (principal 
bundles), given by g . (x, 11) = (s, g. /I). The equivalence condition of 
Lemma 2.1 can be readily translated into the following simpler equivalence 
condition for the lifted coframes, cf. [2, 31. 

LEMMA 2.2. TN*O nomanishing Lagrangians L arid L are equivalent if 
arzd only tf there is a dr~feonzorphisrn P Q x G + fi x G. which cowmutes 
with the naturn/ left action of G on these spaces and maps the lifted cofratnes 
directI>’ to each other: 

u/*(8,)=0,, Y*(&) = Q,, Y*(cs,) = Q,. 

Using this formulation of the Lagrangian equivalence problem, we are 
now able to use the fundamental Cartan algorithm to effect its solution. 
Since this equivalence problem is particularly simple, we have the luxury of 
working “parametrically” throughout, in the original spirit of Cartan, as 
opposed to employing the intrinsic approach favored by Gardner [S]. This 
will immediately lead us to the explicit expressions for the invariants. 

The key to Cartan’s method is the elementary fact that the exterior 
derivative is an intrinsic operation. If two differential forms are related by 
the pull-back map: ‘P*(8) = 8, then their exterior derivatives must also be 
related in the same way: Y*(dg) = do. We therefore begin by computing the 
differentials do,. The resulting structure equations are found to be of the 
form 

Here a, /-r, ;‘, 6, E form a basis for the left-invariant (Maurer-Cartan) one- 
forms on the Lie group G, 

and the torsion co<fficients xUk, some of which are given below, are deter- 
mined by explicit computation. The forms gi have analogous expressions 
for their differentials. 
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The next step is to ahsorh as much of the torsion as possible. Comparing 
the two expressions for the differentials (iB, and c/Q,, we see that the 
Maurer-Cartan forms c( and 5, etc., must agree under the pull-back ‘P* up 
to a differential form on the base. i.e.. 

where the :,‘s are as yet unspecified functions. The goal of the absorption 
process is to replace each one-form Y, /I, . . in the structure equations (2.8 ) 
by an expression of the form r + ~~8, + :?fI? + z~(I~, etc., where the :,‘s are 
chosen so as to make as many of the torsion coefficients vanish as possible. 
The remaining unabsorbable torsion components are then invariants of the 
equivalence problem, and must have the same values for the two lifted 
coframes. For instance, looking at the equation for ~10,. we see that we can 
replace c( by ci =x - r,,?Oz in order to make the coefficient of 0, A 0, 
vanish: 

d8, = i A 8, + T,,,U, A 8,. 

The torsion component 

‘4 
Tl23 =E (2.9) 

is, however, unabsorbable, and an invariant of the problem, meaning that 
it must have the same value for both Lagrangians: 

A A 
--- 
EL EL’ 

Similarly, in the equation for &, we can absorb all the torsion components 
except 

B-L, 
ta23 = EL ’ (2.10) 

which forms a second invariant. (Subscripts on L denote partial 
derivatives.) In the equation for d8, we can absorb all the torsion com- 
ponents, so there are no further invariants at this stage. 

Now, according to Cartan, since the unabsorbable torsion coefficients 
are invariants which depend on the group parameters, they can be nor- 
malized to any convenient constant value by fixing some of the relevant 
group parameters. This has the effect of reducing the dimension of the 
underlying Lie group G, and thus simplifying the equivalence problem. The 
ultimate goal (barring prolongation [2, 5, 151) is to get rid of the group 
parameters entirely, and then read off the (absolute) invariants, which will 
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be functions of the base variables (s, U, y) alone. For example, the first 
invariant (2.9) can be normalized to 1 by setting 

A=EL, 

whereas the second (2.10) can be normalized to 0 by setting 

(2.11) 

B= L,. (2.12) 

This has the effect of reducing G to a three-parameter group, with C, D, E 
the remaining group parameters. Note that at this stage, since we have 
normalized B, the resulting form 

is an invariant differential form for the Lagrangian L. This is the well 
known Cartan form from the calculus of variations [S]. 

We now substitute the expressions (2.11). (2.12) for the group 
parameters A and B in the original lifted coframe (2.7). We then recalculate 
the differentials dfi;, and apply the absorption procedure once again. The 
new structure equations have the form 

dH, =E A 0, +T,,,O, A 8,-t& A 8,, 

dH, = r,,,d, A 6, + tzi,fl, A 8,, 

dQ3=j’ A 8, +6 A &+F: A ~I-(+T~,~H, A &+T~~~& A 0,. 

The second equation provides two further unabsorbable pieces of torsion: 

DLLPP L 
T 
“I- E’L’ 

and t?,,= --E- 
E’L’ 

The first of these can be normalized to 0 by setting the group parameter 
D = 0. As to the second, there are two different possible normalizations at 
this stage. The “trivial” case is when L,, = 0, and hence L is an aftine func- 
tion of p, i.e., L = up + h; since this variational problem is completely trivial, 
we leave this case aside for the remainder of the equivalence procedure. 
Otherwise, by possibly shrinking the domain 52, we assume that neither L 
nor L, vanish in Q, and thus we can normalize t2,? to - 1 by setting 

E=a JL, 

A’ 
(2.13) 

where g = -t 1. A subtle but important point is that, although we can 
specify the square root branches for both 6 and fi at this stage 
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(these branches will remain fixed through the rest of the computation), we 
are not allowed to a priori specify the sign of (T itself; see the subsequent 
discussion for more details on this point. We have now reduced G to a one- 
parameter group, with C the only remaining undetermined parameter. 

In the third and final loop through the equivalence procedure, we sub- 
stitute the expressions for D and E into the formulas for the lifted coframe 
(2.7) and recompute the differentials. We find the new structure equations 
have the form 

dtl,=y A 0, + T,,?O, A flz+ Ty3fj2 A 83 

There are three further unabsorbable pieces of torsion. The first is 

T  117 = -&d,(p). 

where 

(2.14) 

The other two torsion coefficients happen to be identical, 

C 
TII’=TJZ~=(J 

JL \/L,,’ 

and can both be normalized to 0 by setting the group parameter C = 0. 
We have now eliminated all the group parameters, or, in the terminology 

of the equivalence method, have reduced the problem to an je)-structure. 
We can read off the invariants for the problem from the structure equa- 
tions. which we find by direct computation to have the form 

d8, = -&J&8, A 8,+8, A f13, 

de, = -0, A n,, (2.15) 

do, = 0, 

where the invariant coframe for the Lagrangian is given explicitly by 

fl,=a,,/‘%,&(du-pd.x), 

0, = (L - pL,) d.u + L, du, (2.16) 
7 
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There is only one nonconstant invariant for this problem, namely, al,(p), 
which must have the same value for the two equivalent Lagrangians: 

OZ,,(P) = ~7”(d). (2.17) 

In other words, if L and L are equivalent Lagrangians, then the corre- 
sponding functions Z,(p) and I,,(b) agree up to sign. The ambiguity in the 
sign of rrZO is, however, unavoidable. For instance, under the elementary 
transformation 

1 = .Y, ii= -IL (2.18) 

the function Z,(p) gets mapped to -rO( -z?) so the sign can change. 
However, by composing any change of variables with the orientation- 
reversing map (2.1 S), we can always change the sign of I, if required, so the 
ambiguity is of an inessential kind. We can avoid constantly referring to 
this ambiguity by using the rational differential function 

(2.19) 

as our fundamental invariant from now on, so that the invariant 
equation (2.17) becomes 

Z(p)=T(jq. (2.20) 

If F(s, 11, p) is any function on fi, its couariant derivatives with respect to 
the invariant coframe (2.16) are the three functions F,, , F,z, F.i defined by 
the formula 

dF= c F.,H,. (2.21 ) 
,=I 

Clearly the covariant derivatives of any invariant are also invariant, so in 
particular, the deriued inoariants ol,, , , al,.,, aZ,,,, are also invariants. Since 
I, depends only on p, the only one of these which does not automatically 
vanish is 

Even though I,, involves a square root, 

J(P)= 
2LZLm, L pact’- 2LL,Lm,Lpm, -I- 6LL;, - 3L;Lip - 3L’L&, 

2LL’ 
(2.22) 

PP 
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is a single-valued rational function of the derivatives of L. Now. when 
F= al, (2.21) reduces to 

d( al,, ) = JO,. (2.23 ) 

The key to the complete solution to any equivalence problem is the 
relationship between the basic invariants and their derived invariants. If 
the fundamental invariant I is not constant, we can express the derived 
invariant J. given by (2.22). in terms of I. 

