Bifurcation Analysis for Minimal Complexity PaleoClimate Modeling

BY SAMANTHA OESTREICHER APRIL20, 2011
UNIVERSITY OF MINNESOTA

MCRN

Math and Climate Research Network

The Model

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 95, NO. D2, PAGES 1955-1963, FEBRUARY 20, 1990

A Low-Order Dynamical Model of Global Climatic Variability Over the Full Pleistocene

Kirk A. Maasch and Barry Saltzman
Department of Geology and Geophysics, Yale University, New Haven, Connecticut

The Model

$$
\begin{aligned}
& \dot{I}^{\prime}=a_{0} I^{\prime}-a_{1} \mu^{\prime}-a_{2} M(t) \\
& \dot{\mu^{\prime}}=b_{1} \mu^{\prime}-\left(b_{2}-b_{3} N^{\prime}\right) N^{\prime}-b_{4} N^{\prime 2} \mu^{\prime} \\
& \dot{N}^{\prime}=-c_{0} I^{\prime}-c_{2} N^{\prime}
\end{aligned}
$$

- I = global ice mass
- $\mathrm{N}=$ North Atlantic Deep Water
- $\mu=$ Atmospheric CO_{2}
- $\mathrm{a}_{0,1} \mathrm{~b}_{1,2,3,4}$ and $\mathrm{c}_{1,2}>0$
- $\mathrm{M}(\mathrm{t})=$ Milankovitch Forcing (65° normalized to O mean and unit variance)
- Primes denote departures from an eq. state controled by possible ultraslow variation of solar constant or the tectonic state of the Earth.

The Model

Reduction:

$$
\begin{gathered}
\dot{X}=-X-Y-u M\left(t^{*}\right) \\
\dot{Y}=-p Z+r Y+s Z^{2}-Z^{2} Y \\
\dot{Z}=-q(X+Z)
\end{gathered}
$$

Original Dynamical System:

Substitutions:

$$
\mu^{\prime}=\left[\frac{c_{2}}{a_{1} c_{0}} \sqrt{\frac{a_{0}}{b_{4}}}\right] Y
$$

$$
N^{\prime}=\left[\sqrt{\frac{a_{0}}{b_{4}}}\right] Z
$$

$$
I^{\prime}=\left[\frac{c_{2}}{c_{0}} \sqrt{\frac{a_{0}}{b_{4}}}\right] X
$$

$$
\dot{I}^{\prime}=a_{0} I^{\prime}-a_{1} \mu^{\prime}-a_{2} M(t)
$$

$$
\dot{\mu}^{\prime}=b_{1} \mu^{\prime}-\left(b_{2}-b_{3} N^{\prime}\right) N^{\prime}-b_{4} N^{\prime 2} \mu^{\prime}
$$

$$
\dot{N}^{\prime}=-c_{0} I^{\prime}-c_{2} N^{\prime}
$$

where $p=\frac{a_{1} c_{0} b_{2}}{a_{0}^{2} c_{2}}, q=\frac{c_{2}}{a_{0}}, r=\frac{b_{1}}{a_{0}}, s=\frac{a_{i} b_{3} c_{0} \sqrt{a_{0}^{3} b_{4}}}{c_{2}}$, and $u=\frac{a_{2} c_{0} \sqrt{\frac{b_{4}}{a_{0}^{3}}}}{c_{2}}$.

The Model

Reference Parameters:

$$
(p, q, r, s)=(1.0,1.2,0.8,0.8)
$$

Equilibrium Solutions

1. Let $\mathrm{u}=\mathrm{O}$.
2. Set $\dot{X}=\dot{Y}=\dot{Z}=0$ and solve

$$
\begin{gathered}
0=-X-Y-u M\left(t^{*}\right) \\
0=-p Z+r Y+s Z^{2}-Z^{2} Y \\
0=-q(X+Z)
\end{gathered}
$$

Equilibrium Solutions

1. Let $\mathrm{u}=\mathrm{O}$.
2. Set $\dot{X}=\dot{Y}=\dot{Z}=0$ and solve

$$
\begin{gathered}
0=-X-Y-u M\left(t^{*}\right) \\
0=-p Z+r Y+s Z^{2}-Z^{2} Y \\
0=-q(X+Z)
\end{gathered}
$$

