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Abstract. With applications towards the constructions of over-
convergent cusp forms and Galois representations in mind, we con-
struct projective normal flat p-integral models of various algebraic
compactifications of PEL-type Shimura varieties and Kuga fam-
ilies, allowing both ramification and levels at p, such that, along
the ordinary loci where certain canonical subgroups can be defined,
the partial compactifications behave almost exactly as in the good
reduction case.
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Notation and Conventions

We shall follow [62, Notation and Conventions] unless otherwise
specified. By symplectic isomorphisms between modules with sym-
plectic pairings, we always mean isomorphisms between the modules
matching the pairings up to an invertible scalar multiple. (These are
often called symplectic similitudes, but our understanding is that the
codomains of pairings are modules rather than rings, which ought to be
matched as well.) Sheaves on schemes, algebraic spaces, or (Deligne–
Mumford) algebraic stacks are étale sheaves by default, although for
coherent sheaves on schemes it would suffice to work in the Zariski
topology.
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CHAPTER 0

Introduction

0.1. Background and Aim

In [62] (which is a published revision of [57]), based on the theories
developed in [82] and [28], we studied the theory of degeneration of
abelian varieties with PEL structures, and applied this theory to the
construction of toroidal and minimal compactifications of moduli prob-
lems defining integral models of PEL-type Shimura varieties, under the
assumption that each residue characteristic p is good in the sense that it
is unramified in all linear algebraic data involved in the definition of the
moduli problem of abelian varieties with PEL structures, and under the
assumption that the level structures are defined by open compact sub-
groups of the adelic points of the associated reductive groups that are
hyperspecial (maximal) at p. In [61], we also constructed toroidal com-
pactifications of PEL-type Kuga families under the same assumptions
on the residue characteristics, by realizing such toroidal compactifica-
tions in the toroidal boundary of larger PEL-type Shimura varieties.
While these have been carried out for all PEL-type Shimura varieties,
for practical reasons it is also natural to consider integral models when
p is ramified in the linear algebraic data and when the level structures
are defined by smaller open compact subgroups. Since the theory of
degeneration developed in [62] works as long as the generic character-
istic is good (and as long as the base of degenerations are noetherian
normal), there is, a priori, no reason that we cannot consider compact-
ifications with bad residue characteristics.

However, without the assumption that p is good and that the level
structures are defined by an open compact subgroup hyperspecial at p,
it is not clear what integral models really mean in general (although
reasonably natural definitions can still be made in many special cases).
The answer may depend on the applications. For applications involv-
ing counting points over finite fields, it seems necessary to have integral
models with a specific kind of moduli interpretations, but usually even
the flatness of such models are difficult to prove. For studying inter-
sections of cycles, it is desirable to have models that are regular and

xi



xii 0. INTRODUCTION

flat, and we might consider the closures of the generic fibers in mod-
uli problems as a general source of flat models, but the regularity of
such models can be beyond reach already at very low levels. In both
cases, it is difficult to say much about the integral models of Shimura
varieties themselves, let alone their compactifications. On the other
hand, for studying modular forms using coherent sheaves, there is al-
ready a rich theory using mainly the ordinary loci , or more precisely
the ordinary loci where (multiplicative-type) canonical subgroups can be
defined , when p is good in the above sense, and when the levels are
certain (analogues of) “Γ1(pr) levels”. The aim of this book is to show
that, without insisting on the (perhaps still desirable) moduli interpre-
tations, such a theory can be generalized without the assumption that
p is good, after adding sufficiently many p-power roots of unity to the
base rings.

For such ordinary loci, we will construct partial toroidal and mini-
mal compactifications which admit descriptions analogous to (and com-
patible with) their analogues in characteristic zero (and in mixed char-
acteristics in the hyperspecial smooth case in [62]). We will also con-
struct partial toroidal compactifications of Kuga families over such par-
tial toroidal and minimal compactifications. Our construction works for
all PEL-type Shimura varieties that can possibly admit ordinary loci.
We allow p to be ramified (i.e., p is not good in the sense described
above), and we allow (analogues of) arbitrarily high “Γ1(pr) levels”.
We need the ordinary loci to be defined, but we do not assume that
they are nonempty (although the theory is uninteresting otherwise).
(In some special cases, we can easily show the nonemptiness of the or-
dinary loci using the partial toroidal compactifications we construct.
See Section 6.3.3.) Unsurprisingly, we started the construction in this
work because of some interesting cases in which the nonemptiness of
ordinary loci is clear. (See, for example, [39].)

As in characteristic zero and in the good reduction case, we will
not need to answer difficult questions about p-divisible groups or p-adic
Hodge theory in such a theory. As we shall see below, the difficulty
in the constructions lies mainly in the sheer number of objects, mor-
phisms, combinatorial data, and small subtle steps involved. It is not
about proving some well-known conjecture that can be readily stated—
rather, we want to know as much as possible about the constructions,
and (at least for some applications we know) the theorems are useful
only when they are detailed enough. It is fair to say that this is just
another long exercise like [62]. Assuming that this is still interesting,
the marathon begins.
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0.2. Overview

Let us briefly describe the various objects to be constructed. (We
say briefly but it still spans over many pages.)

Algebraic Constructions in Characteristic Zero. Starting
with an integral PEL datum (O, ?, L, 〈 · , · 〉, h0), as in [62], we can
construct the following canonical objects (in characteristic zero):

(1) A group scheme G over Spec(Z), which is smooth and reduc-
tive over Spec(Z(p)) when p is a good prime.

(2) A number field F0, which is defined as a subfield of C, called
the reflex field .

(3) A moduli problem MH over S0 = Spec(F0) for each open com-

pact subgroup H ⊂ G(Ẑ), parameterizing abelian schemes
with PEL structures defined by the integral PEL datum, which
is an algebraic stack separated, smooth, and of finite type over
S0 := Spec(F0). When H is neat (see [89, 0.6] or [62, Def.
1.4.1.8]), MH is quasi-projective over Spec(F0). (In particular,
MH is a scheme.)

(4) A finite étale surjection [g] : MH′ → MH over S0 for all g ∈
G(A∞) and open compact subgroupsH andH′ such thatH′ ⊂
gHg−1. This can be interpreted as the Hecke action of G(A∞)
on the collection {MH}H.

(5) A toroidal compactification Mtor
H,Σ of MH over S0 for each com-

patible choice Σ of admissible smooth rational polyhedral cone
decomposition data for MH, which is a collection of combina-
torial data which can be defined using only the integral PEL
datum. For technical reasons, we assume that Σ is smooth
(even in characteristic zero) and satisfies some mild conditions,
in which case we can show that Mtor

H,Σ is a proper smooth alge-
braic stack, and that the boundary is a simple normal cross-
ings divisor. If H is neat, then Mtor

H,Σ is an algebraic space.
The toroidal compactification admits a stratification (defined
in terms of G and Σ), and the structure along its boundary can
be described in detail. These are useful for defining and study-
ing modular forms using coherent sheaf cohomology. (See [60]
for a survey on this topic.)

(6) A proper log étale surjection [g]tor : Mtor
H′,Σ′ → Mtor

H,Σ over S0

extending [g], for all g ∈ G(A∞) and open compact subgroups
H and H′ such that H′ ⊂ gHg−1, and for each Σ′ that is a
g-refinement of Σ in a suitable sense. This can be interpreted
as the Hecke action of G(A∞) on the collection {Mtor

H,Σ}H,Σ.
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When g = 1 and H′ = H, this means we have proper log étale
surjections [1]tor : Mtor

H,Σ′ → Mtor
H,Σ when Σ′ is a refinement of Σ.

(7) A minimal compactification Mmin
H over S0 of the coarse mod-

uli [MH] of MH for each open compact subgroup H ⊂ G(Ẑ),
which is a normal scheme projective over S0, which admits a
canonical (proper and surjective) morphism from the toroidal
compactification Mtor

H,Σ for each Σ. The stratification of any
such toroidal compactification induces a stratification of the
minimal compactification, which is independent of the choice
of Σ. The strata in such a stratification are called cusps .

(8) A finite surjection [g]min : Mmin
H′ → Mmin

H over S0 extending the
finite surjection [[g]] : [MH′ ]→ [MH] between coarse moduli for
all g ∈ G(A∞) and open compact subgroups H and H′ such
that H′ ⊂ gHg−1. This can be interpreted as the Hecke action
of G(A∞) on the collection {Mmin

H }H.
(9) If H is neat and if Σ is (smooth and) projective, then we show

that Mtor
H,Σ is (smooth and) projective over S0 by showing that

it is the normalization of the blowup of some coherent ideal
sheaf JH,d0pol on Mmin

H , defined by some integer d0 ≥ 1 and
some compatible collection pol of polarization functions for Σ.
In particular, Mtor

H,Σ is a scheme in this case.
(10) A collection of Kuga families over MH, which is a collection

of abelian schemes including the self-fiber products of the tau-
tological (i.e., universal) abelian scheme as special members,
together with toroidal compactifications projective over S0 and
satisfying a long list of desirable compatibilities, including in
particular the existence (up to refinements of cone decom-
positions) of compatible proper log smooth morphisms from
toroidal compactifications of PEL-type Kuga families to Mtor

H,Σ.
We can enlarge the collection and include objects which are
torsors under PEL-type Kuga families over MH, which we call
generalized Kuga families over MH. They share the same nice
properties enjoyed by PEL-type Kuga families.

(11) A collection of automorphic bundles over MH, and their canon-
ical and subcanonical extensions over Mtor

H,Σ. The (algebraic)
construction of such canonical and subcanonical extensions
uses the toroidal compactifications of PEL-type Kuga fami-
lies.

The above constructions use only the theory of degeneration data and
standard techniques in algebraic geometry. We call them the algebraic
constructions over S0.
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Analytic Constructions and Comparison with Them. There
is also the analytic constructions of analogous objects over S0, which
precedes the algebraic constructions in history. (These are algebraic
objects constructed using transcendental arguments crucially in their
constructions. Such analytic constructions use GAGA [95], but when
we compare them to the algebraic constructions, we are not talking
about a problem of GAGA anymore.)

In [59] we showed that, for suitable H and Σ, these analytically
constructed objects admit canonical open and closed immersions to the
algebraically constructed objects above, respecting all stratifications
and descriptions of local structures. (See also [63] for the relation
between rational boundary components and cusp labels.)

The Case When p is a Good Prime. As explained in [62], when
p is a good prime for the (O, ?, L, 〈 · , · 〉, h0), and when H is of the form

H = HpG(Zp) ⊂ G(Ẑp)×G(Zp) = G(Ẑ), (note that in this case G(Zp)
is a hyperspecial maximal open compact subgroup of G(Qp),) the above
algebraically constructed objects admit analogues over Spec(OF0,(p)),
which we denote by MHp , Mtor

Hp,Σp , Mmin
Hp , etc. (Such notation makes

sense because in the construction of these objects we only useHp and an
analogue Σp of Σ involving only adelic objects away from p.) Then there
are canonical morphisms MH → MHp , M

tor
H,Σ → Mtor

Hp,Σp , M
min
H → Mmin

Hp ,
etc, compatible with each other, and respecting all stratifications and
descriptions of local structures. (But we will not assume that p is a
good prime for the (O, ?, L, 〈 · , · 〉, h0) in what follows.)

Total Models in Mixed Characteristics. Assuming no longer
that p is good, we will construct the following objects (in mixed char-
acteristics (0, p)):

(1) A normal algebraic stack ~MH for each open compact subgroup

H ⊂ G(Ẑ), flat over ~S0 = Spec(OF0,(p)) for each open compact
subgroup H as above, which admits a canonical morphism

MH → ~MH. The coarse moduli space [~MH] of ~MH is a nor-

mal scheme quasi-projective and flat over ~S0 = Spec(OF0,(p)),

which admits a canonical morphism [MH]→ [~MH].

(2) A finite surjection ~[g] : ~MH′ → ~MH over ~S0 for each g =
(g0, gp) ∈ G(A∞,p)×G(Zp) ⊂ G(A∞) and two open compact
subgroups H and H′ such that H′ ⊂ gHg−1. This can be
interpreted as the Hecke action of G(A∞,p)×G(Zp) on the

collection {~MH}H.
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(3) A normal scheme ~Mmin
H projective and flat over ~S0 for each open

compact subgroup H ⊂ G(Ẑ), containing the coarse moduli

[~MH] of ~MH as an open dense subscheme.

(4) A finite surjection ~[g]
min

: ~Mmin
H′ → ~Mmin

H over ~S0 extending the

finite surjection [ ~[g]] : [~MH′ ]→ [~MH] between coarse moduli for
each g ∈ G(A∞,p)×G(Zp) and two open compact subgroupsH
and H′ such that H′ ⊂ gHg−1. This can be interpreted as the

Hecke action of G(A∞,p)×G(Zp) on the collection {~Mmin
H }H.

(5) A normal scheme ~Mtor
H,d0pol

projective and flat over ~S0, which
is defined when H is neat, when Σ is (smooth and) projective
with a compatible collection pol of polarization functions, and
when d0 ≥ 1 is sufficiently large, which is the normalization of

the blowup of some coherent ideal sheaf ~JH,d0pol on ~Mmin
H , such

that the subscheme of ~Mmin
H defined by ~JH,d0pol is the schematic

closure of the subscheme of Mmin
H defined by the JH,d0pol above.

(6) A collection of automorphic bundles over ~MH, and their canon-

ical and subcanonical extensions over ~Mtor
H,d0pol

when ~Mtor
H,d0pol

is defined.
(7) For each integer i ≥ 0, we define S0,i := Spec(F0[ζpi ])

and ~S0,i := Spec(OF0,(p)[ζpi ]), and define ~MH,i (resp. ~Mmin
H,i ,

resp. ~Mtor
H,d0pol,i

) to be the normalization of ~MH×
~S0

~S0,i (resp.

~Mmin
H ×

~S0

~S0,i, resp. ~Mtor
H,d0pol

×
~S0

~S0,i).

These constructions require noncanonical auxiliary choices. A priori, it
is unclear whether the objects thus constructed are independent of the
choices, although it can be proved that they are indeed so. The quasi-
projectivity of certain objects that will be canonically constructed be-

low, such as ~Mord,min
H over ~S0,rH = Spec(OF0,(p)[ζprH ]), is proved using

the projectivity of such a noncanonically constructed ~Mmin
H over ~S0. (We

do not know any other method for proving such quasi-projectivity.)
Such quasi-projectivity over mixed characteristics bases is important
for many practical reasons. In particular, it allows us to talk about con-
gruences (between algebro-geometrically defined automorphic forms)
using its affine subsets.

The Ordinary Loci in Mixed Characteristics. This is the
main theme of this work. With a suitable choice of a maximal to-
tally isotropic filtration D on L⊗

Z
Zp, we will construct the following

canonical objects (in mixed characteristics (0, p)):
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(1) A subgroup scheme Pord
D of G⊗

Z
Zp stabilizing the filtration D.

(We do not say that Pord
D is parabolic because G⊗

Z
Zp is not

smooth in general. But when G⊗
Z
Qp is connected, which is

the case when O⊗
Z
Q involves no factor of type D in the sense

of [62, Def. 1.2.1.15], Pord
D ⊗

Zp
Qp is indeed a parabolic subgroup

scheme of the reductive group scheme G⊗
Z
Qp in the usual

sense.)

(2) A collection of open compact subgroups H ⊂ G(Ẑ) of the form

H = HpHp ⊂ G(Ẑp)×G(Zp) = G(Ẑ), such that Hp satisfies
Ubal
p,1 (pr) ⊂ Hp ⊂ Up,0(pr) for some integer r ≥ 0. Here Ubal

p,1 (pr)
and Up,0(pr) are open compact subgroups of G(Zp) defining
the (analogues of) “balanced Γ1(pr)” and “Γ0(pr)” levels at p.

(3) A naive moduli problem
...
M

ord

H over Spec(Z(p)), parameterizing
abelian schemes with PEL structures away from p, and with
certain ordinary level structures at p, but without the deter-
minantal condition for Lie algebras in the definition of MH.
(Since p is not assumed to be a good prime, such a condition

is not useful.) This
...
M

ord

H is an algebraic stack separated and of
finite over Spec(Z(p)), with completions of strict local rings the
same as those of a group scheme of multiplicative type of finite
type over Spec(Z(p)). (Hence, it is not smooth in general, but
the singularity is mild.)

(4) An integer rH determined by the integral PEL datum
(O, ?, L, 〈 · , · 〉, h0), the data D. This integer rH stays as a
constant rD and does not increase with r if Up,1(pr) ⊂ Hp,
where Up,1(pr) is an open compact subgroup of G(Zp) defining
the (analogue of) “Γ1(pr)” levels at p. But it increases with r
(and is equal to max(rD, r)) if, for example, Hp = Ubal

p,1 (pr).

(5) An algebraic stack Mord
H separated, smooth, and of finite type

over S0,rH := Spec(F0[ζprH ]) parameterizing certain ordinary
level structures in characteristic zero, which is canonically iso-
morphic to MH×

S0

S0,rH , but with the understanding that the

usual level structures are turned into the ordinary level struc-
tures it parameterizes (with the help of roots of unity in S0,rH).

The universal property of
...
M

ord

H induces a canonical quasi-finite

morphism Mord
H →

...
M

ord

H .
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(6) An algebraic stack ~Mord
H separated, smooth, and of finite type

over ~S0,rH = Spec(OF0,(p)[ζprH ]), which admits canonical finite

morphism to
...
M

ord

H extending the quasi-finite morphism Mord
H →...

M
ord

H .

(7) A quasi-finite flat surjection ~[g]
ord

: ~Mord
H′ → ~Mord

H over ~S0,rH

for each g = (g0, gp) ∈ G(A∞,p)×Pord
D (Qp) ⊂ G(A∞) and two

open compact subgroups H and H′ such that H′ ⊂ gHg−1,
satisfying some reasonable additional conditions. This can
be interpreted as the Hecke action of a semi-subgroup of

G(A∞,p)×Pord
D (Qp) on the collection {~Mord

H }H. (And there

are conditions for the morphisms ~[g]
ord

to be finite or étale.)

(8) A partial toroidal compactification ~Mord,tor
H,Σord of ~Mord

H over ~S0,rH

for each compatible choice Σord of admissible smooth rational

polyhedral cone decomposition data for ~Mord
H , which is a col-

lection of combinatorial data defined in a way similar to the
case of Σ above. In fact, each Σ as above induces a Σord. This
~Mord,tor
H,Σord is an algebraic stack separated, smooth, and of finite

type over ~S0,rH , and the boundary is a simple normal crossings

divisor. If Hp is neat, then ~Mord,tor
H,Σord is an algebraic space. The

partial toroidal compactification admits a stratification (de-
fined in terms of G, D, and Σord), and the structure along its
boundary can be described in detail; both are as in the case
of Mtor

H,Σ.

(9) A surjection ~[g]
ord,tor

: ~Mord,tor
H′,Σord,′ → ~Mord,tor

H,Σord over ~S0,rH extend-

ing ~[g]
ord

for each g as above such that ~[g]
ord

is defined, and
for each Σord,′ that is a g-refinement of Σord in a suitable sense.
This can be interpreted as the Hecke action of the same semi-
subgroup of G(A∞,p)×Pord

D (Qp) as above on the collection

{~Mord,tor
H,Σord}H,Σord . (And there are conditions for ~[g]

ord,min
to be

proper, finite, flat, log étale, or étale.)

(10) A partial minimal compactification ~Mord,min
H over ~S0,rH of the

coarse moduli [~Mord
H ] of ~Mord

H , which is a normal scheme quasi-

projective and flat over ~S0,rH , which admits a canonical proper
(and surjective) morphism from the partial toroidal compact-

ification ~Mord,tor
H,Σord for each Σord. The stratification of any such

partial toroidal compactification induces a stratification of the
partial minimal compactification, which is independent of the
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choice of Σord. The strata in such a stratification are called
ordinary cusps .

(11) A quasi-finite surjection ~[g]
ord,min

: ~Mord,min
H′ → ~Mord,min

H over

~S0,rH extending the quasi-finite surjection [ ~[g]
ord

] : [~Mord
H′ ] →

[~Mord
H ] between coarse moduli for each g as above such that

~[g]
ord

is defined. This can be interpreted as the Hecke action of
the same semi-subgroup of G(A∞,p)×Pord

D (Qp) as above on the

collection {~Mord,min
H }H. (And there are conditions for ~[g]

ord,min

to be finite.)
(12) If Hp is neat and if Σord is (smooth and) projective, then we

show that ~Mord,tor
H,Σord is (smooth and) quasi-projective over ~S0,rH

by showing that it is the normalization of the blowup of some

coherent ideal sheaf ~JH,d0pol
ord on ~Mord,min

H , defined by some

integer d0 ≥ 1 and some compatible collection polord of polar-

ization functions for Σord. In particular, ~Mord,tor
H,Σord is a quasi-

projective scheme in this case.

(13) A collection of ordinary Kuga families over ~Mord
H , which is a

collection of abelian schemes containing the self-fiber prod-
ucts of the tautological abelian scheme, together with par-

tial toroidal compactifications quasi-projective over ~S0,rH and
satisfying a long list of desirable compatibilities, including in
particular the existence (up to refinements of cone decomposi-
tions) of compatible proper log smooth morphisms from partial
toroidal compactifications of ordinary PEL-type Kuga families

to ~Mord,tor
H,Σord . We can enlarge the collection and include objects

which are torsors under Kuga families over ~Mord
H , which we

call generalized ordinary Kuga families over ~Mord
H . They share

the same nice properties enjoyed by ordinary PEL-type Kuga
families.

(14) A collection of automorphic bundles over ~Mord
H , and their

canonical and subcanonical extensions over ~Mord,tor
H,Σord . The

(algebraic) construction of such canonical and subcanonical
extensions uses the partial toroidal compactifications of

ordinary PEL-type Kuga families (over ~Mord
H ). (The class of

automorphic bundles we can construct over ~Mord
H is more

restrictive than that over MH.)
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These objects are compatible with the algebraically constructed objects
in characteristic zero, such as MH, and with the total models in mixed

characteristics, such as ~MH.

0.3. Outline of the Constructions

The objects above are not constructed in the same order as they
are listed. The logical steps we need are as follows:

Algebraic Constructions in Characteristic Zero. We start
with all algebraically constructed objects MH, Mtor

H,Σ, Mmin
H , etc over

S0 = Spec(F0). The algebraic construction of Mtor
H,Σ by the theory of

degeneration endows it with a semi-abelian scheme with PEL struc-
tures, which is universal among semi-abelian degenerations of abelian
varieties with PEL structures of a particular degeneration pattern given
by Σ. We call such semi-abelian schemes degenerating families .

These are done in [62]. We review them in Chapter 1, because it
might be hard to get used to the fact that even the characteristic zero
theory can be done so noncanonically with various choices. (We still
consider the theory canonical because it hardly favors any particular
choices.)

Auxiliary Choices of Good Reduction Models. We
make a (noncanonical) auxiliary choice of an integral PEL datum
(Oaux, ?aux, Laux, 〈 · , · 〉aux, h0,aux) for which p is a good prime.
This allows us to define a group scheme Gaux over Spec(Z) such
that Gaux(Zp) is a hyperspecial maximal open compact subgroup
of Gaux(Qp), and to construct for each open compact subgroup

Hp
aux ⊂ Gaux(Ẑp) the objects MHpaux

, Mtor
Hpaux,Σ

p
aux

, Mmin
Hpaux

, etc over

~S0,aux = Spec(OF0,aux,(p)). (Here the superscript “p” means “away from
p”.) The point is that MHpaux

is a moduli problem, Mtor
Hpaux,Σp

carries a

tautological degenerating family, and Mmin
Hpaux

is projective over ~S0,aux.
The auxiliary choices are made in Section 2.1. The constructions

of the geometric objects are done in [62]. We do not explicitly review
them because they are only auxiliary in nature, and because their be-
haviors are almost identical to those of MH, Mtor

H,Σ, Mmin
H above. We

will simply cite [62], with the “2” there filled with “p”, and with each
object there attached with a subscript “aux” and a superscript “p”.

The auxiliary objects are chosen so that there is a homomorphism
G → Gaux of group schemes over Z, and so that we have morphisms
MH → MHpaux

, Mmin
H → Mmin

Hpaux
, Mtor

H,Σ → Mtor
Hpaux,Σp

, etc compatible with
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each other when H is of the form H = HpHp ⊂ G(Ẑp)×G(Zp) = G(Ẑ)

and is mapped into Hp
auxG(Zp) ⊂ Gaux(Ẑ).

Total Models in Mixed Characteristics. We define ~MH (resp.
~Mmin
H ) to be the normalization of MGaux(Ẑp) (resp. Mmin

Gaux(Ẑp)
) in MH (resp.

Mmin
H ). Then we define ~Mtor

H,d0pol
as described above as a normalization

of a suitable blowup of ~Mmin
H (depending on the choices of pol and

d0). These are algebraic stacks or schemes over ~S0 = Spec(OF0,(p)), de-
pending on the choice of (Oaux, ?aux, Laux, 〈 · , · 〉aux, h0,aux). The Hecke
actions are induced by the universal property of normalizations.

These are done in Sections 2.2.1, 2.2.2, and 2.2.3. These total
models should be considered as auxiliary in nature. Although they can
be shown to be canonical by an indirect argument, based on certain
techniques developed in [58], their constructions are noncanonical, and
we cannot say much about their local structures. We will have to
construct the ordinary loci separately, map them to these total models,
and then show that suitable normalizations of these total models (after
ramified base changes) have smooth open subschemes given by the
images of the ordinary loci.

Nevertheless, when p is a good prime, the schemes ~MH and ~Mmin
H

can be canonically constructed (without the auxiliary objects). This is
explained in Section 2.2.4. Such special cases are important because p
is a good prime for (Oaux, ?aux, Laux, 〈 · , · 〉aux, h0,aux). In what follows,
we can often reduce the proof of important facts to the case of the
auxiliary models, and prove them by more direct methods.

Construction of ~Mord
H . We construct ~Mord

H over
~S0,rH = Spec(OF0,(p)[ζprH ]) as follows:

(1) We investigate, roughly speaking, what happens when an
abelian scheme with PEL structures over a scheme over MH
extends to an ordinary abelian scheme over a scheme over
~MH. We write down the necessary linear algebraic data for
this to happen, and turn them into formal definitions. This
gives, in particular, a filtration D on L⊗

Z
Zp satisfying certain

properties. These are done in Sections 3.2.1 and 3.2.2.
(2) We develop the notion of ordinary level structures at p defined

by D, accompanied by usual level structures away from p. (We
do not assume that the polarization degree is prime to p.) This
is done in Section 3.3.
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(3) We define
...
M

ord

H over Spec(Z(p)) as a naive moduli problem for
abelian schemes with polarizations, endomorphism structures,
usual level structures away from p, and with ordinary level

structures at p defined by D. The local structures of
...
M

ord

H can
be studied in two ways. At points of characteristic zero, it
is the same as in the case of MH. At points of characteristic
p, since all abelian schemes involved are ordinary, we use the
Serre–Tate deformation theory explained in [47]. This is done
in Section 3.4.1.

(4) We define Mord
H over S0,rH = Spec(F0[ζprH ]) by turning the

level structures at p parameterized by the moduli problem MH
into ordinary level structures parameterized by

...
M

ord

H . Then we

define ~Mord
H over ~S0,rH = Spec(OF0,(p)[ζprH ]) to be the normal-

ization of
...
M

ord

H in Mord
H . The point of making the (ramified)

base change to ~S0,rH is that the normalization ~Mord
H is smooth

over ~S0,rH and regular. These are done in Section 3.4.2.

When p is a good prime, in which case MHp is defined over ~S0 =

Spec(OF0,(p)), we show that ~Mord
H can be defined by taking the schematic

closure of Mord
H (the latter being just a base change of MH) in a moduli

problem schematic and quasi-finite over MHp . This is done in Section
3.4.5.

Then one can show the quasi-projectivity of [~Mord
H ] over ~S0,rH as

follows:

(1) Using an auxiliary choice of the filtration Daux at p for the

(Oaux, ?aux, Laux, 〈 · , · 〉aux, h0,aux) above, we define ~Mord
Haux

as

above, together with a quasi-finite morphism ~Mord
H → ~Mord

Haux
.

(2) Since p is a good prime for (Oaux, ?aux, Laux, 〈 · , · 〉aux, h0,aux)

by assumption, we obtain a quasi-finite morphism ~Mord
Haux

→
~Mord

G(Ẑp)
. (See above.)

(3) Combining the above, we obtain a quasi-finite morphism
~Mord
H → ~Mord

G(Ẑp)
, which induces a quasi-finite morphism

[~Mord
H ] → [~Mord

G(Ẑp)
] between noetherian normal schemes.

Then Zariski’s Main Theorem implies that we have an open

immersion [~Mord
H ] ↪→ [~MH,rH ], which shows that [~Mord

H ] is

quasi-projective over ~S0,rH .

These are done in Section 3.4.6.
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Construction of ~Mord,tor
H,Σord. We construct ~Mord,tor

H,Σord over ~S0,rH as fol-

lows:

(1) Following [28] and [62], we develop a theory of degeneration
for abelian varieties with ordinary level structures. This will
be used in the construction of toroidal boundary charts, and
in showing that what we obtained satisfy certain universal
property among all degenerations over normal schemes. (This
will, in particular, provide us with a valuative criterion over
complete discrete valuation rings.) This is done in Section 4.1.

(2) Using the theory of degeneration, we can construct

naive toroidal boundary charts over ~S0 parameterizing
the degeneration data for the degeneration of objects

parameterized by
...
M

ord

H . These naive toroidal boundary charts
are similar to their analogues constructed algebraically over
S0 (as in [62]). We take the normalization of the naive
objects in the base changes of the characteristic zero objects

to S0,rH (as in the construction of ~Mord
H above). We can show

that these normalizations are smooth over ~S0,rH and regular.
This is done in Section 4.2.

(3) Then we show that suitable algebraizations of the formal com-

pletions of these normalizations can be glued to ~Mord
H in the

étale topology. This gives us the desired ~Mord,tor
H,Σord . This is done

in Sections 5.1 and 5.2.

The outline here is simple, but of course these constructions are central
to the whole work, without which other technical considerations make
no sense. (Otherwise we could have also included the nonordinary loci
in our study.) Fortunately, since the theory in [62] is developed in
sufficient generality, there is no surprising difficulty in this part of the
theory.

Construction of ~Mord,min
H . We construct ~Mord,min

H over ~S0,rH as fol-
lows:

(1) We start with a partial toroidal compactification ~Mord,tor
H,Σord car-

rying a semi-abelian scheme G, and we define the so-called
Hodge invertible sheaf

ω~Mord,tor

H,Σord
:= ∧top Lie∨

G/~Mord,tor

H,Σord

∼= ∧top e∗GΩ1

G/~Mord,tor

H,Σord

as usual. By imitating the construction of Mmin
H , we define

~Mord,min
H := Proj

(
⊕
k≥0

Γ(~Mord,tor
H,Σord , ω

⊗k
~Mord,tor

H,Σord

)
)
.
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However, since ~Mord,tor
H,Σord is not proper, we cannot assert that

~Mord,min
H is projective over ~S0,rH . The question is whether we

can show that it is quasi-projective over ~S0,rH , and whether we

can show that the canonical morphism ~Mord,tor
H,Σord → ~Mord,min

H is

proper. (We will outline the steps below.)
(2) Once we know this last properness, the familiar arguments

for studying the local structures of ~Mord,min
H by considering the

Stein factorization of ~Mord,tor
H,Σord → ~Mord,min

H (which coincide with

itself) work as in [62].

These are done in Sections 6.1 and 6.2.1.
The proof for the properness of ~Mord,tor

H,Σord → ~Mord,min
H and the quasi-

projectivity of ~Mord,min
H over ~S0,rH is somewhat indirect. Therefore, we

would like to summarize the steps here too:

(1) We show that the statements can be proved by replacing H
with a higher level that is equally deep at p, and by replacing
Σord with a refinement.

(2) Take Haux to be as deep as H. Using the assumption that p is
good for (Oaux, ?aux, Laux, 〈 · , · 〉aux, h0,aux), we explain that, for

Σord
aux induced by some Σp

aux, we can build ~Mord,tor
Haux,Σord

aux
by taking

the schematic closure of Mord
Haux

in a moduli problem schematic
and quasi-finite over Mtor

Hpaux,Σ
p
aux

.

(3) Take H′aux to be Hp
auxGaux(Zp), and take the Σord,′

aux

also induced by Σp
aux. Then, the quasi-finite morphism

~Mord,tor
Haux,Σord

aux
→ Mtor

Hpaux,Σ
p
aux

factors through an open immersion

~Mord,tor

H′aux,Σ
ord,′
aux

↪→ Mtor
Hpaux,Σ

p
aux

, and there is an induced open

immersion ~Mord,min
H′aux

↪→ Mmin
Hpaux

. This shows that ~Mord,min
H′aux

is

quasi-projective over ~S0,rHaux
.

(4) We can use the theory of degeneration to show that ~Mord,tor

H′aux,Σ
ord,′
aux

is the precise preimage of ~Mord,min
H′aux

under the proper morphism

Mtor
Hpaux,Σ

p
aux
→ Mmin

Hpaux
. This shows what ~Mord,tor

H′aux,Σ
ord,′
aux
→ ~Mord,min

H′aux

is proper and surjective.
(5) By studying the fibers of the quasi-finite morphism

~Mord,tor
Haux,Σord

aux
→ ~Mord,tor

H′aux,Σ
ord,′
aux

, we also obtain the properness

of the morphism ~Mord,tor
Haux,Σord

aux
→ ~Mord,min

Haux
. The usual Stein

factorization argument then shows that ~Mord,min
Haux

is embedded
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as an open subscheme in ~Mmin
Haux,rH

. This shows that ~Mord,min
Haux

is quasi-projective over ~S0,rH .
(6) Under the assumption that H and Haux are equally deep at

p, by refining Σord if necessary (so that it is compatible with

Σord
aux), we obtain a proper morphism ~Mord,tor

H,Σord → ~Mord,tor
Haux,Σord

aux
.

Then we can finish the proof by the usual Stein factorization
argument.

These are done in Sections 5.2.3 and 6.1.1. (When we show such
quasi-projectivity, we need the noncanonically constructed total models
above.)

If Hp is neat and if Σord is (smooth and) projective, then we can

construct ~Mord,tor
H,Σord → ~Mord,min

H as the normalization of a blow-up, as

explained above, which implies that ~Mord,tor
H,Σord is quasi-projective over

~S0,rH in this case. This is done in Section 6.2.3.

Other Constructions. As in [61], the partial toroidal compacti-
fications of ordinary Kuga families (and their generalizations) are re-
alized as closures of toroidal boundary strata in the partial toroidal
boundary of ordinary loci for a larger MH. This is done in Chapter
7. (See also Sections 1.3.2, 5.2.4, and 7.1.2, where we collect geometric
objects appearing along the toroidal boundaries of MH and general-
ized Kuga families, and interpret them as universal spaces for certain
degeneration data.)

The constructions of automorphic bundles and their canonical and
subcanonical extensions in mixed characteristics are delicate because
the group is ramified at p, but some ad hoc constructions are still pos-
sible. They are carried out in Chapter 8 (extending the more canonical
theory in characteristic zero in Section 1.4).

The constructions of Hecke actions are scattered in Sections 2.2.3,
3.4.4, 5.2.2, 7.2.7, 8.1.4, and 8.3.6, using various universal properties (of
moduli problems, normalizations, universal spaces for degenerations,
etc). They are all based on the same idea of modifying the tautological
abelian or semi-abelian schemes by quasi-isogenies (and by forgetting
part of the data on the level structures) which we call Hecke twists .

On the p-adic completions of the total models of integral models
we constructed, we also compare the ordinary loci we use (which are
the loci where canonical subgroups can be defined and rigidified by
linear algebraic data) and the ordinary loci defined by the subscheme
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whose geometric points define ordinary abelian varieties on the auxil-
iary model. (In particular, we provide a simple criterion which guaran-
tees that our theory is not empty in the applications we have in mind.)
This is done in Section 6.3.

0.4. What is Known, What is New, and What Can Be
Studied Next

Let us relate our techniques of construction to what is known in
the literature.

Ordinary Level Structures and “Balanced Γ1(pr) Levels”.
The consideration of the ordinary loci carrying canonical subgroups is
influenced by [46] and works of Hida (see, for example, the book [41]
and the citations there).

Our use of “balanced Γ1(pr) levels”, and the strategy of studying
structures near infinity (i.e., the cusps) after adding sufficiently many
roots of unity, are both influenced by Katz and Mazur [49]. We do not
know whether “balanced Γ1(pr) levels” have been seriously considered
in general.

In this work we only consider the ordinary loci where the
(multiplicative-type) canonical subgroups can be defined. If we also
consider maximal totally isotropic subgroups which admits a filtration
with graded pieces given by groups of étale and multiplicative (but
no other) types, then we can extend the definition of ordinary loci
and have a richer theory. The “balanced Γ1(pr) levels” should be the
ideal context for studying such “full ordinary loci”. It is also possible
to consider ordinary level structures of increasing depth along a flag
of subgroup schemes. However, both of these require much heavier
notation. We have chosen not to carry this out, because it complicates
an already lengthy story.

Theory of Degeneration and Partial Toroidal Compacti-
fications. The theory of degeneration in this work is built on those
developed in [82], [28], and [62]. In order to study the ordinary level
structures without the assumption that p is good, which means, in par-
ticular, that the polarization degree might not be prime to p, we intro-
duced the “balanced Γ1 levels” and studied the ordinary level structures
on the abelian scheme and its dual in a parallel way. This is consistent
with the fact that the theory of degeneration data is also “balanced”
in the sense that most objects in the theory of degeneration appear in
pairs (one for the degenerating abelian scheme, one for its dual).
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Our boundary construction for ~Mord,tor
H,Σord is heavily built on [62],

which include considerations not readily available in [28]. Since we
take normalizations of certain naive models in the models in character-
istic zero algebraically constructed in [62], our work requires [62] but
does not replace it. (The ordinary level structures in characteristic p
is hardly more complicated than the principal levels in characteristic
zero. The main reason we need to take normalizations is because of
the ramification at p. We first introduced some of the ideas of working
with arbitrary ramifications in [58], which we further developed in this

work.) Our method of gluing (for the construction of ~Mord,tor
H,Σord) is the

same as in [28] and [62].
Our construction of the partial toroidal compactifications of Kuga

families (and their generalizations) is the same as that of [61], which
is different from that of [28]. (It is not clear that [61] and [28, Ch. VI]
even construct the same objects.) It is close in spirit to the construc-
tion of toroidal compactifications of mixed Shimura varieties in [89],
although the construction techniques can hardly be directly compared.
(The construction in [89] has arithmetic quotients of symmetric spaces
as local charts, which has been developed along the lines of [5] and [4].
On the other hand, the purely algebraic construction in [61] is based
on the theory of degeneration in [62]. It was not until [59] that we
know these two constructions are compatible.)

The same techniques in this work allow the generalization of the
theory of degeneration and the boundary construction to the “full or-
dinary loci” mentioned above, although one will need to add more roots
of unity to the base rings. They also allow the generalization to the
case of ordinary level structures of increasing depth along a flag of sub-
group schemes. However, as we mentioned above, both will require
much heavier notation. We have chosen not to carry them out even
though the method is almost identical.

There are still many other cases where one can consider the con-
struction of (total or partial) toroidal compactifications. Our rather
simple-minded techniques do not seem to be useful when one seriously
considers the nonordinary loci. (See the following discussion on local
models.)

Local Models. We learned the Serre–Tate deformation theory of
ordinary abelian varieties from [73] and [47]. Together with the defor-
mation theory in the good reduction case in [62] (with no levels at p),
these are all that we need for our main constructions.
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Although we allow ramification and level structures at p, our con-
sideration is disjoint from the theory of local models (involving also
nonordinary abelian varieties) in, for example, [91], [85], [86], [87],
and [88]. In general, our integral models of Shimura varieties are not
even the same. By giving up the moduli interpretation, we obtain nor-
mality and flatness for free, but we no longer have enough information
about the nonordinary loci.

We note that Stroh’s constructions of compactifications of the Siegel
moduli with parahoric levels at p (generalizing the “Γ0(p) levels”; see
[97], [98], [99]), unlike ours, used the same integral models as in the
works mentioned in the previous paragraph, and indeed used results
from the theory of local model to deduce the normality he needs. The
strength of his work is that he also considered the nonordinary loci. (If
the ordinary loci is all one wants, one can just take the normalization of
some relatively representable moduli problems of canonical subgroups
over the toroidal compactifications with no level at p. In the Siegel
case, there is a nice “bottom level” to start with, with no ramification
at p at all.) However, since it is unclear to us what “Γ1(pr) levels”
mean at the nonordinary loci (especially) when r > 1, we have not
generalized his work to the higher levels we want.

Nevertheless, there are special cases where our models at the “bot-
tom level” at p indeed agree with the ones considered in, for example,
[85] and [86], in which case we can also describe the local structures of
the nonordinary loci of the boundary. For example, we can show that
certain toroidal and minimal compactifications are normal and Cohen–
Macaulay, and have geometrically normal reductions mod p. (Some
modification of our constructions would also allow us to study collec-
tions of isogenies defining parahoric levels.) See [65] for more details.
(See also [68] and [64] for some more recent improvements.)

After all, over the nonordinary loci, there is still very little we know,
and there is ample room for further investigations. We believe that
some new ideas might be needed, not just for solving the known difficult
problems in the theory of local models, but also for seeing whether one
should fundamentally revise the way we construct integral models.

Use of Auxiliary Models. The technical idea of using auxiliary
models (such as the Siegel moduli) to study models of Shimura varieties
(which are, a priori, analytically defined double coset spaces) has a long
history. In characteristic zero, this can be traced back to the work of
Shimura and Deligne (see [19] and [21], and their references).
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In mixed characteristic, Carayol [13] defined integral models of
Shimura curves using integral models of unitary Shimura varieties, in-
cluding the bad reduction case. For Hodge-type Shimura varieties, one
can find such an idea in, for example, [78], [100], [79], [51], and [74].

In the PEL-type cases, with arbitrarily high levels at p, our ap-
proach is closer in spirit to the classical work of Deligne and Rapoport
[24], in which models with higher levels at p are simply constructed as
normalizations. This is the same approach taken in [15] (in which the
model with no level at p is constructed by [90] and [23]).

It is fair to say that we are influenced by both. (It is hard not
to know the latter because of our upbringing; it is hard not to have
heard of the former because of the current fashion trend.) One should
keep in mind that we need the auxiliary models mainly as a source of
quasi-projectivity—which is otherwise difficult to obtain!

Adelic Language and Mixed Shimura Varieties. The collec-
tions of geometric objects we construct do carry Hecke actions, as we
have painstakingly gone through their constructions in all relevant sec-
tions, but our descriptions of them are somewhat indirect. For many
applications, it is also desirable to adopt a language closer to the adelic
formulations of double cosets (as in, for example, the theory for mixed
Shimura varieties in [89]). We have chosen not to fully carry this out,
mainly because in our proofs in mixed characteristics (especially for
showing the universal properties of the partial toroidal compactifica-
tions, and for showing the quasi-projectivity of the partial minimal
compactifications) we need the theory of degeneration, and we want to
be able to cite the available results in our previous work [62] without
much reformulation or generalization. But we certainly agree that it
is helpful to develop a more convenient language after the proofs are
done. We leave this as a potential future development. (We believe
that, since we have shown that the algebraic picture in mixed charac-
teristics is analogous to the complex analytic picture in characteristic
zero, such a task can be done by a person with no knowledge of the
theory of degeneration. There is no logical reason that the proofs and
the applications have to be in the same language.)

Roots of Unity in the Base Rings. To obtain nice models in
mixed characteristics, we added roots of unity to the base rings and
performed normalizations whenever needed. We have made the effort
to keep track of the precise exponents of roots of unity we need, but in
practice, in mixed characteristics (0, p), it might be much easier to add
all p-power roots of unity at once. We traded this convenience with
some notational complication, partly because in many cases we only
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need roots of unity of a bounded exponent (and sometimes none at
all), and it is still desirable to have a precise formula for such bounds.

0.5. What to Note and to Skip in Special Cases

Readers might naturally wonder whether some of the considerations
can be ignored or more easily addressed, or whether the constructions
can be shortened or simplified, in some special cases. In what follows
we list the sections or subsections that can be skipped in each typical
special case, and remark about some convenient special facts. (Cer-
tainly, in each of these cases, the work can be further shortened, at
least typographically, by simplifying the notation system.)

When p is a Good Prime. The readers can safely skip Sections
2.1.1, 2.1.2, and 6.3.3, and most of Sections 3.1, 3.4.6, 6.1.1, 8.1, and
8.3, because most of the statements or constructions there can be easily
achieved using the “bottom level” at p, which is the hyperspecial good
reduction case already been explained in [62] and [61]. Whenever the
auxiliary models are mentioned, the readers can safely assume that
they are in the maximal hyperspecial good reduction case.

Moreover, the reader should focus on the sections titled “The case
when p is a good prime,” as they provide substantial shortcuts to the
various constructions. For example, by Lemma 5.2.3.2, for most levels
of practical interest, and for cone decompositions that are admissible
also for a level hyperspecial at p defining a good reduction model, the
partial toroidal compactifications can be easily constructed over the
good reduction model as a relatively representable moduli problem of
ordinary level structures.

When the Pairing is Self-Dual at p. In Sections 2.1.1, 2.1.2,
3.4.6, and 6.1.1, the reader can safely assume that L and Laux have
exactly the same size, because no Zarhin’s trick is really necessary.

The Siegel Cases. For Siegel cases defined for abelian schemes
with principal polarization, it is as in the case above when p is a good
prime. (There are many other simplifications possible, but it is less
clear how we should give the instructions on them.) Moreover, the
nonemptiness of the ordinary loci on the characteristic p fibers is trivial.

For Siegel cases defined for abelian schemes without principal po-
larizations, Zarhin’s trick is used in our work, and hence the auxiliary
models are still essential. However, one can ignore all treatments con-
cerning the ramification of p in O.

In both cases, it is possible to describe the cone decompositions
using a simpler combinatorial language. For example, it is simpler to
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focus on the point boundary strata (of the partial minimal compacti-
fication) given by the rational parabolic subgroup of “maximal rank”
(with abelian unipotent radical, and with Levi the product of a general
linear group with Gm). Whether trivially true or not, Corollary 6.3.3.2
shows that the ordinary loci on the characteristic p fiber is nonempty.

The “Easier” Unitary Cases. By “easier” unitary groups we
mean unitary groups defined by a Hermitian pairing over an imaginary
quadratic or CM field F , but not over a noncommutative semisimple al-
gebra. In addition to the above (concerning whether p is good, whether
the pairing is self-dual, etc), the main simplification possible is that it
is also possible to describe the cone decompositions using a simpler
combinatorial language. For example, it is also simpler to focus on the
point boundary strata (of the partial minimal compactification) given
by the rational parabolic subgroup of “maximal rank” (with possibly
non-abelian unipotent radical).

All Cases with “Siegel Parabolics”. By a “Siegel parabolic”
subgroup we mean a rational parabolic subgroup with an abelian unipo-
tent radical. (These include all kinds of cases involving general semisim-
ple algebras with positive involutions. We do not just consider the
Siegel and “easier” unitary cases.) In such cases, the nonemptiness of
the ordinary loci on the characteristic p fibers follows from Corollary
6.3.3.2. (Note that many of these are cases with nonquasisplit groups.)





CHAPTER 1

Theory in Characteristic Zero

In this chapter, we review the main definitions and results in [62]
and [61] (based on earlier results of others) and specialize them to the
case of characteristic zero bases (over the reflex fields). (Also, we take
this opportunity to correct or improve certain assertions in [62] and
[61].) Readers who are already familiar with these results should feel
free to skip this chapter (and return to here only for references).

However, despite the similarity, the theory developed in [19], [21],
[5], [4], [38], [89], etc (based on arithmetic quotients of Hermitian sym-
metric domains, for which the compactifications were constructed by
gluing using the analytic coordinates) are not directly related to the
results reviewed here in this chapter (based on the moduli of polarized
abelian varieties, for which the compactifications were constructed by
gluing using the theory of degeneration). (It is not completely obvi-
ous that the two kinds of theories are compatible along the boundary;
see [59].) Some readers might find the definitions and results in this
chapter unfamiliar, and might want to at least glance over the notation
system and running assumptions.

1.1. PEL-type Moduli Problems and Shimura Varieties

1.1.1. Linear Algebraic Data for PEL Structures. Let us be-
gin with the usual (rational) PEL data, which suffice for the definition
of complex analytic PEL-type Shimura varieties and their attached
moduli problems in characteristic zero or in every good characteristic
as in [53] (see Definition 1.1.1.6 below).

Let Z(1) := ker(exp : C → C×) = (2π
√
−1)Z, which is a free

Z-module of rank one. Each square-root
√
−1 of −1 in C determines

an isomorphism (2π
√
−1)−1 : Z(1)

∼→ Z, but there is no canonical
isomorphism between Z(1) and Z. For each Z-module M , we denote
by M(1) the module M ⊗

Z
Z(1), called the Tate twist of M . Note that

M(1) and M are noncanonically isomorphic as Z-modules.
For the construction of compactifications using the theory of de-

generation in [28] and [62], it is useful to start with a (noncanonical)
choice of an integral PEL datum:

1
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Definition 1.1.1.1. An integral PEL datum is a tuple
(O, ?, L, 〈 · , · 〉, h0) consisting of:

(1) An order O in a finite-dimensional semisimple Q-algebra with
a positive involution ? stabilizing O. We shall denote the cen-
ter of O⊗

Z
Q by F . (Then F is a product of number fields.)

(2) An O-lattice L; namely, a finite free Z-module L with the
structure of an O-module.

(3) An alternating pairing 〈 · , · 〉 : L×L → Z(1) satisfying
〈bx, y〉 = 〈x, b?y〉 for all x, y ∈ L and b ∈ O, together with
an R-algebra homomorphism h0 : C → EndO⊗

Z
R(L⊗

Z
R),

satisfying:
(a) For all z ∈ C and x, y ∈ L⊗

Z
R, we have 〈h0(z)x, y〉 =

〈x, h0(zc)y〉, where z 7→ zc is complex conjugation.
(b) The R-bilinear pairing (2π

√
−1)−1〈 · , h0(

√
−1) · 〉 on

L⊗
Z
R is (symmetric and) positive definite. (See [62,

Def. 1.2.1.3], where h0 was denoted by h.)

Such a tuple (O, ?, L, 〈 · , · 〉, h0) is an integral version of the PEL
datum (B, ?, V, 〈 · , · 〉, h0) in [53] and related works.

Definition 1.1.1.2. The dual lattice L# of L (with respect to the
pairing 〈 · , · 〉) is

L# := {x ∈ L⊗
Z
Q : 〈x, y〉 ∈ Z(1),∀y ∈ L}.

One advantage of making the choice of an integral datum is that it
fixes the choice of an integral model of the algebraic reductive group
in the usual definition of Shimura varieties:

Definition 1.1.1.3. (See [62, Def. 1.2.1.6].) Let O and (L, 〈 · , · 〉)
be given as above. For each Z-algebra R, set

G(R) :=

{
(g, r) ∈ GLO⊗

Z
R(L⊗

Z
R)×Gm(R) :

〈gx, gy〉 = r〈x, y〉, ∀x, y ∈ L⊗
Z
R

}
.

The assignment is functorial in R and defines a group functor G over
Spec(Z). The projection to the second factor (g, r) 7→ r defines a ho-
momorphism ν : G → Gm, which we call the similitude character.
For simplicity, we shall often denote elements (g, r) in G by simply g,
and denote by ν(g) the value of r when we need it. (This is an abuse
of notation, because the value of r is not always determined by g.)
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Then we have, for each rational prime number p > 0, definitions for
G(Q), G(R), G(A∞), G(A∞,p), G(A), G(Ap), G(Z), G(Z/nZ), G(Ẑ),

G(Ẑp),
U(n) := ker(G(Ẑ)→ G(Ẑ/nẐ) = G(Z/nZ))

for each integer n ≥ 1,

Up(n0) := ker(G(Ẑp)→ G(Ẑp/n0Ẑp) = G(Z/n0Z))

for each integer n0 ≥ 1 prime to p.
The homomorphism h0 : C → EndO⊗

Z
R(L⊗

Z
R) defines a Hodge

structure of weight −1 on L, with Hodge decomposition

(1.1.1.4) L⊗
Z
C = V0 ⊕ V c

0 ,

such that h0(z) acts by 1⊗ z on V0, and by 1⊗ zc on V c
0 . One can check

easily that V0 is (maximal) totally isotropic under the nondegenerate
pairing 〈 · , · 〉, and hence (1.1.1.4) induces canonically an isomorphism

(1.1.1.5) V c
0
∼= V ∨0 (1) := HomC(V0,C)(1).

Let F0 be the reflex field of the O⊗
Z
C-module V0. Recall (see [53,

p. 389] or [62, Def. 1.2.5.4]) that F0 is the subfield of C generated over
Q by the traces TrC(b|V0) for b ∈ O.

Definition 1.1.1.6. We say that a rational prime number p > 0
is good (for the integral PEL datum (O, ?, L, 〈 · , · 〉, h0)) if it satisfies
the following conditions (cf. [53, Sec. 5] or [62, Def. 1.4.1.1]):

(1) p is unramified in O (as in [62, Def. 1.1.1.18]).
(2) p 6= 2 if O⊗

Z
Q involves simple factors of type D (as in [62,

Def. 1.2.1.15]).
(3) p - [L# : L] (see Definition 1.1.1.2).

When p is good, G⊗
Z
Zp is smooth and unramified (cf. [62, Prop.

1.2.3.11 and Cor. 1.2.3.12]).

1.1.2. PEL-type Moduli Problems. LetH be an open compact
subgroup of G(Ẑ).

By [62, Def. 1.4.1.4] (with 2 = ∅ there), the data of (L, 〈 · , · 〉, h0)
andH define a moduli problem MH over S0 = Spec(F0), parameterizing
tuples (A, λ, i, αH) over schemes S over S0 of the following form:

(1) A→ S is an abelian scheme.
(2) λ : A→ A∨ is a polarization.
(3) i : O ↪→ EndS(A) is an O-endomorphism structure as in [62,

Def. 1.3.3.1].
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(4) LieA/S with its O⊗
Z
Q-module structure given naturally by i

satisfies the determinantal condition in [62, Def. 1.3.4.1] given
by (L⊗

Z
R, 〈 · , · 〉, h0).

(5) αH is an (integral) level-H structure of (A, λ, i) of type

(L⊗
Z
Ẑ, 〈 · , · 〉) as in [62, Def. 1.3.7.6].

Remark 1.1.2.1. By [62, Prop. 1.4.3.4], the definition agrees with
the one in [53, Sec. 5] over S0 = Spec(F0). The choice of L in L⊗

Z
Q cor-

responds to the choice of a tautological (or universal) abelian scheme
A over MH within its Q×-isogeny class. If we have chosen another
PEL-type O-lattice L′ in L⊗

Z
Q which is also stabilized by H, then we

have the corresponding A′ (with additional structures) over a moduli
problem M′H canonically isomorphic to MH (see [62, Cor. 1.4.3.8]), to-
gether with a Q×-isogeny A→ A′ (if we identify M′H with MH). In brief,
the Q×-isogeny class of A is independent of the choice of L in L⊗

Z
Q.

This is useful because every open compact subgroup of G(A∞) stabilizes
some PEL-type O-lattice L′, and for every two PEL-type O-lattices L
and L′ there are common open compact subgroups of G(A∞) stabiliz-
ing both lattices. Hence, we can form a collection {MH}H, indexed by

all open compact subgroups H of G(A∞), not just those of G(Ẑ) (with
a canonical action of G(A∞); see [62, Rem. 1.4.3.11]).

By [62, Thm. 1.4.1.11 and Cor. 7.2.3.10], MH is an algebraic stack
separated, smooth, and of finite type over S0, which is representable by
a scheme quasi-projective (and smooth) over S0 when H is neat . (See
[89, 0.6] or [62, Def. 1.4.1.8] for the definition of neatness.)

Let (A, λ, i, αH)→ MH be the tautological tuple over MH. Consider
the relative de Rham cohomology H1

dR(A/MH), with the dual

HdR
1 (A/MH) := HomOMH

(H1
dR(A/MH),OMH)

defined to be the relative de Rham homology . Consider the canonical
pairing

(1.1.2.2) 〈 · , · 〉λ : HdR
1 (A/MH)×HdR

1 (A/MH)→ OMH(1)

defined by the pullback under Id×λ∗ of the canonical perfect pairing

HdR
1 (A/MH)×HdR

1 (A∨/MH)→ OMH(1)

defined by the first Chern class of the Poincaré invertible sheaf PA
over A ×

MH
A∨. (See, for example, [23, 1.5].) Since MH is defined

over the characteristic zero base S0 = Spec(F0), we know that λ is
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separable, that λ∗ is an isomorphism, and hence that the pairing
〈 · , · 〉λ above is perfect. Let 〈 · , · 〉λ also denote the induced pairing
on H1

dR(A/MH)×H1
dR(A/MH) by duality. By [6, Lem. 2.5.3], we have

canonical short exact sequences

0→ Lie∨A∨/MH(1)→ HdR
1 (A/MH)→ LieA/MH → 0

and

0→ Lie∨A/MH → H1
dR(A/MH)→ LieA∨/MH(−1)→ 0.

The submodules Lie∨A∨/MH and Lie∨A/MH are maximal totally isotropic
under the pairing 〈 · , · 〉λ.

Remark 1.1.2.3. The Tate twists in Lie∨A∨/MH(1) and
LieA∨/MH(−1) are often omitted (and have also been omitted in most
of this author’s earlier writings). They signify a sign convention
in the (otherwise canonical) identification between H1(A,OA) and
LieA∨/MH , which is nevertheless the same sign convention involved
in the definition of the pairing (1.1.2.2). Hence, we shall carry
such Tate twists in the notation when the pairing (1.1.2.2) is also
involved. However, for the sake of simplicity, we shall still omit them
when discussing the Gauss–Manin connections or Kodaira–Spencer
morphisms below.