DEFINITION 2.3. Let f.(p) be a Lagrangian depending only on p. Define 
the fundamental invariant I and its derived invariant J as in (2.19), (2.22). 
If I is not constant, define the utliz:rrsul,firnction F so that 

J= F(I). 

If I is constant, so J= 0, then we set F= 0. 

(2.24) 

We are explicitly allowing the possibility that the universal function F is 
multiply-valued, and, indeed, this turns out to be the case for many 
Lagrangians of interest. In other words, what we are really doing is to view 
the functions (I(p), J(p)) as parametrizing a complex curve (the “universal 
curve”) in @‘, which we may identify with the graph of the universal 
function F. 

The final result of the Cartan equivalence algorithm is the following 
theorem providing complete necessary and sufficient conditions for the 
solution to the Lagrangian equivalence problem. Its proof rests on Cartan’s 
solution to the equivalence problem for [e)-structures and the complete 
integrability of the final structure equations. 

THEOREM 2.4. Ler L(p) und L(j) be r\tv comples utzul?~tic Lagrangims 
\~hich are tzof uffitze &ctions of p. Then L and l are equiwlenr mder u 
complex utiulJTic chutige CI#‘ vuriuhles if’ and onI)- if‘ eitliet 

(a) the inauriunts I arid 7 ure borh mnstunt uttd the suttle: I = i, or 

(b) the incuriants I utld I’ ure horh tlot cotw~ant, and the unirersul 
.functiotls ure identical: F= F. 

Pro@ We can reconstruct the change of variables @: 52 -+ sfi, as given 
by (2.2), (2.3), by proving the complete integrability of the system 

a*@, ) = d,, @*(o,) = d,, @*@,,=H,, (2.25) 

where 8,) H,, d3, are the invariant coframe given by (2.16). The invariant 
coframes will match up provided the invariant equation (2.17) is satisfied; 
the system (2.25) will be integrable provided the derived invariants also 
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match up, which will be assured by the identification of the two universal 
functions. In other words, the transformation (2.3) from p to b will be 
determined as a solution to the pair of equations 

I(P) =7(P), Jcp)=J(p). (2.26) 

The first of these equations can, except for a discrete collection of singular 
points, always be solved for complex p and p, provided we analytically con- 
tinue the Lagrangians L and 2. and hence the invariants I and 1. (Now we 
are required to also admit multiply valued Lagrangians!) Thus we have a 
solution to (2.17) for some choice of signs (r and 5. The second equation 
in (2.26), in view of (2.24) and condition (b) of the theorem, just imposes 
the additional requirement that in our solution p and p map to the same 
branch of the universal function; again, analytic continuation shows that 
there is still always a complex analytic solution p = n(p) to both equations 
in (2.26). Finally, we need to make sure that the induced signs rr and 5 
are consistent with the change of variables (2.25). However, according to 
(2.23), we have 

Thus, by the second equation in (2.26) the change of variables has the right 
“orientability” to be consistent with the third equation of (2.25). The 
theorem now follows directly from the general result of Cartan, cf. [3; 25, 
Theorem 4.1, p. 344; 15: 171. 

Turning to the equivalence problem for real analytic Lagrangians under 
real change of variables, we find the basic procedure to be essentially the 
same, but with a few important distinctions. The underlying Lie group is 
the same, but the group parameters are now restricted to be real. The first 
loop through Cartan’s algorithm proceeds as before, resulting in the same 
normalizations for the group parameters A and B. In the second loop, we 
still set D = 0, but there are now three distinct possible normalizations for 
the torsion coefficient r,,3, depending on the sign of the ratio L,/L; these 
lead to three distinct branches of the real equivalence problem. As before, 
the trivial case is when L,, ~0. The two remaining branches depend on 
whether L,, has the same or opposite sign to L in 52. Thus we can 
normalize 22,3 to either - 1 or + 1 by setting 

The third loop through the equivalence procedure leads to the final 
normalization C = 0. The structure equations now take the form 
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where E = -sign(L.,,/L). As before. Z(p) = k I,,( p)’ is the only nonconstant 
invariant for this problem. and must have the same value for the two 
equivalent Lagrangians. We deduce the analogous theorem solving the 
equivalence problem for real Lagrangians. 

THEOREM 2.5. Ler L(p) und L(p) tk two noncunishin~ red unal~~tic 
Lagrangians lchich urr not q~~i:ne,fiol~rions oj‘p. The,1 L and L ure equirulenr 
under a red unalytic change of’ ~ariuhles if‘ and onljl if’ 

(a ) lhr rrrriwrsal jirricliom rrlutiiig thew imuriunis are identical: 
F = F, und 

(b) the inwriunt rquution (2.26) bus u red solutiorl branch J? = z(p), 
on +~~hich [he rutios L,,/L untl ,?,/L huw the sanw sign. 

In particular, (2.26) requires that if the invariant I determined from L is 
constant, then 7 must have the same constant value. The sign and 
solvability restrictions in (b) are essential; see the examples in Section 5 
and [ 171. Indeed, using analytic continuation, complex-equivalence is a 
purely local property, and the conditions of Theorem 2.4 reflect this. The 
same cannot be said of real equivalence, since there can be distinct, real- 
inequivalent forms of the same complex function. 

3. INVARIANT THEORY 

By a binar?, ,fonn of degree II, we 
function 

OF BINARY FORMS 

mean a homogeneous polynomial 

(3.1 1 

defined on F!’ or C’. The general linear group G,!,,(Z) (meaning either 
GL(2, R) or GL(2, C)) acts on the variables via the standard linear 
representation 

f = U.Y + by, i; = cs + I!],, Ud-hL.#Q, 

and hence acts on the coefficients a, of/ according to the transformation 

f;( .Y, .f ) = .f‘(r, j’ 1. 
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A cotmrimt of a binary form is a function C(L(,,, . . . . a,,, X. J) which, 
except for a determinantal factor, does not change under this action of 
GL(2): 

au “1 . . . . a,,, Y 1’) = (uti- bc)fi s’(ii,, . ../ (I,,, .\1. Y). 3 _ 

The number g is called the \veighf of the covariant; if g = 0, we call C an 
absolute covariant. If a covariant C does not depend on .Y or ~9 it is called 
an invariant. (In contrast, the invariants of the previous section would 
correspond to absolute covariants in the present terminology.) The sym- 
bolic method of classical invariant theory [4. 9, 11, I93 provides a ready 
means for constructing polynomial covariants and invariants for binary 
forms. Hilbert’s Basis Theorem says that there are a finite number of poly- 
nomially independent covariants for a form of a given degree, but the 
precise number of independent covariants increases rapidly with the degree 
?I of the form (although this is partially mitigated by the presence of many 
polynomial syzygies; see Section 7). For example, the binary sextic (n = 6) 
has 26 independent polynomial covariants. Indeed, a complete system of 
covariants has been constructed only for forms of fairly low degree. 
(Although Gordan’s method [9, I I] is constructive, it has only been 
carried through rigorously for binary forms of degrees n 66 and tz = 8, 
cf. [20, Section 4.1; 21, p. 100: 281.) 