3. $-\mathrm{X}=\mathrm{Y}=\mathrm{Z}$
4. $0=p X-r X+s X^{2}+X^{3}$

$$
=X\left(X^{2}+s X+(p-r)\right)
$$

Equilibrium Solutions

$$
\begin{aligned}
0 & =p X-r X+s X^{2}+X^{3} \\
& =X\left(X^{2}+s X+(p-r)\right)
\end{aligned}
$$

$$
\begin{aligned}
& X_{0}=0 \\
& X_{1,2}=\frac{-s \pm \sqrt{s^{2}-4(p-r)}}{2} .
\end{aligned}
$$

Equilibrium Solutions

$$
\begin{aligned}
0 & =p X-r X+s X^{2}+X^{3} \\
& =X\left(X^{2}+s X+(p-r)\right)
\end{aligned}
$$

$$
\begin{aligned}
& X_{0}=0 \\
& X_{1,2}=\frac{-s \pm \sqrt{s^{2}-4(p-r)}}{2}
\end{aligned}
$$

-Thus for each point in the parameter space (p,q,r,s) there are 3 eq. solutions.
-For each of the 3 eq. pts are 3 eigenvalues, $\lambda_{1,2,3}$ for which $\operatorname{Re}(\lambda)$ will determine the stability of that eq. pt.

Linearised System

- To determine eigenvalues we must consider the linearised system at a given eq. point. By definition, the linearised system is:

Linearised System

Reduced Dynamical System:

$$
\begin{gathered}
\dot{X}=-X-Y-u M\left(t^{*}\right) \\
\dot{Y}=-p Z+r Y+s Z^{2}-Z^{2} Y \\
\dot{Z}=-q(X+Z)
\end{gathered}
$$

$$
D f=\left[\begin{array}{ccc}
-1 & -1 & 0 \\
0 & r-Z^{2} & (-p+2 s Z-2 Y Z) \\
-q & 0 & -q
\end{array}\right]
$$

Linearised System

Reduced Dynamical System:

$$
\begin{gathered}
\dot{X}=-X-Y-u M\left(t^{*}\right) \\
\dot{Y}=-p Z+r Y+s Z^{2}-Z^{2} Y \\
\dot{Z}=-q(X+Z)
\end{gathered}
$$

$$
D f=\left[\begin{array}{ccc}
-1 & -1 & 0 \\
0 & r-Z^{2} & (-p+2 s Z-2 Y Z) \\
-q & 0 & -q
\end{array}\right]
$$

Recall
$-\mathrm{X}=\mathrm{Y}=\mathrm{Z}$

$$
\Rightarrow \quad D f=\left[\begin{array}{ccc}
-1 & -1 & 0 \\
0 & r-X^{2} & \left(-p-2 s X-2 X^{2}\right) \\
-q & 0 & -q
\end{array}\right]
$$

Linearised System

- Thus to linearise about $(-\alpha, \alpha, \alpha)$:

$$
\hat{f}_{(\alpha,-\alpha,-\alpha)}(X, Y, Z)=\left[\begin{array}{c}
\dot{X} \\
\dot{Y} \\
\dot{Z}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & -1 & 0 \\
0 & r-\alpha^{2} & \left(-p+2 s \alpha-2 \alpha^{2}\right) \\
-q & 0 & -q
\end{array}\right]\left[\begin{array}{l}
X-\alpha \\
Y-\alpha \\
Z-\alpha
\end{array}\right]
$$

Linearised System

- Thus to linearise about $(-\alpha, \alpha, \alpha)$:
$\hat{f}_{(\alpha,-\alpha,-\alpha)}(X, Y, Z)=\left[\begin{array}{c}\dot{X} \\ \dot{Y} \\ \dot{Z}\end{array}\right]=\left[\begin{array}{ccc}-1 & -1 & 0 \\ 0 & r-\alpha^{2} & \left(-p+2 s \alpha-2 \alpha^{2}\right) \\ -q & 0 & -q\end{array}\right]\left[\begin{array}{c}X-\alpha \\ Y-\alpha \\ Z-\alpha\end{array}\right]$
- Recall if $\operatorname{Re}(\lambda)<0$ for all λ then the eq. pt is stable.
- If $\operatorname{Re}(\lambda)>0$ for any λ then the eq. pt is unstable.
- We must now solve:

$$
|D f-\lambda I|=0
$$

Eigenvalues

- Characteristic Polynomial:

$$
\lambda^{3}+\left(1+q+X^{2}-r\right) \lambda^{2}+\left(q\left(1+X^{2}-r\right)-r+X^{2}\right) \lambda+q\left(p+2 s X+X^{2}-r\right)
$$