Let M̃
(m)
H be the m-th infinitesimal neighborhood of the diagonal

image of MH in MH×
S0

MH, and let pr1, pr2 : M̃
(m)
H → MH be the

two projections. Then we have by definition the canonical morphism

OMH →Pm
MH/S0

:= pr1,∗ pr∗2(OMH). The isomorphism s : M̃
(m)
H → M̃

(m)
H

over MH swapping two components of the fiber product then defines an
automorphism s∗ of Pm

MH/S0
. When m = 1, the kernel of the structural

morphism str∗ : P1
MH/S0

→ OMH , canonically isomorphic to Ω1
MH/S0

by

definition, is spanned by the image of s∗ − Id∗ (induced by pr∗1− pr∗2).
An important property of the relative de Rham cohomology

of a smooth morphism like A → MH is that, for every two

smooth lifts Ã1 → M̃
(1)
H and Ã2 → M̃

(1)
H of A → MH, there is a

canonical isomorphism H1
dR(Ã2/M̃

(1)
H )

∼→ H1
dR(Ã1/M̃

(1)
H ) lifting

the identity morphism on H1
dR(A/MH). (See, for example, [62,

Prop. 2.1.6.4].) If we consider Ã1 := pr∗1A and Ã2 := pr∗2A, then

we obtain a canonical pr∗2H
1
dR(A/MH) ∼= H1

dR(pr∗2A/M̃
(1)
H )

∼→
H1

dR(pr∗1A/M̃
(1)
H ) ∼= pr∗1H

1
dR(A/MH), which we denote by Id∗ by

abuse of notation. On the other hand, pulling back by the swapping

automorphism s : M̃
(1)
H

∼→ M̃
(1)
H defines another canonical isomorphism
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s∗ : pr∗2H
1
dR(A/MH) ∼= H1

dR(pr∗2A/M̃
(1)
H )

∼→ H1
dR(pr∗1A/M̃

(1)
H ) ∼=

pr∗1H
1
dR(A/MH). This allows us to define the Gauss–Manin connection

as follows (cf. [62, Rem. 2.1.7.4]):

Definition 1.1.2.4. The Gauss–Manin connection

(1.1.2.5) ∇ : H1
dR(A/MH)→ H1

dR(A/MH) ⊗
OMH

Ω1
MH/S0

on H1
dR(A/MH) is the composition

H1
dR(A/MH)

pr∗2→ H1
dR(pr∗2A/M̃

(1)
H )

s∗−Id∗→ H1
dR(A/MH) ⊗

OMH

Ω1
MH/S0

.

Definition 1.1.2.6. The composition (ignoring Tate twists; see Re-
mark 1.1.2.3)

Lie∨A/MH ↪→ H1
dR(A/MH)

∇→ H1
dR(A/MH) ⊗

OMH

Ω1
MH/S0

� LieA∨/MH ⊗
OMH

Ω1
MH/S0

defines by duality a morphism

(1.1.2.7) KSA/MH/S0 : Lie∨A/MH ⊗
OMH

Lie∨A∨/MH → Ω1
MH/S0

,

which we call the Kodaira–Spencer morphism. (This definition
is compatible with the definition by deformation theory in [62, Def.
2.1.7.9].)

Definition 1.1.2.8. (See [62, Def. 2.3.5.1].) The sheaf

KS(A,λ,i)/MH
:= KS(A,λ,i,αH)/MH

is the quotient

(Lie∨A/MH ⊗
OMH

Lie∨A∨/MH)/

(
λ∗(y)⊗ z − λ∗(z)⊗ y

i(b)∗(x)⊗ y − x⊗(i(b)∨)∗(y)

)
x∈Lie∨A/MH

,

y,z∈Lie∨
A∨/MH

,

b∈O.

According to [62, Prop. 2.3.5.2], we have:

Proposition 1.1.2.9. The Kodaira–Spencer mor-
phism (1.1.2.7) factors through the canonical quotient
Lie∨A/MH ⊗

OMH

Lie∨A∨/MH � KS(A,λ,i)/MH
and induces an isomorphism

(1.1.2.10) KS(A,λ,i)/MH

∼→ Ω1
MH/S0

,

which we call the Kodaira–Spencer isomorphism, and denote again
(by abuse of notation) by KSA/MH/S0.
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1.1.3. PEL-type Shimura Varieties. Consider the (real ana-
lytic) set X = G(R)h0 of G(R)-conjugates h : C→ EndO⊗

Z
R(L⊗

Z
R) of

h0 : C→ EndO⊗
Z
R(L⊗

Z
R). It is well known (see [53, Sec. 8] or [59, Sec.

2]) that there exists a quasi-projective variety ShH over F0, together
with a canonical open and closed immersion

(1.1.3.1) ShH ↪→ [MH]

over S0 = Spec(F0), where [ · ] denotes the coarse moduli space of an
algebraic stack (see [62, Sec. A.7.5]), such that the analytification of
ShH⊗

F0

C (as a complex analytic space) can be canonically identified

with the double coset space G(Q)\X×G(A∞)/H. (Note that ShH ↪→
[MH] is not an isomorphism in general, due to the so-called failure
of Hasse’s principle. See, for example, [53, Sec. 8] and [62, Rem.
1.4.3.12].)

We call both ShH and ShH⊗
F0

C the PEL-type Shimura variety of

level H associated to the integral PEL datum (O, ?, L, 〈 · , · 〉, h0).
(More precisely, we should call ShH⊗

F0

C the complex PEL-type

Shimura variety, and call ShH the canonical model.) We will not
emphasis their roles in our constructions from now on.

1.2. Linear Algebraic Data for Cusps

1.2.1. Cusp Labels. For technical reasons, we shall impose the
following technical condition on all PEL-type O-lattices we use:

Condition 1.2.1.1. (See [62, Cond. 1.4.3.10].) The PEL-type
O-lattice (L, 〈 · , · 〉, h0) is chosen such that the action of O on L
extends to an action of some maximal order O′ in O⊗

Z
Q containing

O.

Although there is no rational boundary components in the algebraic
theory of toroidal and minimal compactifications (constructed by the
theory of degeneration, as in [28] and in [62]), we have developed in
[62, Sec. 5.4] the notion of cusp labels that serves a similar purpose.
(While G(Q) plays an important role in the analytic theory over C, it
does not play any obvious role in the algebraic theory of degeneration.)

Unlike in the analytic theory over C, where boundary components
are naturally parameterized by group-theoretic objects, the only alge-
braic machinery we have is the theory of semi-abelian degenerations of
abelian varieties with PEL structures. The cusp labels are (by their



8 1. THEORY IN CHARACTERISTIC ZERO

very design) part of the parameters (which we call the degeneration
data) for such (semi-abelian) degenerations.

Definition 1.2.1.2. (See [62, Sec. 1.2.6].) Let R be any noether-
ian Z-algebra. Suppose we have an increasing filtration F = {F−i} on
L⊗

Z
R, indexed by nonpositive integers −i, such that F0 = L⊗

Z
R.

(1) We say that F is integrable if, for every i, GrF−i := F−i/F−i−1

is integrable in the sense that GrF−i
∼= Mi⊗

Z
R (as R-modules)

for some O-lattice Mi.
(2) We say that F is split if there exists (noncanonically) some

isomorphism GrF := ⊕
i

GrF−i
∼→ F0 of R-modules.

(3) We say that F is admissible if it is both integrable and split.
(4) Let m be an integer. We say that F is m-symplectic with

respect to (L, 〈 · , · 〉) if, for every i, F−m+i and F−i are an-
nihilators of each other under the pairing 〈 · , · 〉 on F0.

We shall only work with m = 3, and we shall suppress m in what
follows. The fact that Ẑ (or Ẑp for some rational prime number p)
almost always involves bad primes (cf. Definition 1.1.1.6) is the main
reason that we may have to allow nonprojective filtrations.

Definition 1.2.1.3. (See [62, Def. 5.2.7.1].) We say that a sym-

plectic admissible filtration Z on L⊗
Z
Ẑ is fully symplectic with re-

spect to (L, 〈 · , · 〉) if there is a symplectic admissible filtration ZA =

{Z−i,A} on L⊗
Z
A that extends Z in the sense that Z−i,A∩(L⊗

Z
Ẑ) = Z−i

in L⊗
Z
A for all i.

Definition 1.2.1.4. (See [62, Def. 5.2.7.3].) A symplectic-liftable
admissible filtration Zn on L/nL is called fully symplectic-liftable
with respect to (L, 〈 · , · 〉) if it is the reduction modulo n of some ad-

missible filtration Z on L⊗
Z
Ẑ that is fully symplectic with respect to

(L, 〈 · , · 〉) as in Definition 1.2.1.3.

Degenerations into semi-abelian schemes induce filtrations on Tate
modules and on Lie algebras of the generic fibers. While the symplectic-
liftable admissible filtrations represent (certain orbits of) filtrations on

L⊗
Z
Ẑ induced by filtrations on Tate modules via the level structures,

the fully symplectic-liftable ones are equipped with (certain orbits of)
filtrations on L⊗

Z
R induced by the filtrations on Lie algebras via the

Lie algebra condition (see Section 1.1.2). (One may interpret the Lie



1.2. LINEAR ALGEBRAIC DATA FOR CUSPS 9

algebra condition as the “de Rham” (or rather “Hodge”) component
of a certain “complete level structure”, the direct product of whose
“`-adic” components being a level structure in the usual sense.) Such
(orbits of) filtrations are the crudest invariants of degenerations we
consider.

Definition 1.2.1.5. (See [62, Def. 5.4.1.3].) Given a fully sym-

plectic admissible filtration Z on L⊗
Z
Ẑ with respect to (L, 〈 · , · 〉) as in

Definition 1.2.1.3, a torus argument for Z is a tuple

Φ = (X, Y, φ, ϕ−2, ϕ0),

where the entries are as follows:

(1) X and Y are O-lattices of the same O-multi-rank (see [62,
Def. 5.2.2.6]), and φ : Y ↪→ X is an O-equivariant embedding.

(2) ϕ−2 : GrZ−2
∼→ HomẐ(X ⊗

Z
Ẑ, Ẑ(1)) and ϕ0 : GrZ0

∼→ Y ⊗
Z
Ẑ

are isomorphisms (of O⊗
Z
Ẑ-modules) such that the pairing

〈 · , · 〉20 : GrZ−2×GrZ0 → Ẑ(1) defined by Z is the pullback of
the pairing

〈 · , · 〉φ : HomẐ(X ⊗
Z
Ẑ, Ẑ(1))×(Y ⊗

Z
Ẑ)→ Ẑ(1)

defined by the composition

HomẐ(X ⊗
Z
Ẑ, Ẑ(1))×(Y ⊗

Z
Ẑ)

Id×φ→ HomẐ(X ⊗
Z
Ẑ, Ẑ(1))×(X ⊗

Z
Ẑ)→ Ẑ(1),

with the sign convention that 〈 · , · 〉φ(x, y) = x(φ(y)) =

(φ(y))(x) for all x ∈ HomẐ(X ⊗
Z
Ẑ, Ẑ(1)) and y ∈ Y ⊗

Z
Ẑ.

Definition 1.2.1.6. (See [62, Def. 5.4.1.4 and 5.4.1.5].) Given a
fully symplectic-liftable admissible filtration Zn on L/nL with respect to
(L, 〈 · , · 〉) as in Definition 1.2.1.4, a torus argument at level n for
Zn is a tuple

Φn = (X, Y, φ, ϕ−2,n, ϕ0,n),

where:

(1) X and Y are O-lattices of the same O-multi-rank, and φ :
Y ↪→ X is an O-equivariant embedding.

(2) ϕ−2,n : GrZ−2,n
∼→ Hom(X/nX, (Z/nZ)(1)) (resp.

ϕ0,n : GrZ0,n
∼→ Y/nY ) is an isomorphism

that is the reduction modulo n of some isomorphism
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ϕ−2 : GrZ−2
∼→ HomẐ(X ⊗

Z
Ẑ, Ẑ(1)) (resp. ϕ0 : GrZ0

∼→ (Y ⊗
Z
Ẑ)),

such that Φ = (X, Y, φ, ϕ−2, ϕ0) is a torus argument as in
Definition 1.2.1.5.

We say in this case that Φn is the reduction modulo n of
Φ.

Two torus arguments Φn = (X, Y, φ, ϕ−2,n, ϕ0,n) and
Φ′n = (X ′, Y ′, φ′, ϕ′−2,n, ϕ

′
0,n) at level n are equivalent if there exists a

pair of isomorphisms (γX : X ′
∼→ X, γY : Y

∼→ Y ′) (of O-lattices) such
that φ = γXφ

′γY , ϕ′−2,n = tγXϕ−2,n, and ϕ′0,n = γY ϕ0,n. In this case,
we say that Φn and Φ′n are equivalent under the pair of isomorphisms
γ = (γX , γY ), which we denote by γ = (γX , γY ) : Φn

∼→ Φ′n.

The torus arguments record the isomorphism classes of the torus
parts of degenerations of abelian schemes with PEL structures. These
are the second crudest invariants of degenerations we consider.

Definition 1.2.1.7. (See [62, Def. 5.4.1.9].) A (principal) cusp
label at level n for a PEL-type O-lattice (L, 〈 · , · 〉, h0), or a cusp
label of the moduli problem Mn, is an equivalence class [(Zn,Φn, δn)] of
triples (Zn,Φn, δn), where:

(1) Zn is an admissible filtration on L/nL that is fully symplectic-
liftable in the sense of Definition 1.2.1.4.

(2) Φn is a torus argument at level n for Zn.

(3) δn : GrZn
∼→ L/nL is a liftable splitting.

Two triples (Zn,Φn, δn) and (Z′n,Φ
′
n, δ
′
n) are equivalent if Zn and Z′n are

identical, and if Φn and Φ′n are equivalent as in Definition 1.2.1.6.

The liftable splitting δn in each triple (Zn,Φn, δn) is noncanonical
and auxiliary in nature. Such splittings are needed for analyzing the
“degeneration of pairings” in general PEL cases (unlike in the special
case in Faltings–Chai [28, Ch. IV, Sec. 6]).

To proceed from principal cusp labels at level n to general cusp
labels at level H, where H is an open compact subgroup of G(Ẑ), we
form étale orbits of the objects we have thus defined. The precise
definitions are complicated (see [62, Def. 5.4.2.1, 5.4.2.2, and 5.4.2.4])
but the idea is simple: For each H as above, consider those n ≥ 1
sufficiently divisible such that U(n) ⊂ H. Then we have a compatible
system of finite groups Hn = H/U(n), and an object at level H is
simply defined to be a compatible system of étale Hn-orbits of objects
at running levels n as above. Then we arrive at the notions of torus
arguments ΦH = (X, Y, φ, ϕ−2,H, ϕ0,H) at level H, and of representatives
(ZH,ΦH, δH) of cusp labels [(ZH,ΦH, δH)] at level H. (The liftability
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condition is implicit in such a definition, as in the definition of level
structures we omitted.) By abuse of language, we call these H-orbits
of Φ = (X, Y, φ, ϕ−2, ϕ0), (Z,Φ, δ), and [(Z,Φ, δ)], respectively. (Note

that the splitting δ was denoted δ̂ in [62, Sec. 5.2.2].)
For simplicity, we shall often omit ZH from the notation.

Lemma 1.2.1.8. (See [62, Lem. 5.2.7.5].) Let Zn be an admissi-
ble filtration on L/nL that is fully symplectic-liftable with respect to
(L, 〈 · , · 〉). Let (GrZ−1, 〈 · , · 〉11) be induced by some fully symplectic
lifting Z of Zn, and let (GrZ−1,R, 〈 · , · 〉11,R, (h0)−1) be determined by [62,
Prop. 5.1.2.2] by any extension ZA in Definition 1.2.1.3 (which has the
same reflex field F0 as (L⊗

Z
R, 〈 · , · 〉, h0) does). Then there is associ-

ated (noncanonically) a PEL-type O-lattice (LZn , 〈 · , · 〉Zn , hZn0 ) satisfy-
ing Condition 1.2.1.1 such that we have the following:

(1) There exist (noncanonical) O-equivariant isomorphisms

(GrZ−1, 〈 · , · 〉11)
∼→ (LZn ⊗

Z
Ẑ, 〈 · , · 〉Zn)

(over Ẑ) and

(GrZ−1,R, 〈 · , · 〉11,R, (h0)−1)
∼→ (LZn ⊗

Z
R, 〈 · , · 〉Zn , hZn0 )

(over R).
(2) The moduli problem MZn

n defined by the noncanonical
(LZn , 〈 · , · 〉Zn , hZn0 ) as in Section 1.1.2 is canonical in the
sense that it depends (up to isomorphism) only on Zn, but not
on the choice of (LZn , 〈 · , · 〉Zn , hZn0 ).

In fact, Lemma 1.2.1.8 (or rather [62, Lem. 5.2.7.5]) is based on [62,
Rem. 5.2.7.2], which asserts the existence of a (noncanonical) boundary
lattice (LZ, 〈 · , · 〉Z, hZ0) for each fully symplectic admissible filtration

Z of L⊗
Z
Ẑ, so that we have, in particular, a canonical isomorphism

GrZ−1⊗
Ẑ
R ∼= L⊗

Z
R for each Ẑ-algebraR. With any fixed (noncanonical)

choice of such (LZ, 〈 · , · 〉Z, hZ0), we can make the following:

Definition 1.2.1.9. We define the group functor GZ = G(LZ,〈 · , · 〉Z)

by (LZ, 〈 · , · 〉Z) as in Definition 1.1.1.3, so that Gh,Z := GZ⊗
Z
Ẑ

is well defined and depends only on Z (but not on the choice of
(LZ, 〈 · , · 〉Z, hZ0)).

Definition 1.2.1.10. For each Ẑ-algebra R, let PZ(R) denote the
subgroup of G(R) consisting of elements g such that g(Z−2⊗

Ẑ
R) =
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Z−2⊗
Ẑ
R and g(Z−1⊗

Ẑ
R) = Z−1⊗

Ẑ
R. Each element g in PZ(R) defines

an isomorphism GrZ−i(g) : GrZ−i⊗
Ẑ
R
∼→ GrZ−i⊗

Ẑ
R for each 0 ≤ i ≤ 2.

Then, under the isomorphism GrZ−1⊗
Ẑ
R ∼= L⊗

Z
R above, the isomor-

phism GrZ−1(g) corresponds to an element of Gh,Z(R), and define a group
homomorphism GrZ−1 : PZ(R)→ Gh,Z(R).

Definition 1.2.1.11. For each Ẑ-algebra R, we also define the fol-
lowing quotients of subgroups of PZ(R) (see Definition 1.2.1.10):

(1) ZZ(R) is the kernel of the canonical homomorphism GrZ−1 :
PZ(R) → Gh,Z(R). Then any splitting δ as above canonically
induces an isomorphism PZ(R) ∼= Gh,Z(R) n ZZ(R).

(2) UZ(R) is the subgroup of PZ(R) consisting of elements g such
that GrZ(g) = IdGrZ⊗

Ẑ
R (i.e., GrZ−i(g) = IdGrZ−i⊗

Ẑ
R for all i).

(3) U2,Z(R) is the subgroup of PZ(R) consisting of elements g
which induces IdZ−1⊗

Ẑ
R and Id(Z0⊗

Ẑ
R)/(Z−2⊗

Ẑ
R) on Z−1⊗

Ẑ
R and

(Z0⊗
Ẑ
R)/(Z−2⊗

Ẑ
R), respectively. (Using any splitting δ as

above, this means δ−1 ◦ g ◦ δ is of the form
(

1 g20
1

1

)
for some

g20 ∈ HomO(GrZ0⊗
Ẑ
R,GrZ−2⊗

Ẑ
R).)

(4) U1,Z(R) := UZ(R)/U2,Z(R).
(5) Gl,Z(R) := ZZ(R)/UZ(R), which is canonically isomorphic to

the subgroup G′l,Z(R) of GLO(GrZ−2⊗
Ẑ
R)×GLO(GrZ0⊗

Ẑ
R)

consisting of elements compatible with the morphism
GrZ0 → HomẐ(GrZ−2, Ẑ(1)) induced by 〈 · , · 〉 (which are
therefore the elements compatible with φ : Y ↪→ X,
ϕ−2 : GrZ−2

∼→ HomẐ(X ⊗
Z
Ẑ, Ẑ(1)), and ϕ0 : GrZ0

∼→ Y ⊗
Z
Ẑ for

any torus argument Φ of Z; see Definition 1.2.1.5).
(6) P′Z(R) is the kernel of the canonical homomorphism

(ν−1 GrZ−2,GrZ0) : PZ(R)→ G′l,Z(R); i.e., the subgroup of PZ(R)

consisting of elements g such that GrZ−2(g) = ν(g) IdGrZ−2⊗
Ẑ
R

and GrZ0(g) = IdGrZ0⊗
Ẑ
R. Then any splitting δ : GrZ

∼→ Z

canonically induces an isomorphism PZ(R) ∼= Gl,Z(R)nP′Z(R).
(7) G1,Z(R) := P′Z(R)/U2,Z(R), which is (under any splitting δ

above) isomorphic to (Gh,Z n U1,Z)(R) := Gh,Z(R) n U1,Z(R).
(8) G′h,Z(R) := G1,Z(R)/U1,Z(R) ∼= P′Z(R)/UZ(R) ∼=

PZ(R)/ZZ(R) ∼= Gh,Z(R).
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Definition 1.2.1.12. For each open compact subgroup H of G(Ẑ),
we define:

(1) HPZ
:= H∩PZ(Ẑ).

(2) HZZ
:= H∩ZZ(Ẑ).

(3) HGh,Z := HPZ
/HZZ

.

(4) HUZ
:= H∩UZ(Ẑ).

(5) HU2,Z := H∩U2,Z(Ẑ).
(6) HU1,Z := HUZ

/HU2,Z.
(7) HGl,Z := HZZ

/HUZ
.

(8) HP′Z
:= H∩P′Z(Ẑ).

(9) HG1,Z := HP′Z
/HU2,Z.

(10) HG′h,Z
:= HP′Z

/HUZ
.

(11) HG′l,Z
:= HPZ

/HP′Z
.

Then we have an exact sequence

(1.2.1.13) 1→ HU1,Z → HG1,Z → HG′h,Z
→ 1

compatible with the canonical exact sequence

(1.2.1.14) 1→ U1,Z(Ẑ)→ G1,Z(Ẑ)→ G′h,Z(Ẑ)→ 1.

We shall also extend this definition to the cases of Ẑp- and Zp-valued
groups above.

Definition 1.2.1.15. (See [62, Def. 5.4.2.6 and the errata].) The
PEL-type O-lattice (LZH , 〈 · , · 〉ZH , hZH0 ) is a fixed (noncanonical)
choice of any of the PEL-type O-lattice (LZn , 〈 · , · 〉Zn , hZn0 ) in
Lemma 1.2.1.8 for any element Zn in any ZHn (in ZH = {ZHn},
a compatible collection of étale orbits ZHn at various levels n
such that U(n) ⊂ H). The elements of Hn leaving Zn invariant
induce a subgroup of GZ(Z/nZ). Let Hh be the preimage of this

subgroup under G(LZn ,〈 · , · 〉Zn )(Ẑ) � G(LZn ,〈 · , · 〉Zn )(Z/nZ) (see Definition
1.2.1.9). Then we define MHh to be the moduli problem defined by
(LZn , 〈 · , · 〉Zn , hZn) with level-Hh structures as in Lemma 1.2.1.8.
(The isomorphism class of MHh is well defined and independent of
the choice of (LZH , 〈 · , · 〉ZH , hZH) = (LZn , 〈 · , · 〉Zn , hZn).) We define
MΦH
H to be the quotient of

∐
MZn
n by Hn, where the disjoint union

is over representatives (Zn,Φn, δn) (with the same (X, Y, φ)) in
(ZH,ΦH, δH), which is finite étale over MHh by construction. (The

isomorphism class of MΦH
H is independent of the choice of n and

the representatives (Zn,Φn, δn) we use.) We then (abusively) define
MZH
H to be the quotient of MΦH

H by the subgroup of Γφ stabilizing
ΦH (whose action factors through a finite quotient group), which
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depends only on the cusp label [(ZH,ΦH, δH)], but not on the choice
of the representative (ZH,ΦH, δH). By construction, we have finite
étale morphisms MΦH

H → MZH
H → MHh (which can be identified with

MH′h → MH′′h → MHh for some canonically determined open compact
subgroups H′h ⊂ H′′h ⊂ Hh; see Lemmas 1.3.2.1 and 1.3.2.5 below).

Such boundary moduli problems MZH
H are the fundamental building

blocks in the construction of toroidal boundary charts for MH. (They
actually appear in the boundary of the minimal compactification of
MH, which we call cusps. They are parameterized by the cusp labels
of MH.)

It is important to study the relations among cusp labels of different
multi-ranks.

Definition 1.2.1.16. (See [62, Def. 5.4.1.14].) A
surjection (Zn,Φn, δn) � (Z′n,Φ

′
n, δ
′
n) between representatives

of cusp labels at level n, where Φn = (X, Y, φ, ϕ−2,n, ϕ0,n) and
where Φ′n = (X ′, Y ′, φ′, ϕ′−2,n, ϕ

′
0,n), is a pair (of surjections)

(sX : X � X ′, sY : Y � Y ′) (of O-lattices) such that we have the
following:

(1) Both sX and sY are admissible surjections (i.e., with kernels
defining filtrations that are admissible as in Definition 1.2.1.2),
and they are compatible with φ and φ′ in the sense that sXφ =
φ′sY .

(2) Z′−2,n is an admissible submodule of Z−2,n (i.e., defining an
admissible filtration as in Definition 1.2.1.2), and the natu-

ral embedding GrZ
′

−2,n ↪→ GrZ−2,n satisfies ϕ−2,n ◦ (GrZ
′

−2,n ↪→
GrZ−2,n) = s∗X ◦ ϕ′−2,n.

(3) Z−1,n is an admissible submodule of Z′−1,n, and the natural sur-

jection GrZ0,n � GrZ
′

0,n satisfies sY ◦ ϕ0,n = ϕ′0,n ◦ (GrZ0,n �

GrZ
′

0,n).

In this case, we write s = (sX , sY ) : (Zn,Φn, δn)� (Z′n,Φ
′
n, δ
′
n)

By taking orbits as above, there is a corresponding notion for gen-
eral cusp labels:

Definition 1.2.1.17. (See [62, Def. 5.4.2.12].) A surjection
(ZH,ΦH, δH) � (Z′H,Φ

′
H, δ

′
H) between representatives of cusp

labels at level H, where ΦH = (X, Y, φ, ϕ−2,H, ϕ0,H) and
where Φ′H = (X ′, Y ′, φ′, ϕ′−2,H, ϕ

′
0,H), is a pair (of surjections)

s = (sX : X � X ′, sY : Y � Y ′) (of O-lattices) such that we have the
following:
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(1) Both sX and sY are admissible surjections, and they are com-
patible with φ and φ′ in the sense that sXφ = φ′sY .

(2) Z′H and (ϕ′−2,H, ϕ
′
0,H) are assigned to ZH and (ϕ−2,H, ϕ0,H) re-

spectively under s = (sX , sY ) as in [62, Lem. 5.4.2.11].

In this case, we write s = (sX , sY ) : (ZH,ΦH, δH)� (Z′H,Φ
′
H, δ

′
H).

Definition 1.2.1.18. (See [62, Def. 5.4.2.13].) We say that there
is a surjection from a cusp label at level H represented by some
(ZH,ΦH, δH) to a cusp label at level H represented by some (Z′H,Φ

′
H, δ

′
H)

if there is a surjection (sX , sY ) from (ZH,ΦH, δH) to (Z′H,Φ
′
H, δ

′
H).

This is well defined by [62, Lem. 5.4.1.15].
The surjection among cusp labels can be naturally seen when we

have the so-called two-step degenerations (see [28, Ch. III, Sec. 10] and
[62, Sec. 4.5.6]). This notion will be further developed in Definitions
1.2.2.12, 1.2.2.18, and 1.2.2.19 below.

1.2.2. Cone Decompositions. For each torus argument Φn =
(X, Y, φ, ϕ−2,n, ϕ0,n) at level n, consider the finitely generated commu-
tative group (i.e., Z-module)

(1.2.2.1)
...
SΦn := (( 1

n
Y )⊗

Z
X)/

(
y⊗φ(y′)− y′⊗φ(y)

(b 1
n
y)⊗χ− ( 1

n
y)⊗(b?χ)

)
y,y′∈Y,
χ∈X,b∈O

and set SΦn :=
...
SΦn,free, the free quotient of

...
SΦn . (See [62,

(6.2.3.5) and Conv. 6.2.3.20].) Then, for a general torus argument
ΦH = (X, Y, φ, ϕ−2,H, ϕ0,H) at level H, there is a recipe [62, Lem.
6.2.4.4] that gives a corresponding free commutative group SΦH

(which can be identified with a finite index subgroup of some SΦn).
The group SΦH provides indices for certain “Laurent series expan-

sions” near the boundary strata. In the modular curve case, it is canon-
ically isomorphic to Z, which means there is a canonical parameter q
near the boundary—i.e., the cusps . The expansion of modular forms
with respect to this parameter then gives the familiar q-expansion along
the cusps. The compactification of the modular curves can be described
locally near each of the cusps by Spec(R[qi]i∈Z) ↪→ Spec(R[qi]i∈Z≥0

) for
some suitable base ring R. For MH, we would like to have an analogous
theory in which the torus with the character group SΦH can be partially
compactified by adding normal crossings divisors in a smooth scheme.
This is best achieved by the theory of toroidal embeddings developed
in [50]. Many terminologies in such a theory will naturally show up
in our description of the toroidal boundary charts, and we will review
them in what follows.
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Let S∨ΦH := HomZ(SΦH ,Z) be the Z-dual of SΦH , and let
(SΦH)∨R := S∨ΦH ⊗Z

R = HomZ(SΦH ,R). By the construction of SΦH ,

the R-vector space (SΦH)∨R is isomorphic to the space of Hermitian
pairings (| · , · |) : (Y ⊗

Z
R)× (Y ⊗

Z
R)→ O⊗

Z
R, by sending a Hermitian

pairing (| · , · |) to the function y⊗φ(y′) 7→ TrO⊗
Z
R/R(|y, y′|) in

HomR((Y ⊗
Z
R)× (Y ⊗

Z
R),R) ∼= (SΦH)∨R. (See [62, Lem. 1.1.4.5].)

Definition 1.2.2.2. (See [62, Sec. 6.1.1 and Def. 6.1.2.5].)

(1) A subset of (SΦH)∨R is called a cone if it is invariant under
the natural multiplication action of R×>0 on the R-vector space
(SΦH)∨R.

(2) A cone in (SΦH)∨R is nondegenerate if its closure does not
contain any nonzero R-vector subspace of (SΦH)∨R.

(3) A rational polyhedral cone in (SΦH)∨R is a cone in (SΦH)∨R
of the form σ = R>0v1+· · ·+R>0vn with v1, . . . , vn ∈ (SΦH)∨Q =
S∨ΦH ⊗Z

Q.

(4) A supporting hyperplane of σ is a hyperplane P in (SΦH)∨R
such that σ does not overlap with both sides of P .

(5) A face of σ is a rational polyhedral cone τ such that τ = σ∩P
for some supporting hyperplane P of σ. (Here an overline on
a cone means its closure in the ambient space (SΦH)∨R.)

(6) The canonical pairing 〈 · , · 〉 : SΦH ×S∨ΦH → Z defines by ex-
tension of scalars a canonical pairing 〈 · , · 〉 : SΦH ×(SΦH)∨R →
R. Then we define for each rational polyhedral cone σ in
(SΦH)∨R the following semisubgroups of SΦH:

σ∨ := {` ∈ SΦH : 〈`, y〉 ≥ 0 ∀y ∈ σ},
σ∨0 := {` ∈ SΦH : 〈`, y〉 > 0 ∀y ∈ σ},
σ⊥ := {` ∈ SΦH : 〈`, y〉 = 0 ∀y ∈ σ} ∼= σ∨/σ∨0 .

Let PΦH be the subset of (SΦH)∨R corresponding to positive semi-
definite Hermitian pairings (| · , · |) : (Y ⊗

Z
R)× (Y ⊗

Z
R)→ O⊗

Z
R, with

radical (namely the annihilator of the whole space) admissible in the
sense that it is the R-span of some admissible submodule Y ′ of Y . (Re-
call that we say that a submodule Y ′ of Y is admissible if Y ′ ⊂ Y
defines an admissible filtration on Y ; cf. Definition 1.2.1.2. In particu-
lar, the quotient Y/Y ′ is also an O-lattice.)

Definition 1.2.2.3. (See [62, Def. 6.2.4.1 and 5.4.1.6].) The group
ΓΦH is the subgroup of GLO(X)×GLO(Y ) consisting of elements γ =
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(γX , γY ) satisfying φ = γXφγY , ϕ−2,H = tγXϕ−2,H, and ϕ0,H = γY ϕ0,H
(if we view the latter two as collections of orbits).

The group ΓΦH acts on SΦH , and its induced action preserves the
subset PΦH of (SΦH)∨R. (The group ΓΦH is the automorphism group of
the torus argument ΦH. Such automorphism groups show up naturally
because torus arguments are only determined up to isomorphism.)

Definition 1.2.2.4. (See [62, Def. 6.1.1.10].) A ΓΦH-admissible
rational polyhedral cone decomposition of PΦH is a collection
ΣΦH = {σj}j∈J with some indexing set J such that we have the follow-
ing:

(1) Each σj is a nondegenerate rational polyhedral cone.
(2) PΦH is the disjoint union of all the σj’s in Σ. For each j ∈ J ,

the closure of σj in PΦH is a disjoint union of σk’s with k ∈ J .
In other words, PΦH =

∐
j∈J

σj is a stratification of PΦH. (Here

“
∐

” only means a set-theoretic disjoint union. The geometric
structure of

∐
j∈J

σj is still the one inherited from the ambient

space (SΦH)∨R of PΦH.)
(3) Σ is invariant under the action of ΓΦH on (SΦH)∨R, in the sense

that ΓΦH permutes the cones in Σ. Under this action, the set
ΣΦH/ΓΦH of ΓΦH-orbits is finite.

Definition 1.2.2.5. (See [62, Def. 6.1.1.11].) A rational polyhedral
cone σ in (SΦH)∨R is smooth with respect to the integral structure given
by S∨ΦH if we have σ = R>0v1 + · · ·+R>0vn with v1, . . . , vn forming part
of a Z-basis of S∨ΦH.

Definition 1.2.2.6. (See [62, Def. 6.1.1.12].) A ΓΦH-admissible
smooth rational polyhedral cone decomposition of PΦH is a
ΓΦH-admissible rational polyhedral cone decomposition ΣΦH = {σj}j∈J
of PΦH in which every σj is smooth.

Definition 1.2.2.7. (See [62, Def. 7.3.1.1].) Let ΣΦH = {σj}j∈J
be any ΓΦH-admissible rational polyhedral cone decomposition of PΦH.
An (invariant) polarization function on PΦH for the cone decom-
position ΣΦH is a ΓΦH-invariant continuous piecewise linear function
polΦH : PΦH → R≥0 such that we have the following:

(1) polΦH is linear (i.e., coincides with a linear function) on each
cone σj in ΣΦH. (In particular, polΦH(tx) = tpolΦH(x) for all
x ∈ PΦH and t ∈ R≥0.)

(2) polΦH((PΦH∩S∨ΦH)−{0}) ⊂ Z>0. (In particular, polΦH(x) > 0
for all nonzero x in PΦH.)



18 1. THEORY IN CHARACTERISTIC ZERO

(3) polΦH is linear (in the above sense) on a rational polyhedral
cone σ in PΦH if and only if σ is contained in some cone σj
in ΣΦH.

(4) For all x, y ∈ PΦH, we have polΦH(x + y) ≥ polΦH(x) +
polΦH(y). This is called the convexity of polΦH.

If such a polarization function exists, then we say that the
ΓΦH-admissible rational polyhedral cone decomposition ΣΦH is
projective.

Definition 1.2.2.8. An admissible boundary component of
PΦH is the image of PΦ′H

under the embedding (SΦ′H
)∨R ↪→ (SΦH)∨R

defined by some surjection (ΦH, δH) � (Φ′H, δ
′
H). (See Definition

1.2.1.17.)

We shall always assume that the following technical condition is
satisfied:

Condition 1.2.2.9. (See [62, Cond. 6.2.5.25]; cf. [28, Ch. IV, Rem.
5.8(a)].) The cone decomposition ΣΦH = {σj}j∈J of PΦH is chosen such
that, for each j ∈ J , if γσj ∩σj 6= {0} for some γ ∈ ΓΦH, then a power
of γ acts as the identity on the smallest admissible boundary component
of PΦH containing γσj ∩ σj.

This condition is used to ensure that there are no self-intersections
of toroidal boundary strata when the level H is neat.

To describe the toroidal boundary of MH, we will need not only
cusp labels but also the cones:

Definition 1.2.2.10. (See [62, Def. 6.2.6.1].) Let (ΦH, δH)
and (Φ′H, δ

′
H) be two representatives of cusp labels at level H, let

σ ⊂ (SΦH)∨R, and let σ′ ⊂ (SΦ′H
)∨R. We say that the two triples

(ΦH, δH, σ) and (Φ′H, δ
′
H, σ

′) are equivalent if there exists a pair of

isomorphisms γ = (γX : X ′
∼→ X, γY : Y

∼→ Y ′) (of O-lattices) such
that we have the following:

(1) The two representatives (ΦH, δH) and (Φ′H, δ
′
H) are equivalent

under γ (as in [62, Def. 5.4.2.4], the general level analogue of
Definition 1.2.1.7).

(2) The isomorphism (SΦ′H
)∨R

∼→ (SΦH)∨R induced by γ sends σ′ to
σ.

In this case, we say that the two triples (ΦH, δH, σ) and (Φ′H, δ
′
H, σ

′) are
equivalent under the pair of isomorphisms γ = (γX , γY ).

Definition 1.2.2.11. (See [62, Def. 6.2.6.2].) Let (ΦH, δH) and
(Φ′H, δ

′
H) be two representatives of cusp labels at level H, and let ΣΦH
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(resp. ΣΦ′H
) be a ΓΦH-admissible (resp. ΓΦ′H

-admissible) smooth ratio-
nal polyhedral cone decomposition of PΦH (resp. PΦ′H

). We say that
the two triples (ΦH, δH,ΣΦH) and (Φ′H, δ

′
H,ΣΦ′H

) are equivalent if
(ΦH, δH) and (Φ′H, δ

′
H) are equivalent under some pair of isomorphisms

γ = (γX : X ′
∼→ X, γY : Y

∼→ Y ′), and if under one (and hence ev-
ery) such γ the cone decomposition ΣΦH of PΦH is identified with the
cone decomposition ΣΦ′H

of PΦ′H
. In this case, we say that the two

triples (ΦH, δH,ΣΦH) and (Φ′H, δ
′
H,ΣΦ′H

) are equivalent under the pair
of isomorphisms γ = (γX , γY ).

The compatibility among cone decompositions over different cusp
labels are described as follows:

Definition 1.2.2.12. (See [62, Def. 6.2.6.4].) Let (ΦH, δH) (resp.
(Φ′H, δ

′
H)) be a representative of a cusp label at level H, and let ΣΦH

(resp. ΣΦ′H
) be a ΓΦH-admissible (resp. ΓΦ′H

-admissible) smooth ratio-
nal polyhedral cone decomposition of PΦH (resp. PΦ′H

). A surjection
(ΦH, δH,ΣΦH)� (Φ′H, δ

′
H,ΣΦ′H

) is given by a surjection s = (sX : X �
X ′, sY : Y � Y ′) : (ΦH, δH) � (Φ′H, δ

′
H) (see Definition 1.2.1.17) that

induces an embedding PΦ′H
↪→ PΦH such that the restriction ΣΦH|PΦ′H

of the cone decomposition ΣΦH of PΦH to PΦ′H
is the cone decomposi-

tion ΣΦ′H
of PΦ′H

.

This allows us to define:

Definition 1.2.2.13. (See [62, Cond. 6.3.3.2 and Def.
6.3.3.4].) A compatible choice of admissible smooth rational
polyhedral cone decomposition data for MH is a complete set
Σ = {ΣΦH}[(ΦH,δH)] of compatible choices of ΣΦH (satisfying
Condition 1.2.2.9) such that, for every surjection (ΦH, δH)� (Φ′H, δ

′
H)

of representatives of cusp labels, the cone decompositions ΣΦH

and ΣΦ′H
define a surjection (ΦH, δH,ΣΦH) � (Φ′H, δ

′
H,ΣΦ′H

) as in
Definition 1.2.2.12.

Definition 1.2.2.14. (See [62, Def. 7.3.1.3].) We say that a com-
patible choice Σ = {ΣΦH}[(ΦH,δH)] of admissible smooth rational poly-
hedral cone decomposition data for MH (see Definition 1.2.2.13) is
projective if it satisfies the following condition: There is a collec-
tion pol = {polΦH : PΦH → R≥0}[(ΦH,δH)] of polarization functions
labeled by representatives (ΦH, δH) of cusp labels, each polΦH being a
polarization function of the cone decomposition ΣΦH in Σ (see Def-
inition 1.2.2.7), which are compatible in the following sense: For
every surjection (ΦH, δH) � (Φ′H, δ

′
H) of representatives of cusp labels
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(see Definition 1.2.1.17) inducing an embedding PΦ′H
↪→ PΦH, we have

polΦH |PΦ′H
= polΦ′H.

The most important relations among cone decompositions and
among compatible choices of them are the so-called refinements :

Definition 1.2.2.15. (See [62, Def. 6.2.6.3].) Let (ΦH, δH) and
(Φ′H, δ

′
H) be two representatives of cusp labels at level H, and let ΣΦH

(resp. ΣΦ′H
) be a ΓΦH-admissible (resp. ΓΦ′H

-admissible) smooth ratio-
nal polyhedral cone decomposition of PΦH (resp. PΦ′H

). We say that
the triple (ΦH, δH,ΣΦH) is a refinement of the triple (Φ′H, δ

′
H,ΣΦ′H

)
if (ΦH, δH) and (Φ′H, δ

′
H) are equivalent under some pair of isomor-

phisms γ = (γX , γY ), and if under one (and hence every) such γ the
cone decomposition ΣΦH of PΦH is identified with a refinement of the
cone decomposition ΣΦ′H

of PΦ′H
. In this case, we say that the triple

(ΦH, δH,ΣΦH) is a refinement of the triple (Φ′H, δ
′
H,ΣΦ′H

) under the pair
of isomorphisms γ = (γX , γY ).

Definition 1.2.2.16. (See [62, Def. 6.4.2.2].) Let
Σ = {ΣΦH}[(ΦH,δH)] and Σ′ = {Σ′ΦH}[(ΦH,δH)] be two compatible choices
of admissible smooth rational polyhedral cone decomposition data for
MH. We say that Σ is a refinement of Σ′ if the triple (ΦH, δH,ΣΦH)
is a refinement of the triple (ΦH, δH,Σ

′
ΦH

), as in Definition 1.2.2.15,
for (ΦH, δH) running through all representatives of cusp labels.

Proposition 1.2.2.17. (See [62, Prop. 6.3.3.5 and 7.3.1.4].)

(1) A compatible choice Σ of admissible smooth rational polyhedral
cone decomposition data for MH, as in Definition 1.2.2.13,
exists. Moreover, we may assume that Σ is projective as in
Definition 1.2.2.14.

(2) Given any Σ and Σ′, we can find a common refinement for
them, which we may require to be smooth as in Definition
1.2.2.13, or both smooth and projective as in Definition
1.2.2.14. The same is true if we allow varying levels or twists
by Hecke actions (see [62, Def. 6.4.2.8 and 6.4.3.2]). We may
assume that this common refinement is invariant under any
choice of an open compact subgroup H′ of G(A∞) normalizing
H.

Proof. The first part has been explained in the proofs of [62,
Prop. 6.3.3.5 and 7.3.1.4], by induction on magnitudes of cusp labels
(i.e., by starting with cusp labels of smaller multiranks and building
cone decompositions and polarization functions along them, which ap-
pear as rational boundary components of homogeneous cones attached
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to cusp labels of larger multiranks). Based on such inductive construc-
tions (which builds the smaller dimensional cones first), the second
part can be reduced to questions over each PΦH (with prescribed cone
decompositions and polarization functions over PΦH −P+

ΦH
), which is

then well known. (See the arguments in [89, 5.21, 5.23, 5.24, 5.25],
where the crucial existence of smooth and projective refinements is in
turn based on [50, Ch. I, Sec. 2, proof of Thm. 11 on pp. 33–35].) �

Finally, we would like to describe the relations among the equiva-
lence classes [(ΦH, δH, σ)], which will describe the “incidence relations”
among (closures of) the toroidal boundary strata.

Definition 1.2.2.18. (See [62, Def. 6.3.2.13].) Let (ΦH, δH) be
a representative of a cusp label at level H, and let σ ⊂ P+

ΦH
be a

nondegenerate smooth rational polyhedral cone. We say that a triple
(Φ′H, δ

′
H, σ

′) is a face of (ΦH, δH, σ), if:

(1) (Φ′H, δ
′
H) is the representative of some cusp label at level H,

such that there exists a surjection s = (sX , sY ) : (ΦH, δH) �
(Φ′H, δ

′
H) as in Definition 1.2.1.17.

(2) σ′ ⊂ P+
Φ′H

is a nondegenerate smooth rational polyhedral cone,

such that for one (and hence every) surjection s = (sX , sY ) as
above, the image of σ′ under the induced embedding PΦ′H

↪→
PΦH is contained in the ΓΦH-orbit of a face of σ.

Note that this definition is insensitive to the choices of represen-
tatives in the classes [(ΦH, δH, σ)] and [(Φ′H, δ

′
H, σ

′)]. This justifies the
following:

Definition 1.2.2.19. (See [62, Def. 6.3.2.14].) We say that the
equivalence class [(Φ′H, δ

′
H, σ

′)] of (Φ′H, δ
′
H, σ

′) is a face of the equiv-
alence class [(ΦH, δH, σ)] of (ΦH, δH, σ) if some triple equivalent to
(Φ′H, δ

′
H, σ

′) is a face of some triple equivalent to (ΦH, δH, σ).

1.2.3. Rational Boundary Components. Now we explain how
to associate cusp labels with rational boundary components. This is
mainly for readers who are familiar with the notion of rational bound-
ary components of Hermitian symmetric domains. (See, for example,
the summaries in [5] or [9].)

Let X0 be the connected component of X containing h0, and let
G(R)0 (resp. G(Q)0) denote its stabilizer in G(R) (resp. G(Q)). Then
G(R)0 (resp. G(Q)0) has finite index in G(R) (resp. G(Q)).

Lemma 1.2.3.1. Let us fix a choice of an element g ∈ G(A∞). Let

L(g) denote the O-lattice in L⊗
Z
Q such that L(g)⊗

Z
Ẑ corresponds
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naturally to the O⊗
Z
Ẑ-submodule g(L⊗

Z
Ẑ) of L⊗

Z
A∞. Consider the

five sets formed respectively by the following five types of data on
(L, 〈 · , · 〉, h0):

(1) A rational boundary component of X0 (as in [5, 1.5]). (For
compatibility with formation of products, it is necessary to in-
clude X0 itself as a rational boundary component.)

(2) An O⊗
Z
Q-submodule V−2 of L⊗

Z
Q that is totally isotropic un-

der the pairing 〈 · , · 〉.
(3) An increasing filtration V = {V−i}i∈Z of L⊗

Z
Q satisfying the

following conditions:
(a) V−3 = 0 and V0 = L⊗

Z
Q.

(b) Each graded piece GrV−i := V−i/V−i−1 is an O⊗
Z
Q-module.

(In this case, the filtration V is admissible.)
(c) V−1 and V−2 are annihilators of each other under the pair-

ing 〈 · , · 〉. (In this case, the filtration V is symplectic.)

(4) An O-sublattice F
(g)
−2 of L(g), with L(g)/F

(g)
−2 torsion-free, that is

totally isotropic under the pairing 〈 · , · 〉.
(5) An increasing filtration F(g) = {F(g)

−i }i∈Z of L(g) satisfying the
following conditions:

(a) F
(g)
−3 = 0 and F

(g)
0 = L(g).

(b) Each graded piece GrF
(g)

−i := F
(g)
−i /F

(g)
−i−1 is an O-lattice,

admitting an splitting ε(g) : GrF
(g)

:= ⊕
−i∈Z

GrF
(g)

−i
∼→ L(g).

(In this case, the filtration F(g) is admissible.)

(c) F
(g)
−1 and F

(g)
−2 are annihilators of each other under the pair-

ing 〈 · , · 〉(g) : L(g)×L(g) → Z(1). (In this case, the filtra-
tion F(g) is symplectic.)

(We allow parabolic subgroups to be the whole group, and we allow to-
tally isotropic submodules to be zero.) Then the five sets are in canon-
ical bijections with each other.

Proof. As explained in [5, 1.5], the rational boundary compo-
nents of X0 correspond bijectively to the rational parabolic subgroups
of G⊗

Z
Q each of whose images in the Q-simple quotients of G⊗

Z
Q is

either a maximal proper parabolic subgroup or the whole group. For
simplicity, let us call temporarily such rational parabolic subgroups
maximal. Given any such rational parabolic subgroup of G⊗

Z
Q, the

action of the Lie algebra of its unipotent radical defines an isotropic
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filtration V of L⊗
Z
Q. By maximality of the parabolic subgroup, we see

that V is determined by its largest totally isotropic filtered piece. Now
the equivalences among the maximal rational parabolic subgroups and
the remaining objects in the lemma is elementary. �

For each g ∈ G(A∞), let L(g) denote the O-lattice in L⊗
Z
Q such

that L(g)⊗
Z
Ẑ corresponds naturally to the O⊗

Z
Ẑ-submodule g(L⊗

Z
Ẑ)

of L⊗
Z
A∞. Then the assignment

V−2 7→ V = {V−i}i∈Z
7→ F(g) := {F(g)

−i := V−i ∩L(g)}i∈Z
7→ Z(g) := {Z(g)

−i := g−1(F
(g)
−i ⊗

Z
Ẑ)}i∈Z

= {(g−1(V−i⊗
Q
A∞))∩(L⊗

Z
Ẑ)}i∈Z

(1.2.3.2)

defines an injection from the set of rational boundary components of
X0 to the set of fully symplectic admissible filtrations on L⊗

Z
Ẑ. (See

[62, Def. 5.2.7.1].)
The action of G(Q) on X×G(A∞) induces an action of G(Q) on

{V}×G(A∞).

Definition 1.2.3.3. A rational boundary component of X×G(A∞)
is a G(Q)-orbit of some pair (V, g).

By the explicit definition above, pairs in the G(Q)-orbit of (V, g)

define the same fully symplectic admissible filtration on L⊗
Z
Ẑ. This

induces a map from the set of rational boundary components of
X×G(A∞) to the set of fully symplectic admissible filtrations on

L⊗
Z
Ẑ. However, this map is generally far from injective.

For example, if u ∈ G(Ẑ) is an element preserving V−2,A∞ :=
V−2⊗

Q
A∞, then (V, g) and (V, gu) define the same filtration Z(g) = Z(gu).

For the purpose of studying toroidal compactifications, it is important
to distinguish between (V, g) and (V, gu) by supplying a rigidification
on the rational structure of V−2. For each given (V, g), let us define a

torus argument Φ(g) = (X(g), Y (g), φ(g), ϕ
(g)
−2, ϕ

(g)
0 ) for Z(g) as follows:

(1) X(g) := HomZ(F
(g)
−2,Z(1)) = HomZ(GrF

(g)

−2 ,Z(1)).

(2) Y (g) := GrF
(g)

0 = F
(g)
0 /F

(g)
−1.
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(3) φ(g) : Y (g) ↪→ X(g) is equivalent to the nondegenerate pairing

〈 · , · 〉(g)20 : GrF
(g)

−2 ×GrF
(g)

0 → Z(1)

induced by 〈 · , · 〉(g) : L(g)×L(g) → Z(1), with the sign con-

vention 〈x, y〉(g)20 = φ(g)(y)(x).

(4) ϕ
(g)
−2 : GrZ

(g)

−2
∼→ HomẐ(X(g)⊗

Z
Ẑ, Ẑ(1)) is the composition

GrZ
(g)

−2

Gr−2(g)
∼→ GrF

(g)

−2 ⊗
Z
Ẑ ∼→ HomẐ(X(g)⊗

Z
Ẑ, Ẑ(1)).

(5) ϕ
(g)
0 : GrZ

(g)

0
∼→ Y (g)⊗

Z
Ẑ is the composition

GrZ
(g)

0

Gr0(g)
∼→ GrF

(g)

0 ⊗
Z
Ẑ ∼→ Y (g)⊗

Z
Ẑ.

Finally, by Condition 1.2.1.1 and the fact that maximal orders over
Dedekind domains are hereditary ([93, Thm. 21.4 and Cor. 21.5]), for
each (V, g), the associated filtration F(g) of L(g) is split by some splitting

ε(g) : GrF
(g) ∼→ L(g). Each splitting ε(g) defines by base change a splitting

ε(g)⊗
Z
Ẑ : GrF

(g) ⊗
Z
Ẑ ∼→ L(g)⊗

Z
Ẑ = g(L⊗

Z
Ẑ), and hence by pre- and

post-composition with Gr(g) and g−1 a splitting δ(g) : GrZ
(g) ∼→ L⊗

Z
Ẑ.

This defines an assignment

(1.2.3.4) (V, g, ε(g)) 7→ (Z(g),Φ(g), δ(g)).

Let us define two triples (V, g, ε(g)) and (V′, g′, (ε(g))′) to be equivalent
if V = V′ and g = g′, and define two triples (Z,Φ, δ) and (Z′,Φ′, δ′) to be
equivalent if Z = Z′ and if the torus arguments Φ = (X, Y, φ, ϕ−2, ϕ0)
and Φ′ = (X ′, Y ′, φ′, ϕ′−2, ϕ

′
0) are equivalent in the sense that there ex-

ists some pair of isomorphisms (γX : X ′
∼→ X, γY : Y

∼→ Y ′) matching
the remaining data. By definition, the equivalence classes [(V, g, ε(g))]
of triples (V, g, ε(g)) correspond exactly to the pairs (V, g) they define
by forgetting the splitting ε(g). On the other hand, let us denote by
[(Z(g),Φ(g), δ(g))] the equivalence class defined by (Z(g),Φ(g), δ(g)), and
let us call them the cusp labels for (L, 〈 · , · 〉, h0).

Now we have the assignment (V, g) 7→ [(Z(g),Φ(g), δ(g))] induced by
the assignment (V, g, ε(g)) 7→ (Z(g),Φ(g), δ(g)). This assignment is still
not injective in general, but will suffice for our purpose.
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For each Q-algebra R, let us write V−i,R := V−i⊗
Q
R and GrV−i,R :=

V−i,R/V−i−1,R. Similarly, for each Z-algebra R, let us write F
(g)
−i,R :=

F
(g)
−i ⊗

Z
R and GrF

(g)

−i,R := F
(g)
−i,R/F

(g)
−i−1,R.

To each boundary component represented by (V, g), the
symplectic filtration V induces a symplectic lattice (GrV−1, 〈 · , · 〉11),

and the associated symplectic filtration F(g) on L(g) induces

a symplectic lattice (GrF
(g)

−1 , 〈 · , · 〉
(g)
11 ). It is clear that

(GrF
(g)

−1 ⊗
Z
Q, 〈 · , · 〉(g)11 ) ∼= (GrV−1, 〈 · , · 〉11).

Each h ∈ X defines a complex structure h(
√
−1) on L⊗

Z
R, inducing

an isomorphism L⊗
Z
R ∼→ Vh = (L⊗

Z
C)/Ph of C-vector spaces. Since

F
(g)
−2,R is totally isotropic, and since − sgn(h)

√
−1 〈 · , h(

√
−1) · 〉 is posi-

tive definite for some sgn(h) ∈ {±1}, we have F
(g)
−2,R ∩h(

√
−1)(F

(g)
−2,R) =

{0}. Then h defines a C-linear embedding F
(g)
−2,C ↪→ Vh, such that

the composition F
(g)
−2,R

h(
√
−1)→ L⊗

Z
R � GrF

(g)

0,R is an isomorphism of

O⊗
Z
R-modules. By abuse of notation, we shall denote the image of

the above embedding F
(g)
−2,C ↪→ Vh by F

(g)
−2,h(C). Let

(F
(g)
−2,h(C))

⊥ := {x ∈ L⊗
Z
R : 〈x, y〉 = 0,∀y ∈ F

(g)
−2,h(C)}.

Then we obtain an orthogonal direct sum

(L⊗
Z
R, 〈 · , · 〉)

∼= (F
(g)
−2,h(C), 〈 · , · 〉|F(g)

−2,h(C)

)
⊥
⊕((F

(g)
−2,h(C))

⊥, 〈 · , · 〉|
(F

(g)
−2,h(C)

)⊥
),

(1.2.3.5)

which induces an isomorphism

(1.2.3.6) ((F
(g)
−2,h(C))

⊥, 〈 · , · 〉|
(F

(g)
−2,h(C)

)⊥
)
∼→ (GrF

(g)

−1,R, 〈 · , · 〉
(g)
11,R)

of symplectic O⊗
Z
R-modules. Since h(

√
−1) preserves F

(g)
−2,h(C), the

relation

〈h(
√
−1)x, h(

√
−1)y〉 = 〈x, y〉

for every x, y ∈ L⊗
Z
R shows that h(

√
−1) also preserves (F

(g)
−2,h(C))

⊥.

As a result, the restriction of h(
√
−1) defines a complex structure on

(F
(g)
−2,h(C))

⊥, which corresponds via the isomorphism (1.2.3.6) (and [59,
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Lem. 2.1.2]) to a sgn(h)-polarization h−1 of (GrF
(g)

−1,R, 〈 · , · 〉
(g)
−1,R) (see

[59, Def. 2.1.1]), such that

((F
(g)
−2,h(C))

⊥, 〈 · , · 〉|
(F

(g)
−2,h(C)

)⊥
, h|

(F
(g)
−2,h(C)

)⊥
)

∼→ (GrF
(g)

−1,R, 〈 · , · 〉
(g)
11,R, h−1)

(1.2.3.7)

is an isomorphism of polarized symplectic O⊗
Z
R-modules. Hence, the

triple (GrF
(g)

−1 , 〈 · , · 〉
(g), h−1) is a PEL-typeO-lattice. (In particular, this

is the case for h = h0.)

Lemma 1.2.3.8. With notation as in [62, Rem. 5.2.7.2]
(with h there replaced with h0 here), the PEL-type O-lattice

(GrF
(g)

−1 , 〈 · , · 〉
(g), (h0)−1) qualifies as a (noncanonical) choice of

(LZ(g)
, 〈 · , · 〉Z(g)

, hZ
(g)

0 ), so that (GrZ
(g)

−1 , 〈 · , · 〉11) ∼= (GrF
(g)

−1,Ẑ, 〈 · , · 〉
(g)
11 )

and (GrZ
(g)

−1,R, 〈 · , · 〉
(g)
11,R, (h0)−1)

∼→ (GrF
(g)

−1,R, 〈 · , · 〉
(g)
11 , (h0)−1). (See

Remark 1.2.3.9 below for the justification of such notation.) In

particular, at any neat level H, the scheme M
Z

(g)
H
H can be identified with

the moduli problem defined by (GrF
(g)

−1 , 〈 · , · 〉
(g), (h0)−1) at a suitable

level (see Lemma 1.3.2.1 below).

