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The Model

 I = global ice mass
 N = North Atlantic Deep Water
 m = Atmospheric CO2

 a0,1 b1,2,3,4 and c1,2 > O
 M(t) = Milankovitch Forcing (65 normalized to O mean and 

unit variance)
 Primes denote departures from an eq. state controled by 

possible ultraslow variation of solar constant or the tectonic 
state of the Earth.



The Model

Reduction:

Original Dynamical System:
Substitutions:



The Model

Reference Parameters:



Equilibrium Solutions

1. Let u = O.

2. Set
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1. Let u = O.

2. Set

3. -X = Y = Z

4.
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•Thus for each point in the parameter space (p,q,r,s) there are 
3 eq. solutions.  

•For each of the 3 eq. pts are 3 eigenvalues, l1,2,3 for which 
Re(l) will determine the stability of that eq. pt.



Linearised System

 To determine eigenvalues we must consider the 
linearised system at a given eq. point.  By definition, 
the linearised system is:



Linearised System

Reduced Dynamical System:



Linearised System

Reduced Dynamical System:

Recall
-X=Y=Z



Linearised System

 Thus to linearise about (-a, a, a):



Linearised System

 Thus to linearise about (-a, a, a):

 Recall if Re(l) < O for all l then the eq. pt is stable.

 If Re(l) >O for any l then the eq. pt is unstable.

 We must now solve: 



Eigenvalues

 Characteristic Polynomial:

 For reference parameters (p,q,r,s) = (1,1.2,0.8,0.8):

 Solving l for each of the three eq. pts:



Eigenvalues

 Thus for reference parameters (p,q,r,s) = (1,1.2, 0.8, 
0.8)

 The system is hyperbolic for this parameter, thus the 
linearised system is an accurate representation for 
the non-linear system locally.



Eigenvalues

 Thus for reference parameters (p,q,r,s) = (1,1.2, 0.8, 
0.8)

 The origin is spirally unstable with a 2D unstable 
space and a 1D stable space.

 The other two points don’t have any physical 
meaning because the eq. pts are complex valued.



Eigenvalues

 Considering the system as a function of p. Now try to 
understand how the stability of the system changes 
as p changes. 



Eigenvalues

 Considering the system as a function of p. Now try to 
understand how the stability of the system changes 
as p changes. 

 Fix q ,r and s at reference values. 

 Initially we can see eq pts X2,3 are only real for p < 
0.96
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Bifurcations

Claim: For eq. pt. X2= there exists 
a Hopf’s Bifurcation between p = 0.9353 & p = 
0.9354. 

Proof: We will use the following theorem

A Hopf’s bifurcation occurs when 

all eigenvalues of Df have Re(l0) < O 

except one conjugate pair l1,2 = iw .



Bifurcation

For (p,q,r,s)=  (0.9353, 1.2, 0.8, 0.8) the eigenvalues are: 

For (p,q,r,s)=  (0.9354, 1.2, 0.8, 0.8) the eigenvalues are: 

1. Re(l0) <O as required. 
2. The next claim is that the Re(l1,2) = O at some point 

0.9353 < p < 0.9354.



Bifurcations

 We can view the system completely as a function of 
p.

 X(p) is a continuous function of p.  

 Det[Df] is thus a continuous function of p.

 The Re(li) are continuous with respect to p.

 Thus by Intermediate Value Theorem there exists a 
p, 0.9353 < p < 0.9354 such that Re(l1,2) = O.



Bifurcations



 Next we’ll take a quick review of the bifurcation 
diagrams for r and s.  
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Varying Parameters



Varying Parameters

 Below is the published solution curve for q = 1.2, s 
= 0.8 and p and r linearly varying between 0.8 -> 1 
and 0.7 ->0.8 respectively.
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 Below is my solution curve for q = 1.2, s = 0.8 and p 
and r linearly varying between 0.8 -> 1 and 0.7 ->0.8 
respectively.



Varying Parameters

 Below is my solution curve for q = 1.2, s = 0.8 and p 
and r linearly varying between 1 -> .08 and 0.8 -
>0.7 respectively.



Varying Parameters

 Below is my solution curve for q = 1.2, s = 0.8 and p 
and r linearly varying between 1 -> .08 and 0.8 -
>0.7 respectively.

????



Varying Parameters

 We parameterize p and r:

 We can view the system as continuous with respect 
to a.



Varying Parameters

Re(l0) < O,

Re(l1,2) >O,

l1,2 in C,

for all a in (0,1)

No interesting

dynamics due to

eigenvalues.



Varying Parameters

The only possible stable eq. pts. 
Are when a < -2.  This is well 
outside the published range of 
[0,1].

Re(l0) for XO=O vs. a

Re(l1,2) for X1 & X2 vs. a
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Conclusions

 Changing a seems to cause global system changes 
which can not be captured in the standard local 
bifurcation approach.
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Conclusions

 Changing a seems to cause global system changes 
which can not be captured in the standard local 
bifurcation approach.

 Despite any errors, the main concept that Maasch
and Saltzman present with respect to bifurcation 
values is still valid.

 It is likely that there exists a small parameter shift 
that would cause a large change in the oscillations of 
the system.


