MATH 1271: Calculus I

Discussion Instructor: Jodin Morey
moreyjc@umn.edu
Website: math.umn.edu/~moreyjc

3.10 - Linear Approximations and Differentials

Review

Linearization of f at a : The linear function whose graph is the tangent line, that is, $L(x)=f(a)+f^{\prime}(a)(x-a)$.
So, $L(x)=$ initial height $+\frac{\text { rise }}{\text { run }} \cdot r u n=f(x)$ approximation.

Differentials:

Consider $y=f(x)$, where f is a differentiable function.
We know how to calculate the derivative $f^{\prime}(x)$. And if we look at the tangent line starting at $\left(x_{0}, y_{0}\right)$ on the graph of $f(x)$, we can calculate the slope $f^{\prime}\left(x_{0}\right)$. We can now can define a NEW function $d y$, written like $d y=f^{\prime}\left(x_{0}\right) d x$ (this should remind you of the equation for a line $y=m x$). If we were to travel along the x-axis by an amount equal to $d x$, then $d y$ is the change in the height of the tangent line starting at $\left(x_{0}, y_{0}\right)$. Note that since we are traveling along the tangent line, and not the function itself, $d y$ will most likely be a different value than Δy (which is the symbol representing the change in the ACTUAL function when traveling $d x$ or Δx, which both represent the same thing). $d x$ and $d y$ are called differentials, they are approximations based on a derivative.

Stated another way: $d x=\Delta x$ represents the size of the interval over which you are considering the linearization of f. While $d y=\Delta L$ represents the size of the change of the linearization L of f over $d x$.

Problem 18. Find the differential $d y$ and evaluate it for the given values of x and $d x$.

$$
y=\frac{x+1}{x-1}, \quad x_{0}=2, \quad d x=0.05
$$

$$
d y=f^{\prime}\left(x_{0}\right) d x=\left(\left.\frac{(1)(x-1)-(x+1)(1)}{(x-1)^{2}}\right|_{x=2}\right) d x=-2 d x
$$

$$
d y=-2(0.05)=-0.1
$$

$y=\frac{x+1}{x-1}$. Dashed line is the Linearization

Problem 22. Compute Δy and $d y$ for $y=e^{x}$ with $x_{0}=0$ and $d x=\Delta x=0.5$. Then sketch a diagram showing the line segments with lengths $d x, d y$, and Δy.

$$
\begin{aligned}
\Delta y= & f(0.5)-f(0) \\
& =\sqrt{e}-1 \approx 0.65 . \\
d y= & \ldots \\
& =e^{x} d x \\
& =e^{0}(0.5)=0.5
\end{aligned}
$$

Problem 26. Use a linear approximation (differentials) to estimate the value for $\frac{1}{4.002}$. (Imagine you didn't have a calculator. What function does this number resemble?)

$$
\begin{aligned}
& y=\frac{1}{x} \text { near } x=4 . \\
& \quad \Rightarrow d y=-\frac{1}{x^{2}} d x .
\end{aligned}
$$

When $x=4$ and $d x=0.002$,

$$
d y=-\frac{1}{16}(0.002)=-\frac{1}{8000}, \text { so }
$$

$$
\begin{aligned}
\frac{1}{4.002} & \approx f(4)+d y \\
& =\frac{1}{4}-\frac{1}{8000}=\frac{1999}{8000}=0.249875 .
\end{aligned}
$$

Which is off by about . 001%

$\frac{1}{x}$. Black dot is the approximation

Problem 30. Explain, in terms of linear approximations or differentials, why the approximation $(1.01)^{6} \approx 1.06$ is reasonable.

If $y=x^{6}, y^{\prime}=6 x^{5}$ and the tangent line approximation at $(1,1)$ has slope $y^{\prime}=6(1)^{5}=6$.

And if the change in x is 0.01 , then the change in y on the tangent line is $d y=6(0.01)=0.06$.

So approximating $(1.01)^{6}$ with 1.06 is reasonable.