Remark 1.2.3.9. The notation (h0)−1 appeared twice in the second
isomorphism in Lemma 1.2.3.8. Nevertheless, their constructions are

identical because we have to use F
(g)
−2,R = HomR(X(g)⊗

Z
R,R(1)) ↪→

L⊗
Z
R to define (h0)−1 for (GrZ

(g)

−1,R, 〈 · , · 〉
(g)
11,R) in [62, Prop. 5.1.2.2].

This is why we allow such an identification.

1.2.4. Parameters for Kuga Families. For the considerations
in Section 1.3.3, we would like to have parameter sets for the toroidal
compactifications there.

Let (O, ?, L, 〈 · , · 〉, h0) be an integral PEL datum as in Definition
1.1.1.1. By our running assumption that O satisfies 1.2.1.1, the action
of O on L extends to an action of some maximal order O′ in O⊗

Z
Q

containing O. Let us fix the choice of such a maximal order O′.
Let Q be an O-lattice. Consider Diff−1 = Diff−1

O/Z, the inverse dif-

ferent of O over Z [62, Def. 1.1.1.8] with its canonical left O-module
structure. Since the trace pairing Diff−1×O → Z : (y, x) 7→ TrO/Z(yx)
is perfect by definition, for each O-lattice Q, we may identify Q∨ :=
HomZ(Q,Z) with HomO(Q,Diff−1). By composition with the involu-

tion ? : O ∼→ Oop, the natural right action of O on Diff−1 induced a left
action of O on Diff−1, which commutes with the natural left action of
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O on Diff−1. Accordingly, the Z-module Q∨ is torsion-free and has a
canonical left O-structure induced by the right action of Oop on Diff−1

(and ? : O ∼→ Oop). In other words, Q∨ is an O-lattice. Then the trace
pairing induces a perfect pairing

〈 · , · 〉Q : Q∨×Q→ Z : (f, x) 7→ TrO/Z(f(x)).

For all b ∈ O, f ∈ Q∨, and x ∈ Q, we have

〈bf, x〉Q = TrO/Z(f(x)b?) = TrO/Z(b?f(x)) = TrO/Z(f(b?x)) = 〈f, b?x〉.

Lemma 1.2.4.1. (See [61, Lem. 2.5].) There exists an embedding

jQ : Q∨ ↪→ Q of O-lattices inducing an isomorphism jQ : Q∨⊗
Z
Q ∼→

Q⊗
Z
Q of O⊗

Z
Q-modules such that the pairing

〈j−1
Q ( · ), · 〉Q : (Q⊗

Z
R)×(Q⊗

Z
R)→ R

is positive definite.

Let jQ : Q∨ ↪→ Q be an embedding of O-lattices given by Lemma

1.2.4.1, and let (L̃, 〈 · , · 〉̃ , h̃0) be the symplectic O-lattice given by the
following data:

(1) An O-lattice

L̃ := Q−2⊕L⊕Q0,

where

Q−2 := HomO(Q,Diff−1
O′/Z(1)) ⊂ Q∨⊗

Z
Q(1)

has O′-module structure inherited from the two-sided ideal
Diff−1

O′/Z of O′, and where

Q0 := O′ ·Q ⊂ Q⊗
Z
Q.

(Then the perfect pairing 〈 · , · 〉Q : Q∨×Q → Z : (f, x) 7→
TrO/Z(f(x)) induces a perfect pairing 〈 · , · 〉Q : Q−2×Q0 →
Z(1), and L̃ satisfies Condition 1.2.1.1 by construction.)

(2) A symplectic O-pairing 〈 · , · 〉̃ : L̃× L̃ → Z(1) defined (sym-
bolically) by the matrix

〈x, y〉̃ := t

x−2

x−1

x0

 〈 · , · 〉Q
〈 · , · 〉

− t〈 · , · 〉Q

y−2

y−1

y0

 ,

namely by

〈x, y〉̃ := 〈x−2, y0〉Q + 〈x−1, y−1〉 − 〈y−2, x0〉Q,
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where x =

x−2

x−1

x0

 and y =

y−2

y−1

y0

 are elements of L̃ =

Q−2⊕L⊕Q0 expressed (vertically) in terms of components in
the direct summands.

(3) An R-algebra homomorphism h̃0 : C → EndO⊗
Z
R(L̃⊗

Z
R) de-

fined by

z = z1 +
√
−1 z2

7→ h̃0(z) :=

 z1 IdQ−2⊗
Z
R −z2((2π

√
−1) ◦ j−1

Q )

h0(z)
z2(jQ ◦ (2π

√
−1)−1) z1 IdQ0⊗

Z
R

 ,

where 2π
√
−1 : Z ∼→ Z(1) and (2π

√
−1)−1 : Z(1)

∼→ Z stand
for the isomorphisms defined by the choice of

√
−1 in C, and

where the matrix acts (symbolically) on elements x =

x−2

x−1

x0


of L̃⊗

Z
R by left multiplication. In other words,

h̃0(z)

x−2

x−1

x0

 =

 z1x−2 − z2((2π
√
−1) ◦ j−1

Q )(x0)
h0(z)x−1

z2(jQ ◦ (2π
√
−1)−1)(x−2) + z1x0

 .

Then h̃0 is a polarization of (L̃, 〈 · , · 〉̃ ) making (L̃, 〈 · , · 〉̃ , h̃0)
a PEL-type O-lattice. Note that the reflex field of

(L̃⊗
Z
R, 〈 · , · 〉̃ , h̃) is also F0.

Remark 1.2.4.2. If p is a good prime for (O, ?, L, 〈 · , · 〉, h0) as in

Definition 1.1.1.6, then it is also a good prime for (O, ?, L̃, 〈 · , · 〉̃ , h̃0).

By the construction of (L̃, 〈 · , · 〉̃ ), there is a fully symplectic ad-

missible filtration on L̃⊗
Z
Ẑ induced by

0 ⊂ Q−2 ⊂ Q−2⊕L ⊂ Q−2⊕L⊕Q0 = L̃.

More precisely, we have

Z̃−3 := 0, Z̃−2 := Q−2⊗
Z
Ẑ, Z̃−1 := (Q−2⊗

Z
Ẑ)⊕(L⊗

Z
Ẑ), and

Z̃0 := (Q−2⊗
Z
Ẑ)⊕(L⊗

Z
Ẑ)⊕(Q0⊗

Z
Ẑ) = L̃⊗

Z
Ẑ,
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so that there are canonical isomorphisms

GrZ̃−2
∼= Q−2⊗

Z
Ẑ, GrZ̃−1

∼= L⊗
Z
Ẑ, and GrZ̃0

∼= Q0⊗
Z
Ẑ

matching the pairings GrZ̃−2×GrZ̃0 → Ẑ(1) and GrZ̃−1×GrZ̃−1 → Ẑ(1)
induced by 〈 · , · 〉̃ with 〈 · , · 〉Q and 〈 · , · 〉, respectively.

Let X̃ := HomO(Q−2,Diff−1(1)) and Ỹ := Q0. The pairing 〈 · , · 〉Q :

Q−2×Q0 → Z(1) induces a canonical embedding φ̃ : Ỹ ↪→ X̃ and

there are canonical isomorphisms ϕ̃−2 : GrZ̃−2
∼→ HomẐ(X̃ ⊗

Z
Ẑ, Ẑ(1))

and ϕ̃0 : GrZ̃0
∼→ Ỹ ⊗

Z
Ẑ (of O⊗

Z
Ẑ-modules). These data define a torus

argument Φ̃ := (X̃, Ỹ , φ̃, ϕ̃−2, ϕ̃0) for Z̃ as in Definition 1.2.1.5.

Let δ̃ be the obvious splitting of Z̃ induced by the equality

Q−2⊕L⊕Q0 = L̃.

Let G̃ be the group functor defined by (L̃, 〈 · , · 〉̃ ) as in Defini-

tion 1.1.1.3, with the subgroup functor P̃Z̃ defined by Z̃ as in Defini-

tion 1.2.1.10, and quotients Z̃Z̃(R), ŨZ̃(R), Ũ2,Z̃(R), Ũ1,Z̃(R), G̃l,Z̃(R),

G̃′
l,Z̃

(R), P̃′
Z̃
(R), G̃1,Z̃(R), and G̃′

h,Z̃
(R) of subgroups of P̃Z̃(R) defined

for each Ẑ-algebra R as in Definition 1.2.1.11. Note that we have,
by Definition 1.2.1.9, a canonical isomorphism Gh,Z̃(R) ∼= G′

h,Z̃
(R) ∼=

(G⊗
Z
Ẑ)(R). Then we also define:

Definition 1.2.4.3. (1) Û(R) := Ũ1,Z̃(R) = ŨZ̃(R)/Ũ2,Z̃(R).

(2) Ĝ(R) := G̃1,Z̃(R) = P̃′
Z̃
(R)/Ũ2,Z̃(R), which is (under the split-

ting δ̃ above) isomorphic to (G n Û)(R) := G(R) n Û(R).

Definition 1.2.4.4. (Compare with Definition 1.2.1.12.) For each

open compact subgroup H̃ of G̃(Ẑ), we define H̃P̃Z̃
:= H̃ ∩ P̃Z̃(Ẑ),

H̃Z̃Z̃
:= H̃ ∩ Z̃Z̃(Ẑ), H̃G̃h,̃Z

:= H̃P̃Z̃
/H̃Z̃Z̃

, H̃ŨZ̃
:= H̃ ∩ ŨZ̃(Ẑ),

H̃Ũ2,̃Z
:= H̃ ∩ Ũ2,Z̃(Ẑ), H̃Ũ1,̃Z

:= H̃ŨZ̃
/H̃Ũ2,̃Z

, H̃G̃l,̃Z
:= H̃Z̃Z̃

/H̃ŨZ̃
,

H̃P̃′
Z̃

:= H̃ ∩ P̃′
Z̃
(Ẑ), H̃G̃1,̃Z

:= H̃P̃′
Z̃

/H̃Ũ2,̃Z
, H̃G̃′

h,̃Z

:= H̃P̃′
Z̃

/H̃ŨZ̃
, and

H̃G̃′
l,̃Z

:= H̃P̃Z̃
/H̃P̃′

Z̃

as in Definition 1.2.1.12, and define

(1) Ĥ := H̃Ĝ := H̃G̃1,̃Z
.

(2) ĤÛ := H̃Û := H̃Ũ1,̃Z
.

(3) ĤG := Ĥ/ĤÛ
∼= H̃G̃′

h,̃Z

.
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Then we have an exact sequence

(1.2.4.5) 1→ ĤÛ → Ĥ → ĤG → 1

compatible with the canonical exact sequence

(1.2.4.6) 1→ Û(Ẑ)→ Ĝ(Ẑ)→ G(Ẑ)→ 1.

We shall also extend this definition to the cases of Ẑp- or Zp-valued
groups above.

Let H be any open compact subgroup of G(Ẑ), and let H̃ be any

neat open compact subgroup of G̃(Ẑ) satisfying the following condition:

Condition 1.2.4.7. ĤG = GrZ̃−1(H̃P̃′
Z̃

) = GrZ̃−1(H̃P̃Z̃
) ⊂ H. (The

first equality is just the definition, while the second equality is the es-

sential condition. Then GrZ̃−1(H̃P̃Z̃
) is a direct factor of H̃P̃Z̃

/H̃ŨZ̃
.)

For later purposes, we define two more conditions on such H̃, or

rather on Ĥ:

Condition 1.2.4.8. ĤG = H. (Then Condition 1.2.4.7 is redun-

dant, because we always have ĤG = GrZ̃−1(H̃P̃′
Z̃

) ⊂ GrZ̃−1(H̃P̃Z̃
) ⊂ H.)

Condition 1.2.4.9. The splitting δ̃ defines a (group-theoretic) split-

ting of the sequence (1.2.4.6) and induces an isomorphism Ĝ(Ẑ) ∼=
G(Ẑ)n Û(Ẑ), which also defines a (group-theoretic) splitting of the se-

quence (1.2.4.5) and induces an isomorphism Ĥ ∼= H n ĤÛ. (This

condition is equivalent to the condition that the splitting G(Ẑ)→ Ĝ(Ẑ)

defined by δ̃ maps H to Ĥ.)

Remark 1.2.4.10. For each H, there exists H̃ satisfying these con-
ditions, because the pairing 〈 · , · 〉̃ is the direct sum of the pairings on
Q−2⊕Q0 and on L.

Let (Z̃, Φ̃, δ̃) be defined as above, which induces a representative

(Z̃H̃, Φ̃H̃ = (X̃, Ỹ , φ̃, ϕ̃−2,H̃, ϕ̃0,H̃), δ̃H̃) of a cusp label [(Z̃H̃, Φ̃H̃, δ̃H̃)] at

level H̃. Let Σ̃ be any compatible choice of admissible smooth rational

polyhedral cone decomposition data for M̃H̃ that is projective (see Def-
initions 1.2.2.13 and 1.2.2.14). Let σ̃ ⊂ P+

Φ̃H̃
be any top-dimensional

nondegenerate rational polyhedral cone in the cone decomposition Σ̃Φ̃H̃

in Σ̃.

Definition 1.2.4.11. (1) K̃++
Q,H is the set of all triples κ̃ =

(H̃, Σ̃, σ̃) as above (such that H̃ satisfies Condition 1.2.4.7).
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(2) K̃+
Q,H is the subset of K̃++

Q,H consisting of elements

κ̃ = (H̃, Σ̃, σ̃) such that H̃ satisfies Condition 1.2.4.8.

(3) K̃Q,H is the subset of K̃+
Q,H consisting of elements

κ̃ = (H̃, Σ̃, σ̃) such that H̃ also satisfies Condition 1.2.4.9.

The equivalence classes [(Φ̆H̃, δ̆H̃, τ̆)] having [(Φ̃H̃, δ̃H̃, σ̃)] as a face

(as in Definition 1.2.2.19) are H̃-orbits of data of the following form:

(1) A fully symplectic admissible filtration Z̆ = {Z̆−i} on L̃⊗
Z
Ẑ

satisfying

(1.2.4.12) Z̃−2 ⊂ Z̆−2 ⊂ Z̆−1 ⊂ Z̃−1.

Each such filtration Z̆ induces a fully symplectic admissible
filtration Z = {Z−i} on L⊗

Z
Ẑ by Z−2 := Z̆−2/Z̃−2 and Z−1 :=

Z̆−1/Z̃−2, so that there is a canonical isomorphism

(1.2.4.13) Z0/Z−1
∼= Z̃−1/Z̆−1.

Conversely, each fully symplectic admissible filtration Z on
L⊗

Z
Ẑ induces a fully symplectic admissible filtration Z̆ on

L̃⊗
Z
Ẑ satisfying (1.2.4.12) and (1.2.4.13).

(2) A torus argument Φ̆ = (X̆, Y̆ , φ̆, ϕ̆−2, ϕ̆0) for Z̆ (as in Definition

1.2.1.5), together with admissible surjections sX̆ : X̆ � X̃

and sY̆ : Y̆ � Ỹ satisfying sX̆ φ̆ = φ̃sY̆ and other natural
compatibilities with ϕ̆−2, ϕ̆0, ϕ̃−2, and ϕ̃0. (See Definitions
1.2.1.16, 1.2.1.17, and 1.2.1.18.)

Any Φ̆, sX̆ , and sY̆ determine a torus argument
Φ = (X, Y, φ, ϕ−2, ϕ0) for Z by X := ker(sX̆), Y := ker(sY̆ ),

and φ := φ̆|Y , so that there is a commutative diagram

(1.2.4.14) 0 // Y //

φ

��

Y̆
sY̆
//

φ̆
��

Ỹ //

φ̃
��

0

0 // X // X̆ sX̆
// X̃ // 0

whose horizontal rows are exact sequences.
(3) The existence of some splitting δ̆ of Z̆, inducing some liftable

splitting δ̆H̃ defining the representative (Z̆H̃, Φ̆H̃, δ̆H̃) of cusp

label [(Z̆H̃, Φ̆H̃, δ̆H̃)] at level H̃.
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Given the splitting δ̃, the existence of some splitting δ̆ is
equivalent to the existence of some splitting δ of Z. Then, for
forming compatible orbits, we have the following

Lemma 1.2.4.15. There is a canonical assignment from the

set of cusp labels [(Z̆H̃, Φ̆H̃, δ̆H̃)] at level H̃ admitting a surjec-

tion to [(Z̃H̃, Φ̃H̃, δ̃H̃)], to the set of cusp labels [(ZH,ΦH, δH)] at
level H. This assignment is bijective if we assume Condition

1.2.4.8, so that, in particular, GrZ̃−1(H̃P̃Z̃
) = H; and is still

surjective if we only assume GrZ̃−1(H̃P̃Z̃
) ⊂ H.

By definition, we have the following:

Lemma 1.2.4.16. With the fixed choice of (Z̃, Φ̃, δ̃) repre-

senting the cusp label [(Z̃H̃, Φ̃H̃, δ̃H̃)] at level H̃, the choices

of representatives (Z̆, Φ̆, δ̆) of the cusp label [(Z̆H̃, Φ̆H̃, δ̆H̃)] that

are compatible with (Z̃, Φ̃, δ̃) as above form an Ĥ-orbit up to
equivalence.

Therefore, it makes sense to have the following:

Definition 1.2.4.17. We shall denote any Ĥ-orbit as in
Lemma 1.2.4.16 by (Z̆Ĥ, Φ̆Ĥ = (X̆, Y̆ , φ̆, ϕ̆−2,Ĥ, ϕ̆0,Ĥ), δ̆Ĥ), and

denote its (well-defined) equivalence class by [(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)].

We say in this case that Φ̆Ĥ is a torus argument for Z̆Ĥ at

level Ĥ. We can generalize all notions for cusp labels for MH
to the context here, and consider a cusp label [(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)] at

level Ĥ for (L̃, 〈 · , · 〉̃ , h̃0, Z̃) (see Definition 1.2.1.7 and [62,
Def. 5.4.2.1, 5.4.2.2, and 5.4.2.4]). We shall replace the sub-

scripts “Φ̆H̃” with “Φ̆Ĥ” in the notation for objects depending

only on the Ĥ-orbit of Φ̆.

(4) Let ΦH (resp. Φ̆H̃) be the torus argument for ZH (resp. Z̃H̃)

at level H (resp. H̃) induced by Φ (resp. Φ̆). Then (1.2.4.14)
induces morphisms

(1.2.4.18) SΦH ↪→ SΦ̆H̃
� SΦ̃H̃

,

where the first morphism is canonical, and where the second
morphism is defined by sX̆ and sY̆ , whose composition is zero.
(In general, the morphisms in (1.2.4.18) do not form an exact
sequence.)
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The dual of (1.2.4.18) defines morphisms

(1.2.4.19) (SΦ̃H̃
)∨R ↪→ (SΦ̆H̃

)∨R � (SΦH)∨R,

where the first morphism is defined by sX̆ and sY̆ , and where
the second morphism is canonical, whose composition is zero,
inducing morphisms

(1.2.4.20) P+

Φ̃H̃
↪→ PΦ̆H̃

� PΦH .

Then τ̆ ⊂ P+

Φ̆Ĥ
is a cone in the cone decomposition Σ̃Φ̆H̃

having a face σ̆ that is a ΓΦ̆H̃
-translation (see Definition

1.2.2.3) of the image of σ̃ ⊂ P+

Φ̃H̃
under the first morphism in

(1.2.4.20).

Without loss of generality, let us set σ̆ to be the image of σ̃ ⊂ P+

Φ̃H̃
under the first morphism in (1.2.4.20), and consider the following:

Definition 1.2.4.21. (1) Σ̃Φ̆Ĥ,σ̆
= Σ̃Φ̆H̃,σ̆

(resp.

Σ̃+

Φ̆Ĥ,σ̆
= Σ̃+

Φ̆H̃,σ̆
) is the subset of Σ̃Φ̆H̃

consisting of

cones τ̆ ⊂ PΦ̆H̃
(resp. τ̆ ⊂ P+

Φ̆H̃
) having σ̆ (not just a

ΓΦ̆H̃
-translation) as a face.

(2) ΓΦ̆H̃,ΦH
is the subgroup of ΓΦ̆H̃

stabilizing (both) X and Y .

(3) ΓΦ̆H̃,ΦH,σ̆
is the subgroup of ΓΦ̆H̃,ΦH

stabilizing σ̆.

(4) ΓΦ̆Ĥ
is the kernel of the canonical homomorphism ΓΦ̆H̃,ΦH

→
ΓΦ̃H̃

(induced by sX̆ and sY̆ ).

(5) ΓΦ̆Ĥ,ΦH
is the kernel of the canonical homomorphism

ΓΦ̆H̃,ΦH
→ ΓΦH ×ΓΦ̃H̃

, which coincides with the kernel of the

canonical homomorphism ΓΦ̆Ĥ
→ ΓΦH.

By definition, we have the following compatible exact sequences

(1.2.4.22) 1→ ΓΦ̆Ĥ,ΦH
→ ΓΦ̆H̃,ΦH

→ ΓΦH ×ΓΦ̃H̃

and

(1.2.4.23) 1→ ΓΦ̆Ĥ,ΦH
→ ΓΦ̆Ĥ

→ ΓΦH .

Remark 1.2.4.24. The notation of ΓΦ̆Ĥ
and ΓΦ̆Ĥ,ΦH

in Definition

1.2.4.21 is justified because the subgroups ΓΦ̆Ĥ
and ΓΦ̆Ĥ,ΦH

of ΓΦ̆H̃
de-

pend only on the group Ĥ determined by H̃.

Lemma 1.2.4.25. The subgroups ΓΦ̆H̃,ΦH,σ̆
and ΓΦ̆Ĥ

of ΓΦ̆H̃,ΦH
are

identical.
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Proof. This is because the image of ΓΦ̆H̃,ΦH,σ̆
in ΓΦ̃H̃

is ΓΦ̃H̃,σ̃
,

which is trivial by Conditions 1.2.2.9 and [62, Lem. 6.2.5.27]. �

Corollary 1.2.4.26. For choosing representatives (Φ̆H̃, δ̆H̃, τ̆) of

equivalence classes [(Φ̆H̃, δ̆H̃, τ̆)] having [(Φ̃H̃, δ̃H̃, σ̃)] as a face (as

above), for any given choices of Z̆, Φ̆, sX̆ , sY̆ , and δ̆ (compatible with

Z̃, Φ̃, and δ̃), it suffices to take one τ̆ from each ΓΦ̆Ĥ
-orbit in Σ̃+

Φ̆Ĥ,σ̆
.

Proof. This follows from the above review on equivalence classes

[(Φ̆H̃, δ̆H̃, τ̆)] having [(Φ̃H̃, δ̃H̃, σ̃)] as a face, from the very definitions of

ΓΦ̆H̃,ΦH,σ̆
and Σ̃+

Φ̆Ĥ,σ̆
, and from Lemma 1.2.4.25. �

Lemma 1.2.4.27. The surjections sX̆ : X̆ � X̃ and sY̆ : Y̆ � Ỹ

identify ΓΦ̆Ĥ,ΦH
as a finite index subgroup of HomO(X̃,X), whose ele-

ments map φ̃(Ỹ ) to φ(Y ), by sending each element (γX̆ , γY̆ ) ∈ ΓΦ̆Ĥ,ΦH

to the element in HomO(X̃,X) induced by γX̆ − IdX̆ : X̆ → X (which
contains X in its kernel).

Proof. The homomorphism from ΓΦ̆Ĥ,ΦH
to HomO(X̃,X) defined

in the statement of this lemma is injective because γX̆ − IdX̆ = 0

exactly when γX̆ = IdX̆ . The element in HomO(X̃,X) induced by

γX̆ − IdX̆ maps φ̃(Ỹ ) to φ(Y ) because its restriction to φ̃(Ỹ ) defines

the element in HomO(Ỹ , Y ) induced by γY̆ − IdY̆ . Conversely, any

element fX̆ ∈ HomO(X̃,X) induces an element γX̆ ∈ GLO(X̆) with
image in X by setting γX̆ = IdX̆ +sX̆ ◦ fX̆ , any element also mapping

φ̃(Ỹ ) to φ(Y ) induces an element γY̆ ∈ GLO(Y̆ ) with image in Y̆ by

setting γY̆ = IdY̆ +sY̆ ◦ fY̆ , where fY̆ ∈ HomO(Ỹ , Y ) is induced by

fX̆ , φ̃, and φ. Since a sufficiently divisible multiple of any element of

HomO(X̃,X) maps φ̃(Ỹ ) to φ(Y ), and since a sufficiently high power
of the element (γX̆ , γY̆ ) defined as above has trivial reduction modulo
any prescribed integer (which means it can be made to be contained
in ΓΦ̆H̃,ΦH

), the recipe in the lemma identifies ΓΦ̆Ĥ,ΦH
as a finite index

subgroup of HomO(X̃,X), as desired. �

Remark 1.2.4.28. This group ΓΦ̆Ĥ,ΦH
here is the replacement of

the group ΓΦ̃H̃,ΦH
in [61, Sec. 4A], which was incorrectly defined. (The

rest of the arguments in [61] can be fixed with ΓΦ̃H̃,ΦH
there replaced

with the group ΓΦ̆Ĥ,ΦH
here.)
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Definition 1.2.4.29. We shall denote the kernel of the second mor-

phism in (1.2.4.18) by ŜΦ̆Ĥ
, so that the first morphism in (1.2.4.19)

induces a canonical isomorphism

(1.2.4.30) (ŜΦ̆Ĥ
)∨R
∼= (SΦ̆H̃

)∨R/(SΦ̃H̃
)∨R.

By choosing some (noncanonical) splitting of sX̆ ⊗Z
Q : X̆ ⊗

Z
Q �

X̃ ⊗
Z
Q (over Q), we can decompose the real vector space (SΦ̆H̃

)∨R (non-

canonically) as a direct sum

(1.2.4.31) (SΦ̃H̃
)∨R⊕(ΓΦ̆Ĥ,ΦH

)∨R⊕(SΦH)∨R

(defined over Q), on which the action of ΓΦ̆Ĥ,ΦH
is realized by its canon-

ical translation action on the second factor. In particular, such a (non-
canonical) splitting defines a projection

pr(ŜΦ̆Ĥ
)∨R

: (SΦ̆H̃
)∨R → (ΓΦ̆Ĥ,ΦH

)∨R⊕(SΦH)∨R
∼= (ŜΦ̆Ĥ

)∨R

(x, y, z) 7→ (y, z)
(1.2.4.32)

(the intermediate morphisms are defined over Q, while the whole com-
position is defined over Z and independent of the choices of splittings,
by Definition 1.2.4.29). Let

(1.2.4.33) P̂Φ̆Ĥ
:= pr(ŜΦ̆Ĥ

)∨R
(PΦ̆H̃

)

and

(1.2.4.34) P̂+

Φ̆Ĥ
:= pr(ŜΦ̆Ĥ

)∨R
(P+

Φ̆H̃
).

Lemma 1.2.4.35. The canonical morphisms PΦ̆H̃
� PΦH and

P+

Φ̆H̃
� P+

ΦH
(induced by the second morphism in (1.2.4.20)) factor

through the canonical morphism pr(ŜΦ̆Ĥ
)∨R

in (1.2.4.32) and induce

canonical morphisms

(1.2.4.36) P̂Φ̆Ĥ
� PΦH

and

(1.2.4.37) P̂+

Φ̆Ĥ
� P+

ΦH
,

respectively.

Proof. This is because the second morphism in (1.2.4.20) is un-
changed under translation by an element of (SΦ̃H̃

)∨R. �
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Lemma 1.2.4.38. Under the projection pr(ŜΦ̆Ĥ
)∨R

in (1.2.4.32), the

image pr(ŜΦ̆Ĥ
)∨R

(τ̆) of each τ̆ in Σ̃Φ̆H̃,σ̆
(resp. Σ̃+

Φ̆H̃,σ̆
) is a nondegenerate

rational polyhedral cone in P̂Φ̆Ĥ
(resp. P̂+

Φ̆Ĥ
).

Proof. Since σ̃ is a (nondegenerate) top-dimensional smooth
rational polyhedral cone in P+

Φ̃H̃
, we can find a minimal subset

{v1, . . . , vr} of (SΦ̆H̃
)∨R such that σ̆ = R>0v1 + · · · + R>0vr and

Rv1 + · · · + Rvr = (SΦ̃H̃
)∨R (which we view as a subset of (SΦ̆H̃

)∨R).

Then, for each τ̆ ∈ Σ̃Φ̆H̃,σ̆
(which has σ̆ as a face), there is a minimal

subset {vr+1, . . . , vr+s} of (SΦ̆H̃
)∨R such that

τ̆ = R>0v1 + · · ·+ R>0vr + R>0vr+1 + · · ·+ R>0vr+s.

Moreover, we can write each x in the closure τ̆ of τ̆ as x = c1v1 +
· · ·+ cr+svr+s, where the coordinates (c1, . . . , cr+s) ∈ Rr+s

≥0 are uniquely
determined by x.

Suppose there are x = c1v1 + · · · + cr+svr+s and y = d1v1 + · · · +
dr+svr+s in τ̆ such that pr(ŜΦ̆Ĥ

)∨R
(x) + pr(ŜΦ̆Ĥ

)∨R
(y) = 0. Then x + y =

e1v1 + · · ·+ ervr for some e1, . . . , er ∈ R, because {v1, . . . , vr} spans the
kernel (SΦ̃H̃

)∨R of pr(ŜΦ̆Ĥ
)∨R

. By choosing e ∈ R≥0 such that e+ei ≥ 0 for

all 1 ≤ i ≤ r, we obtain an identity of elements x+y+(ev1+· · ·+evr) =
(e + e1)v1 + · · · + (e + er)vr in τ̆ , and the nonnegative coordinates of
both sides must coincide because of the choices of v1, . . . vr+s. Hence,
we must have cr+1 = · · · = cr+s = 0 and dr+1 = · · · = dr+s = 0 (because
they are nonnegative). Thus, the image pr(ŜΦ̆Ĥ

)∨R
(τ̆) of τ̆ cannot contain

any nonzero R-vector subspace; that is, it is a nondegenerate rational

polyhedral cone in P̂Φ̆Ĥ
(see (1.2.4.33)). If τ̆ ∈ Σ̃+

Φ̆H̃,σ̆
, then (ŜΦ̆Ĥ

)∨R is

contained in P̂+

Φ̆Ĥ
(see (1.2.4.34)). �

Lemma 1.2.4.39. There exists a continuous section

x̃0 : (ΓΦ̆Ĥ,ΦH
)∨R⊕(SΦH)∨R → (SΦ̃H̃

)∨R⊕(ΓΦ̆Ĥ,ΦH
)∨R⊕(SΦH)∨R

(y, z) 7→ (x0(y, z), y, z)

such that (x̃0 ◦ pr(ŜΦ̆Ĥ
)∨R

)(τ̆) ⊂ τ̆ for all τ̆ ∈ Σ̃Φ̆H̃,σ̆
.

Proof. Let {v1, . . . , vr} be as in the proof of Lemma 1.2.4.38.
Then we can write the desired function x0(y, z) as

x0(y, z) = x0,1(y, z) v1 + x0,2(y, z) v2 + · · ·+ x0,r(y, z) vr,
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where each x0,j( · , · ) is a R-valued continuous function on

(ΓΦ̆Ĥ,ΦH
)∨R⊕(SΦH)∨R. For each τ̆ ∈ Σ̃Φ̆H̃,σ̆

, let {vr+1, . . . , vr+s} be as

in the proof of Lemma 1.2.4.38. For each i = r + 1, . . . , r + s, let
wi = pr(ŜΦ̆Ĥ

)∨R
(vi) and write w′i := vi − (0, wi) as a linear combination

w′i = ci1v1 + ci2v2 + · · · + cirvr, where ci1, . . . , cir ∈ R. By taking
xτ̆0(y, z) = xτ̆0,1(y, z) v1 + xτ̆0,2(y, z) v2 + · · · + xτ̆0,r(y, z) vr to be
linear on R≥0wr+1 + · · · + R≥0wr+s and zero elsewhere, and by
taking xτ̆0,j(y, z) to satisfy xτ̆0,j(wi) > cij for all i and j, we have

(xτ̆0(wi), wi) = (xτ̆0(wi)−w′i, 0, 0) + (w′i, wi) ∈ σ̆+ vi for all i, and hence
x̃τ̆0(y, z) := (xτ̆0(y, z), y, z) satisfies (x̃τ̆0 ◦ pr(ŜΦ̆Ĥ

)∨R
)(τ̆) ⊂ τ̆ . The same

is true if we replace each xτ̆0,j(y, z) with a function with (pointwise)

greater value. If τ̆ and τ̆ ′ are cones in Σ̃Φ̆H̃,σ̆
meeting some fiber of

pr(ŜΦ̆Ĥ
)∨R

above (y, z) ∈ (ΓΦ̆Ĥ,ΦH
)∨R⊕(SΦH)∨R, then the above argument

shows that there exists some v ∈ τ̆ such that v + (0, y, z) ∈ τ̆ ∩ τ̆ ′,
forcing τ̆ = τ̆ ′. Hence, there is at most one τ̆ in Σ̃Φ̆H̃,σ̆

meeting each

fiber of pr(ŜΦ̆Ĥ
)∨R

, and so we can take x0,j(y, z) to be any continuous

function (pointwise) greater than xτ̆0,j for all τ̆ ∈ Σ̃Φ̆H̃,σ̆
. Then we have

(x̃0 ◦ pr(ŜΦ̆Ĥ
)∨R

)(τ̆) ⊂ τ̆ for all τ̆ ∈ Σ̃Φ̆H̃,σ̆
, as desired. �

Corollary 1.2.4.40. The set

Σ̂Φ̆Ĥ
= {pr(ŜΦ̆Ĥ

)∨R
(τ̆)}τ̆∈Σ̃Φ̆H̃,σ̆

of rational polyhedral cones defines a ΓΦ̆Ĥ
-admissible rational poly-

hedral cone decomposition (cf. Definition 1.2.2.4) of

(1.2.4.41) P̂Φ̆Ĥ
= pr(ŜΦ̆Ĥ

)∨R
(PΦ̆H̃

) = ∪
τ̆∈Σ̃Φ̆H̃,σ̆

(
pr(ŜΦ̆Ĥ

)∨R
(τ̆)
)

in the sense that we have the following:

(1) Each pr(ŜΦ̆Ĥ
)∨R

(τ̆) is a nondegenerate rational polyhedral cone.

(2) The union (1.2.4.41) is disjoint and defines a stratification of

P̂Φ̆Ĥ
.

(3) Σ̂Φ̆Ĥ
is invariant under the action of ΓΦ̆Ĥ

in the sense that

ΓΦ̆Ĥ
permutes the cones in it. Under this action, the set of

ΓΦ̆Ĥ
-orbits is finite.

Proof. Statement (1) is Lemma 1.2.4.38. As for statement (2),

suppose w ∈ pr(ŜΦ̆Ĥ
)∨R

(τ̆)∩ pr(ŜΦ̆Ĥ
)∨R

(τ̆ ′) 6= ∅ for some τ̆ , τ̆ ′ ∈ Σ̃Φ̆H̃,σ̆
.
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Then it was shown in the proof of Lemma 1.2.4.39 that τ̆ = τ̆ ′. (Al-
ternatively, any continuous section x̃0 as in the statement of Lemma
1.2.4.39 defines an element x̃0(w) ∈ τ̆ ∩ τ̆ ′, forcing that τ̆ = τ̆ ′.) Hence,
the union (1.2.4.41) is disjoint. Consequently, the incidence relations

in {pr(ŜΦ̆Ĥ
)∨R

(τ̆)}τ̆∈Σ̃Φ̆H̃,σ̆
inherits exactly those in Σ̃Φ̆H̃,σ̆

, and hence the

union (1.2.4.41) defines a stratification (cf. (1) of Definition 1). Finally,
statement (3) follows from the corresponding statement that ΓΦ̆Ĥ

acts

on Σ̃Φ̆H̃,σ̆
with a finite number of orbits (cf. Corollary 1.2.4.26). �

When only Σ̂Φ̆Ĥ
is relevant in the context, we shall denote elements

pr(ŜΦ̆Ĥ
)∨R

(τ̆) ∈ Σ̂Φ̆Ĥ
by τ̂ , without reference to the original Σ̃Φ̆H̃,σ̆

.

Lemma 1.2.4.42. The collection Σ̂ = {Σ̂Φ̆Ĥ
}[(Φ̆Ĥ,δ̆Ĥ)], where

[(Φ̆Ĥ, δ̆Ĥ)] runs through cusp labels at level Ĥ for (L̃, 〈 · , · 〉̃ , h̃0, Z̃)

(i.e., equivalence classes of Ĥ-orbits of representatives (Φ̆, δ̆)

compatible with (Φ̃, δ̃) as in Definition 1.2.4.17, with Z̆ and Z̃

suppressed in the notation), defines a compatible choice of
admissible smooth rational polyhedral cone decomposition
data analogous to the notion for MH in Definition 1.2.2.13. There is
an obvious notion of refinements for such collections, analogous to
that in [62, Def. 6.4.2.8].

Then we can also talk about equivalence classes [(Φ̆Ĥ, δ̆Ĥ, τ̂)] and
their facial relations as in Definitions 1.2.2.10 and 1.2.2.19, and their
refinements as in [62, Def. 6.4.3.1].

Proof. This follows from the corresponding facts for

Σ̃ = {Σ̃Φ̆H̃
}[(Φ̆H̃,δ̆H̃)] (with indices running through all cusp labels). �

Remark 1.2.4.43. Here we omit the precise definition of a compati-
ble choice of admissible smooth rational polyhedral cone decomposition
data because we can only construct toroidal compactifications of Kuga

families for those Σ̂ defined by some Σ̃ and σ̃.

Definition 1.2.4.44. We say that two κ̃1 and κ̃2 in K̃++
Q,H (see Def-

inition 1.2.4.11) are equivalent if they determine the same κ = (Ĥ, Σ̂).
In this case, we shall abusively write κ = [κ̃1] = [κ̃2]. Then we

take K++
Q,H to be the set of all such κ = (Ĥ, Σ̂), with a partial order

κ′ = (Ĥ′, Σ̂′) � κ = (Ĥ, Σ̂) when Ĥ′ ⊂ Ĥ′ and when Σ̂′ is a refinement

of Σ̂ (see Definition 1.2.4.42). We also take the subset K+
Q,H (resp.

KQ,H) of K++
Q,H to be the image of the subset K̃+

Q,H (resp. K̃Q,H) of
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K̃++
Q,H under the canonical surjection K̃++

Q,H � K++
Q,H, with an induced

partial order denoted by the same symbol �.

Lemma 1.2.4.45. Every neat open compact subgroup Ĥ of G(Ẑ) is

induced by some neat open compact subgroup H̃ of G̃(Ẑ) as in Definition

1.2.4.4. Moreover, we may assume that H̃ satisfies Condition 1.2.4.7.

Proof. Consider any integer n ≥ 3 such that Ũ(n)Ĝ ⊂ Ĥ.

Consider the preimage Ĥ+ of Ĥ under the canonical homomorphism

P̃′
Z̃
(Ẑ) � P̃′

Z̃
(Ẑ)/Ũ2,Z̃(Ẑ). Then H̃ := Ĥ+Ũ(n) induces Ĥ as in

Definition 1.2.4.4, and satisfies Condition 1.2.4.7. Since elements of

Ũ2,Z̃(Ẑ) are unipotent, the elements in Ĥ+ and Ĥ have the same

eigenvalues (up to multiplicity). Since the elements of H̃ = Ĥ+Ũ(n)

are congruent to elements of Ĥ+ modulo n by definition, H̃ is neat by
definition (see [89, 0.6] or [62, Def. 1.4.1.8]), and by Serre’s lemma
that no nontrivial root of unity can be congruent to 1 modulo n if
n ≥ 3. �

Lemma 1.2.4.46. For each neat open compact subgroup Ĥ of G(Ẑ),

there exists some element κ = (Ĥ, Σ̂) ∈ K++
Q,H, which lies in K+

Q,H

(resp. KQ,H) if Ĥ satisfies Condition 1.2.4.8 (resp. both Conditions
1.2.4.8 and 1.2.4.9).

Proof. By Lemma 1.2.4.45, Ĥ is induced by some neat H̃ as in
Definition 1.2.4.4, which we assume to also satisfy Condition 1.2.4.7.

By Proposition 1.2.2.17, there exists some compatible choice Σ̃ for M̃H̃.

Let us take Σ̂ to be induced by Σ̃ as in Lemma 1.2.4.42, and take

κ = (Ĥ, Σ̂). Then, by definition, we have κ ∈ K++
Q,H. The remaining

statements of the lemma also follow by definition. �

Lemma 1.2.4.47. The partial order � among elements in K++
Q,H

(resp. K+
Q,H, resp. KQ,H) is directed; that is, if we are given two

κ = (Ĥ, Σ̂) and κ′ = (Ĥ′, Σ̂′), then there exists some κ′′ = (Ĥ′′, Σ̂′′)
such that κ′′ � κ and κ′′ � κ′. Moreover, we can take Ĥ′′ to be any

open compact subgroup of Ĥ ∩ Ĥ′ (which can be Ĥ ∩ Ĥ′ itself).

Proof. Let us begin with the set K++
Q,H.

Suppose κ = (Ĥ, Σ̂) = [(H̃, Σ̃, σ̃)] and κ′ = (Ĥ′, Σ̂′) = [(H̃′, Σ̃′, σ̃′)]
are in K++

Q,H, where (H̃, Σ̃, σ̃) and (H̃′, Σ̃′, σ̃′) are in K̃++
Q,H, so that

Ĥ = H̃Ĝ and Ĥ′ = H̃′
Ĝ

. Let Ĥ′′ be any open compact subgroup of

Ĥ ∩ Ĥ′ (which can be Ĥ ∩ Ĥ′ itself). Then, as in the proof of Lemma
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1.2.4.45, by choosing some integer n ≥ 3 such that Ũ(n)Ĝ ⊂ Ĥ′′ and

Ũ(n) ⊂ H̃∩ H̃′, and by taking Ĥ′′,+ to be the preimage of Ĥ′′ un-

der the canonical homomorphism P̃′
Z̃
(Ẑ) � P̃′

Z̃
(Ẑ)/Ũ2,Z̃(Ẑ), we obtain

a neat open compact subgroup H̃′′ = Ũ(n)Ĥ′′,+ of H̃ ∩ H̃′ satisfying

Condition 1.2.4.7 (with H̃′′
Ĝ

= Ĥ′′).
Let Σ̂(Ĥ′′) (resp. Σ̂′,(Ĥ

′′)) denote the collection induced by Σ̂ (resp.

Σ̂′) at level Ĥ′′, as in [62, Constr. 7.3.1.6]. By definition, it is also

induced by the collection Σ̃(H̃′′) (resp. Σ̃′,(H̃
′′)) induced by Σ̃ (resp. Σ̃′)

at level H̃′′. Let Σ̂
′′,pre be any common refinement of both Σ̂(Ĥ′′) and

Σ̂′,(Ĥ
′′) (which might not be determined by some (H̃′′, Σ̃′′, σ̃′′) in K̃++

Q,H).

The refinement Σ̂
′′,pre of Σ̂(Ĥ′′) defines (by taking preimages) certain

subdivisions of cones in (the cone decompositions in) Σ̃(H̃′′), which can

be further subdivided into a projective smooth refinement Σ̃′′ of Σ̃(H̃′′).

Let σ̃′′ be a top-dimensional cone in Σ̃′′ such that σ̃′′ ⊂ σ̃, and let

κ′′ := (Ĥ′′, Σ̂′′) := [(H̃′′, Σ̃′′, σ̃′′)]. Then Σ̂′′ is a refinement of Σ̂
′′,pre (and

hence of both Σ̂(Ĥ′′) and Σ̂′,(Ĥ
′′)). Thus, we have defined an element κ′′

in K++
Q,H satisfying both κ′′ � κ and κ′′ � κ′, as desired.

Then the cases for the sets K+
Q,H and KQ,H also follow, because

Condition 1.2.4.8 is clearly compatible with intersections in Ĥ; and so
is the condition (equivalence to Condition 1.2.4.9) that the splitting

G(Ẑ)→ Ĝ(Ẑ) defined by δ̃ maps H to Ĥ. �

Now we consider some compatibility conditions between a collection

Σ for MH and elements of K̃++
Q,H or K++

Q,H.

First consider the following condition on an element κ̃ = (H̃, Σ̃, σ̃)

in K̃++
Q,H:

Condition 1.2.4.48. (Compare with [61, Cond. 3.8].) For each

(Φ̆H̃, δ̆H̃, τ̆) as above, where τ̆ ⊂ P+

Φ̆H̃
is a cone in the cone decomposi-

tion Σ̃Φ̆H̃
(in Σ̃) having σ̆ as a face, the image of τ̆ in PΦH under the

(canonical) second morphism in (1.2.4.20) is contained in some cone
τ ⊂ P+

ΦH
in the cone decomposition ΣΦH (in Σ).

By Lemma 1.2.4.35, if κ = [κ̃] ∈ K++
Q,H is the element determined by

κ̃, then Condition 1.2.4.48 for κ̃ is equivalent to the following condition
for κ:

Condition 1.2.4.49. (Compare with [28, Ch. VI, Def. 1.3].) For

each τ̂ ∈ Σ̂Φ̆Ĥ
(where τ̂ = pr(ŜΦ̆Ĥ

)∨R
(τ̆) for some (Φ̆H̃, δ̆H̃, τ̆) is in the
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cone decomposition Σ̂Φ̆Ĥ
in Σ̂), the image of τ̂ in P+

ΦH
under (1.2.4.37)

is contained in some cone τ ⊂ P+
ΦH

in the cone decomposition ΣΦH (in
Σ).

Definition 1.2.4.50. For ? = ++, +, or ∅, let us take K?
Q,H,Σ

to be the subset of K?
Q,H consisting of elements κ satisfying Condition

1.2.4.49.

Since Condition 1.2.4.49 can be achieved by replacing any given

Σ̂ with a refinement (in the same set), we see that each K?
Q,H,Σ is

nonempty and has an induced directed partial order.

Remark 1.2.4.51. (Compare with [61, Rem. 3.10].) Condition
1.2.4.49 is analogous to the condition in [89, 6.25(b)], which is used
in, for example, [40, Lem. 1.6.5] and other related works based on [4].

Proposition 1.2.4.52. Suppose H is any open compact subgroup
of G(Ẑ). For each ?1 = ++, +, or ∅, and for each ?2 = Σ or ∅, the sets

K̃?1
Q,H and K?1

Q,H,?2
are nonempty and compatible with each other under

the various canonical maps. Common refinements for finite subsets
exist in any sets of the form K?1

Q,H,?2
. We may allow varying levels

or twists by Hecke actions when doing so, and we may vary ?1 and

?2 as well (in any order). For any such refinement κ = (Ĥ, Σ̂), we

may prescribe Ĥ to be any allowed open compact subgroup of Ĝ(Ẑ) in

the context, we may require Σ̂ to be finer than any cone decomposition

Σ̂′, and we may require Σ̂ to be invariant under any choice of an open

compact subgroup of Ĝ(A∞) normalizing Ĥ.

Proof. These follow from the corresponding existence and refine-

ment statements in Proposition 1.2.2.17 for collections Σ̃ and p̃ol for

M̃H̃. �

For later references, let us conclude with the following definitions:

Definition 1.2.4.53. (Compare with Definitions 1.2.1.11 and

1.2.4.3.) Let Z̆ be any fully symplectic admissible filtration of L̃⊗
Z
Ẑ

satisfying (1.2.4.12). For each Ẑ-algebra R, since P̃′
Z̆
(R) ⊂ P̃′

Z̃
(R) and

Ũ2,Z̃(R) ⊂ Ũ2,Z̆(R), we define the following quotient of subgroups of

Ĝ(R) = G̃1,Z̃(R) = P̃′
Z̃
(R)/Ũ2,Z̃(R):

(1) P̂Z̆(R) := (P̃Z̆(R)∩ P̃′
Z̃
(R))/Ũ2,Z̃(R).

(2) ẐZ̆(R) := (Z̃Z̆(R)∩ P̃′
Z̃
(R))/Ũ2,Z̃(R).

(3) Ĝh,Z̆(R) := P̂Z̆(R)/ẐZ̆(R) ∼= G̃h,Z̆(R) ∼= P̃Z̆(R)/Z̃Z̆(R).
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(4) ÛZ̆(R) := ŨZ̆(R)/Ũ2,Z̃(R).

(5) Û2,Z̆(R) := Ũ2,Z̆(R)/Ũ2,Z̃(R).

(6) Û1,Z̆(R) := ÛZ̆(R)/Û2,Z̆(R) ∼= Ũ1,Z̆(R) = ŨZ̆(R)/Ũ2,Z̆(R).

(7) Ĝl,Z̆(R) := ẐZ̆(R)/ÛZ̆(R) ∼= (Z̃Z̆(R)∩ P̃′
Z̃
(R))/ŨZ̆(R).

(8) P̂′
Z̆
(R) := P̃′

Z̆
(R)/Ũ2,Z̃(R).

(9) Ĝ1,Z̆(R) := P̂′
Z̆
(R)/Û2,Z̆(R) ∼= G̃1,Z̆(R) = P̃′

Z̆
(R)/Ũ2,Z̆(R).

(10) Ĝ′
h,Z̆

(R) := P̂′
Z̆
(R)/ÛZ̆(R) ∼= G̃′

h,Z̆
(R) = P̃′

Z̆
(R)/ŨZ̆(R).

(11) Ĝ′
l,Z̆

(R) := P̂Z̆(R)/P̂′
Z̆
(R) ∼= (P̃Z̆(R)∩ P̃′

Z̃
(R))/P̃′

Z̆
(R).

Then the canonical homomorphism Ĝ(R) → G(R) induces the follow-
ing canonical homomorphisms:

(1) P̂Z̆(R)→ PZ(R).

(2) ẐZ̆(R)→ ZZ(R).

(3) Ĝh,Z̆(R)→ Gh,Z(R).

(4) ÛZ̆(R)→ UZ(R).

(5) Û2,Z̆(R)→ U2,Z(R).

(6) Û1,Z̆(R)→ U1,Z(R).

(7) Ĝl,Z̆(R)→ Gl,Z(R).

(8) P̂′
Z̆
(R)→ P′Z(R).

(9) Ĝ1,Z̆(R)→ G1,Z(R).

(10) Ĝ′
h,Z̆

(R)→ G′h,Z(R).

(11) Ĝ′
l,Z̆

(R)→ G′l,Z(R).

Hence, it makes sense to define ĤP̂Z̆
:= (H̃P̃Z̆

∩ H̃P̃′
Z̃

)/H̃Ũ2,̃Z
etc when

Ĥ = H̃Ĝ, so that we have ĤP̂Z̆
→ HPZ

etc when ĤG ⊂ H.

Definition 1.2.4.54. With the setting as in Definition 1.2.4.53,
consider

P̃Z̆,Z̃(R) := P̃Z̆(R)∩ P̃Z̃(R),

and define

G̃l,Z̆,Z̃(R) := P̃Z̆,Z̃(R)/P̃′
Z̆
(R),

which is the subgroup of G̃l,Z̆(R) consisting of elements preserving the

filtrations induced by the admissible surjections sX̆ : X̆ � X̃ and sY̆ :

Y̆ � Ỹ . Let
H̃P̃Z̆,̃Z

:= (H̃ ∩ P̃Z̆,Z̃(Ẑ))

and
H̃G̃l,Z̆,̃Z

:= H̃P̃Z̆,̃Z
/H̃P̃′

Z̆

.



1.3. ALGEBRAIC COMPACTIFICATIONS IN CHARACTERISTIC ZERO 43

Then there are canonical homomorphisms

P̃Z̆,Z̃(R)/Ũ2,Z̆(R)→ PZ(R)/U2,Z(R)

and
G̃l,Z̆,Z̃(R)→ G′l,Z(R) = PZ(R)/P′Z(R),

inducing H̃P̃Z̆,̃Z
/H̃Ũ2,Z̆

→ HPZ
/HU2,Z and H̃G̃l,Z̆,̃Z

→ HG′l,Z
= HPZ

/HP′Z

when H̃G ⊂ H.

1.3. Algebraic Compactifications in Characteristic Zero

By algebraic compactifications, we mean compactifications as alge-
braic varieties, algebraic spaces, or algebraic stacks constructed using
the (algebraic) theory of degeneration developed in [82], [28], and [62].
(We do not consider the constructions in [89] and [38] algebraic, be-
cause they are based on the analytic construction in [4] and on the
theory of canonical models.)

1.3.1. Toroidal and Minimal Compactifications of
PEL-Type Moduli Problems.

Definition 1.3.1.1. (See [62, Def. 5.3.2.1].) Let S be a normal
locally noetherian algebraic stack. A tuple (G, λ, i, αH) over S is called
a degenerating family of type MH, or simply a degenerating
family when the context is clear, if there exists a dense subalgebraic
stack S1 of S, such that S1 is defined over S0 = Spec(F0), and such
that we have the following:

(1) By viewing group schemes as relative schemes (cf. [37]), G is
a semi-abelian scheme over S whose restriction GS1 to S1 is
an abelian scheme. In this case, the dual semi-abelian scheme
G∨ exists (up to unique isomorphism; cf. [80, IV, 7.1] or [62,
Thm. 3.4.3.2]), whose restriction G∨S1

to S1 is the dual abelian
scheme of GS1.

(2) λ : G→ G∨ is a group homomorphism that induces by restric-
tion a polarization λS1 of GS1.

(3) i : O → EndS(G) is a homomorphism that defines by restric-
tion an O-structure iS1 : O → EndS1(GS1) of (GS1 , λS1).

(4) (GS1 , λS1 , iS1 , αH) → S1 defines a tuple parameterized by the
moduli problem MH.

Definition 1.3.1.2. (See [62, Def. 6.3.1].) Let (G, λ, i, αH) be a
degenerating family of type MH over S (as in Definition 1.3.1.1 ) over
S0 = Spec(F0). Let Lie∨G/S := e∗GΩ1

G/S be the dual of LieG/S, and let

Lie∨G∨/S := e∗GΩ1
G∨/S be the dual of LieG∨/S. Note that λ : G → G∨
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induces an O-equivariant morphism λ∗ : Lie∨G∨/S → Lie∨G/S. (Here the

O-action on Lie∨G/S is a left action after twisted by the involution ?.)
Then we define the OS-module KS = KS(G,λ,i)/S = KS(G,λ,i,αH)/S by
setting

KS := (Lie∨G/S ⊗
OS

Lie∨G∨/S)/

(
λ∗(y)⊗ z − λ∗(z)⊗ y
(b?x)⊗ y − x⊗(by)

)
x∈Lie∨G/S ,

y,z∈Lie∨
G∨/S ,

b∈O

.

Analogues of the OS-module KS appear naturally in the deforma-
tion theory of abelian varieties with PEL structures (without degen-
erations). The point of Definition 1.3.1.2 is that it extends the con-
ventional definition (for abelian schemes with PEL structures) to the
context of (semi-abelian) degenerating families (see Definition 1.3.1.1).

The algebraically constructed toroidal compactifications in charac-
teristic zero can be described as follows:

Theorem 1.3.1.3. (See [62, Thm. 6.4.1.1].) To each compatible
choice Σ = {ΣΦH}[(ΦH,δH)] of admissible smooth rational polyhedral cone
decomposition data as in Definition 1.2.2.13, there is associated an alge-
braic stack Mtor

H = Mtor
H,Σ proper and smooth over S0 = Spec(F0), which

is an algebraic space when H is neat (see [89, 0.6] or [62, Def. 1.4.1.8]),
containing MH as an open dense subalgebraic stack, together with a de-
generating family (G, λ, i, αH) over Mtor

H (as in Definition 1.3.1.1) such
that we have the following:

(1) The restriction (GMH , λMH , iMH , αH) of (G, λ, i, αH) to MH is
the tautological tuple over MH.

(2) Mtor
H has a stratification by locally closed subalgebraic stacks

Mtor
H =

∐
[(ΦH,δH,σ)]

Z[(ΦH,δH,σ)],

with [(ΦH, δH, σ)] running through a complete set of equiva-
lence classes of (ΦH, δH, σ) (as in Definition 1.2.2.10) with
σ ⊂ P+

ΦH
and σ ∈ ΣΦH ∈ Σ. (Here ZH is suppressed in the

notation by our convention. The notation “
∐

” only means a
set-theoretic disjoint union. The algebro-geometric structure
is still that of Mtor

H .)
In this stratification, the [(Φ′H, δ

′
H, σ

′)]-stratum Z[(Φ′H,δ
′
H,σ
′)]

lies in the closure of the [(ΦH, δH, σ)]-stratum Z[(ΦH,δH,σ)] if and
only if [(ΦH, δH, σ)] is a face of [(Φ′H, δ

′
H, σ

′)] as in Definition
1.2.2.19 (see also [62, Rem. 6.3.2.15]).

The [(ΦH, δH, σ)]-stratum Z[(ΦH,δH,σ)] is smooth over
S0 and isomorphic to the support of the formal algebraic
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stack XΦH,δH,σ/ΓΦH,σ for every representative (ΦH, δH, σ)
of [(ΦH, δH, σ)], where the formal algebraic stack XΦH,δH,σ

(before quotient by ΓΦH,σ, the subgroup of ΓΦH formed by
elements mapping σ to itself; see [62, Def. 6.2.5.23]) admits a
canonical structure as the completion of an affine toroidal
embedding ΞΦH,δH(σ) (along its σ-stratum ΞΦH,δH,σ) of a torus
torsor ΞΦH,δH over an abelian scheme torsor CΦH,δH over a

finite étale cover MΦH
H of the algebraic stack MZH

H (separated,
smooth, and of finite over S0) in Definition 1.2.1.15. (Note
that ZH and the isomorphism class of MZH

H depend only on
the cusp label [(ZH,ΦH, δH)], but not on the choice of the
representative (ZH,ΦH, δH).)

In particular, MH is an open dense stratum in this strati-
fication.

(3) The complement of MH in Mtor
H (with its reduced structure) is

a relative Cartier divisor D∞,H with normal crossings, such
that each irreducible component of a stratum of Mtor

H − MH
is open dense in an intersection of irreducible components of
D∞,H (including possible self-intersections). When H is neat,
the irreducible components of D∞,H have no self-intersections
(cf. Condition 1.2.2.9, [62, Rem. 6.2.5.26], and [28, Ch. IV,
Rem. 5.8(a)]).