One of the principal goals of classical invariant theory is the classifica- 
tion of binary forms. This has direct implications for the problem of deter- 
mining canonical forms, and the geometrical properties of the covariants 
themselves. Two forms -f‘ and ,T are called (real or complex) equioulent if 
they can be transformed into each other by a suitable element of GL(2). 
The goal then is to characterize equivalence classes of forms by suitable 
invariants or covariants, cf. [4]. Despite the constructive methods used 
to generate the covariants themselves, it is by no means clear which 
covariants play the crucial role in the equivalence problem. For example, 
in the case of a binary quartic, there are two important invariants, denoted 
by i and j, but it is the strange combination i3 - 27j’ which provides the 
key to the classification of quartic polynomials [ 11, p. 2921. 

We exhibit some of the elementary covariants of a binary form.’ First the 
Hessian of a form J‘ of degree II, which is 

(3.2) 

’ The normalization will be that given in Grace and Young [9] which is not the same as 

that of Gurevich, [ll]. or Kung and Rota [ 193. Unfortunately. there are many different 
normalizations used in the literature, sometimes even within the same book. For instance 
the Hessian, as defined on page 3 of Grace and Young, does nor agree with that used in 
chapter 6! 
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is a covariant of weight 2 and has degree 2tz - 4. (The notation (,f; g)‘/‘ ’ 
denotes the kth transvectant of,f’and K, cf. [9].) Since the Jacobian of any 
two covariants is also a covariant. the polynomial 

T= (,f; H) = 2r7t,7'- ?) (.t; H, -I; H, 1. (3.3) 

is a covariant of weight 3 and degree 312 ~ 6. We will also need the 
covariant 

U=(H. T)= 
1 

6(/7-Z)' 
(H,T, -H, T,). (3.4) 

which is of weight 6 and degree 5~ - 12. Many more covariants can of 
course be constructed, see Section 7 for further important examples. 

4. EQUIVALENCE OF BINARY FORMS 

We now proceed to connect the considerations of the preceding two sec- 
tions. We begin by working over the complex numbers to avoid the extra 
sign and solvability restrictions that arise in the real domain. Letf(s, j‘) be 
a complex-valued binary form of degree II. Introduce the homogeneous 
coordinate p = X/J, and write 

g(p) =.f’(p, 1) (4.1) 

for the corresponding inhomogeneous polynomial. Note that the action of 
GL(2) = GL(2, C) on the homogeneous coordinate p reduces to the same 
linear fractional transformations as given in (3.3), with corresponding 
action 

up + h 
g(p)=(cp+n,‘ls(~,=(cp+-)“a - i 1 cp + d 

(4.2) 

on the associated polynomials. Comparing (4.2) with the Lagrangian 
equivalence condition (2.5) we see that they will agree provided we define 
the “Lagrangian” 

L(p)= ;llg(P). (4.3) 

We can either treat L as a multiply-valued Lagrangian, or can choose any 
convenient branch of the rzth root in (4.3); note that the different branches 
only differ by an n th root of unity, which can be taken care of by a simple 
resealing of the Lagrangian. We avoid the branch points by restricting to 
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a domain where g does not vanish, which is also required for the applica- 
tion of the equivalence method to the Lagrangian L. The key observation 
is that the equivalence problem for the polynomial g(p) under the linear 
fractional transformations (4.2) is the same as the equivalence problem for 
the (x, u)-independent Lagrangian L(p) under the transformations (2.5). 
(The reader might object that the coefficients a. h. C, d in (2.4) could 
depend on .Y and u, but we can always “freeze” their values at any 
convenient point (.x0, u,,) without affecting the equivalence of the 
Lagrangians.) Therefore, we obtain an immediate solution to the equiva- 
lence problem for the polynomial g, and hence for the original binary form 
f; by invoking Theorem 2.4 for the corresponding “Lagrangian” L. 

We now translate Theorem 2.4 into the language of classical invariant 
theory by first evaluating the invariants I and J directly in terms of known 
covariants of the binary form f: In each of the covariants presented in 
Section 3, we can replace .Y and y by the homogeneous coordinate p to find 
corresponding covariants of the polynomial g(p); we use the same symbols 
for these covariants. A simple exercise in differentiation then proves the 
following: 

LEMMA 4.1. Let g(p) be u polynomial oj‘ degree n > 2. Let L(p) be 
defined by (4.3). Then wle have the following identities among the invariants 
I and J of the Lagrangian L and the covariants H, T, U of the form g: 

(4.4) 

(4.5 1 

J= _ 12(n-2)‘gU 
n-l 9. (4.61 

(The latter two identities require that the Hessian H not vanish identicalI?-.) 

Proo$ If L is given by (4.3) then we easily find that 

l-n 
L, = 

[ 
; ggpp + - n2 gf 1 g’ -2t’. 

On the other hand, a homogeneous polynomial of degree H can be 
reconstructed from its inhomogeneous form (4.1) by the elementary 
formula 

.K 
j-(x, v) = y”g - 

0 
. 

I’ 
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Differentiating, we find 

j; , = n( n - 1 ) )“I :<q ~ 2( 12 - 1 ) SJ” “,e,, + X-J’ ’ ” &,,, 

Substituting into (4.7), replacing sjj’ by p and comparing with (3.2) proves 
the first identity (4.4). The other two identities are proved similarly by 
further differentiations. 

Rem&. Formula (4.4) gives an elementary proof of the classical result 
that a binary form J‘ is the 12th power of a linear form if and only if its 
Hessian vanishes identically, cf. [ 19, Proposition 5.3: 24, (3.3.14)]. 

Thus, except for inessential multiples, we can identify the Lagrangian 
invariant I with the absolute rational covariant T’/H3, and the first 
derived Lagrangian invariant J with the absolute rational covariant gU,IH’. 
Theorem 2.4 immediately implies the following solution to the equivalence 
problem of complex-valued binary forms. 

THEOREM 4.2. Let f‘(.u. J’) be a hinar:,, fbrnl of degree II. Let H. T, U he 
the covuriants defined bj, (3.2), (3.3). (3.4). Suppose that the Hessian H is 
not identically 0, so ,f‘ is not the n th polr’er of’ a lineur ,fhrm Define the 
,fundumental rational couuriuwts 

I’=?? 
H3’ 

J* =.EL 
H?’ (4.8 1 

Ichich are both covariants of Itseight 0 und degree 0. If I* is not constant, (so 
J* does not vanish identical/>,), de$ne the universal function F* so thut 

J* = F*(Z*). (4.9) 

T1z.o binary forms f’ and f are equivalent under the gene& linear group 
GL(2, C) if and onI?! if either 

(a) the covuriants I* and i* have the sume mnstant values: I* = ?*, or 

(b) I* and i* are not constunt, and the univer.ral,f‘unctions F* and F* 
are identical: F* = F*. 

