



# Adding carbon to conceptual models: an introduction to Hogg's model and others.

Samantha Oestreicher University of Minnesota November 3, 2010

MCRN Math and Climate Research Network

# Motivation

- Budyko has only ice albedo feedback.
- "However, amplitude of the glacial cycles cannot be explained by orbital cycles alone"
- We need a feedback mechanism!
- So we introduce a new style of simple model: Hogg's Model.

# Hogg's Model

- CO2 could provide the extra amplitude in the glacial cycles.
- Milankovitch cycles are the trigger for the glacial cycles.

 $\bar{S} = \sigma \bar{T}^4$ 

 $\Rightarrow \overline{T} = 255K$  (which is about 33K lower than present day Temp).

Stefan-Boltzman Constant  $\sigma = 5.67 x 10^{-8} W/m^2/K^4.$ <br/> $\bar{S} \approx 240 W/m^2$ 

 $\bar{S} = \sigma \bar{T}^4$ 

 $\Rightarrow \overline{T} = 255K$  (which is about 33K lower than present day Temp).

Adding Greenhouse Gases may make up the difference

Stefan-Boltzman Constant  $\sigma = 5.67 x 10^{-8} W/m^2/K^4.$ <br/> $\bar{S} \approx 240 W/m^2$ 

# Blackbody Radiation with Greenhouse Gasses: $\bar{S} + \bar{G} = \sigma \bar{T}^4$

Then  $\bar{G} = 155W/m^2$  yields the desired  $\bar{T} \approx 288K$ .

The radiation equation with time dependence becomes:

$$c\frac{dT}{dt} = S + G - \sigma T^4$$

c = specific heat of the ocean =  $1.7 \times 10^{10} J/m^2/K$ .

 $c\frac{dT}{dt} = S + G - \sigma T^4$ 

$$S(t) = \bar{S} + \Sigma_i S_i \sin\left\{\frac{2\pi t}{\Gamma_i}\right\}$$

 $S_i$  = amplitude of insolation perturbations =  $.25W/m^2$  $\Gamma_i$  = period of variations in earth's orbit =  $10^5yr$ 

$$G(t) = \overline{G} + A \ln \left\{ \frac{C(t)}{C_0} \right\}$$

C(t) = atmospheric concentration of  $C0_2$   $C_0 =$  preindustrial concentration = 280ppm A = effect of  $C0_2$  on radiation budget =  $5.35W/m^2$ 

$$c\frac{dT}{dt} = S + G - \sigma T^4$$

$$c\frac{dT}{dt} = \bar{S} + \Sigma_i S_i \sin\left\{\frac{2\pi t}{\Gamma_i}\right\} + \overline{G} + A\ln\left\{\frac{C(t)}{C_0}\right\} - \sigma T^4$$

Now we need to develop a Atmospheric Carbon Differential Equation.



$$rac{dC}{dt} = V - (W_0 + W_1 C) + eta(C_{max} - C) ext{max} \left( rac{dar{T}}{dt} - \epsilon_H, 0 
ight)$$

$$rac{dC}{dt} = V - (W_0 + W_1C) + eta(C_{max} - C) \max\left(rac{dar{T}}{dt} - \epsilon_H, 0
ight)$$

constant source of CO<sub>2</sub> due to volcanoes estimated at 0.018-0.03 ppm/yr (*Gerlach, 1991*)



$$\frac{dC}{dt} = V - (W_0 + W_1C) + \beta(C_{max} - C)\max\left(\frac{d\bar{T}}{dt} - \epsilon_H, 0\right)$$

carbon contributed to ocean through weathering of silicate rocks  $W_0 = 0.013$  ppm/yr and  $W_1 = 12,000$  yr (*Toggweiler, 2007*)



$$rac{dC}{dt} = V - (W_0 + W_1 C) + eta(C_{max} - C) \max\left(rac{dar{T}}{dt} - \epsilon_H, 0
ight)$$

• release of  $CO_2$  with significant warming;  $C_{max}$  limited by amount of oceanic  $CO_2$  readily available  $C_{max} = 400$ ppm Beta = 0.38°C^-1



### **Vostok Core Sample Data**

Petit, et al, Nature 399 (June 3 1999), pp.429-436



# Results



Obliquity – 41k Precession- 23k Eccentricity- 100k

#### **Changing Temperature**



# Starting inside the limit cycle



Initial Conditions:  $CO_2$ : 228 ppm Temp: 287.1 K

#### **Current Conditions**



#### **Hogg Conclusions**

Temperature ranges exceeds that due to insolation alone.