(4) The extended Kodaira–Spencer morphism [62, Def. 4.6.3.44]
for G→ Mtor

H induces an isomorphism

KSG/Mtor
H /S0

: KS(G,λ,i)/Mtor
H

∼→ Ω1
Mtor
H /S0

[d log∞]

(see Definition 1.3.1.2). Here the sheaf Ω1
Mtor
H /S0

[d log∞] is the

sheaf of modules of log 1-differentials on Mtor
H over S0, with

respect to the relative Cartier divisor D∞,H with normal cross-
ings.

(5) For every representative (ΦH, δH, σ) of [(ΦH, δH, σ)],
the formal completion (Mtor

H )∧Z[(ΦH,δH,σ)]
of Mtor

H along the

[(ΦH, δH, σ)]-stratum Z[(ΦH,δH,σ)] is canonically isomorphic
to the formal algebraic stack XΦH,δH,σ/ΓΦH,σ. (To form the
formal completion along a given locally closed stratum, we
first remove the other strata appearing in the closure of
this stratum from the total space, and then form the formal
completion of the remaining space along this stratum.)

This isomorphism respects stratifications in the sense that,
given any étale (i.e., formally étale and of finite type; see
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[35, I, 10.13.3]) morphism Spf(R, I) → XΦH,δH,σ/ΓΦH,σ in-
ducing a morphism Spec(R) → ΞΦH,δH(σ)/ΓΦH,σ, the strati-
fication of Spec(R) (inherited from ΞΦH,δH(σ)/ΓΦH,σ; see [62,
Prop. 6.3.1.6 and Def. 6.3.2.16]) makes the induced morphism
Spec(R)→ Mtor

H a strata-preserving morphism.
The pullback of the degenerating family (G, λ, i, αH)

over Mtor
H to (Mtor

H )∧Z[(ΦH,δH,σ)]
is the Mumford family

( ♥G, ♥λ, ♥i, ♥αH) over XΦH,δH,σ/ΓΦH,σ (see [62, Sec. 6.2.5])
after we identify the bases using the isomorphism. (Here
both the pullback of (G, λ, i, αH) and the Mumford family
( ♥G, ♥λ, ♥i, ♥αH) are considered as relative schemes with
additional structures; cf. [37].)

(6) Let S be an irreducible noetherian normal scheme over S0,

and suppose that we have a degenerating family (G†, λ†, i†, α†H)
of type MH over S as in Definition 1.3.1.1. Then
(G†, λ†, i†, α†H)→ S is the pullback of (G, λ, i, αH)→ Mtor

H via
a (necessarily unique) morphism S → Mtor

H (over S0) if and
only if the following condition is satisfied at each geometric
point s̄ of S:

Consider any dominant morphism Spec(V ) → S centered
at s̄, where V is a complete discrete valuation ring with
fraction field K, algebraically closed residue field k, and
discrete valuation υ. Let (G‡, λ‡, i‡, α‡H) → Spec(V ) be

the pullback of (G†, λ†, i†, α†H) → S. This pullback family
defines an object of DEGPEL,MH(V ), which corresponds

to a tuple (B‡, λB‡ , iB‡ , X
‡, Y ‡, φ‡, c‡, c∨,‡, τ ‡, [α\,‡H ]) in

DDPEL,MH(V ) under [62, Thm. 5.3.1.19]. Then we have a

fully symplectic-liftable admissible filtration Z
‡
H determined by

[α\,‡H ]. Moreover, the étale sheaves X‡ and Y ‡ are necessarily
constant, because the base ring V is strict local. Hence, it
makes sense to say we also have a uniquely determined torus
argument Φ‡H at level H for Z

‡
H.

On the other hand, we have objects ΦH(G‡), SΦH(G‡), and

B(G‡) (see [62, Constr. 6.3.1.1]), which define objects Φ‡H,
SΦ‡H

, and in particular B‡ : SΦ‡H
→ Inv(V ) over the special

fiber. Then υ ◦ B‡ : SΦ‡H
→ Z defines an element of S∨

Φ‡H
,

where υ : Inv(V ) → Z is the homomorphism induced by the
discrete valuation of V .

Then the condition is that, for each Spec(V )→ S as above

(centered at s̄), and for some (and hence every) choice of δ‡H,
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there is a cone σ‡ in the cone decomposition ΣΦ‡H
of PΦ‡H

(given

by the choice of Σ; cf. Definition 1.2.2.13) such that σ‡ con-
tains all υ ◦B‡ obtained in this way.

Statement (1) means the tautological tuple over MH extends to a
degenerating family (G, λ, i, αH) over Mtor

H . (Since Mtor
H is noetherian

normal, this extension is unique up to unique isomorphism, by [92, IX,
1.4], [28, Ch. I, Prop. 2.7], or [62, Prop. 3.3.1.5].) Statements (2), (3),
(4), and (5) are self-explanatory. Statement (6) can be interpreted as
a universal property for the degenerating family (G, λ, i, αH) → Mtor

H
among degenerating families over normal locally noetherian bases, as
in Definition 1.3.1.1, satisfying moreover some conditions describing
the degeneration patterns over pullbacks to complete discrete valuation
rings with algebraically closed residue fields. (This universal property
was crucially used in the proof of Theorem 1.3.3.15 below in [61].)

Remark 1.3.1.4. (Compare with Remark 1.1.2.1.) If we have cho-
sen another PEL-type O-lattice L′ in L⊗

Z
Q which is also stabilized by

H, so that MH carries the corresponding abelian scheme A′ (with addi-
tional structures) as in Remark 1.1.2.1, with a Q×-isogeny f : A→ A′,
then a sufficiently divisible multiple Nf of f is an isogeny with fi-
nite étale kernel, which we denote by K. Since A = GMH (see (1) of
Theorem 1.3.1.3), we can take the schematic-closure Kext of K in G,
which is quasi-finite étale over Mtor

H,Σ. Then we can form the quotient
G′ := G/Kext by [62, Lem. 3.4.3.1], which is a semi-abelian scheme
with an Q×-isogeny f ext : G → G′. By [92, IX, 1.4], [28, Ch. I, Prop.
2.7], or [62, Prop. 3.3.1.5], G′ is (up to unique isomorphism) indepen-
dent of the choice of N , and the additional structures λ, i, αH of G
naturally induce the additional structures λ′, i′, and α′H of G′, which
extend those of A′ (based on the moduli interpretation of the moduli
problem M′H defined by L′). Hence, the Q×-isogeny class of G extends
that of A, and carries well-defined additional structures. (It can be ver-
ified that (G′, λ′, i′, α′H) → Mtor

H,Σ satisfies the corresponding universal
property of the toroidal compactification of M′H defined by the corre-
sponding collection of cone decompositions as in (6) of Theorem 1.3.1.3,
so that the theory does not really depend on the choice of L. Then,
as in Remark 1.1.2.1, we can define the collection {Mtor

H,Σ}H,Σ, indexed
by all open compact subgroups H of G(A∞) and collections Σ for the
corresponding MH, with a canonical action of G(A∞); see Proposition
1.3.1.15 below.)

The algebraically constructed minimal compactifications in charac-
teristic zero can be described as follows:
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Theorem 1.3.1.5. (See [62, Thm. 7.2.4.1].) There exists a normal
scheme Mmin

H projective and flat over S0 = Spec(F0), such that we have
the following:

(1) Mmin
H contains the coarse moduli space [MH] of MH (see [62,

Sec. A.7.5]) as an open dense subscheme.
(2) Let (GMH , λMH , iMH , αH) be the tautological tuple over MH.

Let us define the invertible sheaf ωMH := ∧top Lie∨GMH/MH
=

∧top e∗GMH
Ω1
GMH/MH

over MH. Then there is a smallest integer

N0 ≥ 1 such that ω⊗N0
MH

is the pullback of an ample invertible

sheaf O(1) over Mmin
H .

If H is neat, then MH → [MH] is an isomorphism, and
induces an embedding of MH as an open dense subscheme of
Mmin
H . Moreover, we have N0 = 1 with a canonical choice

of O(1), and the restriction of O(1) to MH is isomorphic to
ωMH. We shall denote O(1) by ωMmin

H
, and interpret it as an

extension of ωMH to Mmin
H .

By abuse of notation, for each integer k divisible by N0, we
shall denote O(1)⊗ k/N0 by ω⊗ k

Mmin
H

, even when ωMmin
H

itself is not

defined.
(3) For each (smooth) arithmetic toroidal compactification

Mtor
H of MH as in Theorem 1.3.1.3, with a degen-

erating family (G, λ, i, αH) over Mtor
H extending the

tautological tuple (GMH , λMH , iMH , αH) over MH, let
ωMtor

H
:= ∧top Lie∨G/Mtor

H
= ∧top e∗GΩ1

G/Mtor
H

be the invertible

sheaf over Mtor
H extending ωMH naturally. Then the graded

algebra ⊕
k≥0

Γ(Mtor
H , ω

⊗ k
Mtor
H

), with its natural algebra structure

induced by tensor products, is finitely generated over F0, and
is independent of the choice (of the Σ used in the definition)
of Mtor

H .
The normal scheme Mmin

H (projective and flat over S0)

is canonically isomorphic to Proj
(
⊕
k≥0

Γ(Mtor
H , ω

⊗ k
Mtor
H

)
)

, and

there is a canonical morphism
∮
H : Mtor

H → Mmin
H determined

by ωMtor
H

and the universal property of Proj, such that∮ ∗
HO(1) ∼= ω⊗N0

Mtor
H

over Mtor
H , and such that the canonical

morphism OMmin
H
→
∮
H,∗OMtor

H
is an isomorphism. Moreover,

when we vary the choices of Mtor
H ’s, the morphisms

∮
H’s are

compatible with the canonical morphisms among the Mtor
H ’s as

in [62, Prop. 6.4.2.3].
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When H is neat, we have
∮ ∗
H ωMmin

H
∼= ωMtor

H
and

∮
H,∗ ωMtor

H
∼=

ωMmin
H

.

(4) Mmin
H has a natural stratification by locally closed subschemes

Mmin
H =

∐
[(ΦH,δH)]

Z[(ΦH,δH)],

with [(ΦH, δH)] running through a complete set of cusp labels
(see Definition 1.2.1.7 and [62, Def. 5.4.2.4]), such that
the [(Φ′H, δ

′
H)]-stratum Z[(Φ′H,δ

′
H)] lies in the closure of the

[(ΦH, δH)]-stratum Z[(ΦH,δH)] if and only if there is a surjection
from the cusp label [(Φ′H, δ

′
H)] to the cusp label [(ΦH, δH)] as

in Definition 1.2.1.18. (The notation “
∐

” only means a
set-theoretic disjoint union. The algebro-geometric structure
is still that of Mmin

H .)
Each [(ΦH, δH)]-stratum Z[(ΦH,δH)] is canonically isomor-

phic to the coarse moduli space [MZH
H ] (which is a scheme) of

the corresponding algebraic stack MZH
H (separated, smooth, and

of finite type over S0) as in Definition 1.2.1.15.
Let us define the O-multi-rank of a stratum Z[(ΦH,δH)] to be

the O-multi-rank of the cusp label represented by (ΦH, δH) (see
[62, Def. 5.4.2.7]). The only stratum with O-multi-rank zero
is the open stratum Z[(0,0)]

∼= [MH], and those strata Z[(ΦH,δH)]

with nonzero O-multi-ranks are called cusps. (This explains
the name of the cusp labels.)

(5) The restriction of
∮
H to the stratum Z[(ΦH,δH,σ)] of Mtor

H is a
surjection to the stratum Z[(ΦH,δH)] of Mmin

H . This surjection is
smooth when H is neat, and is proper if σ is top-dimensional
in P+

ΦH
⊂ (SΦH)∨R.

Under the above-mentioned identification
[MZH
H ]

∼→ Z[(ΦH,δH)] on the target, this surjection can be viewed
as the quotient by ΓΦH,σ (see [62, Def. 6.2.5.23]) of a torsor
under a torus EΦH,σ over an abelian scheme torsor CΦH,δH

(see Remark 1.3.1.6 below) over the finite étale cover MΦH
H of

the algebraic stack MZH
H over the coarse moduli space [MZH

H ]
(which is a scheme). More precisely, this torus EΦH,σ is the
quotient of the torus EΦH := HomZ(SΦH ,Gm) corresponding
to the subgroup SΦH,σ := {` ∈ SΦH : 〈`, y〉 = 0,∀y ∈ σ} of
SΦH. (See [62, Lem. 6.2.4.4] for the definition of EΦH, and
see [62, Def. 6.1.2.7] for the definition of σ-stratum.)

Remark 1.3.1.6. In [62, Sec. 6.2.4; see also the errata], we should
have considered a subquotient of Hn which is an extension of Hn,Gess

h,Zn
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by Hn,Uess
1,Zn

(just as Ĥ is an extension of ĤG by ĤÛ in (1.2.4.5)), which
is not necessarily the semi-direct product Hn,Gess

h,Zn
nUess

1,Zn
= Hn,Gess

h,Zn
n

Hn,Uess
1,Zn

used there. Therefore, it is incorrect to conclude from [62,

Lem. 6.2.4.5] that the further quotient CΦH,δH → MΦH
H is also an abelian

scheme. (The identity section might not descend under the quotient
by Hn,Uess

1,Zn
.) Accordingly, in [62, Prop. 6.2.4.7 and later sections], we

should only assert that CΦH,δH → MΦH
H is an abelian scheme torsor.

This does not affect the constructions of torus torsors and toroidal
embeddings because the existence of identity sections is not logically
necessary.

Now suppose H is neat. Let Σ = {ΣΦH}[(ΦH,δH)] be any projective
compatible choice of smooth rational polyhedral cone decomposition
data, with a compatible collection pol = {polΦH}[(ΦH,δH)] of polarization
functions as in Definition 1.2.2.14.

Definition 1.3.1.7. (See [62, Def. 7.3.3.1].) Let Σ, pol, and Mtor
H =

Mtor
H,Σ be as above. By (3) of Theorem 1.3.1.3, the complement D∞,H

of MH in Mtor
H = Mtor

H,Σ (with its reduced structure) is a relative Cartier
divisor with normal crossings, each of whose irreducible components is
an irreducible component of some Z[(ΦH,δH,σ)] that is the closure of some
strata Z[(ΦH,δH,σ)] labeled by the equivalence class [(ΦH, δH, σ)] of some
triple (ΦH, δH, σ) with σ a one-dimensional cone in the cone decompo-
sition ΣΦH of PΦH. Let H,pol be the invertible sheaf of ideals over Mtor

H
supported on D∞,H such that the order of H,pol along each Z[(ΦH,δH,σ)]

is the value of polΦH at the Z>0-generator of σ ∩ S∨ΦH for some (and
hence every) representative (ΦH, δH, σ). This is well defined because of
the compatibility condition for pol = {polΦH}[(ΦH,δH)] as in Definition
1.2.2.14.

For each integer d ≥ 1, let dpol denote the collection of polarization
functions defined by multiplying all polarization functions in the collec-
tion pol by d. Then we have a canonical isomorphism H,dpol ∼= ⊗ dH,pol.

Definition 1.3.1.8. For each integer d ≥ 1, let

JH,dpol := J (d)
H,pol :=

∮
H,∗(

⊗ d
H,pol)

∼=
∮
H,∗(H,dpol),

where
∮
H : Mtor

H → Mmin
H is the canonical morphism (as in (3) of The-

orem 1.3.1.5). (We introduced the two intermediate objects J (d)
H,pol and∮

H,∗(
⊗ d
H,pol) because this is what was done in [28, Ch. V] and [62, Sec.

7.3]. Later we will mainly use JH,dpol and H,dpol in our exposition. Note
that JH,dpol is a coherent OMmin

H
-ideal because

∮
H is proper and because

the canonical morphism OMmin
H
→
∮
H,∗OMtor

H
is an isomorphism.)
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Let us introduce the following condition for Σ = {ΣΦH}[(ΦH,δH)] and
pol = {polΦH}[(ΦH,δH)] (cf. [62, Lem. 7.3.1.7]):

Condition 1.3.1.9. (See [62, Cond. 7.3.3.3]; cf. [4, Ch. IV, Sec.
2, p. 329] and [28, Ch. V, Sec. 5, p. 178].) For each representative
(ΦH, δH) of cusp label and each vertex `0 of K∨polΦH

corresponding to a

top-dimensional cone σ0, we have

〈`0, x〉 < 〈γ · `0, x〉
for all x ∈ σ0 ∩P+

ΦH
and all γ ∈ ΓΦH such that γ 6= 1.

Theorem 1.3.1.10. (See [62, Thm. 7.3.3.4]; cf. [4, Ch. IV, Sec. 2.1,
Thm.] and [28, Ch. V, Thm. 5.8].) Suppose H is neat, and suppose Σ
is projective with a compatible collection pol of polarization functions
as in Definition 1.2.2.14. For each integer d ≥ 1, suppose H,dpol is
defined over Mtor

H = Mtor
H,Σ as in Definition 1.3.1.7, and suppose JH,dpol

is defined over Mmin
H as in Definition 1.3.1.8. Then there exists an

integer d0 ≥ 1 such that the following are true:

(1) The canonical morphism
∮ −1

H JH,d0pol·OMtor
H
→ H,d0pol of coher-

ent OMtor
H

-ideals is an isomorphism, which induces a canonical
morphism

NBlJH,d0pol(
∮
H) : Mtor

H → NBlJH,d0pol(M
min
H )

by the universal property of the normalization of blow-up (see
[62, Def. 7.3.2.2]). (Here NBl · ( · ) denotes the normalization
of the blow-up, or the morphism induced by its universal prop-
erty.)

(2) The canonical morphism NBlJH,d0pol(
∮
H) above is an isomor-

phism.

In particular, Mtor
H is a scheme projective (and smooth) over S0. If

Condition 1.3.1.9 is satisfied, then the above two statements are true
for all d0 ≥ 3.

For technical reasons, we shall enlarge the collection of smooth
toroidal compactifications we have in Theorem 1.3.1.3 to the following
setup, including certain projective but nonsmooth toroidal compactifi-
cations.

Proposition 1.3.1.11. With assumptions as in Theorem 1.3.1.10,
suppose H′ is an open compact subgroup of H, with Σ′ (resp. pol′) at
level H′ induced by Σ (resp. pol) as in [62, Constr. 7.3.1.6]. (Note that
Σ′ is not necessarily smooth.) For each integer d ≥ 1, let

JH′,dpol′ := (Mmin
H′ → Mmin

H )∗JH,dpol.
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Suppose d0 ≥ 1 is any integer such that the statements in Theorem
1.3.1.10 are true. Then we define

Mtor
H′,d0pol

′ := NBlJH′,d0pol′ (M
min
H′ ).

With this definition, there is a canonical morphism

(1.3.1.12) Mtor
H′,d0pol

′ → Mtor
H,Σ
∼= Mtor

H,d0pol

which is finite. Moreover, Mtor
H′,d0pol

′ is canonically isomorphic to the

normalization of Mtor
H,d0pol

in MH′ under the composition of canonical
morphisms MH′ → MH ↪→ Mtor

H,Σ
∼= Mtor

H,d0pol
, and is independent of the

choices of pol and d0.
If Σ′ is smooth, then we have a canonical isomorphism

(1.3.1.13) Mtor
H′,Σ′

∼→ Mtor
H′,d0pol

′ ,

where Mtor
H′,Σ′ is given by Theorem 1.3.1.3.

Proof. Since JH′,d0pol
′ is the pullback of JH,d0pol under the finite

morphism Mmin
H′ → Mmin

H , the canonical morphism (1.3.1.12) exists and
is finite by Theorem 1.3.1.10 and by the universal property of the nor-
malization of blow-up. Since Mtor

H′,d0pol
′ is normal, it is canonically iso-

morphic to the normalization of Mtor
H,d0pol

in MH′ by Zariski’s main the-
orem (see [35, III-1, 4.4.3, 4.4.11]).

If Σ′ is smooth, then we have Mtor
H′,Σ′ given by Theorem 1.3.1.3.

Moreover, H′,d0pol
′ is defined (as in Definition 1.3.1.7) and is the pull-

back of H,d0pol under the canonical morphism Mtor
H′,Σ′ → Mtor

H,Σ. Hence,
we have a canonical morphism Mtor

H′,Σ′ → Mtor
H,d0pol

by Theorem 1.3.1.10,
inducing a canonical morphism Mtor

H′,Σ′ → Mtor
H′,d0pol

′ , both of which
follow from the universal property of normalization of blowup. By
Zariski’s main theorem again, this last morphism is an isomorphism
and gives (1.3.1.13), as desired. �

Then we can describe the so-called Hecke actions of G(A∞) as fol-
lows:

Proposition 1.3.1.14. (See [62, Prop. 7.2.5.1].) Suppose we have
an element g ∈ G(A∞), and suppose we have two open compact sub-

groups H and H′ of G(Ẑ) such that H′ ⊂ gHg−1. Then there is a
canonical finite surjection

[g]min : Mmin
H′ → Mmin

H

(over S0 = Spec(F0)) extending the canonical finite surjection [[g]] :
[MH′ ]→ [MH] induced by the canonical finite surjection

[g] : MH′ → MH
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defined by the Hecke action of g, such that ω⊗ k
Mmin
H

over Mmin
H is pulled

back to ω⊗ k
Mmin
H′

over Mmin
H′ (up to canonical isomorphism) whenever the

former is defined.
Moreover, the surjection [g]min maps the [(Φ′H′ , δ

′
H′)]-stratum

Z[(Φ′H′ ,δ
′
H′ )]

of Mmin
H′ to the [(ΦH, δH)]-stratum Z[(ΦH,δH)] of Mmin

H if and

only if there are representatives (ΦH, δH) and (Φ′H′ , δ
′
H′) of [(ΦH, δH)]

and [(Φ′H′ , δ
′
H′)], respectively, such that (ΦH, δH) is g-assigned to

(Φ′H′ , δ
′
H′) as in [62, Def. 5.4.3.9].

If g = g1g2, where g1 and g2 are elements of G(A∞), each having
a setup similar to that of g, then we have [g] = [g2] ◦ [g1], [[g]] =

[[g2]] ◦ [[g1]], and [g]min = [g2]min ◦ [g1]min.

Proposition 1.3.1.15. (See [62, Prop. 6.4.3.4].) With the same
setting as in Proposition 1.3.1.14, suppose Σ = {ΣΦH}[(ΦH,δH)] and
Σ′ = {Σ′Φ′H′}[(Φ′H′ ,δ

′
H′ )]

are two compatible choices of admissible smooth

rational polyhedral cone decomposition data for MH and MH′, respec-
tively, such that Σ′ is a g-refinement of Σ as in [62, Def. 6.4.3.3]. Then
there is a canonical proper surjection

[g]tor : Mtor
H′,Σ′ � Mtor

H,Σ

(over S0 = Spec(F0)) compatible with the canonical finite surjection

[g]min : Mmin
H′ � Mmin

H

in Proposition 1.3.1.14 and the canonical proper surjections∮
H′ : Mtor

H′,Σ′ → Mmin
H′ and

∮
H : Mtor

H,Σ → Mmin
H , such that ωMtor

H,Σ

over Mtor
H,Σ is pulled back to ωMtor

H′,Σ′
over Mtor

H′,Σ′ (up to canonical

isomorphism).
Moreover, the surjection [g]tor maps the [(Φ′H′ , δ

′
H′ , σ

′)]-stratum
Z[(Φ′H′ ,δ

′
H′ ,σ

′)] of Mtor
H′,Σ′ to the [(ΦH, δH, σ)]-stratum Z[(ΦH,δH,σ)] of Mtor

H,Σ
if and only if there are representatives (ΦH, δH, σ) and (Φ′H′ , δ

′
H′ , σ

′) of
[(ΦH, δH, σ)] and [(Φ′H′ , δ

′
H′ , σ

′)], respectively, such that (Φ′H′ , δ
′
H′ , σ

′) is
a g-refinement of (ΦH, δH, σ) as in [62, Def. 6.4.3.1].

If g = g1g2, where g1 and g2 are elements of G(A∞), each having a
setup similar to that of g, then we have [g]tor = [g2]tor◦ [g1]tor, extending

[g] = [g2] ◦ [g1] and lifting [g]min = [g2]min ◦ [g1]min.

Remark 1.3.1.16. While Proposition 1.3.1.14 is a logical conse-
quence of Proposition 1.3.1.15, they were stated in the reversed order,
because the former is easier to describe and understand than the lat-
ter. The last statements of Propositions 1.3.1.15 and 1.3.1.14 were not
explicitly stated in [62, Prop. 6.4.3.4 and 7.2.5.1], but were implicit in
the proofs there.
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1.3.2. Boundary of PEL-Type Moduli Problems. Let us de-
scribe the building blocks of Mtor

H,Σ in more detail. In particular, we

would like to describe and characterize the algebraic stacks MZH
H , MΦH

H ,
CΦH,δH , ΞΦH,δH , ΞΦH,δH(σ), ΞΦH,δH,σ, Z[(ΦH,δH,σ)]

∼= ΞΦH,δH,σ/ΓΦH,σ and
the formal algebraic stacks XΦH,δH,σ and XΦH,δH,σ/ΓΦH,σ in (2) of The-
orem 1.3.1.3 (and (5) of Theorem 1.3.1.5), and to describe canonical
Hecke actions on collections of these geometric objects (compatible
with those in Proposition 1.3.1.15).

Throughout this subsection, let us fix the choice of a fully symplectic
admissible filtration Z of L⊗

Z
Ẑ as in Definitions 1.2.1.2 and 1.2.1.3. Let

us also fix a (noncanonical) choice of (LZ, 〈 · , · 〉Z, hZ0), so that GZ can
be defined as in Definition 1.2.1.9.

For each open compact subgroup H of G(Ẑ), we can define the
boundary moduli problems MHh , MΦH

H , and MZH
H as in Definition

1.2.1.15. By definition, MHh parameterizes (B, λB, iB, ϕ−1,H)
appearing as the abelian part in degeneration data. By the
construction of MΦH

H as the quotient of
∐

MZn
n by Hn = H/U(n)

(for any integer n ≥ 1 such that U(n) ⊂ H), where the disjoint
union is over representatives (Zn,Φn, δn) (with the same (X, Y, φ)) in
(ZH,ΦH, δH), the finite étale cover MΦH

H → MHh parameterizes the
twisted objects (ϕ∼−2,H, ϕ

∼
0,H) inducing both (ϕ−2,H, ϕ0,H) and ϕ−1,H

over MHh . Therefore, by the definition of MZH
H as the quotient of MΦH

H
by ΓΦH (see Definition 1.2.2.3), we have the following:

Lemma 1.3.2.1. Let us fix the choice of a representative (Z,Φ, δ)
in (ZH,ΦH, δH). Let HGh,Z = HPZ

/HZZ
be the open compact subgroup

of GZ(Ẑ) ∼= Gh,Z(Ẑ) as in Definition 1.2.1.12, and let HGh,Z,Φ denote

the image in Gh,Z(Ẑ) of the stabilizer HPZ,Φ of Φ = (X, Y, φ, ϕ−2, ϕ0)
in HPZ

, which is an open compact subgroup of HGh,Z isomorphic to
HPZ,Φ/HZZ

. Then MHh
∼= MHGh,Z

and there is a canonical isomorphism

(1.3.2.2) MZH
H
∼= MHGh,Z,Φ

,

where MHGh,Z,Φ
is defined by (LZ, 〈 · , · 〉Z, hZ0) as in Section 1.1.2. If H′

is an open compact subgroup of H, then the corresponding morphism

(1.3.2.3) M
ZH′
H′ → MZH

H

can be canonically identified with the finite étale morphism

(1.3.2.4) MH′Gh,Z,Φ
→ MHGh,Z,Φ

.

The collection {MHGh,Z,Φ
}HGh,Z,Φ

naturally carries a Hecke action by el-

ements gh ∈ GZ(A∞) ∼= Gh,Z(A∞), realized by finite étale surjections
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pulling tautological objects back to Hecke twists. If moreover H′ is a
normal subgroup of H, then (1.3.2.4) is an HGh,Z,Φ/H′Gh,Z,Φ-torsor.

Lemma 1.3.2.5. With the same setting as in Lemma 1.3.2.1, let
HG′h,Z

be the open compact subgroup of GZ(Ẑ) ∼= G′h,Z(Ẑ) as in Definition

1.2.1.12, which is a normal subgroup of HGh,Z,Φ (by definition). Then
there is a canonical isomorphism

(1.3.2.6) MΦH
H
∼= MHG′

h,Z

,

which is compatible with (1.3.2.2) and with Hecke actions as in Lemma
1.3.2.1. The canonical morphisms MΦH

H → MZH
H → MHh can be iden-

tified with the canonical finite étale morphisms MHG′
h,Z

→ MHGh,Z,Φ
→

MHGh,Z
, on which ΓΦH acts equivariantly (and trivially on the latter

two objects) via the canonical homomorphism ΓΦH → HG′l,Z
/HGl,Z

∼=
HGh,Z/HG′h,Z

with image HGh,Z,Φ/HG′h,Z
. In particular, MΦH

H → MZH
H =

MΦH
H /ΓΦH is finite étale and an HGh,Z,Φ/HG′h,Z

-torsor.

The abelian scheme torsor CΦH,δH → MΦH
H is, by the construction

in [62, Sec. 6.2.3–6.2.4] (see also the correction in Remark 1.3.1.6), the
quotient of ∐

CΦn,δn →
∐

MZn
n

by Hn = H/U(n) (for any integer n ≥ 1 such that U(n) ⊂ H), where
each CΦn,δn → MZn

n has a canonical structure of an abelian scheme
which is preserved under the action of Hn,Uess

1,Zn

∼= HU1,Z/U(n)U1,Z .
Therefore, we have the following:

Lemma 1.3.2.7. The quotient CΦH,δH → MΦH
H depends only on

HG1,Z, is an abelian scheme when the splitting of (1.2.1.14) defined
by any splitting δ also splits (1.2.1.13) (and induces an isomorphism
HG1,Z

∼= HG′h,Z
n HU1,Z), and is a torsor under the abelian scheme

Cgrp
ΦH,δH

:= CΦH′ ,δH′
defined by any H′ with H′G1,Z

∼= HG′h,Z
n HU1,Z,

which is canonically Q×-isogenous to HomO(X,B)◦. (This clarifies the
abelian scheme torsor structure of CΦH,δH → MΦH

H .) We deduce from
this that there is a canonical isomorphism

Ω1

CΦH,δH/M
ZH
H

∼= Ω1

CΦH,δH/M
ΦH
H

∼= Ω1

Cgrp
ΦH,δH

/M
ΦH
H

∼= (CΦH,δH → MZH
H )∗HomO(X,Lie∨

B/M
ZH
H

).
(1.3.2.8)

If we fix the choice of (Zn and) Φn, then the canonical morphism

(1.3.2.9) CΦn,δn → CΦH,δH
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is an HG1,Z/U(n)G1,Z
∼= Hn,Gess

h,Zn
nUess

1,Zn
-torsor (see [62, Sec. 6.2.4; see

also the errata]), where HG1,Z and U(n)G1,Z are open compact subgroups

of G1,Z(Ẑ) as in Definition 1.2.1.12, and induces an isomorphism

(1.3.2.10) CΦn,δn/(HG1,Z/U(n)G1,Z)
∼→ CΦH,δH .

Lemma 1.3.2.11. The abelian scheme torsor S := CΦn,δn → MΦn
n :=

MZn
n is universal for the additional structures (cn, c

∨
n) satisfying certain

symplectic and liftability conditions, which we review as follows:

(1) The homomorphism c : XS → B∨ induced by cn : 1
n
XS →

B∨ (by restriction) is equivalent to the data of a semi-abelian
scheme G\ that is an extension of B by the split torus T with
character group X, and the lifting cn of c is equivalent to the
data of a splitting of the canonical short exact sequence

0→ T [n]→ G\[n]→ B[n]→ 0.

(2) The homomorphism c∨ : YS → B induced by c∨n : 1
n
YS → B (by

restriction) is equivalent to the data of a semi-abelian scheme
G∨,\ that is an extension of B∨ by the split torus T∨ with
character group Y , and the lifting c∨n of c∨ is equivalent to the
data of a splitting of the canonical short exact sequence

0→ T∨[n]→ G∨,\[n]→ B∨[n]→ 0.

(3) The homomorphisms c, c∨, φ : Y ↪→ X, and λB : B → B∨

satisfy the compatibility λBc
∨ = cφ, and hence defines a ho-

momorphism λ\ : G\ → G∨,\ inducing λT = φ∗S : T → T∨

and λB : B → B∨. All of these are compatible with their
O-structures.

(4) The splittings defined by cn and c∨n are not necessarily com-
patible under the canonical morphism G\ → G∨,\ induced by
λB : B → B∨ and φ : Y ↪→ X. The failure of such a compati-
bility can be identified with the nontriviality of the pairing

d10,n : B[n]×( 1
n
Y/Y )S → µn,S

(cf. [62, Lem. 5.2.3.12]), which sends (a, 1
n
y) to

eB[n](a, (λBc
∨
n − cnφn)( 1

n
y)),

where eB[n] : B[n]×B∨[n]→ µn,S is the canonical perfect pair-
ing between B[n] and B∨[n], for any functorial points a of B[n]
and 1

n
y of ( 1

n
Y/Y )S.

(5) The symplectic condition for (cn, c
∨
n) is that, under ϕ−1,n and

ϕ0,n, the pairing d10,n above is matched with the pairing

〈 · , · 〉10,n : GrZ−1,n×GrZ0,n → ((Z/nZ)(1))S
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induced by 〈 · , · 〉 and δn.
(6) The liftability condition for (cn, c

∨
n) is that, for each integer

m ≥ 1 such that n|m, and for any lifting δm of δn, there exists
a finite étale covering of S over which there exist ϕ−1,m,
(ϕ−2,m, ϕ0,m), and (cm, c

∨
m) lifting ϕ−1,n, (ϕ−2,n, ϕ0,n), and

(cn, c
∨
n), respectively, and satisfying the symplectic condition

defined by 〈 · , · 〉 and δm as above.

These can be re-interpreted as follows: S = CΦn,δn → MΦn
n = MZn

n

parameterizes tuples

(G\, λ\ : G\ → G∨,\, i\, β\n),

where:

(a) G\ (resp. G∨,\) is an extension of B (resp. B∨) by T (resp. T∨)
as above, and λ\ : G\ → G∨,\ induces λT = φ∗ : T → T∨ and
λB : B → B∨.

(b) i\ is a pair of homomorphisms O → EndS(G\) and
O → EndS(G∨,\) compatible with each other under λ\ : G\ → G∨,\,
inducing compatible O-structures on B, B∨, T , and T∨.

(c) β\n = (β\,0n , β\,#,0n , ν\n) is a principal level-n structure of

(G\, λ\, i\) of type (L⊗
Z
Ẑ, 〈 · , · 〉, Z), where β\,0n : (Z−1,n)S

∼→ G\[n]

and β\,#,0n : (Z#
−1,n)S

∼→ G∨,\[n] are O-equivariant isomorphisms
preserving filtrations on both sides and inducing on the graded
pieces the given data ϕ−2,n, ϕ−1,n, and ϕ0,n (by duality), respec-

tively; and where ν\n : ((Z/nZ)(1))S
∼→ µn,S is an isomorphism,

which are compatible with λ\ and the canonical morphism
Z−1,n → Z

#
−1,n induced by 〈 · , · 〉. (Here Z# is the filtration on

L#⊗
Z
Ẑ canonically dual to the filtration on L⊗

Z
Ẑ, equipped

with a canonical morphism Z → Z#, respecting the filtration
degrees, induced by 〈 · , · 〉. Then the splitting δ corresponds
under β\n to splittings of 0 → T [n] → G\[n] → B[n] → 0 and
0 → T∨[n] → G∨,\[n] → B∨[n] → 0.) Moreover, β\n satisfies the
liftability condition that, for each integer m ≥ 1 such that n|m,
there exists a finite étale covering of S over which there exists an
analogous triple β\m lifting the pullback of β\n.

Proof. The statements are self-explanatory. �

Proposition 1.3.2.12. The abelian scheme torsor S := CΦH,δH →
MΦH
H is universal for the additional structures (cH, c

∨
H) satisfying cer-

tain symplectic and liftability conditions, which can be interpreted as
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parameterizing tuples

(1.3.2.13) (G\, λ\ : G\ → G∨,\, i\, β\H),

where G\, G∨,\, λ\, and i\ are as in Lemma 1.3.2.11, and where β\H is a

level-H structure of (G\, λ\, i\) of type (L⊗
Z
Ẑ, 〈 · , · 〉, Z), which is a

collection {β\Hn}n, where n ≥ 1 runs over integers such that U(n) ⊂ H,

such that each β\Hn (where Hn := H/U(n)) is a subscheme of∐(
IsomS((Z−1,n)S, G

\[n])×
S

IsomS((Z#
−1,n)S, G

∨,\[n])

×
S

IsomS

(
((Z/nZ)(1))S,µn,S

))
over S, where the disjoint union is over representatives (Zn,Φn, δn)
(with the same (X, Y, φ)) in (ZH,ΦH, δH), that becomes the disjoint
union of all elements in the Hn-orbit of some principal level-n structure
β\n of (G\, λ\, i\) of type (L⊗

Z
Ẑ, 〈 · , · 〉, Z), as in Lemma 1.3.2.11, for

any Z lifting Zn; and where β\Hm is mapped to β\Hn (under the canonical
morphism, which we omit for simplicity) when n|m.

Proof. This follows from the construction of CΦH,δH → MΦH
H as a

quotient of
∐
CΦn,δn →

∐
MZn
n (over the same index set). �

Proposition 1.3.2.14. (Compare with Proposition 1.3.2.12.) Fix
any lifting (Z,Φ = (X, Y, φ, ϕ−2, ϕ0), δ) of a representative (ZH,ΦH, δH)
of [(ZH,ΦH, δH)]. The abelian scheme torsor CΦH,δH → MΦH

H is univer-
sal for Q×-isogeny classes of tuples

(1.3.2.15) (G\, λ\ : G\ → G∨,\, i\, j\, j∨,\, [β̂\]HG1,Z
)

over locally noetherian base schemes S, where:

(1) G\ (resp. G∨,\) is a semi-abelian scheme which is the extension
of an abelian scheme B (resp. B∨) by a split torus T (resp. T∨)
over S, which is equivalent to a homomorphism c : X(T ) →
B∨ (resp. c∨ : X(T∨)→ B).

(2) λ\ : G\ → G∨,\ is a Q×-isogeny (i.e., a (Q×>0)S-multiple of
a quasi-finite surjective homomorphism; or cf. [62, Def.
1.3.1.16]) of semi-abelian schemes over S, inducing a
Q×-isogeny λT : T → T∨ between the torus parts, which is
dual to a Q-isomorphism λ∗T : X(T∨)⊗

Z
Q → X(T )⊗

Z
Q, and

a Q×-polarization λB : B → B∨ between the abelian parts (cf.
[62, Def. 1.3.2.19 and the errata]), so that c(Nλ∗T ) = (NλB)c∨

when N is any locally constant function over S valued in
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positive integers such that (Nλ∗T )(X(T∨)) ⊂ X(T ) and such
that Nλ\ : G\ → G∨,\ is an isogeny.

(3) i\ : O⊗
Z
Q → EndS(G\)⊗

Z
QS is a homomorphism inducing

O⊗
Z
Q-actions on G∨,\, T , T∨, B, and B∨ up to Q×-isogeny,

compatible with each other under the homomorphisms between
the objects introduced thus far. In particular, the induced ho-
momorphism iB : O⊗

Z
Q→ EndS(B)⊗

Z
QS satisfies the Rosati

condition defined by λB (cf. [62, Def. 1.3.3.1]).

(4) j\ : X ⊗
Z
QS

∼→ X(T )⊗
Z
QS and j∨,\ : Y ⊗

Z
QS

∼→ X(T∨)⊗
Z
QS

are isomorphisms of O⊗
Z
Q-modules, such that there exists a

section r(j\, j∨,\) of (Q×>0)S such that j\◦φ = r(j\, j∨,\)λ∗T ◦j∨,\.
(5) [β̂\]HG1,Z

is a rational level-H structure of

(G\, λ\, i\, j\, j∨,\) of type (L⊗
Z
A∞, 〈 · , · 〉, Z⊗

Ẑ
A∞,Φ),

which is an assignment to each geometric point s̄ of S
a rational level-H structure of (G\, λ\, i\, j\, j∨,\) of type
(L⊗

Z
A∞, 〈 · , · 〉, Z⊗

Ẑ
A∞,Φ) based at s̄ (cf. [62, Def.

1.3.8.7]), which is a π1(S, s̄)-invariant HG1,Z-orbit [β̂\s̄]HG1,Z

of triples β̂\s̄ = (β̂\,0s̄ , β̂\,#,0s̄ , ν̂\s̄), such that the assignments at
any two geometric points s̄ and s̄′ of the same connected
component of S determine each other (cf. [62, Lem. 1.3.8.6]),
where:
(a) β̂\,0s̄ : Z−1⊗

Ẑ
A∞ ∼→ VG\

s̄ and β̂\,#,0s̄ : Z#
−1⊗

Ẑ
A∞ ∼→ VG∨,\s̄

are O⊗
Z
A∞-equivariant isomorphisms preserving filtra-

tions on both sides, which are compatible with λ\ and the
canonical morphism Z−1⊗

Ẑ
A∞ → Z

#
−1⊗

Ẑ
A∞ induced by

〈 · , · 〉.
(b) ν̂\s̄ : A∞(1)

∼→ V Gm,s̄ is an isomorphism of A∞-modules

such that r(j\, j∨,\)s̄ ν̂
\
s̄ maps Ẑ(1) to T Gm,s̄, where

r(j\, j∨,\)s̄ is the value at s̄ of the above section r(j\, j∨,\)
of (Q×>0)S such that j\ ◦ φ = r(j\, j∨,\)λ∗T ◦ j∨,\.

(c) The induced morphisms Gr−2(β̂\,0s̄ ) : GrZ−2⊗
Ẑ
A∞ ∼→ V Ts̄

and Gr−2(β̂\,#,0s̄ ) : GrZ
#

−2⊗
Ẑ
A∞ ∼→ V T∨s̄ coincide with the
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compositions

GrZ−2⊗
Ẑ
A∞

ϕ−2⊗
Ẑ
A∞

∼→ HomA∞(X ⊗
Z
A∞,A∞(1))

((j\)−1⊗
Q
A∞)∗

∼→ HomA∞(X(T )⊗
Z
A∞,A∞(1))

ν̂\s̄
∼→ HomA∞(X(T )⊗

Z
A∞,V Gm,s̄)

∼→ V Ts̄.

and

GrZ
#

−2⊗
Ẑ
A∞

ϕ#
−2⊗

Ẑ
A∞

∼→ HomA∞(Y ⊗
Z
A∞,A∞(1))

((j∨,\)−1⊗
Q
A∞)∗

∼→ HomA∞(X(T∨)⊗
Z
A∞,A∞(1))

ν̂\s̄
∼→ HomA∞(X(T∨)⊗

Z
A∞,V Gm,s̄)

∼→ V T∨s̄ ,

respectively, where ϕ#
−2 : GrZ

#

−2
∼→ HomẐ(Y ⊗

Z
Ẑ, Ẑ(1)) is

induced by ϕ0 by duality.
(d) Together with ν̂−1,s̄ := ν̂\s̄, the induced morphisms

ϕ̂−1,s̄ := Gr−1(β̂\,0s̄ ) : GrZ−1⊗
Ẑ
A∞ ∼→ VBs̄

and

ϕ̂#
−1,s̄ := Gr−1(β̂\,#,0s̄ ) : GrZ

#

−1⊗
Ẑ
A∞ ∼→ VB∨s̄

determine each other by duality. By varying s̄ over geo-
metric points of S, the (π1(S, s̄)-invariant) HGh,Z-orbits
of

(ϕ̂−1,s̄, ν̂−1,s̄)

determine a tuple

(B, λB, iB, ϕ−1,H)

whose Q×-isogeny class is parameterized by MHh (cf. [62,
Prop. 1.4.3.4]), while the (π1(S, s̄)-invariant) HG1,Z-orbits
of

(ϕ̂−1,s̄, ν̂−1,s̄, ϕ−2, ϕ0)
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determine a tuple

((B, λB, iB, ϕ−1,H), (ϕ∼−2,H, ϕ
∼
0,H))

whose Q×-isogeny class is parameterized by MΦH
H .

The Q×-isogenies

(G\, λ\ : G\ → G∨,\, i\, j\, j∨,\, [β̂\]HG1,Z
)

∼Q×-isog. (G\,′, λ\,′ : G\,′ → G∨,\,′, i\,′, j\,′, j∨,\,′, [β̂\,′]HG1,Z
)

between tuples as in (1.3.2.15) are given by pairs of Q×-isogenies

(f \ : G\ → G\,′, f∨,\ : G∨,\,′ → G∨,\)

such that we have the following:

(i) There exists a section r(f \, f∨,\) of (Q×>0)S such that
λ\ = r(f \, f∨,\)f∨,\ ◦ λ\,′ ◦ f \.

(ii) f \ and f∨,\ respect the compatible O⊗
Z
Q-actions on G\, G\,′, G∨,\,

and G∨,\,′ (defined by i\ and i\,′).
(iii) j\ = (f \)∗ ◦ j\,′ and j∨,\,′ = (f∨,\)∗ ◦ j∨,\.
(iv) For each geometric point s̄, the morphisms V(f \) : VG\

s̄
∼→ VG\,′

s̄

and V(f∨,\) : VG∨,\,′s̄
∼→ VG∨,\s̄ satisfy the condition that, for any

representatives β̂\s̄ = (β̂\,0s̄ , β̂\,#,0s̄ , ν̂\s̄) and β̂\,′s̄ = (β̂\,0,′s̄ , β̂\,#,0,′s̄ , ν̂\,′s̄ )

of [β̂\]HG1,Z
and [β̂\,′]HG1,Z

, respectively, the HG1,Z-orbits of

(V(f \) ◦ β̂\,0s̄ ,V(f∨,\)−1 ◦ β̂\,#,0s̄ , r(f \, f∨,\)−1
s̄ ν̂\s̄)

and
(β̂\,0,′s̄ , β̂\,#,0,′s̄ , ν̂\,′s̄ )

coincide, where r(f \, f∨,\)s̄ is the value at s̄ of the above section
r(f \, f∨,\) of (Q×>0)S such that λ\ = r(f \, f∨,\)f∨,\ ◦ λ\,′ ◦ f \.

Proof. As in [62, Sec. 1.4.3], this can be proved by replacing
any tuple as in (1.3.2.15) up to Q×-isogeny, as in the statement of

this proposition, with a tuple such that j\ : X ⊗
Z
Q ∼→ X(T )⊗

Z
Q

(resp. j∨,\ : Y ⊗
Z
Q ∼→ X(T∨)⊗

Z
Q) maps X (resp. Y ) to X(T ) (resp.

X(T∨)), and such that, at each geometric point s̄ of S, the assigned

β̂\s̄ = (β̂\,0s̄ , β̂\,#,0s̄ , ν̂\s̄) satisfies the condition that β̂\,0s̄ (resp. β̂\,#,0s̄ , resp.

ν̂\s̄) maps Z−1 (resp. Z#
−1, resp. Ẑ(1)) to TG\

s̄ (resp. TG∨,\s̄ , resp. T Gm,s̄).
Then the tuple determines and is determined by a tuple as in (1.3.2.13),
as desired. (These can be simultaneously achieved because of the ex-
istence of the section r(j\, j∨,\) of (Q×>0)S. The proof is similar to that
of [62, Prop. 1.4.3.4], and hence omitted.) �
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Construction 1.3.2.16. Suppose H is neat. Consider the degen-
erating family

(1.3.2.17) (G, λ, i, αH)→ Mtor
H,Σ

of type MH as in Theorem 1.3.1.3. Let Z = Z[(ΦH,δH,σ)] be any stratum
of Mtor

H,Σ such that σ ⊂ P+
ΦH

is a top-dimensional cone in ΣΦH (in Σ).
Let

(1.3.2.18) (G\

Z
, λ\

Z
, i\

Z
)→ Z

denote the pullback of the (G, λ, i) in (1.3.2.17) to Z, the closure of Z in
Mtor
H,Σ. Since σ is top-dimensional, the canonical morphism Z→ CΦH,δH

is an isomorphism. Since αH is defined only over MH, its pullback to
Z is undefined. The goal of this construction is to define a partial
pullback, which still retains some information of αH.

Let n ≥ 1 be any integer such that U(n) ⊂ H, and let us fix any
choice of (Zn,Φn, δn). Consider any top-dimensional cone σ′ contained
in σ that is smooth for the integral structure defined by SΦn , we have
a canonical morphism XΦn,δn,σ′ → XΦH,δH,σ (which might not be finite
étale), inducing a morphism from the σ′-stratum Zn = Z[(Φn,δn,σ′)] of
the source to the σ-stratum Z = Z[(ΦH,δH,σ)] of the target (although the
scheme-theoretic preimage of latter might not be the former), which
can be identified with the canonical morphism (1.3.2.9). Let us denote
the pullback of (1.3.2.18) to Zn by

(1.3.2.19) (G\
Zn
, λ\Zn , i

\
Zn

)→ Zn.

Over each affine open formal subscheme Spf(R, I) of XΦn,δn,σ′ ,
such that S0 = Spec(R/I) is the σ′-stratum of S = Spec(R), where
both R and R/I are regular domains, we have a degenerating family
(GS, λS, iS, αn,η) → S of type Mn = MU(n). A priori, the level
structure αn,η is defined only over the generic point η of S (and it
only extends to the largest open subscheme of S over which the
pullback of GS is an abelian scheme). Nevertheless, as explained in
[62, Prop. 5.2.2.1], Gη[n] (resp. G∨η [n]) admits a canonical filtration

0 ⊂ Tη[n] ⊂ G\
η[n] ⊂ Gη[n] (resp. 0 ⊂ T∨η [n] ⊂ G∨,\η [n] ⊂ G∨η [n]),

with notation as in Lemma 1.3.2.11, where the subscripts “η”
(and similar usages later) mean pullbacks. By the construction of

XΦn,δn,σ′ , the symplectic isomorphism αn,η : L/nL
∼→ Gη[n] sends

the filtration Zn to the above geometric filtration on Gη[n], and
induces the pair (ϕ−2,n, ϕ0,n) in Φn when restricted to the top and
bottom filtered pieces. By duality, and by using the isomorphism
νn,η : ((Z/nZ)(1))η

∼→ µn,η (which is part of the data of αn,η), it also

defines a symplectic isomorphism α#
n,η : L#/nL# ∼→ G∨η [n] which sends
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the dual filtration Z#
n to the above geometric filtration on G∨η [n],

which induces (in particular) an object ϕ#
−2,n dual to ϕ0,n in the

obvious sense. These two isomorphisms αn,η and α#
n,η are compatible

under the canonical morphisms L ↪→ L# and λη : Gη → G∨η .

Since G\
S[n] (resp. G∨,\S [n], resp. µn,S) is finite étale over S, the

restriction of αn,η to Z−1 (resp. the restriction of α#
n,η to Z

#
−1, resp. the

isomorphism νn,η) over η extends to an isomorphism β\,0n,S : (Z−1,n)S
∼→

G\
S[n] (resp. β\,#,0n,S : (Z#

−1,n)S
∼→ G∨,\S [n], resp. ν\n,S : ((Z/nZ)(1))S

∼→
µn,S) over the whole normal scheme S. These two isomorphisms β\,0n,S
and β\,#,0n,S are compatible under the canonical morphisms (Z−1,n)S →
(Z#
−1,n)S and λ\S : G\

S → G∨,\S . Let β\n,S := (β\,0n,S, β
\,#,0
n,S , ν\n,S), and

consider its pullback β\n,S0
:= (β\,0n,S0

, β\,#,0n,S0
, ν\n,S0

) to S0. By analyzing

β\n,S as in the case of αn,η as in [62, Sec. 5.2.2–5.2.3], we see that β\n,S
retains almost all information of αn,η, including the pairing e10,n to
be compared with d10,n, as in [62, Lem. 5.2.3.12 and Thm. 5.2.3.14],
except that it loses information about the pairing e00,n to be compared
with d00,n. Hence, if we denote the pullback of (1.3.2.18) to S0 by

(G\
S0
, λ\S0

, i\S0
) → S0, then (G\

S0
, λ\S0

, i\S0
, β\n,S0

) → S0 determines and
is determined by (the prescribed (Zn,Φn, δn) and) the pullback to S0

of the tautological object ((B, λB, iB, ϕ−1,n), (cn, c
∨
n)) over CΦn,δn (up

to isomorphisms inducing automorphisms of Φn; i.e., elements of ΓΦn ;
see Lemma 1.3.2.11). By patching over varying S, we obtain (with

(G\
Zn
, λ\Zn , i

\
Zn

) already defined as in (1.3.2.19)) a tuple

(1.3.2.20) (G\
Zn
, λ\Zn , i

\
Zn
, β\n,Zn)→ Zn ∼= CΦn,δn

such that the previous sentence is true with S0 replaced with Zn.
Since HG1,Z/U(n)G1,Z acts compatibly on β\n,Zn and (ϕ−1,n, cn, c

∨
n),

the latter action being compatible with theHG1,Z/U(n)G1,Z-torsor struc-

ture of (1.3.2.9), by forming the HG1,Z/U(n)G1,Z-orbit β\H,Zn of β\n,Zn , we
can descend (1.3.2.20) to a tuple

(1.3.2.21) (G\
Z, λ

\
Z, i

\
Z, β

\
H,Z)→ Z ∼= CΦH,δH ,

where the first three entries form the pullback of (1.3.2.18) to Z, which
determines and is determined by (the prescribed (ZH,ΦH, δH) and) the
tautological object

(1.3.2.22)
(
(B, λB, iB, ϕ−1,H), (ϕ∼−2,H, ϕ

∼
0,H), (cH, c

∨
H)
)
→ CΦH,δH
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(up to isomorphisms inducing automorphisms of ΦH; i.e., elements of
ΓΦH). Since the tautological object (1.3.2.22) is independent of the
choice of n, so is the tuple (1.3.2.21).

By abuse of language, we say that

(1.3.2.23) (G\

Z
, λ\

Z
, i\

Z
, β\H,Z)→ Z

is the pullback of the degenerating family (1.3.2.17) to Z, with the

convention that (as in the case of (G, λ, i, αH) itself) β\H,Z is defined

only over Z, while (G\, λ\, i\) is defined over all of Z as in (1.3.2.18).
(This finishes Construction 1.3.2.16.)

Proposition 1.3.2.24. (Compare with Proposition 1.3.1.15.) By
considering compatible Q×-isogenies (f : G\ → G\,′, f∨ : G∨,\,′ →
G∨,\) inducing isomorphisms on the torus parts, we can define Hecke

twists of the tautological object (G\, λ\, i\, β\H) → CΦH,δH by elements
of G1,Z(A∞), and define the Hecke action of G1,Z(A∞) on the collec-
tion {CΦH,δH}HG1,Z

, realized by finite étale surjections pulling tautolog-

ical objects back to Hecke twists, which is compatible with the Hecke
action of G′h,Z(A∞) on the collection {MΦH

H }HG′
h,Z

under the canonical

morphisms CΦH,δH → MΦH
H (with varying H) and the canonical homo-

morphism G1,Z(A∞) → G′h,Z(A∞). Over the subcollection indexed by
HG1,Z with neat H, the Hecke action of G1,Z(A∞) on {CΦH,δH}HG1,Z

is

compatible with the Hecke action of P′Z(A∞) on the collection of strata
{Z[(ΦH,δH,σ)]} above {CΦH,δH}HG1,Z

(cf. Proposition 1.3.1.15) under the

canonical homomorphism P′Z(A∞)→ G1,Z(A∞) = P′Z(A∞)/U2,Z(A∞).
By also considering Q×-isogenies (f : G\ → G\,′, f∨ : G∨,\,′ → G∨,\)

inducing Q×-isogenies on the torus parts, we can also define
Hecke twists of the tautological object (G\, λ\, i\, β\H) → CΦH,δH

by elements of PZ(A∞)/U2,Z(A∞), and define the Hecke action of
PZ(A∞)/U2,Z(A∞) on the collection {

∐
CΦH,δH}HPZ

/HU2,Z
, realized by

finite étale surjections pulling tautological objects back to Hecke twists,
where the disjoint unions are over classes [(ZH,ΦH, δH)] sharing the
same ZH, which induces an action of G′l,Z(A∞) = PZ(A∞)/P′Z(A∞)
on the index sets {[(ZH,ΦH, δH)]}, which is compatible with
the Hecke action of PZ(A∞)/UZ(A∞) ∼= G′l,Z(A∞)×G′h,Z(A∞)

on the collection {
∐

MΦH
H }HG′

h,Z

(with the same index sets and

the same induced action of G′l,Z(A∞)) under the canonical

morphisms CΦH,δH → MΦH
H (with varying H) and the canonical

homomorphism PZ(A∞)/U2,Z(A∞) → G′l,Z(A∞)×G′h,Z(A∞). Over the
subcollection indexed by HPZ

/HU2,Z with neat H, the Hecke action
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of PZ(A∞)/U2,Z(A∞) on {
∐
CΦH,δH}HPZ

/HU2,Z
is compatible with the

Hecke action of PZ(A∞)(A∞) on the collection of strata {Z[(ΦH,δH,σ)]}
above {

∐
CΦH,δH}HPZ

/HU2,Z
(cf. Proposition 1.3.1.15) under the

canonical homomorphism PZ(A∞)(A∞)→ PZ(A∞)/U2,Z(A∞).
In the Q×-isogeny class language as in Proposition 1.3.2.14, the

morphism
[g] : CΦH′ ,δH′

→ CΦH,δH ,

for g ∈ PZ(A∞)/U2,Z(A∞) such that H′PZ
/H′U2,Z

⊂ g(HPZ
/HU2,Z)g

−1

and such that [(ΦH, δH)] is g-assigned to [(ΦH′ , δH′)] with a pair iso-
morphisms

(fX : X ⊗
Z
Q ∼→ X ′⊗

Z
Q, fY : Y ′⊗

Z
Q ∼→ Y ⊗

Z
Q)

as in [62, Prop. 5.4.3.8], is characterized by

[g]∗(G\, λ\ : G\ → G∨,\, i\, j\, j∨,\, [β̂\]HG1,Z
)

∼Q×-isog. (G\,′, λ\,′ : G\,′ → G∨,\,′, i\,′, fX ◦ j\,′, f−1
Y ◦ j

∨,\,′, [β̂\,′ ◦ g]HG1,Z
)

over CΦH′ ,δH′
, where

(G\, λ\ : G\ → G∨,\, i\, j\, j∨,\, [β̂\]HG1,Z
)

and
(G\,′, λ\,′ : G\,′ → G∨,\,′, i\,′, j\,′, j∨,\,′, [β̂\,′]H′G1,Z

)

are representatives of the universal Q×-isogeny classes over
CΦH,δH and CΦH′ ,δH′

, respectively, and where the rational level-H
structure [β̂\,′ ◦ g]HG1,Z

of (G\,′, λ\,′, i\,′, fX ◦ j\,′, f−1
Y ◦ j∨,\,′) of type

(L⊗
Z
A∞, 〈 · , · 〉, Z⊗

Ẑ
A∞,Φ) is determined at each geometric point s̄ of

CΦH′ ,δH′
by the HG1,Z-orbit of β̂\,′s̄ ◦ g, where β̂\,′s̄ is any representative

of the rational level-H′ structure [β̂\,′s̄ ]H′G1,Z
of (G\,′, λ\,′, i\,′, j\,′, j∨,\,′)

of type (L⊗
Z
A∞, 〈 · , · 〉, Z⊗

Ẑ
A∞,Φ′) based at s̄ (assigned to s̄ by

[β̂\,′]H′G1,Z
).

