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Earth’s History

Over the last 4.5 millions years there have been oscillations of Earth’s
temperature over time. Approximately 1.2 million years ago, Earth moved
through a transition into longer and deeper glacial-interglacial cycles.

Samantha Oestreicher (UMN) February 26, 2013 2 / 27



Glacial-Interglacial Cycles

We can use ice core data (here from Vostok) to learn more about the last
800 kyrs.

Despite the eccentricity signal being weak during this time period, the
δ18O signal shows a strong 100, 000 year frequency signal.
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Using Oscillators to explain Pleistocene
In Crucifix, Michel’s “Ocsillations and relaxation phenomena in Pleistocene
climate theory.” published by the Phil. Trans. Royal Society A in 2012.
doi: 10.1098/rsta.2011.0315
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Definitions
Oscillator A dynamical system with a globally attracting limit cycle. The
system oscillations even in the absence of external drive.

Relaxation Oscillator A oscillator featuring an interplay of relaxation
dynamics (generally fast) and destabilisation dynamics (generally slow).
There are three main types based on structure:

slow-fast dynamics
homoclinic orbit
a unstable focus.

Excitability An excitable system has a stable fixed point- but external
forcing can excite the system can cause a excursion away from and back
to the stable fixed point.

Note There is sometimes a nice connection between excitable systems and
slow/fast relaxation oscillators through a particular parameter. (Example
forthcoming)
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(A) Oscillator Structured around a Slow Manifold

The first example we’ll consider is a coupled system of two variables.

ȧ = b − 1
40(a3 − 25a2 + 80) = b − 1

40(a(a− 5)(a + 5)) + 2

ḃ = ε(ac − a)
(1)

for 0 < ε� 1

This is a slow/fast system. a is the fast variable while b is the slow
variable. We will analyse this system by first finding the null-clines of each
variable and plotting the phase portrait of the system.

MCRN Webinar: Fast/Slow Dynamics on Thursdays at 1pm eastern
time.
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Fast/Slow Stable System
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Fast/Slow Stable System
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Fast/Slow Relaxation Oscillator
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Fast/Slow Relaxation Oscillator
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(D) Fast/Slow Excitable System
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(C) Relaxation Oscillator emanating from a focus

Van der Pol Equations

ẍ + µ(x2 − a)ẋ + x = 0 (2)

OR
ẋ = y
ẏ = −x + µy(a− x2)

(3)

2D limit cycle can’t exist in

simple harmonic oscillator

gradient system (ẋ = −5 V (x))

Lyaponov systems
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When do limit cycles exist in 2D?

Theorem

Poincare-Bendixson Theorem If the trajectory is confined to a compact
region, R, and there are no fixed points in R then there exists a limit
cycle, C , somewhere in R.

Samantha Oestreicher (UMN) February 26, 2013 13 / 27



(B) Oscillations with unstable homoclinic Orbit

The best common example of something like this that I could find was
Smale’s Horseshoe map. But that’s too complicated to discuss here.
There are also examples in three species biological models.
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Back to the Pleistocene: 4 Models for glacial-interglacial

1 Saltzman

2 Palliard

3 Palliard-Parrenin

4 Crucifix
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Saltzman and Maasch Model
M = Milankovitch forcing at 65oN at summer solstice.
X = ice volume
Y = atmospheric CO2.
Z = North Atlantic Deepwater Formation.
˙ = time derivative.
All variables are deviations from the mean.

Ẋ = −X − Y − uM(t)

Ẏ = −pZ + rY + sZ 2 − Z 2Y

Ż = −q(X + Z )

(4)

Notes: Maasch and Saltzman show there exists a parameter shift which
induces a change from a stable equilibrium solution to 100kyr cycles. The
parameter shift is

p = 0.8→ 1, q = 1.2, r = 0.7→ 0.8, s = 0.8, and u = 0.7

where p and r vary linearly in time.
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Ẋ = −X − Y − uM(t)
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Saltzman and Maasch
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Saltzman and Maasch

Notes Crucifix argues that this model uses variations in Fµ to capture the
Mid-Pliestocene Transition. Perhaps this is what Saltzman eventually
presents in his books. But it is not what is presented in the 1990 paper.
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Saltzman and Maasch
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Paillard’s ice age model

y= discrete variable. i → g → G . (i)- Interglacial. (g)-mild glacial. (G )-
deep glacial. Transitions are determined by the values of the astronomical
forcing, F (t), or the value of x .
xR(y) and τR(y) = characteristic relaxation values and time constants
respectively. They depend on the discrete value of y .

Notes

Physical meaning of y has to do with the Atlantic ocean circulation
state. Deep sinking water, intermediate over-turning and shut-down
of circulation.

Contains concepts of fast/slow, but isn’t an oscillator b/c shift from
g to G is due to external forcing.

Mid-Pleistocene transition is show to exist by adding to the tectonic
forcing terms.
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Palliard-Parrenin

I = Ice Volume
A = Antarctic continental ice sheet
µ = atmospheric CO2.
τA and τI are slow time constants.
τµ is fast time constant. H(−D) is a Heaviside function.

Note: H physically representing ventilation in Southern ocean. CO2 is
released into atmosphere when D < 0, which drives deglaciation.

Samantha Oestreicher (UMN) February 26, 2013 21 / 27



Palliard-Parrenin

I = Ice Volume
A = Antarctic continental ice sheet
µ = atmospheric CO2.
τA and τI are slow time constants.
τµ is fast time constant. H(−D) is a Heaviside function.

Note: H physically representing ventilation in Southern ocean. CO2 is
released into atmosphere when D < 0, which drives deglaciation.

Samantha Oestreicher (UMN) February 26, 2013 21 / 27



Palliard-Parrenin

Oscillations are structurally cre-
ated by sub-critical Hopf bifurca-
tions.

As a result we get a relax-
ation oscillator that is structured
around an unstable equilibrium
point without being a fast/slow
system.
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Crucifix’s VDP model

The Van der Pol Equation we considered earlier:

ẋ = y
ẏ = −x + µy(a− x2)

(5)

Crucifix’s Alteration of Van der Pol’s Equations:

Notes

slow manifold x = y3

3 − y .

β controls position of fixed-point on the slow manifold (and so the
ratio of times spent in glacial or interglacial.

designed to challenge the arguments about predictability of ice ages.
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Crucifix VDP vs. VDP

The details of the equation and
the size of the parameters makes
a big difference in what kind
of oscillator we see. There is,
perhaps, a close relationship be-
tween fast/slow oscillators and
sub-critical Hopfs bifurcation os-
cillators?

Samantha Oestreicher (UMN) February 26, 2013 24 / 27



Stochastic effects

“weak stochastic forcing on
an oscillator causes a fading
out of the memory of exact
initial conditions” - Crucifix
pg 16

This happens a lot with
neutral stability in a free
oscillator.

“Stochastic forcing disperses
the system states around the
different attractors that are
compatible with the
forcing.” -Crucifix pg 17
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Stochastic effects

Stochastic forcing may ex-
cite an excitable system.

Or delay oscillating slow-
fast systems.
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My Favorite Conclusions

Question

“Can dynamical systems be used for inference on paleoclimates?”

Challenge

“The modeller’s challenge is therefore to operate a model selection on
more stringent criteria than just fitting some standard time series.”

Conclusion...?

“Whether the process of inference with simple dynamical systems on
paleoclimate data will lead new insight in [paleoclimate understanding and
modelling] still needs to be demonstrated”
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