Therefore a complete solution to the complex equivalence problem for 
binary forms depends on merely two absolute rational covariants: I* and 
J*! As discussed in Section 2, the universal function can be multiply- 
valued, so one really should view it as defining a universal (rational) curve 
in C’. If the invariants I* and i* are not constants. and.f and?have identi- 
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cal universal functions (curves), then one can explicitly determine all the 
transformations mapping ,f‘to ,f; by solving the equation 

z*(Y) = 7*(p), J*(p)=T*(p). (4.10) 

Of course, the second of these two equations merely serves to delineate the 
appropriate branch of F, and so rule out spurious solutions to the first 
equation which map between different branches. This is important, since 
the equation I* = 7*, or, equivalently, 

T(p)’ R(p)3= T(jq’H(p)’ (4.11 ) 

is, in general, a polynomial equation of degree 6n - 12 for p in terms of j; 
as such, many of its roots will be spurious, leading to the wrong branch of 
the universal function. 

The corresponding classification problem for real polynomials works in 
exactly the same way, except we now need to worry about the signs of the 
form and its Hessian, and the solvability assumption of Theorem 2.5. 

THEOREM 4.3. Let f(s, ?‘) he a real binary form qf degree n, ivhich is not 
the n th power of a linear form, and let g(p) = j‘(p, 1) be the corresponding 
inhomogeneous polynomial. Let I* and J* denote the rational covariants 
(4.8). and define the universal function F* as in (4.9). (IfZ* is constant, then 
F* = 0.) TIVO real binar?) forms ,f and -7 are equivalent under the general 
linear group GL(2. R) $and onljl 4‘ 

(a) the universal functions F* and P* are identical: F* = F*, and 

(b) the invariant equation (4.10) has a real solution branch d=7~(p), 
on \Chich 

sign H(p) = sign I?( I?), (4.12) 

and, iJ‘ the degree of the fbrm is even, 

sign g(p) = sign g(p). (4.13) 

Proof: As in the complex case, we begin by defining the Lagrangian 
L(p) = dm, but where we now take the absolute value before comput- 
ing the n th root. Thus L is always positive. Defining z in analogously, we 
now invoke Theorem 2.5, which requires that the Hessians H and I? have 
the same sign. Thus the two Lagrangians L and z are equivalent if and 
only if 
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If f has odd degree, then this implies that .f’and .I; are equivalent, since we 
can always change the sign off’by replacing (x, ~3) by ( -s, - ~3). However, 
if the degree off is even, then the sign off’ (or g) is an invariant quantity, 
so we need an additional condition that ,f and 7 have the same sign. This 
explains the additional sign restriction (4.13) in this case. 

Note that since the transformation (1.3) from p to p is a linear fractional 
transformation, the number of intervals on the real projective line where H 
(and, in the even degree case, g also) is positive or negative is an invariant 
of the form. For instance, if H is positive definite, or has two simple real 
zeros, so is fi. Note that there is still a possibility that two forms whose 
Hessians have the same number of sign changes and who have the same 
universal functions might still not be equivalent, since the invariant 
equation (4.10) might have no solutions which also satisfy the sign 
restrictions (4.12 ), (4.13 ). 

5. Custcs AND QUARTIC~ 

In this section, we illustrate the general results of Section 4 by treating 
the equivalence problem for binary cubits and quartics in some detail, 
using the well known canonical forms for these polynomials. We begin by 
looking at the binary cubic 

,f(s, y) = U.Y3 + 3hX5 + 3CSJ’ + ({IJ. (5.1 1 

The universal function F* can be derived directly from the fundamental 
covariants off as follows. The Hilbert basis for the covariants of a cubic 
is provided by the form J‘itself, the covariants H and T. as in (3.2) (3.3), 
and the discriminant 

~=(H,H)'~'=~(H~,H,,-H~~), 

which is an invariant. According to [9, p. 961, the fundamental syzygy 
among the irreducible covariants of the binary cubic is 

3T2=H3+ 4f’. (5.2) 

Moreover, according to [9, p. 971 (although the sign is wrong in this 
exercise), the reducible covariant U can be written as 

U=(H, T)=+df: 

hence 

(5.3) 
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Therefore 

J*= -I*-;, (5.4) 

and the universal function F*(Z*) = -I* - 4 is, in all cases, a linear func- 
tion of I*. Thus, for cubic forms, the universal function is always single- 
valued; this is no longer true for quartic forms. According to Theorem 4.2, 
the only features which will distinguish complex canonical forms of a 
binary cubic are whether the Hessian vanishes identically, and whether the 
invariant I* is a constant, i.e., whether or not T’ is a constant multiple of 
H3. Moreover, (5.3) shows that this latter possibility occurs if and only if 
the discriminant A vanishes, and the cubic has a double root. There are 
accordingly four distinct complex canonical forms for binary cubits: 

(a) If I* is not constant, then f has three simple roots, and is 
equivalent to .y3 + J’~. 

(b) If I* is constant, then I* = - +; ,f has a double root, and is 
equivalent to .Y’Y. 

(c) If HE 0, thenf‘is a perfect cube, equivalent to .v3. 

(d) The trivial casef-0. 

The classification of real cubits requires an analysis of the sign of the 
Hessian H. Cases (b), (c), and (d) are unchanged. (In case (b) H is 
necessarily negative definite since H3 = -2T’.) Case (a) splits into two 
subcases: 

(al ) If the Hessian H is negative semi-definite, then f has three 
simple real roots, and is equivalent to x3 - .YJ~‘. 

(a2) If the Hessian H is indefinite, thenfhas two complex conjugate 
roots, and is equivalent to .Y’ + J*‘. 

This completes the classification problem for binary cubits. One further 
note: not every sign possibility is realized; the Hessian of a real binary 
cubic can never be positive definite. This fact serves to complicate the 
search for real canonical forms as it is never clear from the outset which 
types are possible. 

Turning to the binary quartic 

f (5, ~9) = ux4 + 4b.x’y + 6cx’y’ + 4d.q~~ + ey4, ( 5.5 ) 

we first note that there are two important invariants 

i=(.Lf) “I = 2ae - 8hd + 6c’, 
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and 

u h r 

j=(H.,f’)‘“‘=6det h c d. 

C’ d c 

cf. [9, Section 891. Let H, T, U be as in (3.2) (3.3). (3.4). To evaluate the 
universal function, we use the fundamental syzygy 

_I T- = - $3 + $f ?H - i,jf.‘, (5.6) 

and the identity 

U = ;.jf’ - $fH, (5.7) 

cf. [9, pp. 98, 991. We introduce the rational covariant .r =,flH, which will 
be treated as a parameter in the ensuing equations. In terms of s, the 
absolute covariants I* and J* have the parametric form 

I* = - 4 + +j,g - ;js3, J* = i,j.$ - g. 

These two equations give a simple parametrization of the universal curve. 
Eliminating s, we see that the universal function J* = F*(Z*) appears as 
the implicit solution to the cubic equation 

6j’(2Z* + 2J* + 1)” = i3(2Z* + 3J* + 1)‘. (5.8) 

Thus, the absolute invariant j2/i3 plays the crucial role in the equivalence 
problem, and completely determines the universal function F*. In par- 
ticular, the universal function is a single-valued linear function if either 
i=O. so F*(Z*)= -I*-!, orj=O, so F*(Z*)= -+I*-:; see [II, Exer- 
cise 25.61 for the geometric interpretation of these two conditions. In all 
other cases, the universal function is a multiply-valued function. 

Over @ there are six canonical forms for binary quartics, [ 11, p. 2921. 
They are distinguished by our invariants as follows: 

(I) x4 + 6p.x5’+ yJ, p # + 4, I* not constant, 

(11) .Y’,$ + ?‘J, I* not constant, 

(III ) X’J’?, z* = 0, 

(IV) .Y3J, I* zz - 4, 

(V) 2, H = 0, 

(VI) 0, .f-0. 