Proof. The first assertions in both of the first two paragraphs,
and the whole third paragraph, can be justified as in the case of MH,
which we omit for simplicity. As for the second assertions in both of the
first two paragraphs, it suffices to note that the pullback of the Hecke
twist of (1.3.2.17) is the Hecke twist of (1.3.2.21), the latter of which
can be identified with the tautological object over CΦH,δH under the

canonical isomorphism Z[(ΦH,δH,σ)]
∼→ CΦH,δH (for any top-dimensional

σ, when H is neat). �
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The torus torsor ΞΦH,δH → CΦH,δH is, by the construction in [62,
Sec. 6.2.3–6.2.4; see also the errata], the quotient of∐

ΞΦn,δn →
∐

CΦn,δn

by Hn = H/U(n) (for any integer n ≥ 1 such that U(n) ⊂ H), where
each ΞΦn,δn → CΦn,δn has a canonical structure of a torsor under the
torus EΦn with character group SΦn (see Section 1.2.2), which is pre-
served under the action of Hn,Uess

2,Zn

∼= HU2,Z/U(n)U2,Z . Therefore, we
have the following:

Lemma 1.3.2.25. The quotient ΞΦH,δH depends only on HP′Z
, and is

a torsor under the torus EΦH with character group SΦH.
If we fix the choice of (Zn and) Φn, then the canonical morphism

(1.3.2.26) ΞΦn,δn → ΞΦH,δH

is an HP′Z
/U(n)P′Z

∼= Hn,Gess
h,Zn

nUess
Zn

-torsor (see [62, Sec. 6.2.4; see also the

errata]), where HP′Z
and U(n)P′Z

are open compact subgroups of P′Z(Ẑ)
as in Definition 1.2.1.12, and induces an isomorphism

(1.3.2.27) ΞΦn,δn/(HP′Z
/U(n)P′Z

)
∼→ ΞΦH,δH .

Lemma 1.3.2.28. (Compare with Lemma 1.3.2.7.) The torus tor-
sor S := ΞΦn,δn → CΦn,δn is universal for the additional structure τn
satisfying certain symplectic and liftability conditions, which we review
as follows:

(1) τn : 1 1
n
Y ×X,S

∼→ (c∨n × c)∗P⊗−1
B is an O-compatible trivializa-

tion of biextensions (as in [62, Lem. 5.2.3.2 and Def. 5.2.7.8]),
where PB is the Poincaré invertible sheaf of B, which de-
fines an O-equivariant homomorphism ιn : 1

n
YS → G\ lifting

c∨n : 1
n
YS → B (via the canonical homomorphism G\ → B). Its

restriction τ : 1Y ×X,S
∼→ (c∨n × c)∗P⊗−1

B is a trivialization of
biextensions such that (IdY ×φ)∗τ is symmetric, and such that
(iY (b)× IdX)∗τ = (IdY × iX(b?))∗τ for all b ∈ O; and defines
homomorphisms ι : YS → G\ and ι∨ : XS → G∨,\ compatible
with each under φ : Y ↪→ X and λ\ : G\ → G∨,\.

(2) Let [n] : G\ → G\ denote the multiplication by n morphism on
G\. Then we define

G[n] := [n]−1(ι(Y ))/ι(Y ),

where ι(Y ) is the image of the O-equivariant homomorphism
ι : Y → G\ induced by ιn by restriction. Note that we defined
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G[n] without actually having a quotient G = G\/ι(Y ) over S
(cf. [20, p. 57]). Then we have an exact sequence

(1.3.2.29) 0→ G\[n]→ G[n]→ (Y/nY )S → 0

of finite flat group schemes over S. Similarly, we define

G∨[n] := [n]−1(ι∨(X))/ι∨(X)

without defining G∨, together with an exact sequence

(1.3.2.30) 0→ G∨,\[n]→ G∨[n]→ (X/nX)S → 0

of finite flat group schemes over S, which is then equipped with
a homomorphism

λ : G[n]→ G∨[n]

without defining λ : G→ G∨, respecting the filtrations defined
by (1.3.2.29) and (1.3.2.30). We note that there is a canonical
duality between G[n] and G∨[n], just as in the case of usual
abelian schemes, but we will not explicitly use this canonical
duality for our purpose.

(3) The lifting ιn of ι defines a splitting of (1.3.2.29). Together
with the splittings defined by (cn, c

∨
n) in Lemma 1.3.2.11, we

obtain a splitting

ςn : T [n]⊕B[n]⊕(Y/nY )S
∼→ G[n].

On the other hand, the biextension properties of PB allows τn
to induce a dual trivialization

τ∨n : 1 1
n
X ×Y,S

∼→ (cn× c∨)∗P⊗−1
B ,

by setting

τ∨n ( 1
n
χ, y) : 1S

∼→ (cn( 1
n
χ, c∨(y))∗P⊗−1

B

to be

1S

τn(
1
n
y,χ)
∼→ (c∨n( 1

n
y), cn( 1

n
χ))∗P⊗−nB

∼= (cn( 1
n
χ, c∨(y))∗P⊗−1

B .

Then τ∨n induces a lifting ι∨n of ι, which defines a splitting of
(1.3.2.29). Together with the splittings defined by (cn, c

∨
n) in

Lemma 1.3.2.11, we obtain a splitting

ς∨n : T∨[n]⊕B∨[n]⊕(X/nX)S
∼→ G∨[n].

However, the two splittings have no reason to be compatible
with each other under λ : G[n] → G∨[n]. While the failure
measured by the induced homomorphisms B[n] → T∨[n] and
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(Y/nY )S → B∨[n] can be identified (up to a sign convention)
with the pairing

d10,n : B[n]×( 1
n
Y/Y )S → µn,S

defined in Lemma 1.3.2.11, the failure measured by the induced
homomorphism (Y/nY )S → T∨[n] can be identified (up to a
sign convention) with a pairing

d00,n : ( 1
n
Y/Y )S ×( 1

n
Y/Y )S → µn,S

which sends ( 1
n
y1,

1
n
y2) to

τn( 1
n
y1, φ(y2))τn( 1

n
y2, φ(y1))−1

for any functorial points y1 and y2 of ( 1
n
Y/Y )S (cf. [62, Lem.

5.2.3.12]).
(4) The symplectic condition for τn (or ιn) is that, under ϕ0,n, the

pairing d00,n above is matched with the pairing

〈 · , · 〉00,n : GrZ0,n×GrZ0,n → ((Z/nZ)(1))S

induced by 〈 · , · 〉 and δn. Then, together with the symplectic
condition for (cn, c

∨
n) in Lemma 1.3.2.11, under (ϕ−2,n, ϕ0,n)

and ϕ−1,n (equipped with ν−1,n : ((Z/nZ)(1))S
∼→ µn,S), we

obtain an O-equivariant isomorphisms

β0
n : (L/nL)S

∼→ G[n]

and
β#,0
n : (L#/nL#)S

∼→ G∨[n]

respecting filtrations on both sides, together with the isomor-
phism νn = ν−1,n, which are compatible with the canonical
morphisms L ↪→ L# and λ : G[n]→ G∨[n].

(5) The liftability condition for τn is that, for each integer m such
that n|m, and for any lifting δm of δn, there exists a finite
étale covering of S over which there exist ϕ−1,m, (ϕ−2,m, ϕ0,m),
(cm, c

∨
m), and τm lifting ϕ−1,n, (ϕ−2,n, ϕ0,n), (cn, c

∨
n), τn, respec-

tively, and satisfying the symplectic condition defined by 〈 · , · 〉
and δm as above.

(6) The group of multiplicative type
...
EΦn with character group

...
SΦn

as in (1.2.2.1) define a subgroup of

HomZ
(
( 1
n
Y )⊗

Z
X)S,Gm,S

) ∼= HomZ( 1
n
YS, T )

over S, which acts on the collection of O-compatible τn,
possibly not satisfying the symplectic and liftability conditions
above (but preserving the symmetry and O-compatibility of
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the induced τ), inducing a translation action on the collection
of O-equivariant homomorphisms ιn : 1

n
YS → G\. The

subgroup EΦn of
...
EΦn with character group SΦn =

...
SΦn,free,

the free quotient of
...
SΦn, preserves in addition the symplectic

and liftability conditions satisfied by τn (see [62, (6.2.3.5) and
Conv. 6.2.3.20], and the proofs leading to there), and makes
S = ΞΦn,δn → CΦn,δn a torsor under the torus EΦn, which is
equipped with a homomorphism

SΦn → Pice(CΦn,δn/M
Zn
n ) : ` 7→ ΨΦn,δn(`)

(by the torus torsor structure; see [62, Prop. 6.2.3.21 and
(6.2.3.22)]), assigning to each ` ∈ SΦn a rigidified invertible
sheaf ΨΦn,δn(`) over CΦn,δn, such that

ΞΦn,δn
∼= Spec

OCΦn,δn

(
⊕

`∈SΦn

ΨΦn,δn(`)

)
.

When ` = [ 1
n
y⊗χ] for some y ∈ Y and χ ∈ X, we have a

canonical isomorphism

ΨΦn,δn(`) ∼= (c∨n( 1
n
y), c(χ))∗PB.

By construction, we have S∨Φ1
/S∨Φn

∼= U2,Z(Ẑ)/U(n)U2,Z.

These can be re-interpreted as follows: S = ΞΦn,δn → CΦn,δn parame-
terizes tuples

(G\, λ\ : G\ → G∨,\, i\, τ, βn),

where:

(a) G\, G∨,\, λ\, and i\ are as in Lemma 1.3.2.11.

(b) τ : 1Y ×X
∼→ (c∨× c)∗P⊗−1

B is a trivialization of biextensions such
that (IdY ×φ)∗τ is symmetric, and such that (iY (b)× IdX)∗τ =
(IdY × iX(b?))∗τ for all b ∈ O. Then τ induces homomorphisms
ι : Y → G\ and ι∨ : X → G∨,\ compatible with the homomorphisms
φ : Y ↪→ X and λ\ : G\ → G∨,\, and induces an O-equivariant
homomorphism λ : G[n]→ G∨[n].

(c) βn = (β0
n, β

#,0
n , νn) is a principal level-n structure of

(G\, λ\, i\, τ) of type (L⊗
Z
Ẑ, 〈 · , · 〉, Z), where β0

n : (L/nL)S
∼→ G[n]

and β#,0
n : (L#/nL#)S

∼→ G∨[n] are O-equivariant isomorphisms
respecting the canonical filtrations on both sides, and
νn : ((Z/nZ)(1))S

∼→ µn,S is an isomorphism, which are compatible

with the canonical morphisms L ↪→ L# and λ : G[n]→ G∨[n], and
induce on the graded pieces the given data ϕ−2,n, ϕ−1,n, and ϕ0,n.
Moreover, βn satisfies the liftability condition that, for each integer
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m ≥ 1 such that n|m, there exists a finite étale covering of S over
which there exists an analogous triple βm lifting the pullback of βn.

Proof. The statements are self-explanatory. �

Proposition 1.3.2.31. (Compare with Proposition 1.3.2.12.) The
torus torsor S := ΞΦH,δH → CΦH,δH is universal for the additional struc-
ture τH satisfying certain symplectic and liftability conditions, which
can be interpreted as parameterizing tuples

(G\, λ\ : G\ → G∨,\, i\, τ, βH),

where G\, G∨,\, λ\, and i\ are as in Lemma 1.3.2.11, where τ is as in
Lemma 1.3.2.28, and where βH is a level-H structure of (G\, λ\, i\, τ)

of type (L⊗
Z
Ẑ, 〈 · , · 〉, Z), which is a collection {βHn}n, where n ≥ 1

runs over integers such that U(n) ⊂ H, such that each βHn (where
Hn := H/U(n)) is a subscheme of∐(

IsomS

(
(L/nL)S, G[n]

)
×
S

IsomS

(
(L#/nL#)S, G

∨[n]
)

×
S

IsomS

(
((Z/nZ)(1))S,µn,S

))
over S, where the disjoint union is over representatives (Zn,Φn, δn)
(with the same (X, Y, φ)) in (ZH,ΦH, δH), that becomes the disjoint
union of all elements in the Hn-orbit of some principal level-n structure
βn of (G\, λ\, i\, τ) of type (L⊗

Z
Ẑ, 〈 · , · 〉, Z), as in Lemma 1.3.2.28, for

any Z lifting Zn; and where βHm is mapped to βHn (under the canonical
morphism, which we omit for simplicity) when n|m.

Let SΦH be the unique lattice in SΦ1 ⊗
Z
Q such that S∨Φ1

/S∨ΦH
∼=

U2,Z(Ẑ)/HU2,Z. Then S = ΞΦH,δH → CΦH,δH is torsor under the split
torus EΦH with character group SΦH, equipped a homomorphism

SΦH → Pic(CΦH,δH) : ` 7→ ΨΦH,δH(`)

(by the torus torsor structure; see [62, Prop. 6.2.4.7 and (6.2.4.8);
see also the errata]), assigning to each ` ∈ SΦH an invertible
sheaf ΨΦH,δH(`) over CΦH,δH (up to isomorphism), together with
isomorphisms

∆∗ΦH,δH,`,`′ : ΨΦH,δH(`) ⊗
OCΦH,δH

ΨΦH,δH(`′)
∼→ ΨΦH,δH(`+ `′)
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for all `, `′ ∈ SΦH, satisfying the necessary compatibilities with each
other making ⊕

`∈SΦH

ΨΦH,δH(`) an OCΦH,δH
-algebra, such that

ΞΦH,δH
∼= Spec

OCΦH,δH

(
⊕

`∈SΦH

ΨΦH,δH(`)

)
.

When ` = [y⊗χ] for some y ∈ Y and χ ∈ X, we have a canonical
isomorphism

ΨΦH,δH(`) ∼= (c∨(y), c(χ))∗PB.

Proof. This follows from the construction of ΞΦH,δH → CΦH,δH as
a quotient of

∐
ΞΦn,δn →

∐
CΦn,δn (over the same index set). �

For each rational polyhedral cone σ ⊂ (SΦH)∨R as in Definition
1.2.2.2, we have an affine toroidal embedding

(1.3.2.32) ΞΦH,δH ↪→ ΞΦH,δH(σ) := Spec
OCΦH,δH

(
⊕
`∈σ∨

ΨΦH,δH(`)

)
,

both sides being relative affine over CΦH,δH , where ΞΦH,δH(σ)→ CΦH,δH

is smooth when the cone σ is smooth, with a closed subalgebraic stack
defined by

(1.3.2.33) ΞΦH,δH,σ := Spec
OCΦH,δH

(
⊕

`∈σ⊥
ΨΦH,δH(`)

)
,

which we call the σ-stratum (cf. [62, Def. 6.1.2.7]), which is by itself
a torsor under the torus EΦH,σ with character group σ⊥. For each
ΓΦH-admissible rational polyhedral cone decomposition ΣΦH as in Def-
inition 1.2.2.4, we have a toroidal embedding

(1.3.2.34) ΞΦH,δH ↪→ ΞΦH,δH = ΞΦH,δH,ΣΦH
,

the right-hand side being only locally of finite type over CΦH,δH , with
an open covering

(1.3.2.35) ΞΦH,δH = ∪
σ∈ΣΦH

ΞΦH,δH(σ),

inducing a stratification

(1.3.2.36) ΞΦH,δH =
∐

σ∈ΣΦH

ΞΦH,δH,σ.

(The notation “
∐

” only means a set-theoretic disjoint union. The
algebro-geometric structure is still the one inherited from ΞΦH,δH .)
Concretely, if σ is a face of ρ, then ρ∨ ⊂ σ∨ and ΞΦH,δH(σ) ⊂ ΞΦH,δH(ρ),
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but ΞΦH,δH,ρ is contained in the closure of ΞΦH,δH,σ. The closure of
ΞΦH,δH,σ in ΞΦH,δH(ρ) is

(1.3.2.37) ΞΦH,δH,σ(ρ) := Spec
OCΦH,δH

(
⊕

`∈σ⊥ ∩ ρ∨
ΨΦH,δH(`)

)
.

In this case, the open embedding

(1.3.2.38) ΞΦH,δH,σ ↪→ ΞΦH,δH,σ(ρ)

is an affine toroidal embedding (as in [62, Def. 6.1.2.3]) for the torus
torsor ΞΦH,δH,σ → CΦH,δH . Let

(1.3.2.39) XΦH,δH,σ := (ΞΦH,δH(σ))∧ΞΦH,δH,σ
,

the formal completion of ΞΦH,δH(σ) along its σ-stratum ΞΦH,δH,σ. When
σ ⊂ P+

ΦH
appears in ΣΦH ∈ Σ, the quotient XΦH,δH,σ/ΓΦH,σ is isomor-

phic to the formal completion of Mtor
H,Σ along its [(ΦH, δH, σ)]-stratum

Z[(ΦH,δH,σ)]
∼= ΞΦH,δH,σ/ΓΦH,σ, as in Theorem 1.3.1.3. If there is a sur-

jection (Z′H,Φ
′
H, δ

′
H) � (ZH,ΦH, δH) such that σ is mapped to a face

of a cone ρ ⊂ P+
Φ′H

under the canonical mapping P+
ΦH
→ PΦ′H

, and if

ρ ∈ ΣΦ′H
∈ Σ, then Z[(Φ′H,δ

′
H,ρ)] is contained in the closure Z[(ΦH,δH,σ)] of

Z[(ΦH,δH,σ)] in Mtor
H,Σ, and the completion of Z[(ΦH,δH,σ)] along Z[(Φ′H,δ

′
H,ρ)]

is canonically isomorphic to

(1.3.2.40) XΦH,δH,σ,ρ := (ΞΦH,δH,σ(ρ))∧ΞΦH,δH,ρ
,

the formal completion of ΞΦH,δH,σ(ρ) along its ρ-stratum ΞΦH,δH,ρ.

Lemma 1.3.2.41. Let XΦH,δH = XΦH,δH,ΣΦH
be the formal comple-

tion of ΞΦH,δH along the union of the σ-strata ΞΦH,δH,σ for σ ∈ ΣΦH

and σ ⊂ P+
ΦH

. Then we have a canonical morphism

(1.3.2.42) XΦH,δH → Mtor
H,Σ

inducing a canonical isomorphism

(1.3.2.43) XΦH,δH/ΓΦH
∼→ (Mtor

H,Σ)∧∪Z[(ΦH,δH,σ)]
,

where ∪Z[(ΦH,δH,σ)] is the union of all strata Z[(ΦH,δH,σ)] with σ ∈ ΣΦH

(and σ ⊂ P+
ΦH

), under which the pullback of Lie∨G/Mtor
H,Σ

(resp.

Lie∨G∨/Mtor
H,Σ

, resp. λ∗ : Lie∨G∨/Mtor
H,Σ
→ Lie∨G/Mtor

H,Σ
) can be canonically

identified with the pullback of Lie∨G\/CΦH,δH
(resp. Lie∨G∨,\/CΦH,δH

, resp.

(λ\)∗ : Lie∨G∨,\/CΦH,δH
→ Lie∨G\/CΦH,δH

). For each stratum Z[(ΦH,δH,σ)],

the isomorphism (1.3.2.43) is compatible with the isomorphism

XΦH,δH,σ/ΓΦH,σ
∼→ (Mtor

H,Σ)∧Z[(ΦH,δH,σ)]
in (5) of Theorem 1.3.1.3

(under the canonical morphisms XΦH,δH,σ/ΓΦH,σ → XΦH,δH/ΓΦH and
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(Mtor
H,Σ)∧Z[(ΦH,δH,σ)]

→ (Mtor
H,Σ)∧∪Z[(ΦH,δH,σ)]

). (Such isomorphisms are

induced by strata-preserving isomorphisms from étale neighborhoods
of points of ΞΦH,δH,σ in ΞΦH,δH(σ) to étale neighborhoods of points of
Z[(ΦH,δH,σ)] in Mtor

H,Σ.)

Proof. The formal algebraic stack XΦH,δH admits an open covering
by open formal algebraic substacks Uσ, where each Uσ is the formal
completion of the smooth algebraic stack ΞΦH,δH(σ) along its closed
sub-algebraic stack formed by the union of ΞΦH,δH,τ such that τ is a
face of σ (which can be σ itself), τ ∈ ΣΦH , and τ ⊂ P+

ΦH
. Using

the Mumford family carried by XΦH,δH (see [62, Sec. 6.2.5]), by (6)
of Theorem 1.3.1.3, three exist morphisms Uσ → Mtor

H,Σ which patch
together and form the desired canonical morphism (1.3.2.42), which is
unchanged under the canonical action of ΓΦH and hence factors through
a canonical morphism

(1.3.2.44) XΦH,δH/ΓΦH → (Mtor
H,Σ)∧∪Z[(ΦH,δH,σ)]

.

On the other hand, by the construction of Mtor
H,Σ by gluing good alge-

braic models (see [62, Sec. 6.3]) in the étale topology, the pullback of
the tautological object (G, λ, i, αH) → Mtor

H,Σ to (Mtor
H,Σ)∧∪Z[(ΦH,δH,σ)]

de-

fine degeneration data parameterized by XΦH,δH/ΓΦH , and hence there
is a canonical morphism giving the inverse of (1.3.2.44) and induces the
canonical isomorphism (1.3.2.43). (This explains the last parenthetical
remark in the statement of the lemma, because the good algebraic mod-
els carry approximations of the degeneration data, which include in par-
ticular trivializations of the invertible sheaves ΨΦH,δH(`), which deter-
mine the stratifications.) Moreover, since the pullbacks of (G,G∨, λ)→
Mtor
H,Σ and (G\, G∨,\, λ\) → CΦH,δH induce canonically isomorphic for-

mal completions (Gfor, G
∨
for, λfor) → Uσ and (G\

for, G
∨,\
for , λ

\
for) → Uσ (by

the theory of degeneration) over each Uσ, the pullback of Lie∨G/Mtor
H,Σ

(resp. Lie∨G∨/Mtor
H,Σ

, resp. λ∗ : Lie∨G∨/Mtor
H,Σ
→ Lie∨G/Mtor

H,Σ
) can be canoni-

cally identified with the pullback of Lie∨G\/CΦH,δH
(resp. Lie∨G∨,\/CΦH,δH

,

resp. (λ\)∗ : Lie∨G∨,\/CΦH,δH
→ Lie∨G\/CΦH,δH

) under (1.3.2.43). Since

(1.3.2.43) and the canonical isomorphism in (5) of Theorem 1.3.1.3 are
both defined by the universal properties given in terms of degeneration
data, they are naturally compatible with each other. �

Proposition 1.3.2.45. (Compare with Propositions 1.3.1.15 and
1.3.2.24.) By considering compatible Q×-isogenies (f : G\ → G\,′, f∨ :
G∨,\,′ → G∨,\) compatible with the homomorphisms (ι : Y → G\, ι∨ :
X → G∨,\) inducing isomorphisms on the torus parts T and T∨ and on
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the domains of ι and ι∨, we can define Hecke twists of the tautological
object (G\, λ\, i\, τ, βH) → ΞΦH,δH by elements of P′Z(A∞), and define
the Hecke action of P′Z(A∞) on the collection {ΞΦH,δH}HP′Z

, realized by

finite étale surjections pulling tautological objects back to Hecke twists,
which is compatible with the Hecke action of G1,Z(A∞) on the collection
{CΦH,δH}HG1,Z

under the canonical morphisms ΞΦH,δH → CΦH,δH (with

varying H) and the canonical homomorphism P′Z(A∞) → G1,Z(A∞) =
P′Z(A∞)/U2,Z(A∞).

By also considering Q×-isogenies (f : G\ → G\,′, f∨ : G∨,\,′ → G∨,\)
compatible with the homomorphisms (ι : Y → G\, ι∨ : X → G∨,\) in-
ducing Q×-isogenies on the torus parts T and T∨ and on the domains
of ι and ι∨ (possibly varying the isomorphism classes of the O-lattices
X and Y ), we can also define Hecke twists of the tautological object
(G\, λ\, i\, τ, βH) → CΦH,δH by elements of PZ(A∞), and define the
Hecke action of PZ(A∞) on the collection {

∐
ΞΦH,δH}HPZ

, realized by
finite étale surjections pulling tautological objects back to Hecke twists,
where the disjoint unions are over classes [(ZH,ΦH, δH)] sharing the
same ZH, which induces an action of G′l,Z(A∞) = PZ(A∞)/P′Z(A∞) on
the index sets {[(ZH,ΦH, δH)]}, which is compatible with the Hecke ac-
tion of PZ(A∞)/U2,Z(A∞) on the collection {

∐
CΦH,δH}HPZ

/HU2,Z
(with

the same index sets and the same induced action of G′l,Z(A∞)) under
the canonical morphisms ΞΦH,δH → CΦH,δH (with varying H) and the
canonical homomorphism PZ(A∞)→ PZ(A∞)/U2,Z(A∞).

Any such Hecke action

[g] : ΞΦ′H′ ,δ
′
H′
→ ΞΦH,δH

covering [g] : CΦ′H′ ,δ
′
H′
→ CΦH,δH induces a (finite étale) morphism

ΞΦ′H′ ,δ
′
H′
→ ΞΦH,δH ×

CΦH,δH

CΦ′H′ ,δ
′
H′

between torus torsors over CΦ′H′ ,δ
′
H′

, which is equivariant with the mor-

phism EΦ′H′
→ EΦH dual to the homomorphism SΦH → SΦ′H′

induced by

the pair of morphisms (fX : X ⊗
Z
Q ∼→ X ′⊗

Z
Q, fY : Y ′⊗

Z
Q ∼→ Y ⊗

Z
Q)

defining the g-assignment (Z′H′ ,Φ
′
H′ , δ

′
H′)→g (ZH,ΦH, δH) of cusp labels

(cf. [62, Def. 5.4.3.9]).
If g ∈ PZ(A∞) is as above and if (Φ′H′ , δ

′
H′ , ρ) is a g-refinement of

(ΦH, δH, σ) as in [62, Def. 6.4.3.1], then there is a canonical morphism

(1.3.2.46) [g] : ΞΦ′H′ ,δ
′
H′

(ρ)→ ΞΦH,δH(σ)
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covering [g] : CΦ′H′ ,δ
′
H′
→ CΦH,δH, extending [g] : ΞΦ′H′ ,δ

′
H′
→ ΞΦH,δH,

mapping ΞΦ′H′ ,δ
′
H′ ,ρ

to ΞΦH,δH,σ, and inducing a canonical morphism

(1.3.2.47) [g] : XΦ′H′ ,δ
′
H′ ,ρ
→ XΦH,δH,σ.

If g ∈ PZ(A∞) is as above and if (Φ′H′ , δ
′
H′ ,Σ

′
Φ′H′

) is a g-refinement of

(ΦH, δH,ΣΦH) as in [62, Def. 6.4.3.2], then morphisms like (1.3.2.46)
patch together and define a canonical morphism

(1.3.2.48) [g] : ΞΦ′H′ ,δ
′
H′ ,Σ

′
Φ′
H′
→ ΞΦH,δH,ΣΦH

covering [g] : CΦ′H′ ,δ
′
H′
→ CΦH,δH, extending [g] : ΞΦ′H′ ,δ

′
H′
→ ΞΦH,δH,

and inducing a canonical morphism

(1.3.2.49) [g] : XΦ′H′ ,δ
′
H′ ,Σ

′
Φ′
H′
→ XΦH,δH,ΣΦH

compatible with each (1.3.2.47) as above (under canonical morphisms).
If g ∈ PZ(A∞) and if we have a collection Σ′ for MH′ that is a

g-refinement of a collection Σ for MH as in [62, Def. 6.4.3.3], then the
canonical morphism

[g]tor : Mtor
H′,Σ′ → Mtor

H,Σ

as in Proposition 1.3.1.15 is compatible with (1.3.2.47) when
(Φ′H′ , δ

′
H′ , ρ) is a g-refinement of (ΦH, δH, σ), under the canonical

isomorphisms as in (5) of Theorem 1.3.1.3; and is compatible with
(1.3.2.49) when (Φ′H′ , δ

′
H′ ,Σ

′
Φ′H′

) is a g-refinement of (ΦH, δH,ΣΦH),

under the canonical isomorphisms as in Lemma 1.3.2.41.

Proof. The assertions in the first two paragraphs can be justified
as in the case of MH. (We omit the details for simplicity.) The third
paragraph follows by comparing the torus torsor actions of sufficiently
divisible multiples of elements, for which we have explicit descriptions
in Lemma 1.3.2.28 and Proposition 1.3.2.31. As for the last paragraph,
since the canonical morphisms are defined by universal properties given
in terms of degeneration data, their compatibility follows from the fact
that (by the theory of degeneration [62, Thm. 5.3.1.19] based on [62,
Thm. 5.2.3.14], in particular) the Hecke twist of the tautological tuple
over Mtor

H′,Σ′ by g defined using the level structure αH′ over MH′ is com-
patible with the Hecke twist of the tautological tuple over ΞΦ′H′ ,δ

′
H′

(ρ)

by g defined using the level structure βH′ over ΞΦ′H′ ,δ
′
H′

. �

Now let (L̃, 〈 · , · 〉̃ , h̃0), (Z̃, Φ̃, δ̃), etc be chosen as in Section 1.2.4.

Let κ̃ = (H̃, Σ̃, σ̃) be any element in the set K̃++
Q,H as in Definition
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1.2.4.11. The data of O, (L̃, 〈 · , · 〉̃ , h̃0), and H̃ ⊂ G̃(Ẑ) define a mod-

uli problem M̃H̃ as in Section 1.1.2. Since H̃ is neat and Σ̃ is projective
(and smooth), by Theorems 1.3.1.3 and 1.3.1.10, we have a toroidal

compactification M̃tor
H̃ = M̃tor

H̃,Σ̃ of M̃H̃ which is projective and smooth

over S0. We are mainly interested in comparing the boundary struc-

tures of M̃tor
H̃,Σ̃ and Mtor

H,Σ under suitable conditions.

In the remainder of this subsection, let us fix the choice of a Z̆

satisfying (1.2.4.12), so that we have the groups and homomorphisms
defined in Definitions 1.2.4.53 and 1.2.4.54.

Suppose that the cusp label [(ZH,ΦH, δH)] at level H is canonically

assigned (as in Lemma 1.2.4.15) to a cusp label [(Z̆H̃, Φ̆H̃, δ̆H̃)] at level

H̃ admitting a surjection to [(Z̃H̃, Φ̃H̃, δ̃H̃)], so that we have (1.2.4.18),
(1.2.4.19), and (1.2.4.20), and the definitions following them.

Lemma 1.3.2.50. (Compare with [61, Lem. 4.9; see also the errata].)
By comparing the universal properties, we obtain a canonical morphism

(1.3.2.51) C̃Φ̆H̃,δ̆H̃
→ CΦH,δH ,

by sending (c̆H̃, c̆
∨
H̃), which is an orbit of étale-locally-defined pairs

(c̆n : 1
n
X̆ → B∨, c̆∨n : 1

n
Y̆ → B)

for some integer n ≥ 1 such that Ũ(n) ⊂ H̃, to the orbit (cH, c
∨
H) of

étale-locally-defined pairs

(cn : 1
n
X → B∨, c∨n : 1

n
Y → B),

with (cn, c
∨
n) induced by (c̆n, c̆

∨
n) by restrictions to 1

n
X and 1

n
Y , where

X and Y are the kernels of the admissible surjections sX̆ : X̆ � X̃

and sY̆ : Y̆ � Ỹ , respectively. (This definition canonically extends to
a compatible definition in the Q×-isogeny class language in Proposition
1.3.2.14, which we omit for simplicity.)

The morphisms (1.3.2.51) and (1.3.2.52) are proper and smooth. If

ĤG = H, then M̃
Φ̆H̃
H̃
∼= MΦH

H and there is a canonical homomorphism

(1.3.2.52) C̃grp

Φ̆H̃,δ̆H̃
→ Cgrp

ΦH,δH

of abelian schemes over MΦH
H , which can be identified with the canonical

homomorphism

(1.3.2.53) HomO(X̆, B)◦ → HomO(X,B)◦
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up to canonical Q×-isogenies over MΦH
H , and the C̃grp

Φ̆H̃,δ̆H̃
- and

Cgrp
ΦH,δH

-torsor structures of C̃Φ̆H̃,δ̆H̃
→ MΦH

H and CΦH,δH → MΦH
H ,

respectively, are compatible with each other under (1.3.2.51) and
(1.3.2.52). (See [62, Def. 5.2.3.8 and Prop. 5.2.3.9] for the formation

of the fiberwise geometric identity components HomO(X̆, B)◦ and
HomO(X,B)◦. See also the beginning of Section 1.3.3 below.)
Moreover, the kernel of (1.3.2.52) is an abelian scheme over MΦH

H ,

which is canonically Q×-isogenous to the kernel HomO(X̃, B)◦ of
(1.3.2.53), and (1.3.2.51) is a torsor under the pullback to CΦH,δH of

this abelian scheme. We deduce from these that, whether ĤG = H or
not, we have

(1.3.2.54) Ω1
C̃Φ̆H̃,δ̆H̃

/CΦH,δH

∼= (C̃Φ̆H̃,δ̆H̃
→ MZH

H )∗HomO(X̃,Lie∨
B/M

ZH
H

),

and the canonical short exact sequence

0→ (C̃Φ̆H̃,δ̆H̃
→ CΦH,δH)∗Ω1

CΦH,δH/M
ZH
H
→ Ω1

C̃Φ̆H̃,δ̆H̃
/M

ZH
H

→ Ω1
C̃Φ̆H̃,δ̆H̃

/CΦH,δH
→ 0

can be identified with the pullback under C̃Φ̆H̃,δ̆H̃
→ MZH

H of the canonical

short exact sequence

0→ HomO(X,Lie∨
B/M

ZH
H

)→ HomO(X̆,Lie∨
B/M

ZH
H

)

→ HomO(X̃,Lie∨
B/M

ZH
H

)→ 0

under canonical morphisms (as in (1.3.2.8) and (1.3.2.54)).

The abelian scheme torsor C̃Φ̆H̃,δ̆H̃
→ M̃

Φ̆H̃
H̃

and the finite étale cov-

ering M̃
Φ̆H̃
H̃
→ M̃

Z̆H̃
H̃

depend (up to canonical isomorphism) only on

Ĥ = H̃Ĝ and (Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ) (see Definition 1.2.4.17). We shall denote

them as ĈΦ̆Ĥ,δ̆Ĥ
→ M̂

Φ̆Ĥ
Ĥ

and M̂
Φ̆Ĥ
Ĥ
→ M̂

Z̆Ĥ
Ĥ

when we want to emphasize

this (in)dependence.

Proof. The first paragraph is self-explanatory. As for the second
paragraph, by Lemma 1.3.2.7, it suffices to verify the statements in

the case H = U(n) and H̃ = Ũ(n) for some integer n ≥ 1. (The

third paragraph also follows by Lemma 1.3.2.7.) In this case, C̃Φ̆H̃,δ̆H̃
=

C̃grp

Φ̆H̃,δ̆H̃
= C̃Φ̆n,δ̆n

and CΦH,δH = Cgrp
ΦH,δH

= CΦn,δn are abelian schemes
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over M̃
Φ̆H̃
H̃

= M̃Z̆n
n
∼= MΦH

H = MZn
n . For simplicity, let us denote the kernel

of (1.3.2.51) by C, viewed as a scheme over MZn
n .

While the abelian scheme torsor C̃Φ̆n,δ̆n
→ MZn

n parameterizes lift-

ings (to level n) of pairs of the form (c̆ : X̆ → B∨, c̆∨ : Y̆ → B) satisfy-

ing the compatibility c̆φ̆ = λB c̆
∨ and the liftability and pairing condi-

tions, and while the abelian scheme torsor CΦn,δn → MZn
n parameterizes

liftings (to level n) of pairs of the form (c : X → B∨, c∨ : Y → B) sat-
isfying the compatibility cφ = λBc

∨ and the liftability and pairing
conditions, the scheme C → MZn

n parameterizes liftings of pairs of the

form (c̃ : X̃ → B∨, c̃∨ : Ỹ → B) satisfying the compatibility c̃φ̃ = λB c̃
∨

and the liftability and pairing conditions induced by the ones of the

pairs over C̃Φ̆n,δ̆n
→ MZn

n . Therefore, the same (component annihi-

lating) argument in [62, Sec. 6.2.3–6.2.4] shows that C is an abelian

scheme Q×-isogenous to HomO(X̃, B)◦.
Consequently, all geometric fibers of the morphism (1.3.2.51) are

smooth and have the same dimension (as the relative dimension of

C → MZn
n ). Since both C̃Φ̆n,δ̆n

and CΦn,δn are smooth over S0, the

morphism (1.3.2.51) is smooth by [35, IV-3, 15.4.2 e’)⇒b), and IV-4,
17.5.1 b)⇒a)]. By [10, Sec. 2.2, Prop. 14], smooth morphisms between
schemes have sections étale locally. This shows that (1.3.2.51) is a
torsor under the pullback of C to CΦn,δn . (Regardless of this argument,

the morphism (1.3.2.51) is proper because the morphism C̃Φ̆n,δ̆n
→ MZn

n

is.) �

Proposition 1.3.2.55. Under the canonical morphisms

as in (1.3.2.51) (with varying H̃ and H), and under the

canonical homomorphisms Ĝ1,Z̆(A∞) → G1,Z(A∞) and

P̃Z̆,Z̃(A∞)/Ũ2,Z̆(A∞) → PZ(A∞)/U2,Z(A∞), the Hecke action of

Ĝ1,Z̆(A∞) on the collection {ĈΦ̆Ĥ,δ̆Ĥ
}Ĥ

Ĝ
1,Z̆

is compatible with the Hecke

action of G1,Z(A∞) on the collection {CΦH,δH}HG1,Z
(see Proposition

1.3.2.24); the Hecke action of P̃Z̆,Z̃(A∞)/Ũ2,Z̆(A∞) (see Definition

1.2.4.54) on the collection {
∐
C̃Φ̆H̃,δ̆H̃

}H̃
P̃
Z̆,̃Z
/H̃

Ũ
2,Z̆

is compatible

with the Hecke action of PZ(A∞)/U2,Z(A∞) on the collection

{
∐
CΦH,δH}HPZ

/HU2,Z
; and the induced action of G̃l,Z̆,Z̃(A∞) on the

index sets {[(Z̃H̃, Φ̃H̃, δ̃H̃)]} is compatible with the induced action of
G′l,Z(A∞) on the index sets {[(ZH,ΦH, δH)]} (again see Proposition

1.3.2.24) under the canonical homomorphism G̃l,Z̆,Z̃(A∞)→ G′l,Z(A∞).
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These Hecke actions induce a Hecke action of the subgroup

P̂Z̆(A∞)/Û2,Z̆(A∞) of P̃Z̆,Z̃(A∞)/Ũ2,Z̆(A∞) on the collection

{
∐
ĈΦ̆Ĥ,δ̆Ĥ

}Ĥ
P̂
Z̆
/Ĥ

Û
2,Z̆

, which is compatible with the Hecke action of

PZ(A∞)/U2,Z(A∞) on the collection {
∐
CΦH,δH}HPZ

/HU2,Z
under the

canonical morphisms ĈΦ̆Ĥ,δ̆Ĥ
→ CΦH,δH (with varying Ĥ and H) and

the canonical homomorphism P̂Z̆(A∞)/Û2,Z̆(A∞)→ PZ(A∞)/U2,Z(A∞);

and the induced action of the subgroup Ĝ′
l,Z̆

(A∞) of G̃l,Z̆,Z̃(A∞) on

the index sets {[(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)]} is compatible with the induced action
of G′l,Z(A∞) on the index sets {[(ZH,ΦH, δH)]} under the canonical

homomorphism Ĝ′
l,Z̆

(A∞)→ G′l,Z(A∞).

Proof. The canonical morphisms as in (1.3.2.51) correspond to

pushouts of extensions of B (resp. B∨) by T̆ (resp. T̆∨) under the

canonical homomorphism T̆ → T (resp. T̆∨ → T∨) induced by the

restriction from X̆ (resp. Y̆ ) to X (resp. Y ). Hence, the realizations
of the Hecke twists are compatible in the desired ways. (We omit the
details for simplicity.) �

Suppose σ̃ ⊂ P+

Φ̃H̃
is a top-dimensional nondegenerate rational

polyhedral cone in the cone decomposition Σ̃Φ̃H̃
in Σ̃, and suppose σ̆

is the image of σ̃ ⊂ P+

Φ̃H̃
under the first morphism in (1.2.4.20). Then

we have
σ̆⊥ = ŜΦ̆Ĥ

(see Definition 1.2.4.29) for any such σ̆, where Ĥ = H̃Ĝ, and we have
the following:

Proposition 1.3.2.56. (Compare with Lemma 1.3.2.28 and Propo-
sition 1.3.2.31.) The scheme

Ξ̃Φ̆H̃,δ̆H̃,σ̆
∼= Spec

O
C̃

Φ̆H̃,δ̆H̃

(
⊕

˘̀∈σ̆⊥
Ψ̃Φ̆H̃,δ̆H̃

(˘̀)

)
over C̃Φ̆H̃,δ̆H̃

is a torsor under the split torus ẼΦ̆H̃,σ̆
with character group

σ̆⊥, which is canonically isomorphic to the split torus ÊΦ̆Ĥ
with char-

acter group ŜΦ̆Ĥ
, which depends only on ĤP̂Z̆

= (H̃P̃Z̆
∩ H̃P̃′

Z̃

)/H̃Ũ2,̃Z

(see Definition 1.2.4.53). We have Ŝ∨
Φ̆1
/Ŝ∨

Φ̆Ĥ

∼= Û2,Z̆(Ẑ)/ĤÛ2,Z̆
, where

ŜΦ̆1
:= ŜΦ̆

Ĝ(Ẑ)
is the kernel of the canonical homomorphism SΦ̆1

� SΦ̃1

(see Definition 1.2.4.29).
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The torus torsor S := Ξ̃Φ̆H̃,δ̆H̃,σ̆
→ C̃Φ̆H̃,δ̆H̃

is universal for the addi-

tional structures (τ̂Ĥ, τ̂
∨
Ĥ), which are ĤP̂Z̆

/Û(n)P̂Z̆
-orbits of étale-locally-

defined pairs (τ̂n, τ̂
∨
n ), where:

(1) τ̂n : 1 1
n
Y × X̆,S

∼→ (c̆∨n | 1
n
YS
× c̆)∗P⊗−1

B is a trivialization of biex-

tensions.
(2) τ̂∨n : 1 1

n
Y̆ ×X,S

∼→ (c̆∨n × c̆|XS)∗P⊗−1
B is a trivialization of biex-

tensions.
(3) τ̂n and τ̂∨n satisfy the analogues of the usual O-compatibility

condition.
(4) τ̂n and τ̂∨n satisfy the symmetry condition that τ̂n|1Y × Y̆ ,S and

τ̂∨n |1Y̆ ×Y,S coincide under the canonical isomorphism induced

by the swapping isomorphism 1Y × Y̆ ,S
∼→ 1Y̆ ×Y,S and the sym-

metry automorphism of PB.
(5) τ̂n|1 1

nY ×X,S
= τ̂∨n |1 1

nY ×X,S
.

We shall denote Ξ̃Φ̆H̃,δ̆H̃,σ̆
by Ξ̂Φ̆Ĥ,δ̆Ĥ

when we want to emphasize that

(by Lemma 1.3.2.25) it depends only on Ĥ = H̃Ĝ and (Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ) (see
Definition 1.2.4.17), but does not depend on the choice of σ̆.

The ÊΦ̆Ĥ
-torsor structure of Ξ̂Φ̆Ĥ,δ̆Ĥ

→ ĈΦ̆Ĥ,δ̆Ĥ
defines a homomor-

phism

ŜΦ̆Ĥ
→ Pic(ĈΦ̆Ĥ,δ̆Ĥ

) : ˘̀ 7→ Ψ̂Φ̆Ĥ,δ̆Ĥ
(˘̀),

assigning to each ˘̀ ∈ ŜΦ̆Ĥ
an invertible sheaf Ψ̂Φ̆Ĥ,δ̆Ĥ

(˘̀) over ĈΦ̆Ĥ,δ̆Ĥ
(up to isomorphism), together with isomorphisms

∆̂∗
Φ̆Ĥ,δ̆Ĥ,

˘̀,˘̀′
: Ψ̂Φ̆Ĥ,δ̆Ĥ

(˘̀) ⊗
O
Ĉ

Φ̆Ĥ,δ̆Ĥ

Ψ̂Φ̆Ĥ,δ̆Ĥ
(˘̀′)

∼→ Ψ̂Φ̆Ĥ,δ̆Ĥ
(˘̀+ ˘̀′)

for all ˘̀, ˘̀′ ∈ ŜΦ̆Ĥ
, satisfying the necessary compatibilities with each

other making ⊕
˘̀∈ŜΦ̆Ĥ

Ψ̂Φ̆Ĥ,δ̆Ĥ
(˘̀) an OĈΦ̆Ĥ,δ̆Ĥ

-algebra, such that

Ξ̂Φ̆Ĥ,δ̆Ĥ
∼= Spec

O
Ĉ

Φ̆Ĥ,δ̆Ĥ

(
⊕

˘̀∈ŜΦ̆Ĥ

Ψ̂Φ̆Ĥ,δ̆Ĥ
(˘̀)

)
.

When ˘̀ = [y⊗χ] for some y ∈ Y̆ and χ ∈ X̆ such that either y ∈ Y
or χ ∈ X, we have a canonical isomorphism

Ψ̂Φ̆Ĥ,δ̆Ĥ
(˘̀) ∼= (c̆∨(y), c̆(χ))∗PB.
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If we fix the choice of (Z̆n and) Φ̆n, then the canonical morphism

(1.3.2.57) Ξ̂Φ̆n,δ̆n
→ Ξ̂Φ̆Ĥ,δ̆Ĥ

is an ĤP̂′
Z̆

/Û(n)P̂′
Z̆

-torsor, and induces an isomorphism

(1.3.2.58) Ξ̂Φ̆n,δ̆n
/(ĤP̂′

Z̆

/Û(n)P̂′
Z̆

)
∼→ Ξ̂Φ̆Ĥ,δ̆Ĥ

(cf. Lemma 1.3.2.25).

Proof. These follow from the corresponding properties of

Ξ̃Φ̆H̃,δ̆H̃
as in Lemmas 1.3.2.25 and 1.3.2.28, and Proposition

1.3.2.31, because the restriction from SΦ̆H̃
to the subgroup ŜΦ̆Ĥ

(see

Definition 1.2.4.29) corresponds to taking orbits of restrictions of

τ̆n : 1 1
n
Y̆ × X̆,S

∼→ (c̆∨× c̆)∗P⊗−1
B to 1 1

n
Y × X̆,S and 1 1

n
Y̆ ×X,S, which form

the pairs (τ̂n, τ̂
∨
n ) as above. �

For each rational polyhedral cone ρ̆ ⊂ (SΦ̆H̃
)∨R having σ̆ as a face,

we have an affine toroidal embedding
(1.3.2.59)

Ξ̃Φ̆H̃,δ̆H̃,σ̆
↪→ Ξ̃Φ̆H̃,δ̆H̃,σ̆

(ρ̆) := Spec
O
C̃

Φ̆H̃,δ̆H̃

(
⊕

˘̀∈σ̆⊥ ∩ ρ̆∨
Ψ̃Φ̆H̃,δ̆H̃

(˘̀)

)
as in (1.3.2.32).

In general, for each rational polyhedral cone ρ̂ ⊂ (ŜΦ̆Ĥ
)∨R, we have

an affine toroidal embedding

(1.3.2.60) Ξ̂Φ̆Ĥ,δ̆Ĥ
↪→ Ξ̂Φ̆Ĥ,δ̆Ĥ

(ρ̂) := Spec
O
Ĉ

Φ̆Ĥ,δ̆Ĥ

(
⊕

˘̀∈ρ̂∨
Ψ̂Φ̆Ĥ,δ̆Ĥ

(˘̀)

)
.

By Proposition 1.3.2.56, (1.3.2.59) and (1.3.2.60) can be

canonically identified when Ĥ = H̃Ĝ, when (Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ) is determined

by (Z̆H̃, Φ̆H̃, δ̆H̃) as in Definition 1.2.4.17, and when ρ̂ = pr(ŜΦ̆Ĥ
)∨R

(ρ̆).

(Hence, (1.3.2.59) depends only on these induced parameters.)

Both sides of (1.3.2.60) are relative affine over ĈΦ̆Ĥ,δ̆Ĥ
, where

Ξ̂Φ̆Ĥ,δ̆Ĥ
(ρ̂) → ĈΦ̆Ĥ,δ̆Ĥ

is smooth when the cone ρ̂ is smooth. The

ρ̂-stratum of Ξ̂Φ̆Ĥ,δ̆Ĥ
(ρ̂) is

(1.3.2.61) Ξ̂Φ̆Ĥ,δ̆Ĥ,ρ̂
:= Spec

O
Ĉ

Φ̆Ĥ,δ̆Ĥ

(
⊕

˘̀∈ρ̆⊥
Ψ̂Φ̆Ĥ,δ̆Ĥ

(˘̀)

)
,
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which is canonically isomorphic to Ξ̃Φ̆H̃,δ̆H̃,ρ̆
(cf. (1.3.2.33)). The affine

morphism Ξ̂Φ̆Ĥ,δ̆Ĥ,ρ̂
→ ĈΦ̆Ĥ,δ̆Ĥ

is a torsor under the torus ÊΦ̆Ĥ,ρ̂
∼= EΦ̆H̃,ρ̆

with character group ρ̂⊥ ∼= ρ̆⊥. (Note that these two instance of ⊥ are
taken in different ambient spaces.) For each ΓΦ̆Ĥ

-admissible rational

polyhedral cone decomposition Σ̂Φ̆Ĥ
of P̂Φ̆Ĥ

as in Definition 1.2.4.40,

we have (as in (1.3.2.34)) a toroidal embedding

(1.3.2.62) Ξ̂Φ̆Ĥ,δ̆Ĥ
↪→ Ξ̂Φ̆Ĥ,δ̆Ĥ

= Ξ̂Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

,

the right-hand side being only locally of finite type over ĈΦ̆Ĥ,δ̆Ĥ
, with

an open covering

(1.3.2.63) Ξ̂Φ̆Ĥ,δ̆Ĥ
= ∪

ρ̂∈Σ̂Φ̆Ĥ

Ξ̂Φ̆Ĥ,δ̆Ĥ
(ρ̂),

(cf. (1.3.2.35)) inducing a stratification

(1.3.2.64) Ξ̂Φ̆Ĥ,δ̆Ĥ
=

∐
ρ̂∈Σ̂Φ̆Ĥ

Ξ̂Φ̆Ĥ,δ̆Ĥ,ρ̂

(cf. (1.3.2.36)). (The notation “
∐

” only means a set-theoretic disjoint
union. The algebro-geometric structure is still the one inherited from

Ξ̂Φ̆Ĥ,δ̆Ĥ
.) Let

(1.3.2.65) X̂Φ̆Ĥ,δ̆Ĥ,ρ̂
:= (Ξ̂Φ̆Ĥ,δ̆Ĥ

(ρ̂))∧
Ξ̂Φ̆Ĥ,δ̆Ĥ,ρ̂

(cf. (1.3.2.39)), the formal completion of Ξ̂Φ̆Ĥ,δ̆Ĥ
(ρ̂) along its ρ̂-stratum

Ξ̂Φ̆Ĥ,δ̆Ĥ,ρ̂
, which is canonically isomorphic to X̃Φ̆H̃,δ̆H̃,σ̆,ρ̆

, the formal com-

pletion of Ξ̃Φ̆H̃,δ̆H̃,σ̆
(ρ̆), the closure of Ξ̃Φ̆H̃,δ̆H̃,σ̆

in Ξ̃Φ̆H̃,δ̆H̃
(ρ̆), along its

ρ̆-stratum Ξ̃Φ̆H̃,δ̆H̃,ρ̆
(cf. (1.3.2.40)). Also, let us define

(1.3.2.66) X̂Φ̆Ĥ,δ̆Ĥ
= X̂Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

(cf. Lemma 1.3.2.41) to be the formal completion of Ξ̂Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

along

the union of the σ̂-strata Ξ̂Φ̆Ĥ,δ̆Ĥ,ρ̂
for ρ̂ ∈ Σ̂Φ̆Ĥ

and ρ̂ ⊂ P̂+

Φ̆Ĥ
.

Proposition 1.3.2.67. (Compare with Propositions 1.3.1.15,

1.3.2.24, 1.3.2.45, and 1.3.2.55.) There is a Hecke action of P̂′
Z̆
(A∞) on

the collection {Ξ̂Φ̆Ĥ,δ̆Ĥ
}Ĥ

P̂′
Z̆

, realized by finite étale surjections pulling

tautological objects back to Hecke twists, which is compatible with the
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Hecke action of Ĝ1,Z̆(A∞) on the collection {ĈΦ̆Ĥ,δ̆Ĥ
}Ĥ

Ĝ
1,Z̆

under the

canonical morphisms Ξ̂Φ̆Ĥ,δ̆Ĥ
→ ĈΦ̆Ĥ,δ̆Ĥ

(with varying Ĥ) and the

canonical homomorphism P̂′
Z̆
(A∞)→ Ĝ1,Z̆(A∞) = P̂′

Z̆
(A∞)/Û2,Z̆(A∞).

There is also a Hecke action of P̂Z̆(A∞) on the collection

{
∐

Ξ̂Φ̆Ĥ,δ̆Ĥ
}Ĥ

P̂
Z̆

, where the disjoint unions are over classes

[(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)] sharing the same Z̆Ĥ, realized by finite étale surjections
pulling tautological objects back to Hecke twists, which induces

an action of Ĝ′
l,Z̆

(A∞) = P̂Z̆(A∞)/P̂′
Z̆
(A∞) on the index sets

{[(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)]}, which is compatible with the Hecke action of

P̂Z̆(A∞)/Û2,Z̆(A∞) on the collection {
∐
ĈΦ̆Ĥ,δ̆Ĥ

}Ĥ
P̂
Z̆
/Ĥ

Û
2,Z̆

(with the

same index sets and the same induced action of Ĝ′
l,Z̆

(A∞)) under the

canonical morphisms Ξ̂Φ̆Ĥ,δ̆Ĥ
→ ĈΦ̆Ĥ,δ̆Ĥ

(with varying Ĥ) and the

canonical homomorphism P̂Z̆(A∞)→ P̂Z̆(A∞)/Û2,Z̆(A∞).
Any such Hecke action

[ĝ] : Ξ̂Φ̆′
Ĥ′
,δ̆′
Ĥ′
→ Ξ̂Φ̆Ĥ,δ̆Ĥ

covering [ĝ] : ĈΦ̆′
Ĥ′
,δ̆′
Ĥ′
→ ĈΦ̆Ĥ,δ̆Ĥ

induces a morphism

Ξ̂Φ̆′
Ĥ′
,δ̆′
Ĥ′
→ Ξ̂Φ̆Ĥ,δ̆Ĥ

×
ĈΦ̆Ĥ,δ̆Ĥ

ĈΦ̆′
Ĥ′
,δ̆′
Ĥ′

between torus torsors over ĈΦ̆′
Ĥ′
,δ̆′
Ĥ′

, which is equivariant with the mor-

phism ÊΦ̆′
Ĥ′
→ ÊΦ̆Ĥ

dual to the homomorphism ŜΦ̆Ĥ
→ ŜΦ̆′

Ĥ′
induced by

the pair of morphisms (fX̆ : X̆ ⊗
Z
Q ∼→ X̆ ′⊗

Z
Q, fY̆ : Y̆ ′⊗

Z
Q ∼→ Y̆ ⊗

Z
Q)

defining the ĝ-assignment (Z̆′Ĥ′ , Φ̆
′
Ĥ′ , δ̆

′
Ĥ′) →ĝ (Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ) of cusp la-

bels (which is the g̃-assignment for any element g̃ ∈ P̃Z̆(A∞)∩ P̃′
Z̃
(A∞)

lifting ĝ ∈ P̂Z̆(A∞) = (P̃Z̆(A∞)∩ P̃′
Z̃
(A∞))/Ũ2,Z̆(A∞), which is never-

theless independent of the choice of g̃; cf. Lemma 1.2.4.42 and [62,
Def. 5.4.3.9]).

If ĝ ∈ P̂Z̆(A∞) is as above and if (Φ̆′Ĥ′ , δ̆
′
Ĥ′ , ρ̂

′) is a ĝ-refinement of

(Φ̆Ĥ, δ̆Ĥ, ρ̂) (cf. Lemma 1.2.4.42 and [62, Def. 6.4.3.1]), then there is a
canonical morphism

(1.3.2.68) [ĝ] : Ξ̂Φ̆′
Ĥ′
,δ̆′
Ĥ′

(ρ̂′)→ Ξ̂Φ̆Ĥ,δ̆Ĥ
(ρ̂)
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(cf. (1.3.2.46)) covering [ĝ] : ĈΦ̆′
Ĥ′
,δ̆′
Ĥ′
→ ĈΦ̆Ĥ,δ̆Ĥ

, extending

[ĝ] : Ξ̂Φ̆′
Ĥ′
,δ̆′
Ĥ′
→ Ξ̂Φ̆Ĥ,δ̆Ĥ

, mapping Ξ̂Φ̆′
Ĥ′
,δ̆′
Ĥ′
,ρ̂′ to Ξ̂Φ̆Ĥ,δ̆Ĥ,ρ̂

, and inducing

a canonical morphism

(1.3.2.69) [ĝ] : X̂Φ̆′
Ĥ′
,δ̆′
Ĥ′
,ρ̂′ → X̂Φ̆Ĥ,δ̆Ĥ,ρ̂

(cf. (1.3.2.47)). If ĝ ∈ P̂Z̆(A∞) is as above and if (Φ̆′Ĥ′ , δ̆
′
Ĥ′ , Σ̂

′
Φ̆′
Ĥ′

) is

a ĝ-refinement of (Φ̆Ĥ, δ̆Ĥ, Σ̂Φ̆Ĥ
) (cf. Lemma 1.2.4.42 and [62, Def.