- For reference parameters (p,q,r,s) $=(1,1.2,0.8,0.8)$:

$$
\lambda^{3}+\left(1.4+X^{2}\right) \lambda^{2}+\left(2.2 X^{2}-0.56\right) \lambda+3.6 X^{2}+1.92 X+0.24=0
$$

- Solving λ for each of the three eq. pts:

eq pt	λ_{1}	λ_{2}	λ_{3}
$(0,0,0)$	-1.7882	$0.0194-0.3107 i$	$0.0194+0.3107 i$
$(-0.4+0.2 i, 0.4-0.2 i, 0.4-0.2 i)$	$-1.6625+0.1665 i$	$-0.2408-0.1305 i$	$0.3834+.02739 i$
$((-0.4-0.2 i, 0.4+0.2 i, 0.4+0.2 i)$	$-1.6625-0.1665 i$	$-0.2408+0.1305 i$	$0.3834-.02739 i$

Eigenvalues

- Thus for reference parameters (p,q,r,s) = (1,1.2, o.8, o.8)

eq pt	λ_{1}	λ_{2}	λ_{3}
$(0,0,0)$	-1.7882	$0.0194-0.3107 i$	$0.0194+0.3107 i$
$(-0.4+0.2 i, 0.4-0.2 i, 0.4-0.2 i)$	$-1.6625+0.1665 i$	$-0.2408-0.1305 i$	$0.3834+.02739 i$
$((-0.4-0.2 i, 0.4+0.2 i, 0.4+0.2 i)$	$-1.6625-0.1665 i$	$-0.2408+0.1305 i$	$0.3834-.02739 i$

- The system is hyperbolic for this parameter, thus the linearised system is an accurate representation for the non-linear system locally.

Eigenvalues

- Thus for reference parameters (p,q,r,s) = (1,1.2, o.8, o.8)

eq pt	λ_{1}	λ_{2}	λ_{3}
$(0,0,0)$	-1.7882	$0.0194-0.3107 i$	$0.0194+0.3107 i$
$(-0.4+0.2 i, 0.4-0.2 i, 0.4-0.2 i)$	$-1.6625+0.1665 i$	$-0.2408-0.1305 i$	$0.3834+.02739 i$
$((-0.4-0.2 i, 0.4+0.2 i, 0.4+0.2 i)$	$-1.6625-0.1665 i$	$-0.2408+0.1305 i$	$0.3834-.02739 i$

- The origin is spirally unstable with a 2D unstable space and a 1D stable space.
- The other two points don't have any physical meaning because the eq. pts are complex valued.

Eigenvalues

- Considering the system as a function of p. Now try to understand how the stability of the system changes as p changes.

Eigenvalues

- Considering the system as a function of p. Now try to understand how the stability of the system changes as p changes.
- Fix q ,r and s at reference values.
- Initially we can see eq pts $\mathrm{X}_{2,3}$ are only real for $\mathrm{p}<$ 0.96

$$
X_{1,2}=\frac{-s \pm \sqrt{s^{2}-4(p-r)}}{2} .
$$

Bifurcations

Bifurcations

Claim: For eq. pt. $\mathrm{X}_{2}=\frac{\left(-s-\sqrt{\left.s^{2}-4 *(p-r)\right)}\right.}{2}$ there exists a Hopf's Bifurcation between $p=0.9353 \& p=$ 0.9354.

Proof: We will use the following theorem
A Hopf's bifurcation occurs when all eigenvalues of Df have $\operatorname{Re}\left(\lambda_{0}\right)<0$ except one conjugate pair $\lambda_{1,2}=\iota \omega$.

Bifurcation

For $(\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s})=(0.9353,1.2,0.8,0.8)$ the eigenvalues are:
$\lambda=-1.71039 \lambda==-0.0000220078 \pm 0.350529 i$
For $(\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s})=(\mathrm{o} .9354,1.2,0.8,0.8)$ the eigenvalues are:

$$
\lambda==-1.7103 \quad \lambda==0.000114597 \pm 0.350082 i
$$

1. $\operatorname{Re}\left(\lambda_{0}\right)<\mathrm{O}$ as required.
2. The next claim is that the $\operatorname{Re}\left(\lambda_{1,2}\right)=O$ at some point $0.9353<\boldsymbol{p}<0.9354$.