60 PETER J. OLVER 

Note that in case I 

i=2+6/?, j=6,~(1 -$), 

hence the absolute invariant 

j* ,u’(l -p*) 
7=8(1+3Pz)3 

attains the same value in six different cases 

1-P + l+P +/A -t- - 
1+3/l’ - 1 - 3/L’ 

These correspond to the transformations 

mapping one quartic of type I to another quartic of type I. Thus the 
universal function, as determined by (5.8), will distinguish between 
genuinely inequivalent quartics of types I and II. 

A corresponding classification of real binary quartics appears in [ 11, 
Exercises 25.13, 25.141. For brevity, we just look at the analogues of case 
I. It is useful to introduce a more detailed classification than that in 
Gurevich: 

(la) .x! + 6&,r2 + y4, p< -:, 04, - 

(Ib) .Y’ + ~/Lx’J~’ + J+ -~</L<oor~>l, +,o, 

(Ic) .Y’ + ~/LY”J~’ + #, O</LLl,11#$ +, + 

(Id) - (x4 + ~,ux’$ + y4), ,u< -f, 04, - 

Ue) - (x4 + ~/LY’,$ + y4), -i<pLiO or p> 1, -3 0, 

(If) - (x4 + ~/LK’$ + y4), 06/l< 1, P#i, -3 + 

(Ig) .x4 + 6/&r - js4, pz k: 0,. 02. 

The last column describes the pattern of signs for the function 
g(p) =f(p, 1) and the Hessian H(p), described at the end of Section 4. 
Here + means positive (semi-)definite, - means negative (semi-)definite, 
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OZ means indefinite with two changes in sign on the projective line (i.e., the 
corresponding polynomial f or H has two simple real roots), and 0, means 
indefinite with four changes in sign (i.e., four simple real roots). Thus, for 
example, in case Ia. g(p) has four real roots, whereas H(p) is negative 
definite. 

Apparently, only cases Ia and Id are not distinguished by the sign 
pattern. However, there is a good reason for this. Given a quartic of 
type Ia. the transformation 

will transform it into a quartic of type Id, with 

_ 1-P 
P=1+3p. 

Thus Ia and Id really represent different canonical forms for the same 
quartic polynomial, and only one of the two is really necessary to make a 
complete list of canonical forms for real quartics. 

6. SYMMETRIES AND ELEMENTARY FORMS 

Cartan’s equivalence method gives us more, as it also determines the 
symmetry group of the Lagrangian. This fact can be exploited to prove 
some further results in classical invariant theory on the characterization of 
various types of elementary forms for polynomials. 

DEFINITION 6.1. Let L(s, U, p) be a Lagrangian. Then a transformation 
(2.2) is called a symmetric of L if the transformed Lagrangian 2 is the same 
as L, i.e., 

L(s, II. p) = (cp + n, L(.C, 17, j?). 

The symmetry grozrp of a Lagrangian L is the group of all symmetry trans- 
formations. 

In general, if an equivalence problem which reduces to an {e j-structure 
in dimension n has k functionally independent invariants, then the problem 
admits an n -k dimensional symmetry group, cf. [2, 15, 17, 251. (This is in 
addition to possible discrete symmetries of the problem.) In our case, n = 3, 
and k=O or 1, depending on whether or not the invariant Z(p) is a con- 
stant. Therefore we conclude: 
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THEOREM 6.2. Let L(p) he a Lagrangian which depends only, on p. Then 
the two-parameter translation group (x. u) + (.Y + 6, u + c), 6. i: E @, is 
a1wa.w a symmetry group. If L is an affine j’unction of p, then L has an 
infinite-dimensional Lie pseudogroup qf symmetries depending on two 
arhitrar)? functions. If L is not an qffine function of p, and the invariant I is 
constant, then L admits an additional one-parameter group of symmetries. If 
the invariant I is not constant, then the symmetr>a group of L is generated hi 
on& the translation group and, possibly, discrete symmetries. 

(The affine case does not follow from the results of Section 2, but is 
easily verified by direct computation.) 

DEFINITION 6.3. Let f(x, y) be a binary form. The symmetry group off 
is the subgroup consisting of all matrices (I f;) E GL(2) such that 

,f(ax + by, cs + dy)= ftx, y). 

It is easy to see that, except in the case when the Lagrangian is an afline 
function of p, the symmetry groups of a binary form f and the corre- 
sponding Lagrangian (4.3) differ only by the translation group in (x, u). 
Therefore, Theorem 6.2 immediately implies the following theorem on 
symmetries of binary forms. 

THEOREM 6.4. Let f (s, y) be a binary ,form of degree n. 

(i) If H = 0, then f admits a two-parameter group of symmetries. 

(ii) If H $0, and I* is constant, then f admits a one-parameter group 
of sJwimetries. 

(iii) If Hf 0, and I* is not constant, then f admits at most a discrete 
symmetry group. 

Case (i) is proved by direct computation, using the fact that f is the nth 
power of a linear form, and hence equivalent to f-u”. The other two cases 
follow directly from Theorem 6.2. 

In the case of constant invariant I*, Theorem 6.4 provides an immediate 
test for determining whether a given form is equivalent to a monomial. 

THEOREM 6.5. A binary Jbrm f is complex-equivalent to a monomial, i.e., 
to .uky” k, lf and only> if the covariant T’ is a constant multiple of H’. 

Proof: Let A E GL(2, a)) be the generator of the one-parameter sym- 
metry group er4 of the form. We make a linear change of variables that 
places A into Jordan canonical form J. We will show that the same change 
of variables changes ,f into a monomial 7 = cx’y” ‘, and a simple complex 
resealing will eliminate the coefficient c. Note that e’.’ remains a symmetry 
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group of the form J If A is diagonalizable, so J = (;i i), then erJ acts on the 
coefficients of ,T by the induced scaling transformation 

Clearly, this one-parameter family of transformations leaves the coefficient 
rl, unchanged if and only if either ii, = 0 or rx/fl= 1 - i/n. Thus, only one of 
the coefficients of ,f; can be nonzero, and the result follows. The only other 
case is when A is not diagonalizable, so J= (G J). It is not difficult to 
deduce that the one-parameter group eiJ can never be a symmetry group 
of a nonzero form ,r This completes the proof. 

In fact, we find by direct computation that ,f‘ is complex-equivalent to 
xkvn k if and only if 

z*= _ (n-1)(+X) 

‘(n-2)‘k(rz-k)’ 
(6.1) 

In particular, I* is always a negative rational number (if constant)! 
In the case of real equivalence, there is an additional possibility since a 

polynomial might be complex-equivalent to a monomial, but not real- 
equivalent. For example, the quadratic form .Y’ + y2 is complex-equivalent 
to .YJ, but certainly not real-equivalent to any monomial. However, this is 
essentially the only counter-example. 

THEOREM 6.6. A hillar?, ,form f  is real-equivalent either to a monomial 
+.u”y” /‘, or to (x’ + J.‘)~, n = 2k, if‘ and on&s tf’ the covariant T’ is a 
constant multiple qf H ‘. 

This can be proved from the real canonical form for the generator of the 
symmetry group, or, more simply, by looking at which complex monomials 
can be transformed into real polynomials. 

In the case when the invariant I* is not constant, the discrete symmetry 
group of the binary form can be determined directly from the invariant 
equation (4.10) (taking the two forms to be the same). 

THEOREM 6.7. Let .f he a hinar>l form bi4ich is not complex-equivalent to 
a monomial. Then the (necessaril?! discrete) symmetry group of.f consists of 
all transformations j = x(p) which solve the equations 

z*(p) = I*(p), J*(p) = J*(p). (6.2 1 

(As before, the second equation merel>s makes sure we are in the correct 
branch of the universal curve sff:) 

607 iill I-1 
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There is also a similar result for the real symmetry group of a real binary 
form, the only difference is that the symmetry transformations must 
preserve the sign of the Hessian, and, in the case of even degree, the form 
itself. 