6.4.3.2]), then morphisms like (1.3.2.68) patch together and define a
canonical morphism

(1.3.2.70) [ĝ] : Ξ̂Φ̆′
Ĥ′
,δ̆′
Ĥ′
,Σ̂′

Φ̆′
Ĥ′

→ Ξ̂Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

(cf. (1.3.2.48)) covering [ĝ] : ĈΦ̆′
Ĥ′
,δ̆′
Ĥ′
→ ĈΦ̆Ĥ,δ̆Ĥ

, extending

[ĝ] : Ξ̂Φ̆′
Ĥ′
,δ̆′
Ĥ′
→ Ξ̂Φ̆Ĥ,δ̆Ĥ

, and inducing a canonical morphism

(1.3.2.71) [ĝ] : X̂Φ̆′
Ĥ′
,δ̆′
Ĥ′
,Σ̂′

Φ̆′
Ĥ′

→ X̂Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

(cf. (1.3.2.49)) compatible with each (1.3.2.69) as above (under canon-
ical morphisms).

Proof. By Proposition 1.3.2.56 (see in particular (1.3.2.58)), the
assertions in the first three paragraphs are reduced to the ones for the
principal levels, which then follow from the corresponding assertions

for the collection {
∐

Ξ̃Φ̆H̃,δ̆H̃
}H̃

P̃′
Z̆

(by restricting the action of P̃Z̆(A∞)

to P̃Z̆(A∞)∩ P̃′
Z̃
(A∞)), because the tautological objects over Ξ̂Φ̆n,δ̆n

=

Ξ̂Φ̆Û(n)
,δ̆Û(n)

are canonically induced by those over Ξ̃Φ̆n,δ̆n
= Ξ̃Φ̆Ũ(n)

,δ̆Ũ(n)
.

The assertions in the last paragraph then follow from the universal
properties of toroidal embeddings (cf. [62, Prop. 6.2.5.11]). �

Lemma 1.3.2.72. (Compare with Lemma 1.3.2.50.) By comparing
the universal properties, we obtain a canonical morphism

(1.3.2.73) Ξ̃Φ̆H̃,δ̆H̃
→ ΞΦH,δH

covering (1.3.2.51), by sending τ̆H̃, which is an orbit of étale-locally-

defined trivializations τ̆n : 1 1
n
Y̆ × X̆,S

∼→ (c̆∨× c̆)∗P⊗−1
B for some integer

n ≥ 1 such that Ũ(n) ⊂ H̃, to the orbit τH of étale-locally-defined
trivializations τn = τ̆n|1 1

nY ×X,S
.
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The morphisms (1.3.2.73) and (1.3.2.51) induce a canonical mor-
phism

(1.3.2.74) Ξ̃Φ̆H̃,δ̆H̃
→ ΞΦH,δH ×

CΦH,δH

C̃Φ̆H̃,δ̆H̃

between torus torsors over C̃Φ̆H̃,δ̆H̃
, equivariant with the homomorphism

EΦ̆H̃
→ EΦH dual to the canonical homomorphism SΦH → SΦ̆H̃

(see

(1.2.4.18)).
Suppose the image of a rational polyhedral cone ρ̆ ⊂ (SΦ̆H̃

)∨R under

the (canonical) second morphism in (1.2.4.20) is contained in some ra-
tional polyhedral cone ρ ⊂ (SΦH)∨R. Then there is a canonical morphism

(1.3.2.75) Ξ̃Φ̆H̃,δ̆H̃
(ρ̆)→ ΞΦH,δH(ρ)

covering (1.3.2.51) and extending (1.3.2.73), mapping Ξ̃Φ̆H̃,δ̆H̃,ρ̆
to

ΞΦH,δH,ρ and inducing a canonical morphism

(1.3.2.76) X̃Φ̆H̃,δ̆H̃,ρ̆
→ XΦH,δH,ρ.

If Σ̃Φ̆H̃
and ΣΦH are cone decompositions of PΦ̆H̃

and PΦH, respectively,

such that the image of each ρ̆ in Σ̃Φ̆H̃
under the (canonical) second

morphism in (1.2.4.20) is contained in some ρ ∈ ΣΦH, then morphisms
like (1.3.2.75) patch together and define a canonical morphism

(1.3.2.77) Ξ̃Φ̆H̃,δ̆H̃,Σ̃Φ̆H̃

→ ΞΦH,δH,ΣΦH

covering (1.3.2.51), extending (1.3.2.73), and inducing a canonical mor-
phism

(1.3.2.78) X̃Φ̆H̃,δ̆H̃,Σ̃Φ̆H̃

→ XΦH,δH,ΣΦH

compatible with each (1.3.2.76) as above (under canonical morphisms).

Proof. The statements are self-explanatory. �

Lemma 1.3.2.79. (Compare with Lemmas 1.3.2.50 and 1.3.2.72.)
By comparing the universal properties (cf. Proposition 1.3.2.56), we
obtain a canonical morphism

(1.3.2.80) Ξ̂Φ̆Ĥ,δ̆Ĥ
→ ΞΦH,δH

covering (1.3.2.51), by sending the pair (τ̂Ĥ, τ̂
∨
Ĥ), which is an orbit of

étale-locally-defined pairs (τ̂n, τ̂
∨
n ) for some integer n ≥ 1 such that

Ũ(n) ⊂ H̃, to the orbit τH of étale-locally-defined τn = τ̂n|1 1
nY ×X,S

=

τ̂∨n |1 1
nY ×X,S

, as in Proposition 1.3.2.56.
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The morphisms (1.3.2.80) and (1.3.2.51) induce a canonical mor-
phism

(1.3.2.81) Ξ̂Φ̆Ĥ,δ̆Ĥ
→ ΞΦH,δH ×

CΦH,δH

ĈΦ̆Ĥ,δ̆Ĥ

between torus torsors over ĈΦ̆Ĥ,δ̆Ĥ
= C̃Φ̆H̃,δ̆H̃

, equivariant with the sur-

jective homomorphism ÊΦ̆Ĥ
→ EΦH (see Proposition 1.3.2.56) dual

to the canonical injective homomorphism SΦH ↪→ ŜΦ̆Ĥ
(see Definition

1.2.4.29).

Suppose the image of a rational polyhedral cone ρ̂ ⊂ (ŜΦ̆H̃
)∨R under

(1.2.4.37) is contained in some rational polyhedral cone ρ ⊂ (SΦH)∨R.
Then there is a canonical morphism

(1.3.2.82) Ξ̂Φ̆Ĥ,δ̆Ĥ
(ρ̂)→ ΞΦH,δH(ρ)

(cf. (1.3.2.75)) covering (1.3.2.51) and extending (1.3.2.80), mapping

Ξ̂Φ̆Ĥ,δ̆Ĥ,ρ̂
to ΞΦH,δH,ρ and inducing a canonical morphism

(1.3.2.83) X̂Φ̆Ĥ,δ̆Ĥ,ρ̂
→ XΦH,δH,ρ

(cf. (1.3.2.76)). If Σ̂Φ̆Ĥ
and ΣΦH are cone decompositions of P̂Φ̆Ĥ

and

PΦH, respectively, such that the image of each ρ̂ in Σ̂Φ̆Ĥ
under (1.2.4.37)

is contained in some ρ ∈ ΣΦH, then morphisms like (1.3.2.82) patch
together and define a canonical morphism

(1.3.2.84) Ξ̂Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

→ ΞΦH,δH,ΣΦH

(cf. (1.3.2.77)) covering (1.3.2.51), extending (1.3.2.80), and inducing
a canonical morphism

(1.3.2.85) X̂Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

→ XΦH,δH,ΣΦH

(cf. (1.3.2.78)) compatible with each (1.3.2.83) as above (under canon-
ical morphisms).

By the same argument in [61, Sec. 3C], using the extended
Kodaira–Spencer isomorphism as in [62, Prop. 6.2.5.18], the morphism
(1.3.2.84) is log smooth and we have a canonical isomorphism

Ω
1

Ξ̂
Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

/ΞΦH,δH,ΣΦH

∼= (Ξ̂Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

→ CΦH,δH)∗HomO(X̃,Lie∨G\/CΦH,δH
),

(1.3.2.86)
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where

Ω
1

Ξ̂
Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

/ΞΦH,δH,ΣΦH
:= (Ω1

Ξ̂
Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

/CΦH,δH
[d log∞])/

((Ξ̂Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

→ ΞΦH,δH,ΣΦH
)∗Ω1

ΞΦH,δH,ΣΦH
/CΦH,δH

[d log∞])

is the sheaf of modules of relative log 1-differentials, and where
G\ → CΦH,δH is the tautological semi-abelian scheme as in Proposition
1.3.2.12. Moreover, the canonical morphism

(1.3.2.87) Ξ̂Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

→ ΞΦH,δH,ΣΦH
×

CΦH,δH

ĈΦ̆Ĥ,δ̆Ĥ

(induced by (1.3.2.51) and (1.3.2.84)) induces a canonical short exact
sequence

0→ (Ξ̂Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

→ ĈΦ̆Ĥ,δ̆Ĥ
)∗Ω1

ĈΦ̆Ĥ,δ̆Ĥ
/CΦH,δH

→ Ω
1

Ξ̂
Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

/ΞΦH,δH,ΣΦH

→ Ω
1

Ξ̂
Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

/(ΞΦH,δH,ΣΦH
×

CΦH,δH

ĈΦ̆Ĥ,δ̆Ĥ
)
→ 0,

(1.3.2.88)

where

Ω
1

Ξ̂
Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

/(ΞΦH,δH,ΣΦH
×

CΦH,δH

ĈΦ̆Ĥ,δ̆Ĥ
)

:= (Ω1

Ξ̂
Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

/ĈΦ̆Ĥ,δ̆Ĥ

[d log∞])/

((Ξ̂Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

→ ΞΦH,δH,ΣΦH
)∗Ω1

ΞΦH,δH,ΣΦH
/CΦH,δH

[d log∞])

is the sheaf of modules of relative log 1-differentials, which is exact
and has locally free terms, and which can be canonically identified with

the pullback under Ξ̂Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

→ CΦH,δH of the canonical short exact

sequence

0→ HomO(X̃,Lie∨B/CΦH,δH
)→ HomO(X̃,Lie∨G\/CΦH,δH

)

→ HomO(X̃,Lie∨T/CΦH,δH
)→ 0

(1.3.2.89)

of locally free sheaves (compatible with (1.3.2.54)). Hence, (1.3.2.87) is
also log smooth (by [45, 3.12]).

Proof. The statements are self-explanatory. �

Proposition 1.3.2.90. (Compare with Proposition 1.3.2.55.) Un-

der the canonical morphisms as in (1.3.2.73) (with varying H̃ and

H), and under the canonical homomorphisms P̃′
Z̆
(A∞) → P′Z(A∞) and
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P̃Z̆,Z̃(A∞) → PZ(A∞), the Hecke action of P̃′
Z̆
(A∞) on the collection

{Ξ̃Φ̆H̃,δ̆H̃
}H̃

P̃′
Z̆

is compatible with the Hecke action of P′Z(A∞) on the col-

lection {ΞΦH,δH}HP′Z
; and the Hecke action of P̃Z̆,Z̃(A∞) on the collection

{
∐

Ξ̃Φ̆H̃,δ̆H̃
}H̃

P̃
Z̆,̃Z

is compatible with the Hecke action of PZ(A∞) on the

collection {
∐

ΞΦH,δH}HPZ
, where the index sets are as in Proposition

1.3.2.45. These Hecke actions are all compatible with those in Propo-
sition 1.3.2.55. They are also compatible with extensions to toroidal
embeddings and their formal completions.

Proof. As in the case of Proposition 1.3.2.55, the canonical mor-
phisms as in (1.3.2.80) correspond to pushouts of extensions of B (resp.

B∨) by T̆ (resp. T̆∨) under the canonical homomorphism T̆ → T (resp.

T̆∨ → T∨) induced by the restriction from X̆ (resp. Y̆ ) to X (resp.
Y ). Hence, the realizations of the Hecke twists are compatible in the
desired ways. (We omit the details for simplicity.) �

Proposition 1.3.2.91. (Compare with Propositions 1.3.2.55 and
1.3.2.90.) Under the canonical morphisms as in (1.3.2.80) (with vary-

ing Ĥ and H), and under the canonical homomorphisms P̂′
Z̆
(A∞) →

P′Z(A∞) and P̂Z̆(A∞) → PZ(A∞), the Hecke action of P̂′
Z̆
(A∞) on the

collection {Ξ̂Φ̆Ĥ,δ̆Ĥ
}Ĥ

P̂′
Z̆

is compatible with the Hecke action of P′Z(A∞)

on the collection {ΞΦH,δH}HP′Z
; and the Hecke action of P̂Z̆(A∞) on

the collection {
∐

Ξ̂Φ̆Ĥ,δ̆Ĥ
}Ĥ

P̂
Z̆

is compatible with the Hecke action of

PZ(A∞) on the collection {
∐

ΞΦH,δH}HPZ
, where the index sets are as

in Proposition 1.3.2.45. These Hecke actions are all compatible with
those in Proposition 1.3.2.55. They are also compatible with extensions
to toroidal embeddings and their formal completions.

Proof. As in the proof of Proposition 1.3.2.67, the Hecke action of

P̂Z̆(A∞) on the collection {
∐

Ξ̂Φ̆Ĥ,δ̆Ĥ
}Ĥ

P̂
Z̆

is induced by the Hecke action

of P̃Z̆,Z̃(A∞) on the collection {
∐

Ξ̃Φ̆H̃,δ̆H̃
}H̃

P̃′
Z̆

. Hence, these statements

follow from the corresponding statements of Proposition 1.3.2.90. �

1.3.3. Toroidal Compactifications of PEL-Type Kuga Fam-
ilies and Their Generalizations. For simplicity, in the remainder
of this subsection, all morphisms between schemes or algebraic stacks
over S0 = Spec(F0) will be defined over S0, unless otherwise specified.

Let Q be any O-lattice. Consider the abelian scheme GMH over MH
in (1) of Theorem 1.3.1.3. By [62, Prop. 5.2.3.9], the group functor
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HomO(Q,GMH) over MH is relatively representable by a proper smooth
group scheme which is an extension of a finite étale group scheme,
whose rank has no prime factors other than those of Disc = DiscO/Z
[62, Def. 1.1.1.6], by an abelian scheme HomO(Q,GMH)◦, the fiberwise
geometric identity component of HomO(Q,GMH) (see [62, Def. 5.2.3.8]).

Example 1.3.3.1. If Q ∼= O⊕s for some integer s ≥ 0, then
HomO(Q,GMH)◦ = HomO(Q,GMH) ∼= G×sMH

is the s-fold fiber product
of GMH over MH.

Example 1.3.3.2. If O ∼= Mk(OF ) and Q is of finite index in O⊕kF
for some integer k ≥ 1, then the relative dimension of HomO(Q,GMH)◦

over MH is 1/k of the relative dimension of GMH over MH.

Definition 1.3.3.3. (See [61, Def. 2.4].) A Kuga family
over MH is an abelian scheme Ngrp → MH that is Q×-isogenous to
HomO(Q,GMH)◦ for some O-lattice Q.

Definition 1.3.3.4. A generalized Kuga family over MH is a
torsor N → MH under some Kuga family Ngrp → MH as in Definition
1.3.3.3.

Lemma 1.3.3.5. (See [61, Lem. 2.6].) The abelian scheme
HomZ(Q∨, G∨MH) is isomorphic to the dual abelian scheme of
HomZ(Q,GMH).

Lemma 1.3.3.6. (See [61, Lem. 2.9].) Let jQ : Q∨ ↪→ Q be as in
Lemma 1.2.4.1. Then the isogeny

λMH,jQ,Z : HomZ(Q,GMH)→ HomZ(Q∨, G∨MH)

induced canonically by jQ and λMH : GMH → G∨MH is a polarization.

Proposition 1.3.3.7. (See [61, Prop. 2.10 and Cor. 2.12].) The
abelian scheme HomO(Q∨, G∨MH)◦ is Q×-isogenous to the dual abelian
scheme of HomO(Q,GMH)◦. Moreover, given any jQ : Q∨ ↪→ Q as in
Lemma 1.2.4.1, the composition

λMH,jQ : HomO(Q,GMH)◦ ↪→ HomZ(Q,GMH)

λMH,jQ,Z→ HomZ(Q∨, G∨MH)� (HomO(Q,GMH)◦)∨
(1.3.3.8)

induced canonically by jQ and the polarization λMH : GMH → G∨MH is a
polarization.

Definition 1.3.3.9. Let N→ MH be as in Definition 1.3.3.4. Then
we define the dual N∨ → MH to be the dual abelian scheme Ngrp,∨ → MH
of Ngrp → MH.
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Remark 1.3.3.10. By [92, XIII, Prop. 1.1], N∨ = Ngrp,∨ → MH is
canonically isomorphic to Pic0(N/MH)→ MH (which can be defined as
in the case of abelian schemes; cf. [62, Def. 1.3.2.1]). Note that this is
always a group scheme, with its identity section, even when N → MH
is a nontrivial torsor of Ngrp → MH.

Definition 1.3.3.11. By abuse of notation, we denote by LieN/MH
(resp. Lie∨N/MH, resp. LieN∨/MH, resp. Lie∨N∨/MH) the locally free sheaf

LieNgrp/MH
(resp. Lie∨Ngrp/MH

, resp. LieNgrp,∨/MH
, resp. Lie∨Ngrp,∨/MH

) over
MH, although N→ MH might have no section.

Lemma 1.3.3.12. We have:

Lie∨N/MH
∼= HomOMH

(LieN/MH ,OMH),

Lie∨N∨/MH
∼= HomOMH

(LieN∨/MH ,OMH),

Ω1
N/MH

∼= (N→ MH)∗Lie∨N/MH ,

Ω1
N∨/MH

∼= (N∨ → MH)∗Lie∨N∨/MH ,

(N→ MH)∗Ω
1
N/MH

∼= Lie∨N/MH ,

(N∨ → MH)∗Ω
1
N∨/MH

∼= Lie∨N∨/MH ,

R1(N→ MH)∗ON
∼= LieN∨/MH ,

R1(N∨ → MH)∗ON∨
∼= LieN/MH .

The relative de Rham cohomology

H i
dR(N/MH) := Ri(N→ MH)∗(Ω

•
N/MH

)

and its Hodge filtration and Gauss–Manin connection ∇ are canonically
isomorphic to those of H i

dR(Ngrp/MH).

Proof. The first two follows from the definition and the
corresponding statement for LieNgrp/MH

, Lie∨Ngrp/MH
, LieNgrp,∨/MH

, and

Lie∨Ngrp,∨/MH
. The remaining ones follow by étale descent from the

corresponding ones for Ngrp → MH (cf. [62, Cor. 2.1.5.9 and Lem.
2.1.5.11]). �

Corollary 1.3.3.13. (Compare with [61, Cor. 2.13].) If a general-
ized Kuga family N→ MH is a torsor under a Kuga family Ngrp → MH
which is Q×-isogenous to HomO(Q,GMH)◦ for some O-lattice Q, then
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we have canonical isomorphisms of locally free sheaves over MH:

LieN/MH
∼= HomO(Q,LieGMH/MH

),

LieN∨/MH
∼= HomO(Q∨,LieG∨/MH),

Lie∨N/MH
∼= HomO(Q∨,Lie∨GMH/MH

),

Lie∨N∨/MH
∼= HomO(Q,Lie∨G∨MH/MH

).

Remark 1.3.3.14. We do not need to choose a polarization Ngrp →
Ngrp,∨ in the isomorphisms in Corollary 1.3.3.13.

The algebraically constructed toroidal compactifications of Kuga
families and their generalizations in characteristic zero can be described
as follows:

Theorem 1.3.3.15. (Compare with [61, Thm. 2.15].) Let Q be any
O-lattice. Suppose that H is neat (see [89, 0.6] or [62, Def. 1.4.1.8]),
and that Σ is as in Definition 1.2.2.13, so that the moduli problem
MH is representable by a scheme quasi-projective over S0, and so that
(by Theorem 1.3.1.3) Mtor

H = Mtor
H,Σ is an algebraic space proper and

smooth over S0. (By Theorem 1.3.1.10, if Σ is projective as in Def-
inition 1.2.2.14, then Mtor

H,Σ is projective over S0.) Consider the sets

KQ,H ⊂ K+
Q,H ⊂ K++

Q,H and KQ,H,Σ ⊂ K+
Q,H,Σ ⊂ K++

Q,H,Σ as in Defi-
nitions 1.2.4.44 and 1.2.4.50, with compatible directed partial orders.
These sets parameterize the following data:

(1) For each κ = (Ĥ, Σ̂) ∈ K++
Q,H, if Hκ := ĤG (which is contained

in H, so that MHκ is a finite étale cover of MH; see Definition
1.2.4.4), then there is a generalized Kuga family Nκ → MHκ
(see Definition 1.3.3.4), which is a torsor under a Kuga family
Ngrp
κ → MHκ (see Definition 1.3.3.3) with a Q×-isogeny

κisog : HomO(Q,GMHκ
)◦ → Ngrp

κ

of abelian schemes over MHκ, together with an open dense im-
mersion

κtor : Nκ ↪→ Ntor
κ

of schemes over S0, such that the scheme Ntor
κ is projective

and smooth over S0, and such that the complement of Nκ in
Ntor
κ (with its reduced structure) is a relative Cartier divisor

E∞,κ with simple normal crossings.
The scheme Ntor

κ has a stratification by locally closed sub-
schemes

Ntor
κ =

∐
[(Φ̆Ĥ,δ̆Ĥ,τ̂)]

Ẑ[(Φ̆Ĥ,δ̆Ĥ,τ̂)],
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with [(Φ̆Ĥ, δ̆Ĥ, τ̂)] running through a complete set of

equivalence classes of (Φ̆Ĥ, δ̆Ĥ, τ̂) (as in Lemma 1.2.4.42)

with τ̂ ⊂ P̂+

Φ̆Ĥ
and τ̂ ∈ Σ̂Φ̆Ĥ

∈ Σ̂. (Here Z̆Ĥ is suppressed

in the notation by our convention. The notation “
∐

” only
means a set-theoretic disjoint union. The algebro-geometric
structure is still that of Ntor

κ .) In this stratification, the

[(Φ̆′Ĥ, δ̆
′
Ĥ, τ̂

′)]-stratum Ẑ[(Φ̆′
Ĥ
,δ̆′
Ĥ
,τ̂ ′)] lies in the closure of the

[(Φ̆Ĥ, δ̆Ĥ, τ̂)]-stratum Ẑ[(Φ̆Ĥ,δ̆Ĥ,τ̂)] if and only if [(Φ̆Ĥ, δ̆Ĥ, τ̂)] is

a face of [(Φ̆′Ĥ, δ̆
′
Ĥ, τ̂

′)] as in Lemma 1.2.4.42. In particular,

Nκ = Ẑ[(0,0,{0})] is an open dense stratum in this stratification.

The [(Φ̆Ĥ, δ̆Ĥ, τ̂)]-stratum Ẑ[(Φ̆Ĥ,δ̆Ĥ,τ̂)] is smooth over

S0 and isomorphic to the support of the formal scheme

X̂Φ̆Ĥ,δ̆Ĥ,τ̂
(see (1.3.2.65)) for every representative (Φ̆Ĥ, δ̆Ĥ, τ̂)

of [(Φ̆Ĥ, δ̆Ĥ, τ̂)], which is the completion of an affine toroidal

embedding Ξ̂Φ̆Ĥ,δ̆Ĥ
(τ̂) (along its τ̂ -stratum Ξ̂Φ̆Ĥ,δ̆Ĥ,τ̂

) of a torus

torsor Ξ̂Φ̆Ĥ,δ̆Ĥ
over an abelian scheme torsor ĈΦ̆Ĥ,δ̆Ĥ

over a

finite étale cover M̂
Φ̆Ĥ
Ĥ

of the scheme M̂
Z̆Ĥ
Ĥ

(quasi-projective

over S0) in Lemma 1.3.2.50 and Proposition 1.3.2.56.
The formal completion (Ntor

κ )∧
Ẑ[(Φ̆Ĥ,δ̆Ĥ,τ̂)]

of Ntor
κ along

Ẑ[(Φ̆Ĥ,δ̆Ĥ,τ̂)] is canonically isomorphic to X̂Φ̆Ĥ,δ̆Ĥ,τ̂
; and the

formal completion (Ntor
κ )∧∪ Ẑ[(Φ̆Ĥ,δ̆Ĥ,τ̂)]

, where ∪ Ẑ[(Φ̆Ĥ,δ̆Ĥ,τ̂)] is the

union of all strata Ẑ[(Φ̆Ĥ,δ̆Ĥ,τ̂)] with τ̂ ∈ Σ̂Φ̆Ĥ
, is canonically

isomorphic to X̂Φ̆Ĥ,δ̆Ĥ
/ΓΦ̆Ĥ

(cf. (5) of Theorem 1.3.1.3 and

Lemma 1.3.2.41). (Such isomorphisms can be induced by
strata-preserving isomorphisms between étale neighborhoods

of points of Ẑ[(Φ̆Ĥ,δ̆Ĥ,τ̂)] in Ntor
κ and étale neighborhoods of

points of Ξ̂Φ̆Ĥ,δ̆Ĥ,τ̂
in Ξ̂Φ̆Ĥ,δ̆Ĥ

(τ̂).)

Each Ntor
κ admits a canonical proper surjection Ntor

κ →
Mmin
H extending the canonical proper surjection Nκ → MH, and

the latter is the pullback of the former under the canonical
morphism MH ↪→ Mmin

H on the target (see Theorem 1.3.1.5).

Such a morphism maps the [(Φ̆Ĥ, δ̆Ĥ, τ̂)]-stratum Ẑ[(Φ̆Ĥ,δ̆Ĥ,τ̂)] of

Ntor
κ to the [(ΦH, δH)]-stratum Z[(ΦH,δH)] of Mmin

H if and only if
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the cusp label [(ΦH, δH)] is assigned to the cusp label [(Φ̆Ĥ, δ̆Ĥ)]
as in Lemma 1.2.4.15.

If κ ∈ K+
Q,H, then Hκ = H and hence MHκ = MH. If

κ ∈ KQ,H, then Nκ = Ngrp
κ → MHκ = MH is a Kuga family.

For each relation κ′ � κ in K++
Q,H, there is a proper log étale

surjection
f tor
κ′,κ : Ntor

κ′ → Ntor
κ ,

extending a canonical finite étale surjection

fκ′,κ : Nκ′ → Nκ

inducing a canonical finite étale surjection Nκ′ → Nκ ×
MHκ

MHκ′

equivariant with the canonical Q×-isogeny

f grp
κ′,κ := κisog ◦ ((κ′)isog)−1 : Ngrp

κ′ → Ngrp
κ ×

MHκ

MHκ′ ,

such that Ri(f tor
κ′,κ)∗ONtor

κ′
= 0 for i > 0. These surjections are

compatible with the canonical morphisms to Mmin
H .

(2) For each κ ∈ K++
Q,H,Σ, the structural morphism fκ : Nκ → MH

extends (necessarily uniquely) to a surjection f tor
κ : Ntor

κ →
Mtor
H = Mtor

H,Σ, which is proper and log smooth (as in [45,
3.3] and [43, 1.6]) if we equip Ntor

κ and Mtor
H with the canonical

(fine) log structures given respectively by the relative Cartier
divisors with (simple) normal crossings E∞,κ and D∞,H (see (1)
above and (3) of Theorem 1.3.1.3). Then we have the following
commutative diagram:

Nκ

fκ
proper
smooth

surjective
��

� � +NCD
// Ntor

κ

f tor
κ

proper
log smooth
surjective ��

projective
smooth

&&
MH
� �

+NCD
// Mtor
H proper

smooth

// S0

The morphism f tor
κ maps the [(Φ̆Ĥ, δ̆Ĥ, τ̂)]-stratum

Ẑ[(Φ̆Ĥ,δ̆Ĥ,τ̂)] of Ntor
κ to the [(ΦH, δH, τ)]-stratum Z[(ΦH,δH,τ)] of

Mtor
H if and only if (the cusp label [(ΦH, δH)] is assigned to the

cusp label [(Φ̆Ĥ, δ̆Ĥ)] as in Lemma 1.2.4.15 and) the image

of τ̂ ∈ Σ̂Φ̆Ĥ
under (1.2.4.37) is contained in τ ∈ ΣΦH as in

Condition 1.2.4.49. In this case, the compatible morphisms

X̂Φ̆Ĥ,δ̆Ĥ,τ̂
→ XΦH,δH,τ and X̂Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

→ XΦH,δH,ΣΦH
induced

by f tor
κ (and the canonical isomorphisms in (1) above and

in (5) of Theorem 1.3.1.3) coincide with the canonical
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morphisms as in (1.3.2.83) and (1.3.2.85). (These morphisms
can be induced by compatible morphisms between étale
neighborhoods of points of the supports of formal schemes in
relevant ambient schemes as in (1) above, compatible with all
stratifications.)

If κ′ � κ, then we have the compatibility f tor
κ′ = f tor

κ ◦ f tor
κ′,κ.

(3) Suppose κ ∈ K+
Q,H,Σ (not just in K++

Q,H,Σ, so that Hκ = H). For
simplicity, let us suppress the subscripts “κ” from the notation.
(All canonical isomorphisms will be required to be compatible
with the canonical isomorphisms defined by pulling back under
f tor
κ′,κ for each relation κ′ � κ in K+

Q,H,Σ.) Then the following
are true:
(a) Let Ω1

Ntor/S0
[d log∞] and Ω1

Mtor
H /S0

[d log∞] denote the

sheaves of modules of log 1-differentials over S0 given by
the (respective) canonical log structures defined in (2).
Let

Ω
1

Ntor/Mtor
H

:= (Ω1
Ntor/S0

[d log∞])/((f tor)∗(Ω1
Mtor
H /S0

[d log∞])).

Then there is a canonical isomorphism

(1.3.3.16) (f tor)∗(HomO(Q∨,Lie∨G/Mtor
H

)) ∼= Ω
1

Ntor/Mtor
H

between locally free sheaves over Ntor, extending the com-
position of canonical isomorphisms

(1.3.3.17) f ∗(HomO(Q∨,Lie∨GMH/MH
)) ∼= f ∗Lie∨N/MH

∼= Ω1
N/MH

over N (see Lemma 1.3.3.12).
(b) For each integer b ≥ 0, there exist canonical isomorphisms

Rbf tor
∗ (Ω

a

Ntor/Mtor
H

) ∼=(∧b(HomO(Q∨,LieG∨/Mtor
H

)))

⊗
OMtor
H

(∧a(HomO(Q∨,Lie∨G/Mtor
H

)))(1.3.3.18)

and

(1.3.3.19) Rbf tor
∗ (Ω

a

Ntor/Mtor
H
⊗

ONtor

IE∞) ∼= Rbf tor
∗ (Ω

a

Ntor/Mtor
H

) ⊗
OMtor
H

ID∞,H

of locally free sheaves over Mtor
H , where IE∞ (resp. ID∞,H)

is the ONtor-ideal (resp. OMtor
H

-ideal) defining the relative

Cartier divisor E∞ = E∞,κ (resp. D∞,H) (with its re-
duced structure), compatible with cup products and exte-
rior products, extending the canonical isomorphism over
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MH induced by the composition of canonical isomorphisms

(1.3.3.20) Rbf∗(ON) ∼= ∧bLieN∨/MH
∼= ∧b(HomO(Q∨,LieG∨MH/MH

)).

(c) Let Ω
•
Ntor/Mtor

H
:= ∧•Ω1

Ntor/Mtor
H

be the log de Rham complex

associated with f tor : Ntor → Mtor
H (with differentials in-

herited from Ω•N/MH). Let the (relative) log de Rham
cohomology be defined by

H i
log-dR(Ntor/Mtor

H ) := Rif tor
∗ (Ω

•
Ntor/Mtor

H
).

Then the (relative) Hodge spectral sequence

(1.3.3.21) Ea,b
1 := Rbf tor

∗ (Ω
a

Ntor/Mtor
H

)⇒ Ha+b
log-dR(Ntor/Mtor

H )

degenerates at E1 terms, and defines a Hodge filtration
on H i

log-dR(Ntor/Mtor
H ) with locally free graded pieces given

by Rbf tor
∗ (Ω

a

Ntor/Mtor
H

) for integers a + b = i, extending the

canonical Hodge filtration on H i
dR(N/MH).

As a result, for each integer i ≥ 0, there is a canonical
isomorphism

∧iH1
log-dR(Ntor/Mtor

H )
∼→ H i

log-dR(Ntor/Mtor
H ),

compatible with the Hodge filtrations defined by (1.3.3.21),

extending the canonical isomorphism ∧iH1
dR(N/MH)

∼→
H i

dR(N/MH) over MH (defined by cup product).
(d) For each jQ : Q∨ ↪→ Q as in Lemma 1.2.4.1, the

Q×-polarization

λMH,jQ : HomO(Q,GMH)◦ → (HomO(Q,GMH)◦)∨

in Proposition 1.3.3.7 induces a Q×-polarization

λN,jQ : Ngrp → Ngrp,∨,

and hence defines canonically (as in [23, 1.5], by étale
descent; see Lemma 1.3.3.12) a perfect pairing

〈 · , · 〉λMH,jQ : H1
dR(N/MH)×H1

dR(N/MH)→ OMH(1).

Then H1
log-dR(Ntor/Mtor

H ) is (under the restriction
morphism) canonically isomorphic to the unique subsheaf
of

(MH ↪→ Mtor
H )∗(H

1
dR(N/MH))

satisfying the following conditions:
(i) H1

log-dR(Ntor/Mtor
H ) is locally free of finite rank over

OMtor
H

.
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(ii) The sheaf f tor
∗ (Ω

1

Ntor/Mtor
H

) can be identified with

the subsheaf of (MH ↪→ Mtor
H )∗(f∗(Ω

1
N/MH

))

formed (locally) by sections that are also
sections of H1

log-dR(Ntor/Mtor
H ). (Here we

view all sheaves canonically as subsheaves of
(MH ↪→ Mtor

H )∗(H
1
dR(N/MH)).)

(iii) H1
log-dR(Ntor/Mtor

H ) is self-dual under the
push-forward (MH ↪→ Mtor

H )∗〈 · , · 〉λMH,jQ .

(e) The Gauss–Manin connection

(1.3.3.22) ∇ : H•dR(N/MH)→ H•dR(N/MH) ⊗
OMH

Ω1
MH/S0

extends to an integrable connection

(1.3.3.23) ∇ : H•log-dR(Ntor/Mtor
H )→ H•log-dR(Ntor/Mtor

H ) ⊗
OMtor
H

Ω
1

Mtor
H /S0

with log poles along D∞,H, called the extended
Gauss–Manin connection, satisfying the usual
Griffiths transversality with the Hodge filtration defined
by (1.3.3.21).

(4) (Hecke actions.) Suppose we have an element ĝ ∈ Ĝ(A∞)
with image gh ∈ G(A∞) under the canonical homomorphism

Ĝ(A∞) → G(A∞), and suppose we have two neat open com-

pact subgroups H and H′ of G(Ẑ) such that H′ ⊂ ghHg−1
h .

Suppose Σ′ = {Σ′Φ′H′}[(Φ′H′ ,δ
′
H′ )]

is a compatible choice of admis-

sible smooth rational polyhedral cone decomposition data for
MH′, which is a gh-refinement of Σ as in [62, Def. 6.4.3.3].
Consider the sets KQ,H′ ⊂ K+

Q,H′ ⊂ K++
Q,H′ and KQ,H′,Σ′ ⊂

K+
Q,H′,Σ′ ⊂ K++

Q,H′,Σ′ as in Definitions 1.2.4.44 and 1.2.4.50
(for H′ and Σ′), with compatible directed partial orders, pa-
rameterizing generalized Kuga families and their compactifica-
tions with properties as in (1), (2), and (3) above. The sets
K++
Q,H etc and K++

Q,H′ etc (and the objects they parameterize)
satisfy the compatibility with ĝ (and gh) in the sense that the
following are true:

(a) For each κ = (Ĥ, Σ̂) ∈ K++
Q,H (resp. K+

Q,H, resp. KQ,H),

and for each open compact subgroup Ĥ′ ⊂ Ĝ(Ẑ) such that

Ĥ′ ⊂ ĝĤĝ−1 (so that Hκ = ĤG and Hκ′ = Ĥ′G satisfy

Hκ′ ⊂ ghHκg
−1
h ), there exists an element κ′ = (Ĥ′, Σ̂′) ∈

K++
Q,H′ (resp. K+

Q,H′, resp. KQ,H′) such that there exists a
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(necessarily unique) finite étale surjection

(1.3.3.24) [ĝ] : Nκ′ → Nκ

covering the compatible surjections [gh] : MH′ → MH and
[gh] : MHκ′ → MHκ given by [62, Prop. 6.4.3.4] (see Propo-
sition 1.3.1.15), inducing a finite étale surjection Nκ′ →
Nκ ×

MHκ

MHκ′ of abelian scheme torsors equivariant with

the isogeny (not just Q×-isogeny) Ngrp
κ′ → Ngrp

κ ×
MHκ

MHκ′

induced by (κ′)isog, κisog, and the Q×-isogeny GMHκ′
→

GMHκ
×

MHκ

MHκ′ realizing GMHκ
×

MHκ

MHκ′ as a Hecke twist

of GMHκ′
by gh (which is the pullback of the Q×-isogeny

GMH′
→ GMH ×

MH
MH′ realizing GMH ×

MH
MH′ as a Hecke

twist of GMH′
by gh). (Here all the base changes from MH

to MH′ and from MHκ to MHκ′ use the surjections denoted
by [gh].)

(b) For each κ = (Ĥ, Σ̂) and Ĥ′ as in (4a) such that κ ∈
K++
Q,H (resp. K+

Q,H, resp. KQ,H), there is an element κ′ =

(Ĥ′, Σ̂′) ∈ K++
Q,H′ (resp. K+

Q,H′, resp. KQ,H′) such that [ĝ]

is defined as in (4a) (see (1.3.3.24)), and such that Σ̂′ is

a ĝ-refinement of Σ̂ (cf. Lemma 1.2.4.42 and [62, Def.
6.4.3.3]), which extends to a (necessarily unique) proper
log étale surjection

(1.3.3.25) [ĝ]tor : Ntor
κ′ → Ntor

κ

such that

(1.3.3.26) Ri[ĝ]tor
∗ O(N′

κ′ )
tor = 0

for all i > 0.

Under (1.3.3.25), the [(Φ̆′Ĥ′ , δ̆
′
Ĥ′ , τ̂

′)]-stratum Ẑ[(Φ̆′
Ĥ′
,δ̆′
Ĥ′
,τ̂ ′)]

of Ntor
κ′ is mapped to the [(Φ̆Ĥ, δ̆Ĥ, τ̂)]-stratum Ẑ[(Φ̆Ĥ,δ̆Ĥ,τ̂)]

of Ntor
κ if and only if there are representatives (Φ̆Ĥ, δ̆Ĥ, τ̂)

and (Φ̆′Ĥ′ , δ̆
′
Ĥ′ , τ̂

′) of [(Φ̆Ĥ, δ̆Ĥ, τ̂)] and [(Φ̆′Ĥ′ , δ̆
′
Ĥ′ , τ̂

′)],

respectively, such that (Φ̆′Ĥ′ , δ̆
′
Ĥ′ , τ̂

′) is a ĝ-refinement

of (Φ̆Ĥ, δ̆Ĥ, τ̂) (cf. Lemma 1.2.4.42 and [62, Def.
6.4.3.1]). In this case, the compatible morphisms

X̂Φ̆′
Ĥ′
,δ̆′
Ĥ′
,τ̂ ′ → X̂Φ̆Ĥ,δ̆Ĥ,τ̂

and X̂Φ̆′
Ĥ′
,δ̆′
Ĥ′
,Σ̂′

Φ̆′
Ĥ′

→ X̂Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

induced by (1.3.3.25) (and the canonical isomorphisms in
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(1) above) coincide with the canonical morphisms as in
(1.3.2.69) and (1.3.2.71).
If κ ∈ K++

Q,H,Σ (resp. K+
Q,H,Σ, resp. KQ,H,Σ), we may as-

sume in the above that κ′ ∈ K++
Q,H′,Σ′ (resp. K+

Q,H′,Σ′, resp.
KQ,H′,Σ′), so that (1.3.3.25) covers the surjection

[gh]
tor : Mtor

H′,Σ′ → Mtor
H,Σ

given by [62, Prop. 6.4.3.4],
(c) Suppose [ĝ]tor is defined as in (4b) for some κ ∈ K+

Q,H,Σ
and κ′ ∈ K+

Q,H′,Σ′ (not just in K++
Q,H,Σ and K++

Q,H′,Σ′). Then
there is a canonical isomorphism

([ĝ]tor)∗ : ([gh]
tor)∗Ha+b

log-dR(Ntor
κ /Mtor

H,Σ)
∼→ Ha+b

log-dR(Ntor
κ′ /M

tor
H′,Σ′)

respecting the Hodge filtrations and compatible with the
canonical isomorphisms

([ĝ]tor)∗ : ([ĝ]tor)∗Ω
1

Ntor
κ /Mtor

H,Σ

∼→ Ω
1

Ntor
κ′ /M

tor
H′,Σ′

,

([gh]
tor)∗ : ([gh]

tor)∗LieG∨/Mtor
H,Σ

∼→ LieG∨/Mtor
H′,Σ′

,

([gh]
tor)∗ : ([gh]

tor)∗Lie∨G/Mtor
H,Σ

∼→ Lie∨G/Mtor
H′,Σ′

,

and the canonical isomorphisms in (3) for Ntor
κ and Ntor

κ′ .

(d) If we have an element ĝ′ ∈ Ĝ(A∞) with image g′h ∈
G(A∞) under the canonical homomorphism Ĝ(A∞) →
G(A∞), with a similar setup such that [ĝ′] : Nκ′′ → Nκ′

and [ĝ′]tor : Ntor
κ′′ → Ntor

κ′ are compatibly defined for some
κ′′ ∈ K++

Q,H′′,Σ′′, then [ĝ′ĝ] : Nκ′′ → Nκ and [ĝ′ĝ]tor :

Ntor
κ′′ → Ntor

κ are also compatibly defined and satisfy the
identities [ĝ′ĝ] = [ĝ] ◦ [ĝ′] and [ĝ′ĝ]tor = [ĝ]tor ◦ [ĝ′]tor. If
κ ∈ K+

Q,H,Σ, κ′ ∈ K+
Q,H′,Σ′, and κ′′ ∈ K+

Q,H′′,Σ′′, we also

have [ĝ′ĝ]∗ = [ĝ′]∗ ◦ [ĝ]∗ and ([ĝ′ĝ]tor)∗ = ([ĝ′]tor)∗ ◦ ([ĝ]tor)∗

(in both applicable senses above).
(5) (Q×-isogenies.) Let gl be an element of GLO⊗

Z
A∞(Q⊗

Z
A∞).

Then the submodule gl(Q⊗
Z
Ẑ) in Q⊗

Z
A∞ determines a

unique O-lattice Q′ (up to isomorphism), together with a
unique choice of an isomorphism

[gl]Q : Q⊗
Z
Q ∼→ Q′⊗

Z
Q,
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inducing an isomorphism Q⊗
Z
A∞ ∼→ Q′⊗

Z
A∞ matching

gl(Q⊗
Z
Ẑ) with Q′⊗

Z
Ẑ, and inducing a canonical Q×-isogeny

[gl]
∗
Q : HomO(Q′, GMH)◦ → HomO(Q,GMH)◦

defined by [gl]Q. Consider the sets KQ′,H ⊂ K+
Q′,H ⊂ K++

Q′,H
and KQ′,H,Σ ⊂ K+

Q′,H,Σ ⊂ K++
Q′,H,Σ as in Definitions 1.2.4.44

and 1.2.4.50 (with Q replaced with Q′), with compatible di-
rected partial orders, parameterizing generalized Kuga families
and their compactifications with properties as in (1), (2), and
(3) above. The sets K++

Q,H etc and K++
Q′,H etc (and the objects

they parameterize) satisfy the compatibility with gl in the sense
that the following are true:

(a) For each κ = (Ĥ, Σ̂) ∈ K++
Q,H (resp. K+

Q,H, resp. KQ,H),

there is an element κ′ = (Ĥ′, Σ̂′) ∈ K++
Q′,H,Σ (resp. K+

Q′,H,Σ,

resp. KQ′,H,Σ) such that Hκ′ = Ĥ′G ⊂ Hκ = ĤG, such that
the Q×-isogeny

[gl]
∗,grp
κ′,κ := κisog ◦ [gl]

∗
Q ◦ ((κ′)isog)−1 : Ngrp

κ′ → Ngrp
κ ×

MHκ

MHκ′

is an isogeny (not just a quasi-isogeny), and such that
there is a (necessarily unique) finite étale surjection

[gl]
∗
κ′,κ : Nκ′ → Nκ

inducing a finite étale surjection Nκ′ → Nκ ×
MHκ

MHκ′

of abelian scheme torsors equivariant with the isogeny
[gl]
∗,grp
κ′,κ .

(b) For each κ = (Ĥ, Σ̂) as in (5a), there is an element

κ′ = (Ĥ′, Σ̂′) ∈ K++
Q′,H (resp. K+

Q′,H, resp. KQ′,H) such
that [gl]

∗
κ′,κ is defined as in (5a) and extends to a (neces-

sarily unique) proper log étale surjection

(1.3.3.27) [gl]
∗,tor
κ′,κ : Ntor

κ′ → Ntor
κ ,

such that

(1.3.3.28) Ri([gl]
∗,tor
κ′,κ )∗ONtor

κ′
= 0

for all i > 0.
If κ ∈ K++

Q,H,Σ (resp. K+
Q,H,Σ, resp. KQ,H,Σ), we may as-

sume in the above that κ′ ∈ K++
Q′,H,Σ (resp. K+

Q′,H,Σ, resp.
KQ′,H,Σ). Then (1.3.3.27) is compatible with the canonical
morphisms f tor

κ : Ntor
κ → Mtor

H,Σ and f tor
κ′ : Ntor

κ′ → Mtor
H,Σ.
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(c) Suppose [gl]
∗,tor
κ′,κ is defined as in (5b) for some κ ∈ K+

Q,H,Σ
and κ′ ∈ K+

Q′,H,Σ (not just in K++
Q,H,Σ and K++

Q′,H,Σ). Then,
for each integer i ≥ 0, there is a canonical isomorphism

([gl]
∗,tor
κ′,κ )∗ : H i

log-dR(Ntor
κ /Mtor

H,Σ)
∼→ H i

log-dR(Ntor
κ′ /M

tor
H,Σ)

extending the canonical isomorphism

([gl]
∗
κ′,κ)

∗ : H i
dR(Nκ/MH)

∼→ H i
dR(Nκ′/MH)

induced by [gl]Q, respecting the Hodge filtrations and in-
ducing canonical isomorphisms

([gl]
∗,tor
κ′,κ )∗ : Rbf tor

∗ (Ω
a

Ntor
κ /Mtor

H
)
∼→ Rbf tor

∗ (Ω
a

Ntor
κ′ /M

tor
H

)

(for integers a + b = i) compatible (under the canonical
isomorphisms in (3) for Ntor

κ and Ntor
κ′ ) with the canonical

isomorphisms

([gl]
∗
Q)∗ : HomO(Q∨,LieG∨/Mtor

H
)
∼→ HomO((Q′)

∨
,LieG∨/Mtor

H
)

and

([gl]
∗
Q)∗ : HomO(Q∨,Lie∨G/Mtor

H
)
∼→ HomO((Q′)

∨
,Lie∨G/Mtor

H
).

(d) If we have an element g′l ∈ GLO⊗
Z
A∞(Q⊗

Z
A∞) with

a similar setup such that [g′l]
∗
κ′′,κ′ and [g′l]

∗,tor
κ′′,κ′ are

compatibly defined for some κ′′ ∈ K++
Q′′,H,Σ, then

[glg
′
l]
∗
κ′′,κ and [glg

′
l]
∗,tor
κ′′,κ are also compatibly defined

and satisfy the identities [glg
′
l]
∗
κ′′,κ = [gl]

∗
κ′,κ ◦ [g′l]

∗
κ′′,κ′

and [glg
′
l]
∗,tor
κ′′,κ = [gl]

∗,tor
κ′,κ ◦ [g′l]

∗,tor
κ′′,κ′. If κ ∈ K+

Q,H,Σ,

κ′ ∈ K+
Q′,H,Σ, and κ′′ ∈ K+

Q′′,H,Σ, we also
have ([glg

′
l]
∗
κ′′,κ)

∗ = ([g′l]
∗
κ′′,κ′)

∗ ◦ ([gl]
∗
κ′,κ)

∗ and

([glg
′
l]
∗,tor
κ′′,κ)∗ = ([g′l]

∗,tor
κ′′,κ′)

∗ ◦ ([gl]
∗,tor
κ′,κ )∗.

Remark 1.3.3.29. The statements of Theorem 1.3.3.15 are more
general than those in [61, Thm. 2.15], because we now consider not
just Kuga families, but also generalized Kuga families over a finite étale
cover MHκ of MH. Nevertheless, the proof of [61, Thm. 2.15] works al-
most verbatim for such generalizations. We will explain the necessary
modifications in the next section. (We will only need the compacti-
fied Kuga families, i.e., those with κ ∈ KQ,H,Σ, for the construction
of canonical and subcanonical extensions of automorphic bundles in
Section 1.4.2, and for all applications we know. We included their gen-
eralizations in Theorem 1.3.3.15 only because it seems natural to do
so.)
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Remark 1.3.3.30. The second, third, and fourth paragraphs of (1)
of Theorem 1.3.3.15 follow from the construction of Nκ and Ntor

κ using

the toroidal boundary of a larger PEL-type moduli problem M̃H̃, and
from (2) and (5) of Theorem 1.3.1.3, and from Lemma 1.3.2.41 (and
from the justifications provided in Section 1.3.2 and to be provided
in Section 1.3.4 below). The second paragraphs of (2) and (4b) of
Theorem 1.3.3.15 follow from the construction of f tor

κ and [ĝ]tor using

the universal property of certain suitably chosen M̃tor
H̃ = M̃tor

H̃,Σ̃ (given by

(6) of Theorem 1.3.1.3), which is consistent with the construction of the
canonical morphisms in Lemmas 1.3.2.41 and 1.3.2.79 and Proposition
1.3.2.67 using the various universal properties (all given in terms of
degeneration data). These statements were not in [61, Thm. 2.15],
but are implicit in the theory and can be deduced from other known
statements. Similarly, the second last paragraph of statement (1) of
Theorem 1.3.3.15 was not in [61, Thm. 2.15], but can be deduced from
the other statements (in Theorems 1.3.1.3 and 1.3.1.5, Propositions
1.3.1.15 and 1.3.1.14, and Theorem 1.3.3.15). We omit the proof here
because the proof of a subtler statement in mixed characteristics will
be given for Theorem 7.1.4.1 (see Proposition 7.2.4.14 below).

Remark 1.3.3.31. The isomorphism (1.3.3.19) (even just in the
case of Kuga families) was not in the statement of [61, Thm. 2.15],
although it is implicit in the arguments of the (rather lengthy) proof
there. We included it here for the sake of completeness. The details of
the proof are similar to those for (7.1.4.5) (to be given below in Section
7.3), and hence are omitted here.

Remark 1.3.3.32. Statements (4) and (5) of Theorem 1.3.3.15 were
not as explicitly stated in [61, Thm. 2.15], but follow from the same
argument of the proof there (based on an analogue of Proposition
1.3.1.15).

Remark 1.3.3.33. (Compare with Remarks 1.1.2.1 and 1.3.1.4.)

By varying the choices of L and Q, and hence varying the choices of L̃,

we can (in practice) allow the Ĥ in the parameter κ = (Ĥ, Σ̂) to be any

open compact subgroup of Ĝ(A∞). Nevertheless, this can be achieved
by varying the lattice Q alone, and hence is already incorporated in (5)
of Theorem 1.3.3.15.

1.3.4. Justification for the Parameters for Kuga
Families. For later constructions (in Chapter 7), and for some
applications, we would like to spell out what fκ : Nκ → MH and
κisog : HomO(Q,GMHκ

)◦ → Ngrp
κ are for each κ ∈ K++

Q,H, and what
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f tor
κ : Ntor

κ → Mtor
H = Mtor

H,Σ is for each κ = (Ĥ, Σ̂) ∈ K++
Q,H,Σ. Let us

review some of the materials in [61, Sec. 3]. (We will also take this
opportunity to correct a mistake there. See Remark 1.3.4.5 below.)

Let (L̃, 〈 · , · 〉̃ , h̃0), (Z̃, Φ̃, δ̃), etc be chosen as in Section 1.2.4. Let

κ̃ = (H̃, Σ̃, σ̃) be any element in the set K̃++
Q,H as in Definition 1.2.4.11,

and let κ = [κ̃] ∈ K++
Q,H be as in Definition 1.2.4.44.

The data of O, (L̃, 〈 · , · 〉̃ , h̃0), and H̃ ⊂ G̃(Ẑ) define a moduli prob-

lem M̃H̃ as in Section 1.1.2. Since H̃ is neat and Σ̃ is projective (and
smooth), by Theorems 1.3.1.3 and 1.3.1.10, we have a toroidal com-

pactification M̃tor
H̃ = M̃tor

H̃,Σ̃ of M̃H̃ which is projective and smooth over

S0, as in the latter half of Section 1.3.2. Since H̃ satisfies Condition

1.2.4.7, by Lemmas 1.3.2.1 and 1.3.2.5, we have M̃
Φ̃H̃
H̃
∼= M̃

Z̃H̃
H̃
∼= MHκ ,

where Hκ = ĤG = GrZ̃−1(H̃P̃′
Z̃

) = GrZ̃−1(H̃P̃Z̃
). By the construction of

C̃Φ̃H̃,δ̃H̃
→ M̃

Φ̃H̃
H̃

in [62, Sec. 6.2.3–6.2.4] (see also the correction in Re-

mark 1.3.1.6), it is a torsor under an abelian scheme C̃grp

Φ̃H̃,δ̃H̃
canonically

Q×-isogenous to HomO(Q,GMH)◦. If Ĥ satisfies Condition 1.2.4.8, then

we have Hκ = H and hence MHκ = MH. If Ĥ also satisfies Condition

1.2.4.9, then C̃Φ̃H̃,δ̃H̃
= C̃grp

Φ̃H̃,δ̃H̃
→ MHκ = MH is an abelian scheme, not

just a torsor. (See Remark 1.3.1.6.)

Remark 1.3.4.1. The isomorphism M̃
Φ̃H̃
H̃
∼= M̃

Z̃H̃
H̃
∼= MHκ means we

do not need to consider nontrivial twisted objects (ϕ̃∼−2,H̃, ϕ̃
∼
0,H̃) above

(ϕ̃−2,H̃, ϕ̃0,H̃) and ϕ̃−1,H̃ = αHκ .

Since σ̃ ⊂ P+

Φ̃H̃
is a top-dimensional nondegenerate rational poly-

hedral cone in the cone decomposition Σ̃Φ̃H̃
in Σ̃, by (2) of Theorem

1.3.1.3, the locally closed stratum Z̃[(Φ̃H̃,δ̃H̃,σ̃)] (not its closure) of M̃tor
H̃ is

a zero-dimensional torus bundle over the abelian scheme torsor C̃Φ̃H̃,δ̃H̃

over MHκ . In other words, Z̃[(Φ̃H̃,δ̃H̃,σ̃)] is canonically isomorphic to

C̃Φ̃H̃,δ̃H̃
. Let us define Nκ̃ to be this stratum Z̃[(Φ̃H̃,δ̃H̃,σ̃)], and denote

the canonical morphism Nκ̃ → MH by fκ̃ (which is the composition
of the canonical morphisms Nκ̃ → MHκ and MHκ → MH). Let us de-

note the canonical Q×-isogeny HomO(Q,GMH)◦ → Ngrp
κ̃ := C̃grp

Φ̃H̃,δ̃H̃
by
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κ̃isog. Note that Nκ̃ = Z̃[(Φ̃H̃,δ̃H̃,σ̃)] is canonically isomorphic to C̃Φ̃H̃,δ̃H̃

for every Σ̃ and every top-dimensional cone σ̃ in Σ̃Φ̃H̃
.

Lemma 1.3.4.2. The abelian scheme torsor C̃Φ̃H̃,δ̃H̃
(see (5) of

Theorem 1.3.1.5 and Definition 1.2.1.15) and the canonical isogeny

HomO(Q,GMHκ
)◦ → C̃grp

Φ̃H̃,δ̃H̃
of abelian schemes over M̃

Φ̃H̃
H̃
∼= MHκ

depend (up to canonical isomorphism) only on the open compact

subgroup Ĥ = H̃Ĝ of Ĝ(Ẑ) (see Definitions 1.2.4.3 and 1.2.4.4)

determined by H̃. Moreover, if H̃′ is any open compact subgroup of

G̃(Ẑ) still satisfying Condition 1.2.4.7 such that H̃′
Ĝ

= ĤG n ĤÛ

under the isomorphism Ĝ(Ẑ) ∼= G(Ẑ) n Û(Ẑ) induced by the splitting

δ̃ (cf. Condition 1.2.4.9), then we have C̃Φ̃H̃′ ,δ̃H̃′
= C̃grp

Φ̃H̃′ ,δ̃H̃′

∼= C̃grp

Φ̃H̃,δ̃H̃
.

Proof. These follow from the corresponding statements of Lemma
1.3.2.7. �

Consequently, Nκ̃ and κ̃isog depend (up to canonical isomorphism)

only on the open compact subgroup Ĥ of Ĝ(Ẑ) determined by H̃ (see
Definitions 1.2.4.3 and 1.2.4.4).

Let us take Ntor
κ̃ to be the schematic closure of the locally closed

stratum Z̃[(Φ̃H̃,δ̃H̃,σ̃)] in M̃tor
H̃,Σ̃. Then we obtain the canonical open dense

immersion κ̃tor : Nκ̃ ↪→ Ntor
κ̃ . Certainly, Ntor

κ̃ depends not only on Ĥ but

also on the choices of Σ̃Φ̃H̃
and σ̃.

Lemma 1.3.4.3. (See [61, Lem. 3.1].) Under the assumption that H̃
is neat, the closure of every stratum in M̃tor

H̃,Σ̃ has no self-intersection.

Corollary 1.3.4.4. (Compare with [61, Cor. 3.2].) For each κ̃ =

(H̃, Σ̃, σ̃) ∈ K̃++
Q,H, the closure Ntor

κ̃ of Nκ̃ = Z̃[(Φ̃H̃,δ̃H̃,σ̃)] in M̃tor
H̃,Σ̃ is pro-

jective and smooth over S0, and the complement of Nκ̃ in Ntor
κ̃ (with

its reduced structure) is a relative Cartier divisor with simple normal
crossings.

