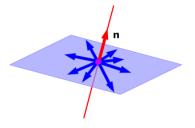
MATH 2243: Linear Algebra & Differential Equations

Discussion Instructor: Jodin Morey moreyjc@umn.edu Website: math.umn.edu/~moreyjc

4.2: The Vector Space \mathbb{R}^n and Subspaces



Subspaces: Given vector space $V(\mathbb{R}^3$ in the image above) then W (the plane in the image above), a subset of V, is called a subspace if...

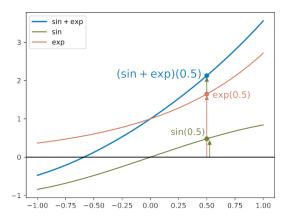
- *W* is nonempty (it contains at least one vector)
- Given $\vec{u}, \vec{v} \in W$, we have $\vec{u} + \vec{v} \in W$ (closed under addition)
- Given $c \in \mathbb{R}$, we have $c\vec{u} \in W$. (closed under scalar multiplication)

And therefore $\vec{0} \in W$. Why? Convince yourself that the x-axis and the y-axis (just the axes themselves, no other points), added together as a subset of \mathbb{R}^3 , does not constitute a subspace.

Solution Subspace: For $A^{m \times n}$, the solution set of the homogeneous linear system

 $\mathbf{A}\vec{x} = \vec{0}$ is a subspace of \mathbb{R}^n . (Why?)

The solution set of a nonhomogeneous linear system $\mathbf{A} \vec{x} = \vec{b}$, is **never** a subspace. (Why?)



Vector Space of Functions:

Let $F = \{ all real valued functions \};$

includes all polynomials, trig functions, exponentials, etc...

Observe that for \mathbf{f}, \mathbf{g} in *F*, we have: $\mathbf{f}(x) + \mathbf{g}(x) = (\mathbf{f} + \mathbf{g})(x)$ and $c(\mathbf{f}(x)) = (c\mathbf{f})(x)$. Therefore, it obeys the required properties of a vector space.

Video Tutorial (visually rich and intuitive): https://youtu.be/fNk_zzaMoSs

Problem: #16 For the following system of equations, find two solution vectors \vec{u} and \vec{v} such that the **solution space** is the set of all linear combinations of the form $s\vec{u} + t\vec{v}$.

$$\begin{aligned} x_1 - 4x_2 - 3x_3 - 7x_4 &= 0\\ 2x_1 - x_2 + x_3 + 7x_4 &= 0\\ x_1 + 2x_2 + 3x_3 + 11x_4 &= 0 \end{aligned}$$
$$\mathbf{A} = \begin{bmatrix} 1 & -4 & -3 & -7\\ 2 & -1 & 1 & 7\\ 1 & 2 & 3 & 11 \end{bmatrix} \xrightarrow{\text{trust me}} \begin{bmatrix} 1 & 0 & 1 & 5\\ 0 & 1 & 1 & 3\\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Thus, $x_3 = s$ and $x_4 = t$ are free variables. We solve for $x_2 = -s - 3t$, and $x_1 = -s - 5t$. So ...

$$\vec{x} = (x_1, x_2, x_3, x_4) = (-s - 5t, -s - 3t, s, t)$$
$$= (-s, -s, s, 0) + (-5t, -3t, 0, t) = s\vec{u} + t\vec{v}, \text{ where } \vec{u} = (-1, -1, 1, 0) \text{ and } \vec{v} = (-5, -3, 0, 1).$$

Problem: #22 Reduce the given system to echelon form to find a single solution vector \vec{u} such that the solution space is the set of all scaler multiples of \vec{u} .

$$x_{1} + 3x_{2} + 3x_{3} + 3x_{4} = 0,$$

$$2x_{1} + 7x_{2} + 5x_{3} - x_{4} = 0,$$

$$2x_{1} + 7x_{2} + 4x_{3} - 4x_{4} = 0.$$

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 3 & 3 \\ 2 & 7 & 5 & -1 \\ 2 & 7 & 4 & -4 \end{bmatrix} \xrightarrow{\text{trust me}} \begin{bmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Thus $x_4 = t$ is a parameter (a.k.a. free variable).

We solve for $x_1 = -6t$, $x_2 = 4t$, and $x_3 = -3t$. So,

$$\vec{x} = (x_1, x_2, x_3, x_4) = (-6t, 4t, -3t, t) = t\vec{u}$$
, where $\vec{u} = (-6, 4, -3, 1)$.

Problem: #29 Let **A** be an $n \times n$ matrix, \vec{b} be a nonzero vector, and \vec{x}_0 be a solution vector to the system $\mathbf{A}\vec{x} = \vec{b}$. Show that \vec{x}_2 is another solution **if and only if** (\Leftrightarrow) $\vec{y} := \vec{x}_2 - \vec{x}_0$ is a solution of the homogeneous system $\mathbf{A}\vec{y} = \vec{0}$.

We are given: $\mathbf{A}\vec{x}_0 = \vec{b}$. Need to show that: $\mathbf{A}\vec{x}_2 = \vec{b} \iff \mathbf{A}(\vec{x}_2 - \vec{x}_0) = \vec{0}$.

Starting with the left assumption, and trying to show the thing on the right, we have:

$$\mathbf{A}\left(\overrightarrow{x_{2}}-\overrightarrow{x}_{0}\right)=\mathbf{A}\overrightarrow{x_{2}}-\mathbf{A}\overrightarrow{x}_{0}=\overrightarrow{b}-\overrightarrow{b}=0. \qquad \checkmark$$

Going from right to left, we have: $\mathbf{A}(\vec{x_2} - \vec{x}_0) = \mathbf{A}\vec{x_2} - \mathbf{A}\vec{x}_0 = \mathbf{A}\vec{x_2} - \vec{b} = 0$, therefore $\mathbf{A}\vec{x_2} = \vec{b}$. Q.E.D.

Problem: #6. *W* is the set of all vectors in \mathbb{R}^4 such that $x_1 = 3x_3$ and $x_2 = 4x_4$. Apply the theorems in this section to determine whether or not *W* is a subspace of \mathbb{R}^4 .

 $W = \left\{ \left(3c, \ 4d, \ c, \ d \right) \right\}.$

First, note that the subspace is nonempty since $(3, 4, 1, 1) \in W$, where c, d = 1.

We arbitrarily choose two vectors from W by arbitrarily choosing four constant $c_1, d_1, c_2, d_2 \in \mathbb{R}$, giving us $(3c_1, 4d_1, c_1, d_1)$ and $(3c_2, 4d_2, c_2, d_2)$. We then test them:

$$(3c_1, 4d_1, c_1, d_1) + (3c_2, 4d_2, c_2, d_2)$$

= $(3c_1 + 3c_2, 4d_1 + 4d_2, c_1 + c_2, d_1 + d_2)$
= $(3(c_1 + c_2), 4(d_1 + d_2), c_1 + c_2, d_1 + d_2) \in W$

This is because it has the prescribed format $\{(3c, 4d, c, d)\}$, where $c = c_1 + c_2$ and $d = d_1 + d_2$.

Now to test scalar multiplication:

$$\alpha(3c_1, 4d_1, c_1, d_1) = (3\alpha c_1, 4\alpha d_1, \alpha c_1, \alpha d_1) \in W = \{(3c, 4d, c, d)\}$$

where $c = \alpha c_1$ and $d = \alpha d_1$.

Therefore, *W* is nonempty, closed under addition, and scalar multiplication, and is a subspace of \mathbb{R}^4 .