Another simple result, which follows even more directly from the main 
theorem is the characterization of when a form is equivalent to the sum of 
two n th powers. 

THEOREM 6.8. A binary form of degree n 3 3, which is not equivalent to 
a monomial, i.e., I* is not constant, is complex-equivalent to a sum of two 
nth poM,ers, i.e., to x” + y”, [f and only if its universal function takes the form 

J*= -L 
3n-6 

or, equivalentlJ1, the covariants f, H, T, U are related by the equation 

(3n-6)fU+nT2+$zH3=0. (6.4) 

ProoJ: It is a simple matter to check that the particular form .x’+ JJ” 
has universal function given by (6.3); indeed, an elementary computation 
finds 

hence 

J*= -L xn 1 I’” 
3n-6 @+4+8x” ’ > 

from which (6.3) follows. The result now follows directly from Theorem 4.2. 

According to Sylvester’s theorem, [ 18; 19, Theorem 5.11, binary forms of 
odd degree are essentially classified according to the number of n th powers 
they can be written as the sum of. Theorem 6.8 gives a simple check for the 
case of two nth powers; it would be interesting to see how the universal 
function distinguishes between sums of three or more nth powers, although 
this appears to be much more difficult as it is no longer single-valued. 
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7. UNIVERSAL SYZYGIES AND UNIVERSAL FUNCTIONS 

For forms of degree higher than 4, the same method of employing 
syzygies among the covariants can be used to generate implicit relations for 
the universal function, but the intervening expressions are more com- 
plicated. The classification of syzygies has been most deeply studied by 
Stroh [26, 271, and we begin by quoting some of his results. 

Throughout this section. ,f‘will be a complex binary form of degree II 3 4. 
Let 

so that if I?= 2m is even. then ?)I’ = VI- 1. whereas if II = 2nr+ 1 is odd. then 
111’ = 1~. In either case, PZ + ~11’ = II - 1. We order the covariants off‘by their 
weight. Up to multiple, the only covariant of weight 1 is the form f  itself. 
There are m independent covariants of weight 2, namely the transvectants 

s, s (f; ,f’)““k’, k = I, . . . . I?l. (7.1 1 

Note that Sk has degree 2n - 4X-; also S, = H is the Hessian, and, if n = 2nr 
is even, S,, is an invariant of ,f: There are many possible covariants of 
weight 3; for our purposes, the most important of these are the Jacobians 
of the covariants of weight 2 with f: which we denote by 

T,=(S,,.f)=((.f..f)‘-“,.f), k = 1, . . . . ml. (7.2) 

(If n = 2m is even, then T,,, = 0, since S,,, is an invariant.) Note that T, has 
degree 3rz- 4k - 2; in particular T, = T is the covariant used in our 
fundamental Theorem 4.2. We begin by proving the important result that, 
by utilizing certain basic syzygies, every covariant of a higher degree binary 
form can be rewritten in terms of the n fundamental covariants ,L 
S,, . . . . S,,,, T,, . . . . T,,. This result is a direct consequence of some syzygy 
theorems due to Stroh. which we now state. 

THEOREM 7.1. Let C be a cwariant \~~hich is of ,i,eight w > 4 in the 
coqfficients of the hinar)! .form f  of degree n 3 4. Then there is a sjq-gJ$ ?f 
the form 

,f2C= @(Dk,, . . . . D,) I ’ 

where @ is a polynomial fwvtion qf certain coaariunts, lahelled D,). each of 
n>hich has \4,eight strictly less than 11‘. 

If the covariant happens to be the Jacobian of a pair of simpler 
covariants. then there is an alternative version of this result. 
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THEOREM 7.2. Let C be a couariant of weight w >, 4, which cclfz he written 
as the Jacobian of two simpler cowzriunts C’, C”, each of weight at ieast 2, 
I.e., 

c = (C’, C”). 

Then there is a q’;yg>’ qf the j&w~ 

.fC = @(Dk,, . . . . Dk,), 

lvhere @ is a polynomial .function qf‘ covariauts each of bt,eight strictly less 
thun hr. 

Such a result does not hold for the covariants of weight three (or less). 
However, there is a modification which allows us to express any covariants 
of weight 3 in terms of the fundamental covariants,f, S,, . . . . S,, T,. . . . . T,,,. 

THEOREM 7.3. Let C be a cmariunt which is of weight IV= 3 in the 
coefficients of the binary ,form ,fI Then there is a syzygy of the form 

.f ‘C = @(.A S, , . . . . S,,, T, , . . . . T,,), 

where @ is a polynomial in the jitndamental covariants (7.1), (7.2). (Zf C 
coincides Mith one qf the couariants Tk, then this syzygy is the trivial identit!, 
f3Tk = f3Tk.) 

The proof of these results can be found in [26]. As a consequence of 
Stroh’s syzygy theorems, and an obvious induction on the weight of a 
covariant, we find that any covariant or invariant of an nth order binary 
form (n 3 4) can be re-expressed as a function of the n fundamental 
covariants ,J S, , . . . . S,,, , T, , . . . . T,,,, . 

COROLLARY 7.4. Let f be an hinarJ% form of degree n 2 4. Let C he any 
polynomial cocariant qf .f: Then there is a polynomial syzygy of the fortn 

.f”C = @(.L S, , . . . . S,, T, , . . . . 7-m 1, (7.3) 

for some integer k 3 0. 

See [ 10, (3.3)] for a related, but slightly different kind of result. 
For our purposes, it is slightly better to introduce a “homogenized” 

version of these syzygies. We introduce the fundamental absolute 
covariants 

fzkPzSk 
Sk=Hk’ 

k = 2, . . . . ni, 

t, = J‘212Tl 
ff,+‘l”l’ j = 1. . . . . m’ 

(7.4) 
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Since the exponents are fractional, these functions are algebraic rational 
functions. Nevertheless, by suitably modifying the definition of covariant, 
we easily see that these are all covariants of weight @ and degree 0. In 
particular, we have 

If C is any covariant of weight it‘ and degree rf, then the function 
j’- “~(.f‘-‘H)l”” r/j .l C is a covariant of weight 0 and degree 0. Thus, if we 
divide (7.3) through by J’“. a simple homogeneity argument shows that we 
can rewrite the syzygy in the form 

</I;4 . &.sp . . . . .Y,,,, t, , . . . . f,,,,), (7.6) 

where 

&S ‘, . ..) s,,,. t,, . . . . r,,,,) = @( I, 1. 3,. . . . . s ,),. t,, . . . . t,,, ). 

As a specific example, consider the covariant U= (H, T). Here 
Theorem 7.2 is applicable. A relatively straightforward calculation using the 
symbolic method of classical invariant theory. [9, 11, 191, shows that the 
basic syzygy (7.3) takes the following form: 

where S2 = (f; j)“‘. (It would take us too far afield to present the details 
of the symbolic method required in the calculation here, but the reader can 
reconstruct it from the given references.) Note that if ,f’is a binary quartic, 
then eliminating the invariant j from the syzygies (5.6) (5.7) reproduces 
(7.7). If we divide (7.7) by H'. we deduce the fundamental relation 

(7.8) 

Thus (7.5), (7.8) provide two equations linking our absolute rational 
covariants I*, J* with 2 of the algebraic covariants (7.4), namely, s? and 
t, . To eliminate both of these “parameters” and thereby obtain the explicit 
formula for the universal function F*, we require yet one more relation 
among the algebraic covariants. The way to accomplish this is to employ 
the syzygies (7.3) for the invariants of the form. If there are enough 
invariants, then we will (in principle) be able to deduce the universal 
function by eliminating all the parameters s2, . . . . s,,, . I,. . . . . t,,,,, and thereby 
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obtaining a single universal relation connecting the covariants I*, J*. An 
important theorem of Hilbert [ 13; 24, (3.4.9)], will guarantee that there 
are enough independent invariants for our purposes. 