Proof. Combine Lemma 1.3.4.3, (3) of Theorem 1.3.1.3, and The-
orem 1.3.1.10. �

Remark 1.3.4.5. In [61, Sec. 3], the κ̃ etc above were denoted κ
etc without the tildes. However, the binary relation � introduced there
is not a directed partial order. We take this opportunity to correct this
mistake and (at the same time) provide a formulation better for the
applications. The desired parameters should be given by equivalence
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classes κ = [κ̃] of κ̃, with the natural partial order � among them. (See
Definitions 1.2.4.44 and 1.3.4.20, and see Proposition 1.3.4.19 below.
Before then, we can not yet assert the second half of [61, Cor. 3.2].)

The stratification of M̃tor
H̃ induces a stratification of Ntor. By (2)

of Theorem 1.3.1.3, the strata of Ntor are parameterized by equiva-

lence classes [(Φ̆H̃, δ̆H̃, τ̆)] having [(Φ̃H̃, δ̃H̃, σ̃)] as a face (as in Definition
1.2.2.19), spelled out in Section 1.2.4. By Lemma 1.2.4.42, they can

also be parameterized by the equivalence classes [(Φ̆Ĥ, δ̆Ĥ, τ̂)].
Let σ̆ be the image of σ̃ ⊂ P+

Φ̃H̃
under the first morphism in

(1.2.4.20). Consider the sets Σ̃Φ̆H̃,σ̆
and Σ̃+

Φ̆H̃,σ̆
, and the groups ΓΦ̆H̃,ΦH

,

ΓΦ̆H̃,ΦH,σ̆
, ΓΦ̆Ĥ

, and ΓΦ̆Ĥ,ΦH
defined in Definition 1.2.4.21; consider

the sets ŜΦ̆Ĥ
and (ŜΦ̆Ĥ

)∨R defined in Definition 1.2.4.29; consider the

ΓΦ̆Ĥ
-admissible rational polyhedral cone decomposition Σ̂Φ̆Ĥ

of P̂Φ̆Ĥ
de-

fined in Corollary 1.2.4.40; consider the collection Σ̂ defined in Lemma

1.2.4.42; and consider the set KQ,H of equivalence classes κ = (Ĥ, Σ̂) =

[κ̃] of elements κ̃ in K̃Q,H, with a directed partial order κ′ = (Ĥ′, Σ̂′) �
κ = (Ĥ, Σ̂) when Ĥ′ ⊂ Ĥ′ and when Σ̂′ is a refinement of Σ̂, as in
Definition 1.2.4.44 and Lemma 1.2.4.47.

Construction 1.3.4.6. For each κ̃ = (H̃, Σ̃, σ̃) in K̃++
Q,H, consider

the degenerating family

(1.3.4.7) (G̃, λ̃, ĩ, α̃H̃)→ M̃tor
H̃,Σ̃

of type M̃H̃ as in Theorem 1.3.1.3. As in (1.3.2.18), let

(1.3.4.8) (Ĝ, λ̂, î)→ Ntor
κ̃

denote the pullback of (1.3.4.7) to Ntor
κ̃ , the closure of Nκ̃ = Z̃[(Φ̃H̃,δ̃H̃,σ̃)]

in M̃tor
H̃,Σ̃. Note that Nκ̃ is canonically isomorphic to C̃Φ̃H̃,δ̃H̃

because σ̃ is

top-dimensional. Although α̃H̃ is defined only over M̃H̃, by proceeding
as in Construction 1.3.2.16, we can define a (partial) pullback

(1.3.4.9) (Ĝ, λ̂, î, α̂Ĥ) := (G̃\, λ̃\, ĩ\, β̃\
H̃

)→ Ntor
κ̃

of the degenerating family (1.3.4.7) to Ntor
κ̃ , with the convention that

(as in the case of (G̃, λ̃, ĩ, α̃H̃) itself) α̂Ĥ is defined only over Nκ̃, while

(G̃, λ̃, ĩ) is defined over all of Ntor
κ̃ as in (1.3.4.8). By construction, the

pullback

(1.3.4.10) (ĜNκ̃ , λ̂Nκ̃ , îNκ̃ , α̂Ĥ)→ Nκ̃ ∼= C̃Φ̃H̃,δ̃H̃
,
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of (1.3.4.9) to Nκ̃ determines and is determined by (the prescribed

(Z̃H̃, Φ̃H̃, δ̃H̃) and) the tautological object

(1.3.4.11) ((A, λ, i, αHκ), (c̃H̃, c̃
∨
H̃))→ C̃Φ̃H̃,δ̃H̃

(up to isomorphisms inducing automorphisms of Φ̃H̃; i.e., elements of

ΓΦ̃H̃
). Here (A, λ, i, αHκ) is the tautological object over M̃

Z̃H̃
H̃
∼= MHκ .

As explained in Remark 1.3.4.1, we do not need to consider nontrivial
twisted objects (ϕ̃∼−2,H̃, ϕ̃

∼
0,H̃) above (ϕ̃−2,H̃, ϕ̃0,H̃) and ϕ̃−1,H̃ = αHκ .

With the fixed choice of (Z̃, Φ̃, δ̃), the tautological object (1.3.4.11)

depends only on Ĥ, and hence so is the tuple (1.3.4.10). Thus, the
notation α̂Ĥ is justified.

Construction 1.3.4.12. Let (Ĝ, λ̂, î, α̂Ĥ) → Ntor
κ̃ be as

in (1.3.4.9) in Construction 1.3.4.6. Consider any morphism
ξ : Spec(V ) → Ntor

κ̃ centered at a geometric point s̄ of Ntor
κ̃ such

that V is a complete discrete valuation ring with fraction field
K, and such that η := Spec(K) is mapped to the generic point
of the irreducible component containing the image of s̄. Suppose

the image of s̄ lies on the [(Φ̆H̃, δ̆H̃, ρ̆)]-stratum Z̃[(Φ̆H̃,δ̆H̃,ρ̆)] of

M̃tor
H̃,Σ̃, where [(Φ̆H̃, δ̆H̃, ρ̆)] is represented by some (Φ̆H̃, δ̆H̃, ρ̆) with

(Z̆H̃, Φ̆H̃ = (X̆, Y̆ , φ̆, ϕ̆−2,H̃, ϕ̆0,H̃), δ̆H̃) representing some cusp label

as in Section 1.2.4. (We avoid using the more familiar notation

(Φ̆H̃, δ̆H̃, τ̆) because the symbol τ will be used for another purpose
below.) For simplicity, let us fix compatible choices of representatives

(Z̃, Φ̃ = (X̃, Ỹ , φ̃, ϕ̃−2, ϕ̃0), δ̃) and (Z̆, Φ̆ = (X̆, Y̆ , φ̆, ϕ̆−2, ϕ̆0), δ̆), as in

Section 1.2.4, in their H̃-orbits.

Since X̃Φ̆H̃,δ̆H̃,ρ̆
is formally smooth over S0, there exists a com-

plete regular local ring Ṽ and an ideal Ĩ ⊂ Ṽ such that Ṽ /Ĩ ∼= V
and such that the morphism Spec(V ) → Ntor

κ̃ extends to a morphism

ξ̃ : Spf(Ṽ , Ĩ) → X̃Φ̆H̃,δ̆H̃,ρ̆
which induces a dominant morphism from

Spec(Ṽ ) to Spec(R̃), where R̃ is the local ring of X̃Φ̆H̃,δ̆H̃,ρ̆
at the image

of s̄. Let

(1.3.4.13) (G̃‡, λ̃‡, ĩ‡, α̃‡
H̃

)→ Spec(Ṽ )

denote the pullback of (1.3.4.7) under the composition of ξ̃ with the

canonical morphism X̃Φ̆H̃,δ̆H̃,ρ̆
→ M̃tor

H̃,Σ̃, and let

(1.3.4.14) (Ĝ‡, λ̂‡, î‡, α̂‡
Ĥ

)→ Spec(V )
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denote the pullback of (1.3.4.9) under ξ.
As in (6) of Theorem 1.3.1.3, (1.3.4.13) defines an object of

DEGPEL,M̃H̃
(Ṽ ), which corresponds to an object

(B̃‡, λB̃‡ , iB̃‡ , X̃
‡, Ỹ ‡, φ̃‡, c̃‡, c̃∨,‡, τ̃ ‡, [α̃\,‡

H̃
])

in DDPEL,M̃H̃
(Ṽ ) under [62, Thm. 5.3.1.19], where [α̃\,‡

H̃
] is represented

by some

α̃\,‡
H̃

= (Z̃‡
H̃
, ϕ̃‡,∼
−2,H̃

, ϕ̃‡
−1,H̃

, ϕ̃‡,∼
0,H̃
, δ̃‡
H̃
, c̃‡
H̃
, c̃∨,‡
H̃
, τ̃ ‡
H̃

)

as in [62, Def. 5.3.1.14; see also the errata]. Note that (X̃‡, Ỹ ‡, φ̃‡, [α̃\,‡
H̃

])

determines some cusp label [(Z̃‡
H̃
, Φ̃‡
H̃
, δ̃‡
H̃

)] equivalent to the cusp label

[(Z̆H̃, Φ̆H̃, δ̆H̃)] represented by the H̃-orbit of the (Z̆, Φ̆, δ̆) introduced

above (where the (ϕ̃‡
−2,H̃

, ϕ̃‡
0,H̃

) in Φ̆H̃ is induced by (ϕ̃‡,∼
−2,H̃

, ϕ̃‡,∼
0,H̃

) as

in the corrected [62, Def. 5.4.2.8] in the errata). For simplicity, we
shall use entries in this last representative to replace their isomorphic
(or equivalent) objects, and say in this case that (ϕ̃‡,∼

−2,H̃
, ϕ̃‡,∼

0,H̃
) induces

(ϕ̆−2,H̃, ϕ̆0,H̃).

By definition, the pullback of (B̃‡, λB̃‡ , iB̃‡ , X̆, Y̆ , φ̆, c̃
‡, c̃∨,‡) to the

subscheme Spec(V ) of Spec(Ṽ ) depends only on (Ĝ‡, λ̂‡, î‡)→ Spec(V ).
Let us denote it by

(B̂‡, λB̂‡ , iB̂‡ , X̆, Y̆ , φ̆, ĉ
‡, ĉ∨,‡).

Note that the H̃-orbit (Z̃H̃, Φ̃H̃ = (X̃, Ỹ , φ̃, ϕ̃−2,H̃, ϕ̃0,H̃), δ̃H̃) is part of

the data of κ̃. By Lemma 1.2.4.16, it makes sense to consider Z̆Ĥ,

(ϕ̆−2,Ĥ, ϕ̆0,Ĥ), and δ̆Ĥ, which are the Ĥ-orbits of Z̆, (ϕ̆−2 : GrZ̆−2
∼→

HomẐ(X̆ ⊗
Z
Ẑ, Ẑ(1)), ϕ̆0 : GrZ̆0

∼→ Y̆ ⊗
Z
Ẑ), and δ̆, respectively. More-

over, by extending restrictions to subgroups of L̃/nL̃ (with Z̃−1,n re-

placed with its subgroup Z̆−1,n) as in Construction 1.3.4.6, α̃‡
H̃

in-

duces a level-H structure ϕ̃‡
−1,H̃

of (B̂‡, λB̂‡ , iB̂‡) depending only on

α̂‡
Ĥ

, which we denote by ϕ̂‡
−1,Ĥ

. Then it also makes sense to consider

the Ĥ-orbit (ϕ̃‡,∼
−2,Ĥ

, ϕ̃‡,∼
0,Ĥ

), which we denote by (ϕ̂‡,∼
−2,Ĥ

, ϕ̂‡,∼
0,Ĥ

), which is

a subscheme of (ϕ̆−2,Ĥ, ϕ̆0,Ĥ) ×
Z̆Ĥ

ϕ̂‡
−1,Ĥ

which can be identified with a

system of Ĥ/Û(n)-orbits, where n ≥ 1 are integers such that Û(n) :=

Ũ(n)Ĝ ⊂ Ĥ, which surjects under the two projections to the orbits
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defining (ϕ̆−2,Ĥ, ϕ̆0,Ĥ) and ϕ̂‡
−1,Ĥ

. In this case, we say that (ϕ̂‡,∼
−2,Ĥ

, ϕ̂‡,∼
0,Ĥ

)

induces the Ĥ-orbit (ϕ̆−2,Ĥ, ϕ̆0,Ĥ).

Let K̃ := Frac(Ṽ ) and η̃ := Spec(K̃). By [62, Lem. 4.2.1.7], the

trivialization of biextensions τ̃ ‡ : 1Y̆ × X̆,η̃
∼→ (c̃∨,‡× c̃‡)∗P⊗−1

B̃‡,η̃
deter-

mines a homomorphism ι̃‡ : Y̆η̃ → G̃\,‡
η̃ lifting c̃∨,‡ : Y̆ → B̃‡. It also

determines a homomorphism ι̃∨,‡ : X̆η̃ → G̃∨,\,‡η̃ lifting c̃‡ : X̆ → B̃∨,‡,

which is compatible with ι̃‡ under the homomorphisms φ̆ : Y̆ → X̆

and λ̃B̃‡ : B̃‡ → B̃∨,‡ (and the homomorphism λ̃\,‡ : G̃\,‡ → G̃∨,\,‡

determined by them), by symmetry of τ̃ ‡. Let V 1 be the localization

of Ṽ at the (prime) kernel Ĩ1 of Ṽ → V . By [62, Prop. 4.5.3.11 and
Cor. 4.5.3.12], the restriction ι̃‡|Y (resp. ι̃∨,‡|X) extends to a homomor-

phism ι̃‡,1 : Y → G̃\,‡
V 1 (resp. ι̃∨,‡,1 : X → G̃∨,\,‡V 1 ), whose pullback to the

closed point η of Spec(V 1) is a homomorphism ι̂‡ : Y → Ĝ\,‡
η (resp.

ι̂∨,‡ : X → Ĝ∨,\,‡η ). The two homomorphisms ι̃‡,1 and ι̃∨,‡,1 (resp. ι̂‡

and ι̂∨,‡) are compatible with each other under the homomorphisms

φ : Y → X and λ̃\,‡ : G̃\,‡ → G̃∨,\,‡ (resp. λ̂\,‡ : Ĝ\,‡ → Ĝ∨,\,‡). By the
same argument as in the proof of [62, Lem. 4.2.1.7], the pair (ι̂‡, ι̂∨,‡)
determines a pair

(τ̂ ‡ : 1Y × X̆,η
∼→ (ĉ∨,‡|Y × ĉ‡)∗P⊗−1

B̂‡,η
,

τ̂∨,‡ : 1Y̆ ×X,η
∼→ (ĉ∨,‡× ĉ‡|X)∗P⊗−1

B̂‡,η
)

(satisfying certain familiar compatibility conditions, which we omit for
simplicity).

For each integer n ≥ 1 such that Ũ(n) ⊂ H̃ ⊂ G̃(Ẑ), there exists

an étale covering η̃n = Spec(K̃n) � η̃ = Spec(K̃) and an H̃P̃′
Z̃

-orbit

of liftings τ̃ ‡n : 1 1
n
Y̆ × X̆,η̃n

∼→ (c∨,‡n × c‡)∗P⊗−1
B‡,η̃n

of τ̃ ‡, which determines

orbits of homomorphisms ι̃‡n : 1
n
Y̆η̃n → G̃\,‡

η̃n
and ι̃∨,‡n : 1

n
X̆η̃n → G̃∨,\,‡η̃n

compatible with liftings c∨,‡n : 1
n
Y̆η̃n → B̃‡η̃n and c‡n : 1

n
X̆η̃n → B̃∨,‡η̃n (and

with φ̆n : 1
n
Y̆ → 1

n
X̆, λ̃B̃‡ : B̃‡ → B̃∨,‡, and λ̃\,‡ : G̃\,‡ → G̃∨,\,‡).

Let Ṽn be the normalization of Ṽ in K̃n, let Ĩ1
n := rad(Ĩ1 · Ṽn), let V 1

n

be the localization of Ṽn at the multiplicative subset complement to

Ĩ1, and let Kn be the reduction of V 1
n modulo V 1

n · Ĩ1
n. By the con-

struction of X̃Φ̃H̃,δ̃H̃,σ̃
as a completion of the affine toroidal embedding

Ξ̃Φ̃H̃,δ̃H̃
(σ̃) along its σ̃-strata, we may choose Ṽn such that Kn is a finite

étale K-algebra. Let ηn = Spec(Kn). Let Vn be the normalization
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of V in Kn. By [62, Prop. 4.5.3.11 and Cor. 4.5.3.12], the restriction

ι̃‡n| 1
n
Yη̃n

(resp. ι̃∨,‡n | 1
n
Xη̃n

) extends to a homomorphism ι̃‡,1n : 1
n
Yη̃n → G̃\,‡

V 1
n

(resp. ι̃∨,‡,1n : 1
n
Xη̃n → G̃∨,\,‡V 1

n
), whose pullback to the dense subscheme

ηn = Spec(Kn) of Spec(Vn) is a homomorphism ι̂‡n : 1
n
Yηn → Ĝ\,‡

ηn (resp.

ι̂∨,‡n : 1
n
Xηn → Ĝ∨,\,‡ηn ). These two homomorphisms ι̃‡,1n and ι̃∨,‡,1n (resp.

ι̂‡n and ι̂∨,‡n ) are compatible with each other under the homomorphisms

φn : 1
n
Y → 1

n
X and λ̃\,‡ : G̃\,‡ → G̃∨,\,‡ (resp. λ̂\,‡ : Ĝ\,‡ → Ĝ∨,\,‡), and

determine homomorphisms c̃∨,‡,1n : 1
n
Y → B̃‡V 1

n
and c̃‡,1n : 1

n
X → B̃∨,‡V 1

n

(resp. ĉ∨,‡n : 1
n
Y → B̂‡ηn and ĉ‡n : 1

n
X → B̂∨,‡ηn ). The Ĥ-orbit of

(ĉ‡n, ĉ
∨,‡
n , ι̂‡n, ι̂

∨,‡
n ) is well defined (i.e., independent of the choice of the

representative (c̃‡n, c̃
∨,‡
n , τ̃ ‡n) in its H̃P̃′

Z̃

-orbit) and descends (as compati-

ble subschemes of schemes of homomorphisms) to η. Such a descended
object is independent of n, which we shall denote by

(ĉ‡
Ĥ
, ĉ∨,‡
Ĥ
, ι̂‡
Ĥ
, ι̂∨,‡
Ĥ

).

Then, as above, the pair (ι̂‡
Ĥ
, ι̂∨,‡
Ĥ

) determines a pair

(τ̂ ‡
Ĥ
, τ̂∨,‡
Ĥ

)

(whose detailed definitions we omit for simplicity).

In summary, given the family (Ĝ, λ̂, î, α̂Ĥ) → Ntor
κ̃ as in Construc-

tion 1.3.4.6, each morphism ξ : Spec(V )→ Ntor
κ̃ as above determines a

tuple

(1.3.4.15) (B̂‡, λB̂‡ , iB̂‡ , X̆, Y̆ , φ̆, ĉ
‡, ĉ∨,‡, τ̂ ‡, τ̂∨,‡, [α̂\,‡

Ĥ
]),

where [α̂\,‡
Ĥ

] is an equivalence class of

(1.3.4.16) α̂\,‡
Ĥ

= (Z̆Ĥ, ϕ̂
‡,∼
−2,Ĥ

, ϕ̂‡
−1,Ĥ

, ϕ̂‡,∼
0,Ĥ
, δ̆Ĥ, ĉ

‡
Ĥ
, ĉ∨,‡
Ĥ
, τ̂ ‡
Ĥ
, τ̂∨,‡
Ĥ

)

(whose precise definitions we omit for simplicity).
Given a tuple as in (1.3.4.15), if we set

(B‡, λB‡ , iB‡ , ϕ−1,Hκ) := (B̂‡, λB̂‡ , iB̂‡ , ϕ̂−1,Ĥ)

and
(c‡, c∨,‡, τ ‡) := (ĉ‡|X , ĉ∨,‡|Y , τ̂ ‡|1Y×X,η),

and define [α\,‡Hκ ] using similar restrictions, then the tuple

(1.3.4.17) (B‡, λB‡ , iB‡ , X, Y, φ, c
‡, c∨,‡, τ ‡, [α\,‡Hκ ])

defines an object of DDPEL,MHκ
(V ). On the other hand, the

pullback (Ĝ‡, λ̂‡, î‡, α̂‡
Ĥ

) → Spec(V ) is determined up to isomorphism
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by its generic fiber (Ĝ‡η, λ̂
‡
η, î
‡
η, α̂

‡
Ĥ,η

) → Spec(K), which (up

to isomorphism) determines and is determined by a tuple

((G‡η, λ
‡
η, i
‡
η, α

‡
Hκ,η), (c̃

‡
H̃,η
, c̃∨,‡
H̃,η

)) → Spec(K) parameterized by C̃Φ̃H̃,δ̃H̃
.

The abelian part (G‡η, λ
‡
η, i
‡
η, α

‡
Hκ,η) extends to a degenerating family

(1.3.4.18) (G‡, λ‡, i‡, α‡Hκ)

of type MHκ over Spec(V ) (with α‡Hκ still defined only over Spec(K))
which defines an object of DEGPEL,MHκ

(V ). By the theory of two-
step degenerations (see [28, Ch. III, Thm. 10.2] and [62, Sec. 4.5.6]),
and by analyzing endomorphism structures and level structures as in
[62, Sec. 5.1–5.3], under [62, Thm. 5.3.1.19], this last object (1.3.4.18)
corresponds to the above object (1.3.4.17) in DDPEL,MHκ

(V ).

As for (c̃‡
H̃,η
, c̃∨,‡
H̃,η

), they are determined by their values on K̄-valued

points, where K̄ is any fixed algebraic closure of K, which are orbits

of compatible homomorphisms c̃‡n(K̄) : 1
n
X̃ → B∨,‡(K̄) and c̃∨,‡n (K̄) :

1
n
Ỹ → B‡(K̄). On the other hand, by the same argument as in the

proof of [62, Lem. 4.2.1.7], (τ̂ ‡
Ĥ
, τ̂∨,‡
Ĥ

) is determined by orbits of compat-

ible homomorphisms ι̂′,‡n (K̄) : 1
n
X̆ → G∨,\,‡(K̄) and ι̂∨,′,‡n (K̄) : 1

n
Y̆ →

G\,‡(K̄), where G\,‡ and G∨,\,‡ are determined by ĉ‡|X : X → B̂∨,‡ =

B∨,‡ and ĉ‡|Y : Y → B̂‡ = B‡, respectively. By definition, ι̂′,‡(K̄)
and ι̂∨,′,‡(K̄) are compatible with the homomorphism ι∨,‡(K̄) : X →
G∨,\,‡(K̄) and ι‡(K̄) : Y → G\,‡(K̄) defined by τ ‡. Given the splitting

δ, there exists a subgroup X̆n (resp. Y̆n) of 1
n
X̆ (resp. 1

n
Y̆ ) contain-

ing X (resp. Y ) such that the admissible surjection sX̆ : X̆ � X̃

(resp. sY̆ : Y̆ � Ỹ ) induces an isomorphism X̆n/X ∼= 1
n
X̃ (resp.

Y̆n/Y ∼= 1
n
Ỹ ). Hence, by [62, Prop. 4.5.5.3], we can form equivari-

ant quotients by the images of ι∨,‡(K̄) and ι‡(K̄), and obtain (by re-

strictions) orbits of compatible homomorphisms 1
n
X̃ ∼= X̆n/(

1
n
X) →

B∨(K̄) ∼= (G∨,\,‡(K̄))/(ι∨,‡(K̄)(X)) and 1
n
Ỹ ∼= Y̆n/(

1
n
Y ) → B(K̄) ∼=

(G\,‡(K̄))/(ι‡(K̄)(Y )). These coincide with the above orbits of c̃‡n(K̄)
and c̃∨,‡n (K̄) because of the following reasons: At level one, this fol-
lows from the theory of two-step degenerations (see [28, Ch. III, Sec.
10] and [62, Sec. 4.5.6]), because c̃‡ and c̃∨,‡ (which are defined over
K) are induced by (reductions of extensions of) compatible homomor-

phisms X̃ → G̃∨,\η̃ and Ỹ → G̃\
η̃, where η̃ = Spec(K̃) = Spec(Frac Ṽ )

is some auxiliary choice as above. At higher levels, this follows from
the way we reconstruct level structures from its graded pieces using the
various splittings.
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In brief, the tuple over Spec(V ) as in (1.3.4.15) determines and is
determined by the tuple (1.3.4.14) (up to isomorphism, over Spec(K)).

As in [62, (6.2.5.10)], the pair (τ̂ ‡, τ̂∨,‡) defines compatible mor-

phisms υτ̂‡ : Y × X̆ → Z and υτ̂∨,‡ : Y̆ ×X → Z (using the discrete
valuation υ : Inv(V )→ Z of V ), which define the same element

υτ̂‡ = υτ̂∨,‡ ∈ (ŜΦ̆Ĥ
)∨R

(see (1.2.4.29)). On the other hand, as in (6) of Theorem 1.3.1.3, τ̃ ‡

defines a morphism υτ̃‡ : Y̆ × X̆ → Z, which defines an element

υτ̃‡ ∈ ρ̆ ⊂ P+

Φ̆H̃
,

where ρ̆ is as above. Since (τ̂ ‡, τ̂∨,‡) is defined by extending restrictions
of υτ̃‡ , we see that

υτ̂‡ = υτ̂∨,‡ ∈ ρ̂ = pr(ŜΦ̆Ĥ
)∨R

(ρ̆) ⊂ P̂Φ̆Ĥ

(see (1.2.4.41)). If ρ̆ is replaced with another representative, then ρ̂
is replaced with a translation under the action of ΓΦ̆Ĥ

. (This finishes

Construction 1.3.4.12.)

Proposition 1.3.4.19. Suppose κ̃ = (H̃, Σ̃, σ̃) and κ̃′ = (H̃′, Σ̃′, σ̃′)
are elements in K̃++

Q,H such that κ′ = [κ̃′] � κ = [κ̃] in K++
Q,H (see Defi-

nition 1.2.4.44). Let (Ĝ, λ̂, î, α̂Ĥ)→ Ntor
κ̃ (resp. (Ĝ′, λ̂′, î′, α̂′Ĥ′)→ Ntor

κ̃′ )

denote the pullback of the degenerating family (G̃, λ̃, ĩ, α̃H̃) → M̃tor
H̃,Σ̃

(resp. (G̃′, λ̃′, ĩ′, α̃′H̃′)→ M̃tor
H̃′,Σ̃′) as in Construction 1.3.4.6. Then there

is a canonical morphism f tor
κ̃′,κ̃ : Ntor

κ̃′ → Ntor
κ̃ such that (Ĝ′, λ̂′, î′, α̂′Ĥ′)→

Ntor
κ̃′ is canonically isomorphic to the pullback of (Ĝ, λ̂, î, α̂Ĥ) → Ntor

κ̃

under f tor
κ̃′,κ̃.

In particular, for each κ̃ = (H̃, Σ̃, σ̃) ∈ K̃++
Q,H, the closure Ntor

κ̃ of

Nκ̃ = Z̃[(Φ̃H̃,δ̃H̃,σ̃)] in M̃tor
H̃,Σ̃ and the open embedding κ̃tor : Nκ̃ ↪→ Ntor

κ̃

depend (up to canonical isomorphism) only on the pair κ = [κ̃] = (Ĥ, Σ̂)
in K++

Q,H.

The morphism f tor
κ̃′,κ̃ : Ntor

κ̃′ → Ntor
κ̃ is étale locally given by equivariant

morphisms between toric schemes mapping strata to strata, which is
log étale essentially by definition (see [45, Thm. 3.5]). Moreover, as
in [28, Ch. V, Rem. 1.2(b)] and in the proof of [62, Lem. 7.1.1.4], we
have Ri(f tor

κ̃′,κ̃)∗ONtor
κ̃′

= 0 for i > 0 by [50, Ch. I, Sec. 3].

Proof. Suppose Ĥ (resp. Ĥ′) is determined by some H̃ (resp.

H̃′) satisfying Condition 1.2.4.7. By Lemma 1.3.4.2, we may replace
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Ĥ′ (resp. H̃′) with Ĥ′ ∩ Ĥ (resp. H̃′ ∩ H̃), in which case we have a

canonical (forgetful) morphism fκ̃′,κ̃ : Nκ̃′ ∼= C̃Φ̃H̃′ ,δ̃H̃′
→ C̃Φ̃H̃,δ̃H̃

∼= Nκ̃

(by constructions). Suppose ((G′, λ′, i′, α′Hκ′ ), (c̃
′
H̃′ , c̃

∨,′
H̃′

)) (resp.

((G, λ, i, αHκ), (c̃H̃, c̃
∨
H̃))) is the tautological object over C̃Φ̃H̃′ ,δ̃H̃′

(resp. C̃Φ̃H̃,δ̃H̃
), as in Construction 1.3.4.6, which determines

and is determined by (Ĝ′Nκ̃′ , λ̂
′
Nκ̃′
, î′Nκ̃′ , α̂

′
Ĥ′) → Nκ̃′ (resp.

(ĜNκ̃ , λ̂Nκ̃ , îNκ̃ , α̂Ĥ) → Nκ̃), the pullback of (Ĝ′, λ̂′, î′, α̂′Ĥ′) → Ntor
κ̃′

(resp. (Ĝ, λ̂, î, α̂Ĥ) → Ntor
κ̃ ) to Nκ̃′ (resp. Nκ̃). Then fκ̃′,κ̃ is also

the canonical morphism determined by the universal property of

C̃Φ̃H̃,δ̃H̃
, such that the pullback of ((G, λ, i, αHκ), (c̃H̃, c̃

∨
H̃)) under fκ̃′,κ̃

is canonically isomorphic to the Ĥ-orbit ((G′, λ′, i′, α′Hκ), (c̃′H̃, c̃
∨,′
H̃

))

of ((G′, λ′, i′, α′H′0
), (c̃′H̃′ , c̃

∨,′
H̃′

)); or, rather, such that the pullback of

(ĜNκ̃ , λ̂Nκ̃ , îNκ̃ , α̂Ĥ) → Nκ̃ under fκ̃′,κ̃ is canonically isomorphic to the

Ĥ-orbit (Ĝ′Nκ̃′ , λ̂
′
Nκ̃′
, î′Nκ̃′ , α̂

′
Ĥ)→ Nκ̃′ of (Ĝ′Nκ̃′ , λ̂

′
Nκ̃′
, î′Nκ̃′ , α̂

′
Ĥ′)→ Nκ̃′ .

Since Ntor
κ̃′ is noetherian normal, by [92, IX, 1.4], [28, Ch. I, Prop.

2.7], or [62, Prop. 3.3.1.5], since (Ĝ′Nκ̃′ , λ̂
′
Nκ̃′
, î′Nκ̃′ , α̂

′
Ĥ′)→ Nκ̃′ is canon-

ically isomorphic to the pullback of (ĜNκ̃ , λ̂Nκ̃ , îNκ̃ , α̂Ĥ) → Nκ̃ under
fκ̃′,κ̃, as soon as fκ̃′,κ̃ : Nκ̃′ → Nκ̃ extends to a morphism f tor

κ̃′,κ̃ : Ntor
κ̃′ →

Ntor
κ̃ , we know that (Ĝ′, λ̂′, î′, α̂′Ĥ′) → Ntor

κ̃′ is canonically isomorphic to

the pullback of (Ĝ, λ̂, î, α̂Ĥ)→ Ntor
κ̃ under f tor

κ̃′,κ̃. Such an extension f tor
κ̃′,κ̃

is necessarily unique, because Nκ̃ (resp. Nκ̃′) is dense in Ntor
κ̃ (resp. Ntor

κ̃′ ).
Hence, it suffices to show that fκ̃′,κ̃ : Nκ̃′ → Nκ̃ extends locally.

Let s̄ be any geometric point of Ntor
κ̃′ on the Z̃[(Φ̆H̃′ ,δ̆H̃′ ,ρ̆

′)]-stratum of

M̃tor
H̃′,Σ̃′ , where [(Φ̆H̃′ , δ̆H̃′ , ρ̆

′)] is represented by some (Φ̆H̃′ , δ̆H̃′ , ρ̆
′) with

(Z̆H̃′ , Φ̆H̃′ = (X̆, Y̆ , φ̆, ϕ̆−2,H̃′ , ϕ̆0,H̃′), δ̆H̃′) representing some cusp label as
in Section 1.2.4. For simplicity, let us fix compatible choices of represen-

tatives (Z̃, Φ̃ = (X̃, Ỹ , φ̃, ϕ̃−2, ϕ̃0), δ̃) and (Z̆, Φ̆ = (X̆, Y̆ , φ̆, ϕ̆−2, ϕ̆0), δ̆),

as in Section 1.2.4, in their H̃′-orbits. As in Construction 1.3.4.12, each
morphism ξ′ : Spec(V )→ Ntor

κ̃′ centered at a geometric point s̄ of Ntor
κ̃′ ,

where V is a complete discrete valuation ring with fraction field K, and
where η := Spec(K) is mapped to the generic point of the irreducible
component containing the image of s̄, determines a tuple

(B̂‡, λB̂‡ , iB̂‡ , X̆, Y̆ , φ̆, ĉ
‡, ĉ∨,‡, τ̂ ‡, τ̂∨,‡, [α̂\,‡

Ĥ′
])
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as in (1.3.4.15), where [α̂\,‡
Ĥ′

] is an equivalence class of

α̂\,‡
Ĥ′

= (Z̆Ĥ′ , ϕ̂
‡,∼
−2,Ĥ′

, ϕ̂‡
−1,Ĥ′

, ϕ̂‡,∼
0,Ĥ′

, δ̆Ĥ′ , ĉ
‡
Ĥ′
, ĉ∨,‡
Ĥ′
, τ̂ ‡
Ĥ′
, τ̂∨,‡
Ĥ′

)

as in (1.3.4.16), and the pair (τ̂ ‡, τ̂∨,‡) defines an element υτ̂‡ = υτ̂∨,‡

in ρ̂′ for some ρ̂′ ⊂ P̂+

Φ̆Ĥ′
in Σ̂Φ̆Ĥ′

. (We should have denoted all these

entries with some extra ′ in their superscripts, because they are deter-

mined by the pullback of (Ĝ′, λ̂′, î′, α̂′Ĥ′)→ Ntor
κ̃′ . But we omit them for

the sake of simplicity.) By forming Ĥ-orbits, we obtain a tuple

(B̂‡, λB̂‡ , iB̂‡ , X̆, Y̆ , φ̆, ĉ
‡, ĉ∨,‡, τ̂ ‡, τ̂∨,‡, [α̂\,‡

Ĥ
]),

where [α̂\,‡
Ĥ

] is an equivalence class of

α̂\,‡
Ĥ

= (Z̆Ĥ, ϕ̂
‡,∼
−2,Ĥ

, ϕ̂‡
−1,Ĥ

, ϕ̂‡,∼
0,Ĥ
, δ̆Ĥ, ĉ

‡
Ĥ
, ĉ∨,‡
Ĥ
, τ̂ ‡
Ĥ
, τ̂∨,‡
Ĥ

),

and the pair (τ̂ ‡, τ̂∨,‡) defines the same element υτ̂‡ = υτ̂∨,‡ in ρ̂′. By

assumption, Σ̂′ is a refinement of Σ̂. Hence, under the canonical iso-

morphism P̂Φ̆Ĥ′
∼= P̂Φ̆Ĥ

, we have ρ̂′ ⊂ ρ̂ for some cone ρ̂ ⊂ P̂+

Φ̆Ĥ
in Σ̂Φ̆Ĥ

,

so that υτ̂‡ = υτ̂∨,‡ lies in ρ̂.

By the universal property of M̃
Φ̆H̃
H̃

(which depends only on Ĥ; see

Definition 1.2.1.15), the data (Z̆Ĥ, Φ̆Ĥ = (X̆, Y̆ , φ̆, ϕ̆−2,Ĥ, ϕ̆0,Ĥ), δ̆Ĥ),

(ϕ̂‡,∼
−2,Ĥ

, ϕ̂‡,∼
0,Ĥ

), and (B̂‡, λB̂‡ , iB̂‡ , ϕ̂
‡
−1,Ĥ

) on the torus and abelian parts

define a canonical morphism ξ1 : Spec(V ) → M̃
Φ̆H̃
H̃

. By the univer-

sal property of C̃Φ̆H̃,δ̆H̃
→ M̃

Φ̆H̃
H̃

, the additional data (ĉ‡
Ĥ
, ĉ∨,‡
Ĥ

) lifting

(ĉ‡, ĉ∨,‡) define a canonical morphism ξ0 : Spec(V )→ C̃Φ̆H̃,δ̆H̃
lifting ξ1.

By the construction of

Ξ̃Φ̆H̃,δ̆H̃,σ̆
∼= Spec

O
C̃

Φ̆H̃,δ̆H̃

(
⊕

˘̀∈σ̆⊥
Ψ̃Φ̆H̃,δ̆H̃

(˘̀)

)
over C̃Φ̆H̃,δ̆H̃

, which we can canonically identify as

Ξ̂Φ̆Ĥ,δ̆Ĥ
∼= Spec

O
Ĉ

Φ̆Ĥ,δ̆Ĥ

(
⊕

˘̀∈ŜΦ̆Ĥ

Ψ̂Φ̆Ĥ,δ̆Ĥ
(˘̀)

)
over ĈΦ̆Ĥ,δ̆Ĥ

(see Proposition 1.3.2.56), it enjoys the universal prop-

erty (similar to that of Ξ̃Φ̆H̃,δ̆H̃
→ C̃Φ̆H̃,δ̆H̃

) such that the final part of

the data (τ̂ ‡
Ĥ
, τ̂∨,‡
Ĥ

) lifting (τ̂ ‡, τ̂∨,‡) determines a canonical morphism

ξ̃K : Spec(K) → Ξ̃Φ̆H̃,δ̆H̃,σ̆
lifting ξ0 under the canonical morphism
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Ξ̃Φ̆H̃,δ̆H̃,σ̆
→ C̃Φ̆H̃,δ̆H̃

. Since the element υτ̂‡ = υτ̂∨,‡ defined by (τ̂ ‡, τ̂∨,‡)

lies in ρ̂′ ⊂ ρ̂, by the construction of

Ξ̃Φ̆H̃,δ̆H̃,σ̆
(ρ̆) ∼= Spec

O
C̃

Φ̆H̃,δ̆H̃

(
⊕

˘̀∈σ̆⊥ ∩ ρ̆∨
Ψ̃Φ̆H̃,δ̆H̃

(˘̀)

)
(see [61, Sec. 3B]), which we can canonically identify as

Ξ̂Φ̆Ĥ,δ̆Ĥ
(ρ̂) = Spec

O
Ĉ

Φ̆Ĥ,δ̆Ĥ

(
⊕

˘̀∈ρ̂∨
Ψ̂Φ̆Ĥ,δ̆Ĥ

(˘̀)

)
(see (1.3.2.60)), which depends only on Ĥ and on ρ̂∨ ∼= σ̆⊥ ∩ ρ̆∨, and
by the same argument as in the proof of [62, Prop. 6.2.5.11], the mor-

phism ξ̃K extends to a morphism ξ̃ : Spec(V ) → Ξ̃Φ̆H̃,δ̆H̃,σ̆
(ρ̆) lifting

ξ0 under the canonical morphism Ξ̃Φ̆H̃,δ̆H̃,σ̆
(ρ̆) → C̃Φ̆H̃,δ̆H̃

, which maps

the special point of Spec(V ) to the ρ̆-stratum Ξ̃Φ̆H̃,δ̆H̃,ρ̆
of Ξ̃Φ̆H̃,δ̆H̃,σ̆

(ρ̆).

(Alternatively, we can noncanonically lift υτ̂‡ = υτ̂∨,‡ to elements of

ρ̆ ⊂ P+

Φ̆H̃
, work with Ξ̃Φ̆H̃,δ̆H̃

and Ξ̃Φ̆H̃,δ̆H̃
(ρ̆) directly, and invoke the

original [62, Prop. 6.2.5.11].) Since V is complete, ξ̃ induces a mor-

phism ξ̂ from Spf(V ) to X̃Φ̆H̃,δ̆H̃,σ̆,ρ̆
, the formal completion of Ξ̃Φ̆H̃,δ̆H̃,σ̆

(ρ̆)

along its ρ̆-stratum Ξ̃Φ̆H̃,δ̆H̃,ρ̆
. Then the composition of ξ̂ with the

canonical morphism X̃Φ̆H̃,δ̆H̃,σ̆,ρ̆
→ Ntor

κ̃ gives a canonical morphism

ξ : Spec(V )→ Ntor
κ̃ .

As explained in Construction 1.3.4.12, ξη := ξ|η : η = Spec(K) →
Nκ̃ is determined by the pullback (Ĝ′η, λ̂

′
η, î
′
η, α̂

′
Ĥ′,η) → Spec(K) of

(Ĝ′, λ̂′, î′, α̂′Ĥ′) → Ntor
κ̃′ under ξ′η := ξ′|η : Spec(K) → Ntor

κ̃′ , whose

Ĥ-orbit (Ĝ′η, λ̂
′
η, î
′
η, α̂

′
Ĥ,η)→ Spec(K) is (as explained in the first para-

graph of this proof) isomorphic to the pullback of (Ĝ, λ̂, î, α̂Ĥ) → Ntor
κ̃

under the composition of ξ′η : Spec(K) → Nκ̃′ with fκ̃′,κ̃ : Ntor
κ̃′ →

Ntor
κ̃ . Hence, ξη = fκ̃′,κ̃ ◦ ξ′η by the universal property of Nκ̃, and

ξ : Spec(V ) → Ntor
κ̃ can be interpreted as a (necessarily unique) ex-

tension of fκ̃′,κ̃ ◦ ξ′η : Spec(K)→ Nκ̃.
Since ξ′ : Spec(V ) → Ntor

κ̃′ and s̄ (the prescribed center of ξ′) are
arbitrary, and since Ntor

κ̃′ is noetherian normal, this shows that fκ̃′,κ̃
extends to f tor

κ̃′,κ̃, as desired.
By considering good algebraic models as in the paragraph preceding

[61, Lem. 5.10], the morphism f tor
κ̃′,κ̃ : Ntor

κ̃′ → Ntor
κ̃ is étale locally given

by the canonical morphism Ξ̃Φ̆H̃′ ,δ̆H̃′ ,σ̆
′(ρ̆′) → Ξ̃Φ̆H̃,δ̆H̃,σ̆

(ρ̆), because the
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tautological data (as in (1.3.4.15)) over Ξ̃Φ̆H̃′ ,δ̆H̃′ ,σ̆
′(ρ̆′) is the pullback of

the one over Ξ̃Φ̆H̃,δ̆H̃,σ̆
(ρ̆). By construction, Ξ̃Φ̆H̃′ ,δ̆H̃′ ,σ̆

′(ρ̆′)→ Ξ̃Φ̆H̃,δ̆H̃,σ̆
(ρ̆)

is log étale and equivariant with respect to the canonical homomor-

phism ẼΦ̆H̃′ ,σ̆
′ → ẼΦ̆H̃,σ̆

between tori, which (by Proposition 1.3.2.56

again) can be canonically identified with the canonical log étale mor-

phism Ξ̂Φ̆Ĥ′ ,δ̆Ĥ′
(ρ̂′)→ Ξ̂Φ̆Ĥ,δ̆Ĥ

(ρ̂), equivariant with respect to the canon-

ical homomorphism ÊΦ̆Ĥ′
→ ÊΦ̆Ĥ

between tori (dual to the canonical

homomorphism ŜΦ̆Ĥ
→ ŜΦ̆Ĥ′

). The remainder of the proposition then

follows. �

Thanks to Lemma 1.3.4.2 and Proposition 1.3.4.19, we can make
the following:

Definition 1.3.4.20. For κ̃ ∈ K̃++
Q,H which defines

κ = [κ̃] ∈ K++
Q,H (see Definition 1.2.4.44), we shall denote

κ̃isog : HomO(Q,GMHκ
)◦ → Ngrp

κ̃ and κ̃tor : Nκ̃ ↪→ Ntor
κ̃ by

κisog : HomO(Q,GMHκ
)◦ → Ngrp

κ and κtor : Nκ ↪→ Ntor
κ , respectively.

For κ̃ and κ̃′ in K̃++
Q,H such that κ′ = [κ̃′] � κ = [κ̃] in

K++
Q,H, we shall denote the canonical morphisms fκ̃′,κ̃ : Nκ̃′ → Nκ̃,

f grp
κ̃′,κ̃ := κ̃isog◦((κ̃′)isog)−1 : Ngrp

κ̃′ → Ngrp
κ̃ ×

MHκ

MHκ′ , and f tor
κ̃′,κ̃ : Ntor

κ̃′ → Ntor
κ̃

by fκ′,κ : Nκ′ → Nκ, f grp
κ′,κ := κisog ◦ ((κ′)isog)−1 : Ngrp

κ′ → Ngrp
κ ×

MHκ

MHκ′ ,

and f tor
κ′,κ : Ntor

κ′ → Ntor
κ , respectively. (That is, we drop the

tildes in all such notations.) We shall denote by Ẑ[(Φ̆Ĥ,δ̆Ĥ,τ̂)] the

[(Φ̆Ĥ, δ̆Ĥ, τ̂)]-stratum of Ntor
κ , which is the [(Φ̆H̃, δ̆H̃, τ̆)]-stratum

Z̃[(Φ̆H̃,δ̆H̃,τ̆)]
∼= Ξ̃Φ̆H̃,δ̆H̃,τ̆

∼= Ξ̂Φ̆Ĥ,δ̆Ĥ,τ̂
of Ntor

κ̃ under the canonical

identification between Ntor
κ and Ntor

κ̃ (up to canonical isomorphism)

(when (Φ̆Ĥ, δ̆Ĥ, τ̂) is determined by (Φ̆H̃, δ̆H̃, τ̆) as in Section 1.2.4).

Now the question is whether the structural morphism fκ : Nκ → MH
extends (necessarily uniquely) to a (proper) morphism f tor

κ : Ntor
κ →

Mtor
H = Mtor

H,Σ between the compactifications.

Let K++
Q,H,Σ be the subset of K++

Q,H defined at the end of Section

1.2.4, which is the subset of K++
Q,H consisting of elements κ satisfying

Condition 1.2.4.49. The main result of [61, Sec. 3B] is the follow-

ing: For κ = (Ĥ, Σ̂) = [κ̃] = [(H̃, Σ̃, σ̃)] ∈ K++
Q,H,Σ (which means

κ̃ = (H̃, Σ̃, σ̃) satisfies Condition 1.2.4.48, for some and hence every
representative κ̃ of κ), the structural morphism fκ : Nκ → MH ex-
tends to a (unique) morphism f tor

κ : Ntor
κ → Mtor

H , which is étale locally
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given by morphisms between toric schemes equivariant under (surjec-

tive) morphisms between tori. (The proof does not require Ĥ to satisfy
either Conditions 1.2.4.8 or 1.2.4.9.) In the remainder of [61, Sec. 3–
5], it was shown that the collection of such extended morphisms satisfy
the remaining requirements of Theorem 1.3.3.15. (The proofs of these
used a particular representative κ̃ of κ = [κ̃], which nevertheless suf-
fices, by Proposition 1.3.4.19. Also, they assumed that κ ∈ KQ,H,Σ,
in which case Nκ → MHκ = MH is an abelian scheme—but this is not
really necessary: For log smoothness, in [61, Sec. 3C], the proof using

the extended Kodaira–Spencer isomorphism over M̃H̃,Σ̃ is insensitive to
whether Nκ → MH is an abelian scheme or not. We note that for the
condition on equidimensionality, in [61, Sec. 3D], the proofs there are
combinatorial in nature and also insensitive to whether Nκ → MH is
an abelian scheme or not. For the statements (4) and (5) of Theorem

1.3.3.15, the proof using the Hecke action of G̃(A∞) on the collection

{M̃H̃,Σ̃}H̃,Σ̃ are also insensitive to whether Nκ → MH is an abelian

scheme or not. In [61, Sec. 4–5], the proof for statements in (3) of
Theorem 1.3.3.15 can be verified by étale descent, and hence can be
proved with the same methods even when we only assume κ ∈ K+

Q,H,Σ,
in which case Nκ → MHκ = MH is only an abelian scheme torsor.)
Hence, the same methods of the proof of [61, Thm. 2.15; see also the
errata] work here for the slightly generalized Theorem 1.3.3.15.

1.4. Automorphic Bundles and Canonical Extensions in
Characteristic Zero

1.4.1. Automorphic Bundles. Suppose there exists a finite ex-
tension F ′0 of F0 in C such that there exists an O⊗

Z
F ′0-module L0

such that L0⊗
F ′0

C ∼= V0, where V0 is as in (1.1.1.4). Once the choice

of F ′0 is fixed, the choice of L0 is unique up to isomorphism because
O⊗

Z
F ′0-modules are uniquely determined by their multi-ranks. (See

[62, Lem. 1.1.3.4 and Def. 1.1.3.5] for the notion of multi-ranks.) Let

〈 · , · 〉can. : (L0⊕L∨0 (1))×(L0⊕L∨0 (1))→ F ′0(1)

be the alternating pairing defined by

〈(x1, f1), (x2, f2)〉can. := f2(x1)− f1(x2)

(cf. [62, Lem. 1.1.4.13]).
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Definition 1.4.1.1. (See [61, Def. 6.2].) For each F ′0-algebra R,
set

G0(R) :=


(g, r) ∈ GLO⊗

Z
R((L0⊕L∨0 (1))⊗

F ′0

R)×Gm(R) :

〈gx, gy〉can. = r〈x, y〉can.,∀x, y ∈ (L0⊕L∨0 (1))⊗
F ′0

R

 ,

P0(R) := {(g, r) ∈ G0(R) : g(L∨0 (1)⊗
F ′0

R) = L∨0 (1)⊗
F ′0

R},

M0(R) := GLO⊗
Z
R(L∨0 (1)⊗

F ′0

R)×Gm(R),

where we view M0(R) canonically as a quotient of P0(R) by

P0(R)→ M0(R) : (g, r) 7→ (g|L∨0 (1) ⊗
F ′0

R, r).

The assignments are functorial in R and define group functors G0, P0,
and M0 over F ′0.

Lemma 1.4.1.2. (See [61, Lem. 6.3].) Suppose R is the algebraic
closure of F ′0 in C. Then there is an isomorphism

(L⊗
Z
R, 〈 · , · 〉) ∼= ((L0⊕L∨0 (1))⊗

F ′0

R, 〈 · , · 〉can.),

which induces an isomorphism G⊗
Z
R ∼= G0⊗

F ′0

R over R. (Conse-

quently, P0(R) can be identified with a “parabolic” subgroup of G(R).)

(In practice, it is not necessary to take R to be algebraically closed.
Much smaller rings would suffice for the existence of isomorphisms as
in Lemma 1.4.1.2.)

In the remainder of this subsection, by abuse of notation, we shall
replace MH etc with their base changes from Spec(F0) to Spec(F ′0), and
replace S0 = Spec(F0) with Spec(F ′0).

Definition 1.4.1.3. The principal G0-bundle over MH is the
relative scheme

EG0 := IsomO⊗
Z

OMH
((HdR

1 (GMH/MH), 〈 · , · 〉λ,OMH(1)),

((L0⊕L∨0 (1))⊗
F ′0

OMH , 〈 · , · 〉can.,OMH(1))),

the sheaf of isomorphisms of OMH-sheaves of symplectic
O-modules, over MH. (The group G0 acts as automorphisms on
(L⊗

Z
OMH , 〈 · , · 〉λ,OMH(1)) by definition. The third entries in the

tuples represent the values of the pairings.)
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Definition 1.4.1.4. The principal P0-bundle over MH is the
relative scheme

EP0 := IsomO⊗
Z

OMH
((HdR

1 (GMH/MH), 〈 · , · 〉λ,OMH(1),Lie∨G∨MH/MH
(1)),

((L0⊕L∨0 (1))⊗
F ′0

OMH , 〈 · , · 〉can.,OMH(1), L∨0 (1)⊗
F ′0

OMH)),

the sheaf of isomorphisms of OMH-sheaves of symplectic O-modules with
maximal totally isotropic O⊗

Z
F ′0-submodules, over MH. (The group P0

acts as automorphisms on (L⊗
Z

OMH , 〈 · , · 〉λ,OMH(1), L∨0 (1)⊗
F ′0

OMH) by

definition. The third entries in the tuples represent the values of the
pairings.)

Definition 1.4.1.5. The principal M0-bundle over MH is the
relative scheme

EM0 := IsomO⊗
Z

OMH
((Lie∨G∨MH/MH

(1),OMH(1)), (L∨0 (1)⊗
F ′0

OMH ,OMH(1))),

the sheaf of isomorphisms of OMH-sheaves of O⊗
Z
F ′0-modules, over MH.

(We view the second entries in the pairs as an additional structure,
inherited from the corresponding objects for P0. The group M0 acts as
automorphisms on (L∨0 (1)⊗

F ′0

OMH ,OMH(1)) by definition.)

Remark 1.4.1.6. The Tate twists on Lie∨G∨MH/MH
(1) in Definitions

1.4.1.4 and 1.4.1.5 have been omitted in most of this author’s writing
so far (in, for example, [61], [59], and [70]), which unfortunately made
it unclear whether the duality between Lie∨G∨MH/MH

and LieG∨MH/MH
in-

volves a Tate twist or not. For the sake of clarity, we have reinstated
such Tate twists, as explained in Remark 1.1.2.3.

Lemma 1.4.1.7. The relative scheme EG0 (resp. EP0, resp. EM0) over
MH is an étale torsor under (the pullback of) the group scheme G0 (resp.
P0, resp. M0).

Proof. The existence of sections over geometric points of MH is
guaranteed by the determinantal condition for LieA/MH,1 . By the in-

finitesimal deformation theory explained in [62, Ch. 2] (based on well-
known ideas due to Grothendieck, Mumford, and others), we have iso-
morphisms between

(HdR
1 (A/MH), 〈 · , · 〉λ,OMH(1),Lie∨A∨/MH)

and

((L0⊕L∨0 (1))⊗
F ′0

OMH , 〈 · , · 〉can.,OMH(1), L∨0 (1)⊗
F ′0

OMH)
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over the formal completions of MH at points of finite type over S0.
Since the sheaves involved are all coherent, we can algebraize the iso-
morphisms over formal bases by Grothendieck’s formal existence theory
[35, III-1, 5.1.2], and obtain sections of these functors over complete
local rings (at points of finite type over S0). Since the base scheme
S0 = Spec(F ′0) is a point, and since these functors are locally of finite
presentation (because they are defined by morphisms between coherent
sheaves over the scheme MH of finite type over S0), Artin’s approxima-
tion theory [3, Thm. 1.10 and Cor. 2.5] implies that they have sections
étale locally over MH, as desired. �

Definition 1.4.1.8. For each F ′0-algebra R, we denote by RepR(G0)
(resp. RepR(P0), resp. RepR(M0)) the category of R-modules with al-
gebraic actions of G0⊗

F ′0

R (resp. P0⊗
F ′0

R, resp. M0⊗
F ′0

R).

Definition 1.4.1.9. Let R be any F ′0-algebra. For each W ∈
RepR(G0), we define

EG0,R(W ) := (EG0 ⊗
F ′0

R)

G0 ⊗
F ′0

R

× W,

called the automorphic sheaf over MH⊗
F ′0

R associated with W . It is

called an automorphic bundle if W is locally free of finite rank over
R. We define similarly EP0,R(W ) (resp. EM0,R(W )) for W ∈ RepR(P0)
(resp. W ∈ RepR(M0)) by replacing G0 with P0 (resp. M0) in the above
expression.

Lemma 1.4.1.10. Let R be any F ′0-algebra.

(1) The assignment EG0,R( · ) (resp. EP0,R( · ), resp. EM0,R( · )) de-
fines an exact functor from RepR(G0) (resp. RepR(P0), resp.
RepR(M0)) to the category of quasi-coherent sheaves over MH.

(2) If we consider an object W ∈ RepR(G0) as an object of
RepR(P0) by restriction to P0, then we have a canonical
isomorphism EG0,R(W ) ∼= EP0,R(W ).

(3) If we view an object W ∈ RepR(M0) as an object of RepR(P0)
via the canonical homomorphism P0 → M0, then we have a
canonical isomorphism EP0,R(W ) ∼= EM0,R(W ).

(4) Suppose W ∈ RepR(P0) has a decreasing filtration by subob-
jects Fa(W ) ⊂ W in RepR(P0) such that each graded piece
GraF(W ) := Fa(W )/Fa+1(W ) can be identified with an object of
RepR(M0). Then EP0,R(W ) has a filtration Fa(EP0,R(W )) :=
EP0,R(Fa(W )) with graded pieces EM0,R(GraF(W )).
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The proofs of these statements can be found in [70, Sec. 1.3].

Lemma 1.4.1.11. For any F ′0-algebra R, the pullback of LieGMH/MH

(resp. Lie∨GMH/MH
, resp. ωMH = ∧top Lie∨GMH/MH

; see (2) of Theorem

1.3.1.5) to MH⊗
F ′0

R is canonically isomorphic to EM0,R(W ) for W =

L0⊗
F ′0

R (resp. L∨0 ⊗
F ′0

R, resp. ∧top L∨0 ⊗
F ′0

R).

Proof. This follows from Definitions 1.4.1.5 and 1.4.1.9, and from
Lemma 1.4.1.10. �

1.4.2. Canonical Extensions. Now let us explain the construc-
tion of canonical extensions using Theorem 1.3.3.15.

By taking Q = O, so that HomO(Q,GMH)◦ ∼= GMH and so that
there exists some Q×-isogeny κisog : GMH → N = Ngrp

κ = Nκ for some
κ ∈ KQ,H,Σ as in Theorem 1.3.3.15, the locally free sheafH1

dR(N/MH) ∼=
H1

dR(GMH/MH) extends to the locally free sheaf H1
log-dR(Ntor/Mtor

H ) over
OMtor

H
. Let

H log-dR
1 (Ntor/Mtor

H ) := HomOMtor
H

(H1
log-dR(Ntor/Mtor

H ),OMtor
H

).

Then this H log-dR
1 (Ntor/Mtor

H ) qualifies as the HdR
1 (GMH/MH)can in the

following:

Proposition 1.4.2.1. (See [61, Prop. 6.9].) There exists a unique
locally free sheaf HdR

1 (GMH/MH)can over OMtor
H

satisfying the following
properties:

(1) The sheaf HdR
1 (GMH/MH)can, canonically identified with a sub-

sheaf of the quasi-coherent sheaf (MH ↪→ Mtor
H )∗(H

dR
1 (N/MH)),

is self-dual under the pairing (MH ↪→ Mtor
H )∗〈 · , · 〉λ. We shall

denote the induced pairing by 〈 · , · 〉can
λ .