Temporal response is asymmetric due to large outgassing of CO<sub>2</sub> produced by global warming.

"This modeling approach is proposed as an important tool in distinguishing between proposed mechanisms for control of glacial cycles."

#### **Hogg Conclusions**

Temperature ranges exceeds that due to insolation alone.

Temporal response is asymmetric due to large outgassing of CO<sub>2</sub> produced by global warming.

"This modeling approach is proposed as an important tool in distinguishing between proposed mechanisms for control of glacial cycles."

#### **Other Carbon Models**

Budyko-Sellers-Widiasih variables: temperature and ice line

#### Hogg

variables: temperature and atmospheric CO<sub>2</sub>

Maasch and Saltzmann

variables: ice volume, atmospheric CO<sub>2</sub>, and deep water salinity/temp

Boulder "Awesome" Model

variables: temperature, ice line, and atmospheric  $CO_2$ .

#### Maasch and Saltzmann

Maasch and Saltzmann

variables: ice volume, atmospheric CO<sub>2</sub>, and deep water salinity/temp

$$\dot{I}' = -a_0 I' - a_1 \mu' - a_2 M(t)$$
$$\dot{\mu}' = b_1 \mu' - (b_2 - b_3 N') N' - b_4 N'^2 \mu'$$
$$\dot{N}' = -c_0 I' - c_2 N'$$

I = Global Ice Mass

N = North Atlantic Deep Water NADW

M = Atmospheric CO<sub>2</sub>

Primes denote departures from an equilbrium state controlled by possible ultraslow variation of the solar constant and the tectonic state of the Earth.

 $a_{0,1,2} b_{1,2,3,4}$  and  $c_{0,2} > 0$ M(t) = Milankovitch Forcing (65° N normalized to 0 mean and unit variance) Maasch and Saltzmann



#### Budyko-Sellers-Widiasih Model

$$\frac{\partial T}{\partial t} = \frac{k}{R}(Q \quad s(y) * (1 - \alpha) - (A + BT) + H(\overline{T} - T(y))$$

Carlo Carlo Carlo

$$\frac{d\eta}{dt} = k\epsilon(T(\eta) - T_c)$$

$$\frac{\partial T}{\partial t} = \frac{k}{R}(Q * s(y) * (1 - \alpha) - (A + BT) + H(\overline{T} - T))$$

$$\frac{d\eta}{dt} = k\epsilon(T - T_c)$$



$$\frac{\partial T}{\partial t} = \frac{k}{R}(Q * s(y) * (1 - \alpha) - (A + BT) + H(\overline{T} - T))$$

$$\frac{d\eta}{dt} = k\epsilon(T - T_c)$$



$$\frac{\partial T}{\partial t} = \frac{k}{R}(Q * s(y) * (1 - \alpha) - (A + BT) + H(\overline{T} - T))$$

$$\frac{d\eta}{dt} = k\epsilon(T - T_c)$$



$$\frac{\partial T}{\partial t} = \frac{k}{R}(Q * s(y) * (1 - \alpha) - (A + BT) + H(\overline{T} - T))$$

$$\frac{d\eta}{dt} = k\epsilon(T - T_c)$$



$$\frac{\partial T}{\partial t} = \frac{k}{R}(Q * s(y) * (1 - \alpha) - (A + BT) + H(\overline{T} - T))$$

$$\frac{d\eta}{dt} = k\epsilon(T - T_c)$$





# Thanks!

<u>Special Thanks to:</u> Dick McGehee The Math and Climate Research Network (MCRN)

And of course, J.K.Rowling and Hermione Granger