THEOREM 7.5. Let f he a binarjl form of degree II 2 3. Then the ring oj 
invariants of ,f has transcendence degree n - 2 ouer C. 

In particular, Hilbert’s theorem guarantees the existence of n - 2 inde- 
pendent invariants, which we denote by I,, . . . . I, ?. Then according to 
(7.3) there are syzygies of the form 

I,, = ‘y,.(s, , 32, . . . . s,,,, f, , . . . . t,,, ), v = 1, . . . . n - 2, (7.9) 

where 

Y,.(s, 7 S?. . . . . s,, I,, . . . . t,,) = s;+Qs,, . ..) s ,),’ t, . . ..( f,,,), 

II’,. denotes the degree of I,,, and s, denotes the additional rational 
covariant 

H” 
s1 =,f?,r4’ 

which has weight 4 and degree 0. Clearly, if we can eliminate the n - 1 
parameters s, , s2, . . . . s,, t, , . . . . t,n, from the II equations (7.5), (7.8). (7.9) 
then we will be left with a single equation relating the covariants I* and 
J*, which will give us the universal function F*. In this way, we will 
directly relate the invariants of a binary form to the universal function. 

However, there are some nontrivial technical problems to be overcome. 
Let k = (k, , . . . . k,, -,) be a point in C” ‘, and define the polynomial ideal 
& to be that generated by the polynomials 

‘f’,.(s,, .s:r . ..> s,,, t,, . . . . t,,,,)- k,., 1’= 1 . . . . . n - 2. 

To each binary form f we associate the ideal c4 = 4; in the ring 
@[.s , 1 . ..1 s,,, t,, . . . . t,,,] of polynomials in the II variables s,, . . . . ,T,,~, t, , . . . . t,,,, 
called the determining ideal of h in which the parameter values k,, = I, are 
given by the invariants off: The question of whether we can eliminate all 
the parameters from Eqs. (7.5), (7.8) (7.9) to deduce the form of the 
universal curve is intimately related to the structure of the ideal .pt. In par- 
ticular, if .4 is irreducible, and of dimension 1, then its set of zeros deter- 
mines a curve in C”. We can use this curve to parametrize the covariants 
I*, J* according to (7.5) (7.8). Eliminating the parameter leaves us with 
an implicit formulation of the universal function in terms of the invariants 
of the form, analogous to our construction for binary quartics in Section 5. 
However, in view of the following considerations, we do not expect the 
ideal -af to always have dimension 1. 
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A binary form all of whose invariants vanish is called a null-.fnmz. 
Hilbert [ 131 was the first to emphasize the importance of null forms in the 
general theory. A basic theorem is the following characterization of null 
forms cf. [13, p.301; 20, Section4.1; 21, p. 1101. 

THEOREM 1.6. Let f(s, J,) be a binar:,> ,fom qf degree n. Then all the 
invariants cf f vanish $ und only ifJ’has a root of‘multiplicit?~ strictl?! greater 
thun 42. 

Let f be a null form of degree II. If we translate the root of multiplicity 
nl> n/2 to 0, we can then perform a further normalization to place j‘ into 
the canonical form 

.f(.u, ?‘)=.~‘“(?“+b,~7.~2?,‘~‘+ ... +b,s’). 111 > ,j, 

where b,- 2 = 1 or 0, and the degree of j‘ is II = nz + j. Therefore, for II < 6 
there is a discrete set of inequivalent null forms, (including most of the 
monomials), whereas if FZ 3 7, there is an [(n - 5)/2] parameter family of 
“generic” null forms of degree n, together with additional lower dimen- 
sional subfamilies of “special” null forms. Note that this immediately 
implies that the ideal &, which corresponds to any null form, cannot be 
either irreducible or one-dimensional for n 3 7. as otherwise Eqs. (7.5). 
(7.8), (7.9) would lead to a single universal curve, which would be insuf- 
ficient to distinguish between the parametrized families of inequivalent null 
forms, and would thereby violate Theorem 4.2. 

If the form f is not a null form, then at least one of the invariants 
I,, . . . . I,,-2 does not vanish. Suppose I, # 0. Then we can immediately 
eliminate the parameter s, from the syzygies (7.9) by introducing the 
absolute invariants 

A+ 1’ = 2, . . . . n - 2. 
I’ 

(7.10) 

If, in addition, we know that the determining ideal C4 is irreducible and of 
dimension 1, then elimination of the parameters s,, . . . . s,, t,, . . . . t,,,,, from 
(7.5), (7.8), (7.9), will lead to an explicit formula for the universal function 
involving only the absolute invariants (7.10). Thus in this case, the univer- 
sal function is uniquely determined b?? the absolute invariants of the form. 

THEOREM 7.7. Suppose f‘ and f are binary forms qf degree n 3 4, neither 
of which is complex equivalent to a monomial. (Thus neither Hessian vanishes 
identica&, and the invariant I* is not constant in either case.) Assume that 
the determining ideal .a,- is irreducible and of dimension 1. Then -f is conlple.\- 
equivalent to 3 if and only? if-f and3 h ave the same absolute invuriants. 
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I conjecture that the conditions on the ideal 4;/ hold when all the 
invariants I,, # 0 do not vanish, and, possibly, when any one invariant is 
nonzero; if true, only the null forms would not be covered by Theorem 7.7, 
and we would have the result that two stable forms are equivalent if and 
only if their absolute invariants are the same. However, I have no proof of 
this statement, and must leave it in conjectural form. If it is true, then 
Theorem 7.7 would be a generalization of a result of Clebsch [4, p. 365; 13, 
Section lo] which says that two binary forms of odd degree are equivalent 
if and only if all their absolute invariants are the same, and each form has 
two independent linear covariants C(.K + fiy, X’S + fl’~, meaning the determi- 
nant c$ - N’B does not vanish. There is also a similar result [4, p. 421; 13, 
Section lo] for forms of even degree which have three suitably independent 
quadratic covariants. Clebsch’s conditions imply stability, but, as the 
example .X”F + .YJ’~ shows, the converse does not hold. 

EXAMPLE 7.8. In the case of a quintic form, there are 23 fundamental 
covariants in the Hilbert basis, which Stroh takes to be 

H = C.L f)“‘, i = (f; f,‘“‘, T= (A HI. 

4 = (f, 99 j= -(j,f)“‘, m= (i, H) 

11~ -(j, H)‘?‘- &j’, A = (i, i)“‘, r = (j, HI, 

E= (j, i), ,x = - (j, j)“‘, q = (h, i), 

T = -(h, i)‘?‘, n = (j, 12 1, P = (i, Co, 

9= -(i, T), B= (i, T)'~), P=(j,z), 

)‘= (5, a), c= (B, co, 6 = -(S, cc), 

In particular, 

S,=H, S2 = i, T, = T, 7-2 = q. 