Bifurcations

- We can view the system completely as a function of p.

$$
D f=\left[\begin{array}{ccc}
-1 & -1 & 0 \\
0 & r-(X(p))^{2} & \left(-p-2 s(X(p))-2(X(p))^{2}\right) \\
-q & 0 & -q
\end{array}\right]
$$

- $\mathrm{X}(\mathrm{p})$ is a continuous function of p .
- Det[Df] is thus a continuous function of p.
- The $\operatorname{Re}\left(\lambda_{l}\right)$ are continuous with respect to p.
- Thus by Intermediate Value Theorem there exists a $\boldsymbol{p}, 0.9353<\boldsymbol{p}<0.9354$ such that $\operatorname{Re}\left(\lambda_{1,2}\right)=0$.

Bifurcations

- Next we'll take a quick review of the bifurcation diagrams for r and s.

Bifurcations

Bifurcations

Bifurcations

Varying Parameters

Varying Parameters

- Below is the published solution curve for $\mathrm{q}=1.2, \mathrm{~s}$ $=0.8$ and p and r linearly varying between $0.8->1$ and $0.7->0.8$ respectively.

Varying Parameters

- Below is my solution curve for $q=1.2, \mathrm{~s}=0.8$ and p and r linearly varying between $0.8->1$ and $0.7->0.8$ respectively.

The parameter u is 0

Varying Parameters

- Below is my solution curve for $q=1.2, \mathrm{~s}=0.8$ and p and r linearly varying between $\mathbf{1 - >} \mathbf{. 0 8}$ and $\mathbf{0 . 8}$ >0.7 respectively.

Varying Parameters

- Below is my solution curve for $q=1.2, \mathrm{~s}=0.8$ and p and rlinearly varying between $\mathbf{1 - >} .08$ and $\mathbf{0 . 8}$ >0.7 respect

?

?

Varying Parameters

- We parameterize p and r:

$$
p(\alpha)=0.8+0.2 \alpha \quad r(\alpha)=0.7+0.1 \alpha
$$

- We can view the system as continuous with respect to α.

$$
D f=\left[\begin{array}{ccc}
-1 & -1 & 0 \\
0 & r(\alpha)-(X(\alpha))^{2} & \left(-p(\alpha)-2 s(X(\alpha))-2(X(\alpha))^{2}\right) \\
-q & 0 & -q
\end{array}\right]
$$

Varying Parameters

$$
\begin{aligned}
& \operatorname{Re}\left(\lambda_{0}\right)<\mathrm{O}, \\
& \operatorname{Re}\left(\lambda_{1,2}\right)>\mathrm{O}, \\
& \lambda_{1,2} \text { in } \mathbf{C}, \\
& \text { for all } \alpha \text { in }(\mathrm{o}, 1)
\end{aligned}
$$

No interesting dynamics due to eigenvalues.

$$
\begin{aligned}
& \ln [224]:=\mathbf{G}\left[\alpha_{-}, \lambda_{-}\right]:=-\lambda^{\wedge} 3+(-\mathbf{1}-\mathbf{I}+\mathbf{r}[a]) * \lambda^{\wedge} 2+(-\mathbf{I}+\mathbf{r}[a]+\mathbf{I} * \mathbf{Y}[a]) * \lambda- \\
& \mathbf{p}[a] * \mathbf{I}+\mathbf{q} * \mathbf{r}[a]
\end{aligned}
$$

$\ln [255]:=\operatorname{Manipulat} \mathbf{e}[\operatorname{Plot}[G[a, \lambda],\{\lambda,-1.8, .2\}],\{a,-2,2\}]$

Out [255] $=$

Varying Parameters

Varying Parameters

Conclusions

- Changing α seems to cause global system changes which can not be captured in the standard local bifurcation approach.

Conclusions

- Changing α seems to cause global system changes which can not be captured in the standard local bifurcation approach.
- Despite any errors, the main concept that Maasch and Saltzman present with respect to bifurcation values is still valid.

Conclusions

- Changing α seems to cause global system changes which can not be captured in the standard local bifurcation approach.
- Despite any errors, the main concept that Maasch and Saltzman present with respect to bifurcation values is still valid.
- It is likely that there exists a small parameter shift that would cause a large change in the oscillations of the system.