The invariants are A, B, C, R of which only the first three are required to 
determine the universal function. (There is a single syzygy among the four 
invariants. 1 The absolute invariants are 

B C 
A” A3’ 

According to Stroh [26, pp. 10551063 (see also Hammond, [ 1211 the 18 
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fundamental syzygies of the quintic stemming from Theorems 7.1, 7.2, 7.3 
are 

,f3j=$f’iH-3H3-6T’. 

fin = iT - Hq, 

j”/l = H’i+f’Hj- &f’2i’ + ZqT. 

f“A = -2fijjiiH-2q’, 

.fr = Hm + ,jT. 

j;: = ifll + jq. 

fx = j' - ii’ - H,4 - 3ih, 

f;l = qh - ir, 

fs = 2jh - Hct - f  i ‘j, 

,fiz = i’k - 2 Hr/ - jk, 

f f l  = 2itT - qr, 

f;Y = ii2 - qr, 

fB = her - $‘a - f Aij - ?jT, 

jQ = jn + Tt?l, 

.fi = 2rq + WI, 

j’C = 28~ - x’j + aAh + $ix, 

fc5 = 294 - $ jxt - Bjk + hx’. 

,fR = Ah;) + Bhfl -.jay + +fl~’ + $7;‘. 

It is a simple matter to determine the three syzygies (7.9) from these 
equations, which for a binary quintic take the form 

A=.&&. t,, tz), B=s;&(s2, f,, tz), c= s:Qs~. f,, t:), 

where 

H5 T 

The simplest of these three functions is 

A=s,(6s,-4s;+ 12tf-2;). 
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Unfortunately, the expressions for $‘2, $‘3 are extremely complicated, so an 
explicit determination of the universal function is not possible in general. 
(This may be related to the insolubility of the quintic by radicals.) 

Leaving aside the monomials, we find that in the case of a binary 
quintic, Clebsch’s theorem does not apply in the canonical cases 

The reader can check that, based on Clebsch’s calculations [4, Section 931, 
these forms are distinguished from each other by their absolute invariants, 
even though they do not fall under the realm covered by his theorem. The 
third form is (up to equivalence) the only null quintic which is not equiva- 
lent to a monomial. Presumably, this implies that for a binary quintic, for 
all li, including 0. the ideal Ak satisfies our hypotheses of being irreducible 
and one-dimensional; however, I do not have a complete proof of this. It 
also appears that reducibility problems for these ideals will arise only for 
forms of degree 7 or more. 

8. INTEGRATION OF THE UNIVERSAL EQUATION 

The final topic to be discussed is how (in principle) to reconstruct a 
Lagrangian or form from its uni-dersal function F. Note first that since 
the invariants I and J are rational functions of the derivatives of the 
Lagrangian L, the universal relation 

J= F(Z) (8.1) 

is a fourth order ordinary differential equation for L(p), whose general 
solution is a four-parameter family of complex-equivalent Lagrangians. 
(Real-equivalence must still take into account the sign and solvability 
restrictions of Theorem 2.5.) Moreover, the universal equation retains the 
general linear group GL(2) as a symmetry group, since if L(p) is a solu- 
tion, so is any equivalent Lagrangian E. Therefore, Lie’s theory of ordinary 
differential equations enables us to reduce this fourth order ordinary 
differential equation to a first order ordinary differential equation, cf. 
[22, Example 2.591. (If the general linear group GL(2) were a solvable Lie 
group, we could integrate (8.1) by quadratures.) We begin by restating the 
symmetry condition: 

LEMMA 8.1. The universal equation is invariant with respect to the four- 
parameter Lie group with infinitesimal generators 

a a a a 

“’ =P’ v2=pap’ 
v,=p2,+pL--, 

a 

*P l3L v4=Lz. 
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Proof: This is just the infinitesimal version of the statement that if L(p) 
is a solution, so is E( ii), as given by (2.5). Alternatively, this can be 
checked directly by noting that I and J, as given by (2.19). (2.22 ), form a 
complete set of functionally independent differential invariants for the 
prolonged group action pr’“‘GL( 2, R). cf. [22]. 

We now proceed to implement the basic Lie reduction method, using, in 
order. the one parameter groups generated by vj, v,, vl. (The order is 
motivated by the commutator table for the group.) 

Step 1. To straighten out the scale group generated by vj, we replace 

L by 

M = log L. 

We find that in terms of M, 

z= (M,,,, + 6M,M,, + 4M;)’ 
J= 

(7 J7,G.p 

(M,,,, + Mf)’ ’ \/M,, + M;’ 

and so (8.1) reduces to a third order equation for &‘= M, 

Step 2. To use the translational invariance, we let 

be the new independent and dependent variable, in terms of which 

and hence (8.1) is just a second order equation for Q(J,). 

Step 3. Finally, we use the scaling invariance of the second order 
ordinary differential equation for Q, which is given by the one-parameter 
group ( y, Q) H (1.~1, i’Q). The invariants of the group action are 

where we regard R as a function of 1. We find that in terms of R and 2, 

I=(rR+6z+4)’ 
(z+ 1)” . 

J=-(R-?r)d&& 

J-77 
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However, rather than work with the principal invariant R, it is much more 
convenient to take 

j&J& rR+6:+4 
(2 + 1 )31z 

as the new dependent variable, in terms of which 

J= ((z+ W-2&$:+2)] a,. 

Therefore, we have reduced the universal equation for the form Q to a 
(complicated) first order ordinary differential equation, namely, 

dl? F@i) 
d: (~-t1)~-2Jrs1(~$2)’ 

(8.2) 

in which F is the universal function. Retracing our various reductions, we 
find that we have proved the following. 

THEOREM 8.2. Let F he a giaen function. Let d(z) he the general solution 
to (8.2). Let 

Then 

‘(p+c’)dp 

describes the complete four-parameter fhmilv of Lagrangians which lead to 
the prescribed universal fknction F. 

Unfortunately, the explicit implementation of this construction is usually 
too complicated to complete. 

9. FURTHER QUESTIONS 

(1) The case when the universal function is single-valued is impor- 
tant. According to Theorems 6.6 and 6.8 it occurs when f is equivalent to a 
monomial or to a sum of two n th powers. However, it also occurs for other 
special types of forms, for instance when the transvectant (A f)‘“‘= 0 
vanishes, cf. (5.8), (7.8). Precisely when is F* single-valued, and what are 
the geometric consequences? 
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(2) In general, the universal function F* is not explicit. However, 
since F* is analytic, we can compare two universal functions F* and F* 
by expanding them both in power series. (In the multiple-valued case, we 
must take care that we are comparing the same sheets of the associated 
universal rational curve.) The question is, given the degree of the form, 
how many terms in the power series for F* must be examined to ensure 
equivalence? 

(3) The fundamental result has reduced the problem of the equiva- 
lence of binary forms to the problem of determining when their universal 
curves are the same. However, this reduced problem is still not entirely 
trivial: given two parametrized curves in the plane, how can you determine 
whether they are in fact the same curve? The Grobner basis method of 
Buchberger [l, p. 751 appears to offer a practical, computational method 
for answering this question. It would be very interesting to try to imple- 
ment Buchberger’s algorithm in this context. 

(4) Is there a purely invariant-theoretic proof of Theorem 4.2? Also, 
what is the geometric or algebraic significance of the associated variational 
problem, the invariant coframe and the universal function or universal 
curve? 

(5 ) A theorem of Gundelfinger, cf. [ 181, gives generic conditions for 
a binary form of degree II to be written as a sum of li nth powers. It is 
unclear how Gundelfinger’s result and the associated theory of apolarity is 
related to the result in Theorem 6.8. 

(6) Extensions to ternary and higher dimensional forms can be 
made. Bryant and Gardner [6] have looked at the corresponding 
Lagrangian equivalence problem using intrinsic calculations; however, a 
complete solution, and the classical invariant theoretic consequences 
remain under active investigation. 
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