(2) HdR
1 (GMH/MH)can contains Lie∨G∨/Mtor

H
(1) as a subsheaf totally

isotropic under the pairing 〈 · , · 〉can
λ .

(3) The quotient sheaf HdR
1 (GMH/MH)can/Lie∨G∨/Mtor

H
can

be canonically identified with the subsheaf LieG/Mtor
H

of

(MH ↪→ Mtor
H )∗LieGMH/MH

.

(4) The pairing 〈 · , · 〉can
λ induces an isomorphism

LieG/Mtor
H

∼→ LieG∨/Mtor
H

which coincides with dλ.

(5) Let H1
dR(GMH/MH)can := HomOMtor

H
(HdR

1 (GMH/MH)can,OMtor
H

).

Then the Gauss–Manin connection

∇ : H1
dR(GMH/MH)→ H1

dR(GMH/MH) ⊗
OMH

Ω1
MH/S0
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extends to an integrable connection

(1.4.2.2) ∇ : H1
dR(GMH/MH)can → H1

dR(GMH/MH)can ⊗
OMtor
H

Ω
1

Mtor
H /S0

with log poles along D∞,H, called the extended
Gauss–Manin connection, such that the composition
(ignoring Tate twists; see Remark 1.1.2.3)

Lie∨G/Mtor
H
↪→ H1

dR(GMH/MH)can

∇→ H1
dR(GMH/MH)can ⊗

OMtor
H

Ω
1

Mtor
H /S0

� LieG∨/Mtor
H
⊗

OMtor
H

Ω
1

Mtor
H /S0

(1.4.2.3)

induces by duality the extended Kodaira–Spencer mor-
phism

Lie∨G/Mtor
H
⊗

OMtor
H

Lie∨G∨/Mtor
H
→ Ω

1

Mtor
H /S0

as in [62, Def. 4.6.3.44], which factors through KS (in Defi-
nition 1.3.1.2) and induces the extended Kodaira–Spencer iso-
morphism KSG/Mtor

H /S0
in (4) of Theorem 1.3.1.3.

With these characterizing properties, we say (HdR
1 (GMH/MH)can,∇) is

the canonical extension of (HdR
1 (GMH/MH),∇).

Remark 1.4.2.4. The notion of canonical extensions is closely re-
lated to the notion of regular singularities of algebraic differential equa-
tions. See [61, Rem. 6.12] for a list of references to this notion.

Then the principal bundle EG0 extends canonically to a principal
bundle Ecan

G0
over Mtor

H by setting

Ecan
G0

:= IsomO⊗
Z

OMtor
H

(

(HdR
1 (GMH/MH)can, 〈 · , · 〉can

λ ,OMtor
H

(1)),

((L0⊕L∨0 (1))⊗
F ′0

OMtor
H
, 〈 · , · 〉can.,OMtor

H
(1))),

(1.4.2.5)

the principal bundle EP0 extends canonically to a principal bundle Ecan
P0

over Mtor
H by setting

Ecan
P0

:= IsomO⊗
Z

OMtor
H

(

(HdR
1 (GMH/MH)can, 〈 · , · 〉can

λ ,OMtor
H

(1),Lie∨G∨/Mtor
H

(1)),

((L0⊕L∨0 (1))⊗
F ′0

OMtor
H
, 〈 · , · 〉can.,OMtor

H
(1), L∨0 (1)⊗

F ′0

OMtor
H

)),

(1.4.2.6)
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and the principal bundle EM0 extends canonically to a principal bundle
Ecan

M0
over Mtor

H by setting

Ecan
M0

:= IsomO⊗
Z

OMtor
H

((Lie∨G∨/Mtor
H

(1),OMtor
H

(1)),

(L∨0 (1)⊗
F ′0

OMtor
H
,OMtor

H
(1))).

(1.4.2.7)

Lemma 1.4.2.8. The relative scheme Ecan
G0

(resp. Ecan
P0

, resp. Ecan
M0

)
over Mtor

H is an étale torsor under (the pullback of) the group scheme
G0 (resp. P0, resp. M0).

Proof. As in the proof Lemma 1.4.1.7, these define étale torsors
by Artin’s approximation theory (cf. [3, Thm. 1.10 and Cor. 2.5]),
because these schemes have sections over the formal completions of Mtor

H
at points of finite type over S0 (because Lie∨G∨/Mtor

H
and L∨0 (1)⊗

F ′0

OMtor
H

can be compared using the Lie algebra condition [62, Def. 1.3.4.1 and
Lem. 1.2.5.11], and because the pairings 〈 · , · 〉can

λ and 〈 · , · 〉can. can be
compared using [62, Cor. 1.2.3.10]). �

Definition 1.4.2.9. Let R be any F ′0-algebra. For each W ∈
RepR(G0), we define

Ecan
G0,R

(W ) := (Ecan
G0
⊗
F ′0

R)

G0 ⊗
F ′0

R

× W,

called the canonical extension of EG0,R(W ), and define

E sub
G0,R

(W ) := Ecan
G0,R

(W ) ⊗
OMtor
H

ID∞,H ,

called the subcanonical extension of EG0,R(W ), where ID∞,H is the
OMtor

H
-ideal defining the relative Cartier divisor D∞,H (with its reduced

structure) in (3) of Theorem 1.3.1.3. We define similarly Ecan
P0,R

(W )

and E sub
P0,R

(W ) (resp. Ecan
M0,R

(W ) and E sub
M0,R

(W )) with G0 and its principal
bundle replaced accordingly with P0 (resp. M0) and its principal bundle.

Then we have:

Lemma 1.4.2.10. Lemma 1.4.1.10 remains true if we replace the
automorphic sheaves with their canonical or subcanonical extensions.

As remarked in [71, Sec. 4.2], the same proofs for Lemma 1.4.1.10
also work here.

Lemma 1.4.2.11. (Compare with Lemma 1.4.1.11.) For any
F ′0-algebra R, the pullback of LieG/Mtor

H
(resp. Lie∨G/Mtor

H
, resp.
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ωMtor
H

= ∧top Lie∨G/Mtor
H

; see (3) of Theorem 1.3.1.5) to Mtor
H ⊗

F ′0

R is

canonically isomorphic to Ecan
M0,R

(W ) for W = L0⊗
F ′0

R (resp. L∨0 ⊗
F ′0

R,

resp. ∧top L∨0 ⊗
F ′0

R).

Proof. This follows from (1.4.2.7), Definition 1.4.2.9, and Lemma
1.4.2.10. �

1.4.3. Hecke Actions.

Proposition 1.4.3.1. (Compare with (4) of Theorem 1.3.3.15.) Let
R be any F ′0-algebra, and consider any W ∈ RepR(G0). Suppose we
have an element g ∈ G(A∞), and suppose we have two open compact

subgroups H and H′ of G(Ẑ) such that H′ ⊂ gHg−1. Then there is (by
abuse of notation) a canonical isomorphism

(1.4.3.2) [g]∗ : [g]∗EP0,R(W )
∼→ EP0,R(W )

of coherent sheaves over MH′, where the first EP0,R(W ) is defined over
MH, and where the second is defined over MH′.

Suppose Σ = {ΣΦH}[(ΦH,δH)] and Σ′ = {Σ′Φ′H′}[(Φ′H′ ,δ
′
H′ )]

are compati-

ble choices of admissible smooth rational polyhedral cone decomposition
data for MH and MH′, respectively, such that Σ′ is a g-refinement of Σ
as in [62, Def. 6.4.3.3], so that [g]tor : Mtor

H′,Σ′ → Mtor
H,Σ is defined as in

Proposition 1.3.1.15. Then there is (by abuse of notation) a canonical
isomorphism

(1.4.3.3) ([g]tor)∗ : ([g]tor)∗Ecan
P0,R

(W )
∼→ Ecan

P0,R
(W )

of coherent sheaves over Mtor
H′,Σ′, where the first Ecan

M0,R
(W ) is defined

over Mtor
H,Σ, and where the second is defined over Mtor

H′,Σ′. There is also
(by abuse of notation) a canonical morphism

(1.4.3.4) ([g]tor)∗ : ([g]tor)∗E sub
P0,R

(W )→ E sub
P0,R

(W )

of coherent sheaves over Mtor
H′,Σ′ (which is not an isomorphism in gen-

eral). The canonical morphisms (1.4.3.2), (1.4.3.3), and (1.4.3.4) are
compatible with each other.

The same statements are true if we replace P0 with G0 or M0.
If g = g1g2, where g1 and g2 are elements of G(A∞), each having a

setup similar to that of g, then we have [g]∗ = [g1]∗◦[g2]∗ and ([g]tor)∗ =
([g1]tor)∗ ◦ ([g2]tor)∗ whenever the involved isomorphisms are defined.

Proof. Thanks to the construction of Ecan
P0

based on the canonical

extensions HdR
1 (GMH/MH)can and HdR

1 (GMH′
/MH′)

can in Proposition
1.4.2.1, which are in turn based on the relative de Rham homology
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in Theorem 1.3.3.15, we have the isomorphisms (1.4.3.2) and (1.4.3.3)
because of (4c) of Theorem 1.3.3.15, the latter of which inducing the
morphism (1.4.3.4), and we have the last statement (for P0) because of
(4d) of Theorem 1.3.3.15.

By Lemmas 1.4.1.10 and 1.4.2.10, these statements for P0 imply
the analogous statements for G0 and M0. �

1.5. Comparison with the Analytic Construction

All algebraically constructed objects in this chapter (such as Mtor
H,Σ,

Mmin
H , EP0,R, etc) are naturally compatible with their analytically con-

structed (algebraic) analogues. More precisely, the canonical open and
closed immersion (1.1.3.1) extends to strata-preserving open and closed
immersions

(1.5.1) Shtor
H,Σ ↪→ [Mtor

H,Σ]

and

(1.5.2) Shmin
H ↪→ Mmin

H

(over S0 = Spec(F0)), and the same are true for other objects defined
on them. (For this to make sense, we can only consider Σ that works
both for [62] and for works such as [89].) For more details, see [59].

We will not really need these results in this work. For applications,
it suffices to know that one can first compare the analytically con-
structed (algebraic) objects with the algebraically constructed objects
in [62] in characteristic zero, as carried out in [59]. Then one can com-
pare the algebraically constructed objects in characteristic zero with
all new objects constructed in this work.





CHAPTER 2

Flat Integral Models

From now on, let us fix a choice of a rational prime number p > 0.
Let MH be as in Section 1.1. In this chapter, we explain some

general constructions of noetherian normal flat integral models of MH
and their compactifications reviewed in Section 1.3. Beyond some basic
properties due to their constructions, our understanding of their refined
local structures is limited. (Nevertheless, in certain special cases, we
can deduce the normality of the characteristic p fiber at the bottom level
at p—i.e., when H is of the form H = HpHp with Hp = G(Zp)—from
results in the theory of local models. See, for example, [65, Sec. 14].)
Thus, the reader should keep in mind that the schemes constructed in
this chapter are only auxiliary in nature. Because of our applications
in mind, these integral models will be constructed only over Z(p), al-
though one can also obtain the models over Z by essentially the same
constructions.

We will cite [62] for the constructions of the various auxiliary mod-
els in this subsection. It is tempting to cite only [28] for these construc-
tions, and this is indeed feasible for most constructions in this section.
But for the construction of Hecke actions of elements in G(A∞) in Sec-
tion 2.2.3, this is no longer logically sufficient, because the construction
in [28], by requiring that the cone decompositions are admissible for
GLg(Z) in the case of Siegel moduli of principally polarized abelian
schemes of relative dimension g, only allowed Hecke actions of elements
in Gaux(Ẑ).

2.1. Auxiliary Choices

2.1.1. Auxiliary Choices of Smooth Moduli Problems.

Lemma 2.1.1.1. For each integer d ≥ 1, there exist integers a1 > 0
and a2 ≥ 0, and a positive definite symmetric bilinear pairing

(2.1.1.2) ( · , · )aux : Z⊕(a1+a2)×Z⊕(a1+a2) → Z

satisfying the following properties:

125
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(1) Suppose that [L# : L] = d2. Then, under the canonical embed-
ding

(2.1.1.3) L⊕(a1+a2) ↪→ Laux := L⊕ a1 ⊕(L#)⊕ a2

induced by L ↪→ L#, the alternating pairing 〈 · , · 〉⊗( · , · )aux

on L⊕(a1+a2) ∼= L⊗
Z
Z⊕(a1+a2) extends to an alternating pairing

〈 · , · 〉aux on Laux valued in Z(1) that is self-dual at p in the
sense that p - [L#

aux : Laux].
(2) Let A be a (relative) abelian scheme over an algebraic stack S,

and let λ : A → A∨ be a polarization such that deg(λ) = d2.
Let AMaux := A×(a1+a2) and AOaux := A× a1 ×

S
(A∨)× a2, which are

fiber products over S; and let f := Id× a1
A ×

S
λ× a2 : AMaux → AOaux.

Then λ : A→ A∨ and the morphism

(2.1.1.4) ( · , · )∗aux : Z⊕(a1+a2) ∼→ Z⊕(a1+a2)

canonical induced by ( · , · )aux induce a polarization
λMaux : AMaux → AM,∨aux (cf. Lemmas 1.2.4.1, 1.3.3.5, and 1.3.3.6,
or rather [61, Lem. 2.5, 2.6, and 2.9, and their proofs]), and
λOaux := (f∨)−1 ◦ λMaux ◦ f : AOaux → AO,∨aux is a polarization
(not just a Q×-polarization) of degree prime to p. Moreover,
deg(λOaux) depends only on deg(λ) = d2 and the choices of
(a1, a2) and ( · , · )aux, but not on A and λ.

If p - d, then we can take (a1, a2) = (1, 0) and take ( · , · )aux : Z×Z→
Z to be the pairing sending (1, 1) to 1. Otherwise, we can take (a1, a2) =
(4, 4), and take ( · , · )aux to be defined by some 2× 2 matrix

(
1 x
tx d2

)
over

M4(Z) such that txx = d2 − 1.

Proof. The statement is obvious when p - d. Otherwise, we
can arrange that 〈 · , · 〉aux is self-dual (at every prime) by the proof
of Zarhin’s trick (as in [104, Sec. 2] and [80, IX, 1.1]), by taking

x =

(
x1 −x2 −x3 −x4
x2 x1 −x4 x3
x3 x4 x1 −x2
x4 −x3 x2 x1

)
for any integers x1, x2, x3, x4 such that x2

1 + x2
2 +

x2
3 + x2

4 = d2 − 1, which exist by the fact (due to Lagrange) that ev-
ery nonnegative integer can be written as the sum of four squares of
integers. �

Lemma 2.1.1.5. Let (Z, λZ) be any polarized abelian scheme over
a scheme S. Given any integer d ≥ 1, let us fix the choices of (a1, a2)
and ( · , · )aux as in Lemma 2.1.1.1. Then the functor that assigns
to each scheme T over S the set of isomorphism classes of polarized
abelian schemes (A, λ) over T such that deg(λ) = d2 and (Z, λZ)×

S
T ∼=
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(AOaux, λ
O
aux) over T , where (AOaux, λ

O
aux) is defined by (A, λ) as in (2) of

Lemma 2.1.1.1, is representable by a scheme finite over S.

Proof. By [81, Sec. 16], deg(λZ) = d2
aux for some integer daux ≥ 1.

The assertion to prove is trivially true unless the construction in (2) of
Lemma 2.1.1.1 assigns to each pair (A, λ) of genus g and polarization
degree d2 a pair (AOaux, λ

O
aux) of genus gaux = (a1 +a2)g and polarization

degree d2
aux. Hence, it suffices to treat the universal case, which we

explain as follows.
Consider the Siegel moduli Ag,d (resp. Agaux,daux) of genus g (resp.

gaux) and polarization degree d2 (resp. d2
aux), which is an algebraic stack

separated and of finite type over Spec(Z) (see [80, VII, 4.3] or [17, Def.
1.1 and Rem. 1.2]). The assignment of pairs (AOaux, λ

O
aux) to pairs (A, λ)

parameterized by Ag,d as in (2) of Lemma 2.1.1.1 is functorial, and
defines (by universal property) a morphism

(2.1.1.6) Ag,d → Agaux,daux .

To prove the lemma, it suffices to show that (2.1.1.6) is finite.
Suppose V is the spectrum of a discrete valuation ring V with frac-

tion field K. Suppose (AK , λK) is an object of Ag,d(Spec(K)), and sup-
pose the corresponding object (AOaux,K , λ

O
aux,K) of Agaux,daux(Spec(K))

extends to an object (AOaux,V , λ
O
aux,V ) of Agaux,daux(Spec(V )). By the

semistable reduction theorem (see, for example, [62, Thm. 3.3.2.4]),
up to replacing K with a finite extension field and replacing V accord-
ingly, we may assume that AK extends to a semi-abelian scheme AV
over Spec(V ). By the theory of Néron models (see [10]; cf. [92, IX, 1.4],
[28, Ch. I, Prop. 2.7], or [62, Prop. 3.3.1.5]), the isogeny fK : AMaux,K =

A
×(a1+a2)
K → AOaux,K extends to an isogeny A

×(a1+a2)
V → AOaux,V , and

(since a1 + a2 > 0) this is possible only when AV is an abelian scheme.
Also, the polarization λK extends to a polarization λV of AV . Con-
sequently, we have an object (AV , λV ) of Ag,d(Spec(V )), which must
correspond to the unique extension (AOaux,V , λ

O
aux,V ) of (AOaux,K , λ

O
aux,K)

(up to unique isomorphism, by the theory of Néron models again, or
by the separateness of Agaux,daux). Hence, (2.1.1.6) is proper by the
valuative criterion (and the fact that Ag,d and Agaux,daux are separated
and of finite type over Spec(Z)).

In order to show that (2.1.1.6) is finite, it suffices to show that the
induced proper morphism

(2.1.1.7) Ag,d⊗
Z
Z[ 1

n
]→ Agaux,daux ⊗

Z
Z[ 1

n
]

is finite for at least two integers n prime to each other. For each
n ≥ 3, the algebraic stack Agaux,daux ⊗

Z
Z[ 1

n
] admits a finite étale cover
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by the quasi-projective scheme Agaux,daux,n, defined as in [83, Ch. 7],

parameterizing isomorphisms γaux,n : Z⊕ 2gaux
∼→ Aaux[n] for each object

(Aaux, λaux) of Agaux,daux ⊗
Z
Z[ 1

n
]. (In order to avoid confusion with our

later terminologies, we refrain from calling such isomorphisms level
structures, because they are not required to respect the pairings on
both sides.) Similarly, the algebraic stack Ag,d⊗

Z
Z[ 1

n
] admits a fi-

nite étale cover by the quasi-projective scheme Ag,d,n,n parameteriz-

ing isomorphisms γn : Z⊕ 2g ∼→ A[n] and γ∨n : Z⊕ 2g ∼→ A∨[n] for
each object (A, λ) of Ag,d. (This is even more naive—the two isomor-
phisms γn and γ∨n are not required to be related to each other under
λ.) By assigning to each object (A, λ, γn, γ

∨
n ) of Ag,d,n,n the object

(AOaux, λ
O
aux, γ

O
aux,n := γ× a1

n ×(γ∨n )× a2) of Agaux,daux,n, we obtain a proper
morphism

(2.1.1.8) Ag,d,n,n → Agaux,daux,n

lifting (2.1.1.7). Then it suffices to show that (2.1.1.8) is finite, or
rather just quasi-affine, by [35, III-1, 4.4.2].

Let ωAg,d,n,n and ωAgaux,daux,n
denote the Hodge invertible sheaves

over Ag,d,n,n and Agaux,daux,n, respectively, defined by the top exterior
powers of the duals of the relative Lie algebras of the tautological
abelian schemes, which are ample by [80, IX, 3.1]. By [80, IX, 2.4]
and by the construction of (2.1.1.8), the pullback of a positive power of
ωAgaux,daux,n

to Ag,d,n,n is isomorphic to a positive power of ωAg,d,n,n . By
[35, II, 5.1.6], these show that (2.1.1.8) is quasi-affine, as desired. �

Consider any integral PEL datum (Oaux, ?aux, Laux, 〈 · , · 〉aux, h0,aux),
where (Laux, 〈 · , · 〉aux) is as in Lemma 2.1.1.1, such that Oaux is a
subring of O stabilized by ?, with an induced (positive) involution
we denote by ?aux , and such that h0,aux is canonically induced by h0

by the isomorphism Laux⊗
Z
R ∼= L⊕(a1+a2)⊗

Z
R induced by (2.1.1.3).

Suppose moreover that p is a good prime for the integral PEL datum
(Oaux, ?aux, Laux, 〈 · , · 〉aux, h0,aux) (see Definition 1.1.1.6), which is pos-
sible because we already know that p - [L#

aux : Laux], and that the
action of Oaux on Laux extends to an action of a maximal order O′aux in
Oaux⊗

Z
Q containing Oaux (cf. Condition 1.2.1.1). These are possible,

for example, by taking Oaux = Z with trivial involution ?aux . From
now on, we shall fix the auxiliary choices of (a1, a2), ( · , · )aux, and
(Oaux, ?aux, Laux, 〈 · , · 〉aux, h0,aux).

Lemma 2.1.1.9. With the assumptions as above, the assignment

(g, r) 7→ (g× a1 ×(r tg−1)× a2 , r)
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defines an injective homomorphism

(2.1.1.10) G→ Gaux

of algebraic group functors over Spec(Z), where Gaux is the group
functor over Spec(Z) defined by the order Oaux (with positive
involution ?aux), the lattice Laux, and the pairing 〈 · , · 〉aux as in
Definition 1.1.1.3, which is compatible with the similitude characters
and maps G(Ẑ) (which stabilizes L⊗

Z
Ẑ) to a subgroup of Gaux(Ẑ)

(which stabilizes Laux⊗
Z
Ẑ).

Proof. The assignment is injective because a1 > 0, and defines
a homomorphism as asserted because Oaux is a subring of O, because
?aux is the restriction of ?, and because 〈x, rg−1y〉 = 〈gx, y〉 = 〈x, tgy〉
by the definition of ν(g). �

Lemma 2.1.1.11. The reflex field F0,aux defined by the integral PEL
datum (Oaux, ?aux, Laux, 〈 · , · 〉aux, h0,aux) (see [53, p. 389] or [62, Def.
1.2.5.4]) is contained in F0 (as subfields of C).

Proof. Since h0,aux is canonically induced by h0 by the isomor-
phism Laux⊗

Z
R ∼= (L⊕ a1 ⊕(L#)⊕ a2)⊗

Z
R induced by (2.1.1.3), we have

a canonical isomorphism V0,aux
∼= V

⊕(a1+a2)
0 as Oaux⊗

Z
C-modules. By

[62, Cor. 1.2.5.6], F0 (resp. F0,aux) is the subfield of C generated over
Q by the traces TrC(b|V0) for b ∈ O (resp. TrC(b|V0,aux) for b ∈ Oaux).
Hence, F0,aux is contained in F0, as desired. �

For each open compact subgroup Haux (resp. Hp
aux) of Gaux(Ẑ)

(resp. Gaux(Ẑp)), let MHaux (resp. MHpaux
) denote the moduli problem

defined by the integral PEL datum (Oaux, ?aux, Laux, 〈 · , · 〉aux, h0,aux)

over S0,aux = Spec(F0,aux) (resp. ~S0,aux = Spec(OF0,aux,(p))), which is an
algebraic stack separated, smooth, and of finite type over S0,aux (resp.
~S0,aux) by [62, Thm. 1.4.1.11]. Let [MHaux ] (resp. [MHpaux

]) denote the
coarse moduli space associated with MHaux (resp. MHpaux

; see [62, Sec.

A.7.5]), which is a scheme quasi-projective over S0,aux (resp. ~S0,aux) by
[62, Cor. 7.2.3.10]. Moreover, let [MHpaux

⊗
Z
Q] denote the coarse moduli

space associated with MHpaux
⊗
Z
Q, which is canonically isomorphic to

[MHpaux
]⊗
Z
Q, because the association of coarse moduli spaces is com-

patible with flat base changes.
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WhenHp
aux is the image ofHaux under the canonical homomorphism

Gaux(Ẑ)→ Gaux(Ẑp), we have a canonical finite morphism

(2.1.1.12) MHaux → MHpaux
⊗
Z
Q,

by forgetting the level structure at p, which factors as a composition
of canonical finite morphisms

MHaux → MHpauxG(Zp) → MHpaux
⊗
Z
Q.

Remark 2.1.1.13. There is a subtle difference between MHpaux
⊗
Z
Q

and the moduli problem MHpauxGaux(Zp) over S0,aux = Spec(F0,aux), be-
cause the former is not equipped with a level structure at p. Neverthe-
less, the canonical morphism

(2.1.1.14) MHpauxGaux(Zp) → MHpaux
⊗
Z
Q

is finite étale, which is an isomorphism at least whenOaux⊗
Z
Q is simple,

because p is a good prime for MGaux(Ẑp) (by [62, Prop. 1.4.4.3] and

[53, Sec. 8]). (In what follows, we will not need (2.1.1.14) to be an
isomorphism.)

Proposition 2.1.1.15. With assumptions as above, for any open
compact subgroup Haux of Gaux(Ẑ) such that H is mapped into Haux

under the homomorphism G(Ẑ)→ Gaux(Ẑ) given by (2.1.1.10), we can
define a finite morphism

(2.1.1.16) MH → MHaux

over S0,aux such that the pullback (AOaux, λ
O
aux, i

O
aux, α

O
Haux

) of the tauto-
logical object over MHaux to MH satisfies the following properties:

(1) AOaux is isomorphic to A× a1 ×
MH

(A∨)× a2 for the same integers

(a1, a2) as in Lemma 2.1.1.1, which is equipped with an isogeny

f : AMaux := A×(a1+a2) → AOaux

induced by λ : A→ A∨.
(2) The polarization λOaux : AOaux → AO,∨aux coincides with the compo-

sition (f∨)−1 ◦λMaux ◦ f (as Q×-isogenies), where λMaux : AMaux →
AM,∨aux is induced by λ : A → A∨ and ( · , · )aux as in (2) of
Lemma 2.1.1.1.

(3) The isogeny f : AMaux → AOaux is compatible with
the Oaux-actions defined by the Oaux-structure
iMaux : Oaux → EndMH(AMaux) induced by the re-
striction of i : O → EndMH(A) to Oaux, and by
iOaux : Oaux → EndMH(AOaux).
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(4) At each geometric point s̄ of MH, the level structure αH induces

an H-orbit of isomorphisms α̂s̄ : L⊗
Z
Ẑ ∼→ TAs̄, which in turn

induces an Haux-orbit of isomorphisms

α̂
⊕(a1+a2)
s̄ ⊗

Ẑ
A∞ : Laux⊗

Z
A∞ ∼→ VAOaux,s̄

(which makes sense because H is mapped into Haux under the

homomorphism G(Ẑ)→ Gaux(Ẑ) given by (2.1.1.10)). On the
other hand, the level structure αOHaux

induces an Haux-orbit of
isomorphisms

α̂Os̄ ⊗
Ẑ
A∞ : Laux⊗

Z
A∞ ∼→ VAOaux,s̄.

These two Haux-orbits of isomorphisms coincide.

When Hp
aux is the image of Haux under the canonical homomorphism

Gaux(Ẑ)→ Gaux(Ẑp), by composition with (2.1.1.12), we obtain a mor-
phism

(2.1.1.17) MH → MHpaux
⊗
Z
Q

(over S0,aux), which induces a finite morphism MH → [MHpaux
]⊗
Z
Q, such

that the pullback (AOaux, λ
O
aux, i

O
aux, α

O
Hpaux

) of the tautological object over

MHpaux
to MH satisfies the same properties as above, with (4) replaced

with the following:

(4′) At each geometric point s̄ of MH, the level structure αH induces

an H-orbit of isomorphisms α̂s̄ : L⊗
Z
Ẑ ∼→ TAs̄, which in turn

induces an Hp
aux-orbit of isomorphisms

α̂
⊕(a1+a2)
s̄ ⊗

Ẑ
A∞,p : Laux⊗

Z
A∞,p ∼→ VpAOaux,s̄

(which makes sense because H is mapped into Hp
auxGaux(Zp)

under the homomorphism G(Ẑ) → Gaux(Ẑ) given by
(2.1.1.10)). On the other hand, the level structure αOHpaux

induces an Hp
aux-orbit of isomorphisms

α̂O,ps̄ ⊗
Ẑp
A∞,p : Laux⊗

Z
A∞,p ∼→ VpAOaux,s̄.

These two Hp
aux-orbits of isomorphisms coincide.

Suppose we replace Haux with an open compact subgroup
H′aux such that H′aux still contains the image of H under the

homomorphism G(Ẑ) → Gaux(Ẑ) given by (2.1.1.10). Then the
morphism MH → MH′aux

→ MH′,paux
⊗
Z
Q thus obtained are compatible
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with (2.1.1.16) and (2.1.1.17), and with the (compatible) canonical
morphisms MH′aux

→ MHaux and MH′,paux
⊗
Z
Q→ MHpaux

⊗
Z
Q.

Proof. Let AMaux, AOaux, λMaux, λOaux, and f be defined as in (2)
of Lemma 2.1.1.1 (with S = MH there). Since Oaux ⊂ O and
since the involution ?aux is the restriction of ?, the O-structure
i : O → EndMH(A) of (A, λ) induces an Oaux-structure
iMaux : Oaux → EndMH(AMaux) of (AMaux, λ

M
aux), which in turn induces an

Oaux⊗
Z
Q-structure iOaux : Oaux⊗

Z
Q→ EndMH(AOaux)⊗

Z
Q of (AOaux, λ

O
aux)

as in [62, Def. 1.3.3.1] by iOaux(b) := f ◦ iMaux(b) ◦ f−1 for each b ∈ Oaux.
At each geometric point s̄ of MH, the level structure αH lifts to an

O⊗
Z
Ẑ-equivariant isomorphism α̂s̄ : L⊗

Z
Ẑ ∼→ TAs̄, which induces an

Oaux⊗
Z
Ẑ-equivariant isomorphism

α̂Ms̄ := α̂
⊕(a1+a2)
s̄ : (L⊕(a1+a2))⊗

Z
Ẑ ∼→ TAMaux,s̄

and an Oaux⊗
Z
A∞-equivariant isomorphism

α̂Ms̄ ⊗
Ẑ
A∞ : (L⊕(a1+a2))⊗

Z
A∞ ∼→ VAMaux,s̄

(all matching similitudes, implicitly). By [62, Lem. 1.3.5.2], under the

isomorphism α̂s̄⊗
Ẑ
A∞ : L⊗

Z
A∞ ∼→ VAs̄, the polarization λs̄ : As̄ →

A∨s̄ (as an O-equivariant isogeny) corresponds to the open compact

subgroup L#⊗
Z
Ẑ of L⊗

Z
A∞. Hence, the restriction of α̂Ms̄ ⊗

Ẑ
A∞ induces

an Oaux⊗
Z
Ẑ-equivariant isomorphism

α̂Os̄ : Laux⊗
Z
Ẑ ∼→ TAOaux,s̄.

Since the choices of s̄ and α̂s̄ are arbitrary, by [62, Lem. 1.3.5.2]
again, the Oaux⊗

Z
Q-structure iOaux : Oaux⊗

Z
Q → EndMH(AOaux)⊗

Z
Q in-

duces an Oaux-structure iOaux : Oaux → EndMH(AOaux) of (AOaux, λ
O
aux).

Moreover, by forgetting the factor at p, the α̂Os̄ above induces an

Oaux⊗
Z
Ẑp-equivariant isomorphism

α̂O,ps̄ : Laux⊗
Z
Ẑp ∼→ TpAOaux,s̄.

Since the H-orbit of α̂s̄ is π1(MH, s̄)-invariant, and since H is mapped

into Haux (resp. Hp
aux) under the homomorphism G(Ẑ) → Gaux(Ẑ)

(resp. G(Ẑ) → Gaux(Ẑp)) given by (2.1.1.10), the Haux-orbit [α̂Os̄ ]Haux

of α̂Os̄ (resp. Hp
aux-orbit [α̂O,ps̄ ]Hpaux

of α̂O,ps̄ ) is π1(MH, s̄)-invariant.
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By [62, Prop. 1.4.3.4], the tuple (AOaux, λ
O
aux, i

O
aux, [α̂

O
s̄ ]Haux) (resp.

(AOaux, λ
O
aux, i

O
aux, [α̂

O,p
s̄ ]Hpaux

)) defines an object (AOaux, λ
O
aux, i

O
aux, α

O
Haux

)
(resp. (AOaux, λ

O
aux, i

O
aux, α

O
Hpaux

)) of MHaux (resp. MHpaux
) over MH, which

satisfies the properties described in the proposition by its very
construction.

We would like to show that LieAO
aux/MH

with its O⊗
Z
Q-module

structure given by iOaux satisfies the determinantal condition given by
(Laux⊗

Z
R, 〈 · , · 〉aux, h0,aux) as in [62, Def. 1.3.4.1]. Since this condition

is closed by definition, and is open in characteristic zero by [62,
Lem. 1.2.5.11], it suffices to verify it at each C-point t of MH. Let
(At, λt, it) and (AOaux,t, λ

O
aux,t, i

O
aux,t) denote the respective pullbacks

of (A, λ, i) and (AOaux, λ
O
aux, i

O
aux) to such a C-point t. By [62, Lem.

1.2.5.11] again, since LieA/MH with its O⊗
Z
Q-module structure given

by i satisfies the determinantal condition given by (L⊗
Z
R, 〈 · , · 〉, h0),

we have LieAt
∼= V0 as O⊗

Z
C-modules, and it suffices to note that

LieAO
aux,t

∼= Lie⊕ a1
At
⊕Lie⊕ a2

A∨t
∼= V

⊕(a1+a2)
0

∼= V0,aux as Oaux⊗
Z
C-modules

(cf. the proof of Lemma 2.1.1.11).
Thus, we have obtained the desired morphisms (2.1.1.16) and

(2.1.1.17) by the moduli interpretations of MHaux and MHpaux
, which

are compatible with each other under (2.1.1.12) because α̂O,ps̄ is
obtained from α̂Os̄ by forgetting the factor at p. The morphisms
(2.1.1.16) and (2.1.1.17) between algebraic stacks are schematic and
finite by Lemma 2.1.1.5 (for the abelian schemes and polarizations),
by [62, Prop. 1.3.3.7] (for the endomorphism structures), and by the
fact that the level structures are defined by isomorphisms between
finite étale group schemes. �

Lemma 2.1.1.18. With assumptions as above, suppose the image
Hp of H under the canonical morphism G(Ẑ)→ G(Ẑp) is neat (which
means, a fortiori, that H is also neat). Then there exists a neat open

compact subgroup Hp
aux ⊂ Gaux(Ẑp) such that H is mapped into Haux =

Hp
auxGaux(Zp) under the injective homomorphism G(Ẑ) → Gaux(Ẑ)

given by (2.1.1.10). (If we only assume that H is neat, then we can

still find a neat open compact subgroup H′aux ⊂ Gaux(Ẑ) such that H is

mapped into H′aux under G(Ẑ)→ Gaux(Ẑ).)

Proof. Let n0 ≥ 3 be any integer prime to p such that Up(n0) ⊂
H, and let Hp

aux be generated by Upaux(n0) and the image of Hp under

the injective homomorphism G(Ẑp) → Gaux(Ẑp) given by (2.1.1.10).
Then every element of Hp

aux is congruent modulo n0 to the image of
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some element of Hp, which is neat by assumption. Hence, Hp
aux and

Haux = Hp
auxGaux(Zp) are also neat, by definition (see [89, 0.6] or [62,

Def. 1.4.1.8]), and by Serre’s lemma that no nontrivial root of unity
can be congruent to 1 modulo n if n ≥ 3. (This is the same argument
used in the proof of Lemma 1.2.4.45. The parenthetical remark in the
statement of the lemma follows from the method of the proof.) �

2.1.2. Auxiliary Choices of Toroidal and Minimal Com-
pactifications. Let us continue with the setting in Section 2.1.1.

Each symplectic admissible filtration Z = {Z−i}i of L⊗
Z
Ẑ (see

Definition 1.2.1.2) induces a symplectic admissible filtration Zaux =

{Zaux,−i}i of Laux⊗
Z
Ẑ by setting

(2.1.2.1) Zaux,−i :=
(
(Z
⊕(a1+a2)
−i )⊗

Ẑ
A∞
)
∩
(
Laux⊗

Z
Ẑ
)

as submodules of Laux⊗
Z
A∞. If Z is fully symplectic (see Definition

1.2.1.3), which means Z extends to a symplectic filtration ZA = {Z−i,A}i
of L⊗

Z
A, then Zaux = {Zaux,−i}i also extends to a filtration Zaux,A =

{Zaux,−i,A}i on Laux⊗
Z
A, by setting

Zaux,−i,A := Z
⊕(a1+a2)
−i,A .

These definitions are compatible with actions of G(A) and Gaux(A)
(and with the homomorphism G(A) → Gaux(A) given by (2.1.1.10)),
and are compatible with reductions modulo n for any integer n ≥ 1.
Thus, there is a well-defined assignment

(2.1.2.2) Z 7→ Zaux.

If Φ = (X, Y, φ, ϕ−2, ϕ0) is a torus argument of Z (see Definition
1.2.1.5), then we define

Xaux := X⊕ a1 ⊕Y ⊕ a2

and
Yaux := Y ⊕ a1 ⊕X⊕ a2 .

Lemma 2.1.2.3. With the setting as above, there exist canonically
induced morphisms

φaux : Yaux ↪→ Xaux,

ϕaux,−2 : GrZaux
−2

∼→ HomẐ(Xaux⊗
Z
Ẑ, Ẑ(1)),

and
ϕaux,0 : GrZaux

0
∼→ Yaux⊗

Z
Ẑ
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making

Φaux := (Xaux, Yaux, φaux, ϕaux,−2, ϕaux,0)

a torus argument of Zaux, and making the diagrams

(2.1.2.4) Y ⊕(a1+a2) � �
Id
⊕ a1
Y ⊕φ⊕ a2

//
� _

φ⊗( · , · )∗aux

��

Yaux� _

φaux

��

X⊕(a1+a2) Xaux
? _

Id
⊕ a1
X ⊕φ⊕ a2

oo

(2.1.2.5)

(GrZ−2)⊕(a1+a2) // //

ϕ
⊕(a1+a2)
−2

o
��

GrZaux
−2

ϕaux,−2o
��

(HomẐ(X ⊗
Z
Ẑ, Ẑ(1)))⊕(a1+a2)

(Id
⊕ a1
X ⊕φ⊕ a2 )∗

// // HomẐ(Xaux⊗
Z
Ẑ, Ẑ(1))

and

(2.1.2.6) (GrZ0)⊕(a1+a2) � � //

ϕ
⊕(a1+a2)
0

o
��

GrZaux
0

ϕaux,0o
��

(Y ⊗
Z
Ẑ)⊕(a1+a2) � �

Id
⊕ a1
Y ⊕φ⊕ a2

// Yaux⊗
Z
Ẑ

commutative, where ( · , · )∗aux is canonically induced by ( · , · )aux as in
Lemma 2.1.1.1.

Proof. These follow from Lemma 2.1.1.1 and from the construc-
tion of the filtration Zaux,−i in (2.1.2.1). �

If δ : GrZ
∼→ L⊗

Z
Ẑ is a splitting of the filtration Z of L⊗

Z
Ẑ, then it

induces a splitting of the filtration ZA∞ of L⊗
Z
A∞, and hence induces

a splitting δaux of the filtration Zaux of Laux⊗
Z
A∞.

The above assignments are compatible with the formations of or-
bits. That is, when H is mapped into Haux under the homomorphism
G(Ẑ)→ Gaux(Ẑ) given by (2.1.1.10), we have a well-defined assignment
of representatives of cusp labels

(2.1.2.7) (ZH,ΦH, δH) 7→ (ZHaux ,ΦHaux , δHaux).

This assignment is also compatible with the equivalence relations
among representatives of cusp labels, and induces a well-defined
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assignment of cusp labels

(2.1.2.8) [(ZH,ΦH, δH)] 7→ [(ZHaux ,ΦHaux , δHaux)].

Moreover, by Lemma 2.1.2.3, tensor products with the symmetric bi-
linear pairing ( · , · )aux in Lemma 2.1.1.1 induce an embedding

(2.1.2.9) (SΦH)∨Q ↪→ (SΦHaux
)∨Q : y 7→ y⊗( · , · )aux

(by forgetting the compatibility of the pairings with O, but retaining
only the compatibility of the pairings with Oaux). Since ( · , · )aux is
positive definite, the embedding

(2.1.2.10) (SΦH)∨R ↪→ (SΦHaux
)∨R

induced by (2.1.2.9) maps PΦH (resp. P+
ΦH

) to PΦHaux
(resp. P+

ΦHaux
).

By construction, the pullback of a nondegenerate rational polyhedral
cone σaux in PΦHaux

(resp. P+
ΦHaux

) under (2.1.2.10) is either empty

or a nondegenerate rational polyhedral cone σ in PΦH (resp. P+
ΦH

).
(However, σ might not be smooth when σaux is.) The dual of (2.1.2.9)
gives a surjection

(2.1.2.11) (SΦHaux
)Q := SΦHaux

⊗
Z
Q� (SΦH)Q := SΦH ⊗

Z
Q,

which induces a homomorphism

(2.1.2.12) SΦHaux
→ SΦH .

WhenHaux is mapped toHp
aux under the homomorphism Gaux(Ẑ)→

Gaux(Ẑp), by suppressing the factors at p, we obtain compatible assign-
ments

(2.1.2.13) (ZHaux ,ΦHaux , δHaux) 7→ (ZHpaux
,ΦHpaux

, δHpaux
)

and

(2.1.2.14) [(ZHaux ,ΦHaux , δHaux)] 7→ [(ZHpaux
,ΦHpaux

, δHpaux
)],

together with the canonical homomorphism

(2.1.2.15) SΦHpaux
→ SΦHaux

,

which induces the canonical isomorphisms

(2.1.2.16) (SΦHpaux
)Q := SΦHpaux

⊗
Z
Q ∼→ (SΦHaux

)Q,

(2.1.2.17) (SΦHaux
)∨Q

∼→ (SΦHpaux
)∨Q,

and

(2.1.2.18) (SΦHaux
)∨R
∼→ (SΦHpaux

)∨R.



2.1. AUXILIARY CHOICES 137

By composing (2.1.2.7), (2.1.2.8), (2.1.2.15), (2.1.2.16), (2.1.2.9),
and (2.1.2.10) with (2.1.2.13), (2.1.2.14), (2.1.2.12), (2.1.2.11),
(2.1.2.17), and (2.1.2.18), respectively, we obtain

(2.1.2.19) (ZH,ΦH, δH) 7→ (ZHpaux
,ΦHpaux

, δHpaux
),

(2.1.2.20) [(ZH,ΦH, δH)] 7→ [(ZHpaux
,ΦHpaux

, δHpaux
)],

(2.1.2.21) SΦHpaux
→ SΦH ,

(2.1.2.22) (SΦHpaux
)Q � (SΦH)Q,

(2.1.2.23) (SΦH)∨Q ↪→ (SΦHpaux
)∨Q,

and

(2.1.2.24) (SΦH)∨R ↪→ (SΦHpaux
)∨R,

respectively.

Definition 2.1.2.25. Let Σ (resp. Σaux, resp. Σp
aux) be a

compatible choice of admissible smooth rational polyhedral cone
decomposition data for MH (resp. MHaux, resp. MHpaux

). We say that
Σ and Σaux (resp. Σp

aux) are compatible with each other if, for
each representative (ZH,ΦH, δH) of cusp labels of MH with assigned
representative (ZHaux ,ΦHaux , δHaux) (resp. (ZHpaux

,ΦHpaux
, δHpaux

)) of
cusp labels of MHaux (resp. MHpaux

) as in (2.1.2.7) (resp. (2.1.2.19)),
the image of each σ ∈ ΣΦH under the embedding (2.1.2.10)
(resp. (2.1.2.24)) is contained in some cone σaux ∈ ΣΦHaux

(resp.
σpaux ∈ ΣΦHpaux

). In this case, we say that (ΦHpaux
, δHpaux

, σpaux) is

assigned to (ΦH, δH, σ), and (since this is compatible with the
equivalence relations) we also say that [(ΦHpaux

, δHpaux
, σpaux)] is assigned

to [(ΦH, δH, σ)]. We say that Σaux and Σp
aux are compatible (resp.

Σp
aux induces Σaux) if, for each representative (ZHaux ,ΦHaux , δHaux) of

cusp label of MHaux with assigned representative (ZHpaux
,ΦHpaux

, δHpaux
)

of cusp label of MHpaux
as in (2.1.2.13), the image of each σaux ∈ ΣΦH

under the isomorphism (2.1.2.18) is contained in some cone in
ΣΦHpaux

(resp. is exactly some cone σpaux in ΣΦHpaux
). In this case,

we say that (ΦHpaux
, δHpaux

, σpaux) is assigned to (ΦHaux , δHaux , σaux)
(resp. (ΦHpaux

, δHpaux
, σpaux) is induced by (ΦHaux , δHaux , σaux)), and

(since this is compatible with the equivalence relations) we also say
that [(ΦHpaux

, δHpaux
, σpaux)] is assigned to [(ΦHaux , δHaux , σaux)] (resp.

[(ΦHpaux
, δHpaux

, σpaux)] is induced by [(ΦHaux , δHaux , σaux)])
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Lemma 2.1.2.26. If Σ and Σaux are compatible, and if Σaux and
Σp

aux are compatible, then Σ and Σp
aux are also compatible. If Σ and

Σp
aux are compatible, and if Σp

aux induces Σaux, then Σ and Σaux are
also compatible.

Proof. These follow immediately from the definitions. �

Lemma 2.1.2.27. Suppose Σaux and Σp
aux are compatible. Then

the morphism (2.1.1.12) canonically extends to a morphism

(2.1.2.28) Mtor
Haux,Σaux

→ Mtor
Hpaux,Σ

p
aux
⊗
Z
Q,

where Mtor
Haux,Σaux

and Mtor
Hpaux,Σ

p
aux

are as in Theorem 1.3.1.3 and [62,

Thm. 6.4.1.1], such that the tautological tuple (Gaux, λaux, iaux, αHaux)
over Mtor

Haux,Σaux
induces (by forgetting the factor at p of αHaux) the

pullback of the tautological tuple (Gaux, λaux, iaux, αHpaux
) over Mtor

Haux,Σaux

over Mtor
Hpaux,Σ

p
aux

(denoted similarly, by abuse of notation), mapping the

[(ΦHaux , δHaux , σaux)]-stratum Z[(ΦHaux ,δHaux ,σaux)] of Mtor
Haux,Σaux

to the
[(ΦHpaux

, δHpaux
, σpaux)]-stratum Z[(ΦHpaux

,δHpaux
,σpaux)] of Mtor

Hpaux,Σ
p
aux

when

[(ΦHpaux
, δHpaux

, σpaux)] is assigned to [(ΦHaux , δHaux , σaux)].

Proof. This follows by comparing the universal properties of
Mtor
Haux,Σaux

and Mtor
Hpaux,Σ

p
aux

, as in (6) of Theorem 1.3.1.3 and [62, Thm.

6.4.1.1]. �

Proposition 2.1.2.29. With assumptions as in Proposition
2.1.1.15, there exist compatible choices Σ, Σaux, and Σp

aux of admissible
smooth rational polyhedral cone decomposition data for MH, MHaux,
and MHpaux

, respectively, such that Σ, Σaux, and Σp
aux are compatible

with each other as in Definition 2.1.2.25, and such that the morphism
(2.1.1.17) canonically extends to a morphism

(2.1.2.30) Mtor
H,Σ → Mtor

Haux,Σaux
,

which induces by composition with (2.1.2.28) a morphism

(2.1.2.31) Mtor
H,Σ → Mtor

Hpaux,Σ
p
aux
⊗
Z
Q.

The morphism (2.1.2.30) (resp. (2.1.2.31)) maps the
[(ΦH, δH, σ)]-stratum Z[(ΦH,δH,σ)] of Mtor

H,Σ to the
[(ΦHaux , δHaux , σaux)]-stratum Z[(ΦHaux ,δHaux ,σaux)] of Mtor

Haux,Σaux

(resp. [(ΦHpaux
, δHpaux

, σpaux)]-stratum Z[(ΦHpaux
,δHpaux

,σpaux)] of Mtor
Hpaux,Σ

p
aux

)

when (ΦHaux , δHaux , σaux) (resp. (ΦHpaux
, δHpaux

, σpaux)) is assigned
to (ΦH, δH, σ) (see Definition 2.1.2.25). Let (G, λ, i, αH) (resp.
(Gaux, λaux, iaux, αHaux), resp. (Gaux, λaux, iaux, αHpaux

)) denote the
degenerating family of type MH (resp. MHaux, resp. MHpaux

) over Mtor
H,Σ
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(resp. Mtor
Haux,Σaux

; resp. Mtor
Hpaux,Σ

p
aux

, denoted similarly by abuse of

notation) as in Theorem 1.3.1.3 (or rather [62, Thm. 6.4.1.1]). Then
the pullback of Gaux (from either Mtor

Haux,Σaux
or Mtor

Hpaux,Σ
p
aux

) to Mtor
H,Σ

is isomorphic to G× a1 ×
Mtor
H,Σ

(G∨)× a2, and satisfies analogues of the

characterizing properties in Proposition 2.1.1.15. (In fact, by [92, IX,
1.4], [28, Ch. I, Prop. 2.7], or [62, Prop. 3.3.1.5], the pullbacks of
(Gaux, λaux, iaux, αHaux) and (Gaux, λaux, iaux, αHpaux

) are determined up
to unique isomorphisms by their restrictions to MH, which are then
characterized by the properties stated in Proposition 2.1.1.15.)

Proof. As in (2) of Lemma 2.1.1.1 and as in the proof of
Proposition 2.1.1.15, let GMaux := G×(a1+a2), GM,∨aux := (G∨)×(a1+a2),
GOaux := G× a1 ×

Mtor
H,Σ

(G∨)× a2 , and GO,∨aux := (G∨)× a1 ×
Mtor
H,Σ

G× a2 ,

which are fiber products over Mtor
H,Σ, whose pullbacks to MH

can be canonically identified with AMaux, AM,∨aux, AOaux, and
AO,∨aux, respectively. Let f := Ida1

G ×
Mtor
H,Σ

λa2 : GMaux → GOaux and

f∨ := Ida1

G∨ ×
Mtor
H,Σ

λa2 : GO,∨aux → GM,∨aux, whose pullbacks to MH are dual

isogenies of each other. Let λMaux be defined by λ and the morphism
( · , · )∗aux as in Lemma 2.1.1.1, and let iMaux : Oaux → EndMtor

H,Σ
(GMaux)

be induced by the restriction of i to Oaux. By (2) of Lemma
2.1.1.1, and by [92, IX, 1.4], [28, Ch. I, Prop. 2.7], or [62, Prop.
3.3.1.5], λOaux := (f∨)−1 ◦ λMaux ◦ f : GOaux → GO,∨aux is an isogeny (not
just a Q×-isogeny) of degree prime to p whose pullback to MH is a
polarization, and we have an iOaux : Oaux → EndMtor

H,Σ
(GOaux) uniquely

extending its pullback to MH. Together with the αOHaux
(resp.

αOHpaux
) over MH constructed in the proof of Proposition 2.1.1.15,

we obtain a degenerating family (GOaux, λ
O
aux, i

O
aux, α

O
Haux

) (resp.
(GOaux, λ

O
aux, i

O
aux, α

O
Hpaux

)) of type MHaux (resp. MHpaux
) over Mtor

H,Σ.

To show that (GOaux, λ
O
aux, i

O
aux, α

O
Haux

) → Mtor
H,Σ is canonically iso-

morphic to the pullback of (Gaux, λaux, iaux, αHaux) → Mtor
Haux,Σaux

under
a canonically determined morphism (2.1.2.30), we need to verify the
condition as in [62, Thm. 6.4.1.1(6)] (cf. (6) of Theorem 1.3.1.3).

In the association of degeneration data, over any Spec(V )→ Mtor
H,Σ

such that V is a complete discrete valuation ring with algebraically
closed residue field k and valuation υ : Inv(V ) → Z, and such that
Spec(Frac(V )) is mapped to a point s of MH, and for any lifting α̂s̄ :

L⊗
Z
Ẑ ∼→ TGs̄ at a geometric point s̄ above s, the (noncanonical)

filtration Z is defined to be the pullback of the geometric filtration
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0 ⊂ TTs̄ ⊂ TG\
s̄ ⊂ TGs̄, whose H-orbit ZH is uniquely determined

by αH. If we define α̂Os̄ : Laux⊗
Z
Ẑ ∼→ TGOaux,s̄ by α̂s̄ as in the proof of

Proposition 2.1.1.15, then the filtration Zaux defined by Z as in (2.1.2.1)
agrees with the pullback of the geometric filtration 0 ⊂ TTOaux,s̄ ⊂
TGO,\aux,s̄ ⊂ TGOaux,s̄, because this last filtration on TGOaux,s̄ is induced

by the filtration 0 ⊂ V TOaux,s̄ ⊂ VGO,\aux,s̄ ⊂ VGOaux,s̄ on VGOaux,s̄, whose

pullback under the isomorphism V(f) : VGMaux,s̄
∼→ VGOaux,s̄ agrees with

the filtration 0 ⊂ V TMaux,s̄ ⊂ VGM,\aux,s̄ ⊂ VGMaux,s̄ on VGMaux,s̄ (which

naturally agrees with the filtration induced by 0 ⊂ V Ts̄ ⊂ VG\
s̄ ⊂ VGs̄

on VGs̄).
Suppose, under the equivalence of categories in [62, Thm. 5.3.1.19],

(2.1.2.32) (B, λB, iB, X, Y, φ, c, c
∨, τ, [α\H])

is the object of DDPEL,MH(V ) associated with the object of
DEGPEL,MH(V ) defined by the pullback of the degenerating family
(G, λ, i, αH)→ Mtor

H,Σ under Spec(V )→ Mtor
H,Σ, and suppose

(2.1.2.33) (Baux, λBaux , iBaux , Xaux, Yaux, caux, c
∨
aux, τaux, [α

\
Haux

])

is the object of DDPEL,MHaux
(V ) associated with the object of

DEGPEL,MHaux
(V ) defined by the pullback of the degenerating family

(GOaux, λ
O
aux, i

O
aux, α

O
Haux

) → Mtor
H,Σ under Spec(V ) → Mtor

H,Σ. Then
(2.1.2.33) is induced by (2.1.2.32) in a sense that can be made precise,
which implies in particular the following: Under the assignment
(2.1.2.8), the cusp label [(ZH,ΦH = (X, Y, φ, ϕ−2,H, ϕ0,H), δH)]
determined by (2.1.2.32) gives the cusp label [(ZHaux ,ΦHaux , δHaux)]
determined by (2.1.2.33). If we fix a representative (ZH,ΦH, δH) of
[(ZH,ΦH, δH)], then the assignment (2.1.2.7) gives a representative
(ZHaux ,ΦHaux , δHaux) of [(ZHaux ,ΦHaux , δHaux)]. With such choices
of (ZH,ΦH, δH) and (ZHaux ,ΦHaux , δHaux), if B : SΦH → Inv(V )
and Baux : SΦHaux

→ Inv(V ) are determined by (2.1.2.32) and
(2.1.2.33), respectively, then (2.1.2.9) maps υ ◦ B : SΦH → Z ↪→ Q to
υ ◦Baux : SΦHaux

→ Z ↪→ Q because λMaux is induced by λ and ( · , · )aux.
If υ ◦ B defines an element of σ ∈ ΣΦH , and if the image of σ under
(2.1.2.24) is contained in some σaux ∈ ΣΦHaux

, then υ ◦ Baux defines an
element of σaux.

Thus, if Σ and Σaux are compatible with each other as in Definition
2.1.2.25, by considering all morphisms Spec(V ) → Mtor

H,Σ as above, we
see that (GOaux, λ

O
aux, i

O
aux, α

O
Haux

) satisfies the condition as in [62, Thm.
6.4.1.1(6)] (cf. (6) of Theorem 1.3.1.3), as desired.
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The case for (GOaux, λ
O
aux, i

O
aux, α

O
Hpaux

)→ Mtor
H,Σ and (2.1.2.31) is simi-

lar, by suppressing the factors at p in the above argument (and hence
the obtained (2.1.2.31) is tautologically compatible with (2.1.2.30)).
(Or one may just apply Lemma 2.1.2.27.) �

Consider the invertible sheaves

ωMtor
H,Σ

:= ∧top Lie∨G/Mtor
H,Σ

= ∧top e∗GΩ1
G/Mtor

H,Σ

over Mtor
H,Σ,

ωMtor
Haux,Σaux

:= ∧top Lie∨Gaux/Mtor
Haux,Σaux

= ∧top e∗Gaux
Ω1
Gaux/Mtor

Haux,Σaux

over Mtor
Haux,Σaux

, and

ωMtor
Hpaux,Σ

p
aux

:= ∧top Lie∨Gaux/Mtor
Hpaux,Σ

p
aux

= ∧top e∗Gaux
Ω1
Gaux/Mtor

Hpaux,Σ
p
aux

over Mtor
Hpaux,Σ

p
aux

.

We shall denote the pullback of ωMtor
H,Σ

(resp. ωMtor
Haux

, resp. ωMtor
Hpaux

)

to MH (resp. MHaux , resp. MHpaux
) by ωMH (resp. ωMHaux

, resp. ωMHpaux
),

which is independent of the choice of Σ (resp. Σaux, resp. Σp
aux).

Lemma 2.1.2.34. The pullback of ωMtor
Hpaux,Σ

p
aux

to Mtor
Haux,Σaux

under

(2.1.2.28) is canonically isomorphic to ωMtor
Haux,Σaux

.

Proof. This follows from Lemma 2.1.2.27 and the definitions of
ωMtor

Haux,Σaux
and ωMtor

Hpaux,Σ
p
aux

. �

Lemma 2.1.2.35. There exists an integer 1 ≤ a0 ≤ 2 such that the
pullback of ω⊗ a0

Mtor
Haux,Σaux

(resp. ω⊗ a0

Mtor
Hpaux,Σ

p
aux

) to Mtor
H,Σ under the morphism

(2.1.2.30) (resp. (2.1.2.31)) is isomorphic to ω⊗ a
Mtor
H,Σ

, where a := a0(a1 +

a2). We may take a0 = 1 when a2 is even.

We shall henceforth fix a choice of a0.

Proof of Lemma 2.1.2.35. Consider also the invertible sheaf

ω′Mtor
H,Σ

:= ∧top Lie∨G∨/Mtor
H,Σ

= ∧top e∗G∨Ω1
G∨/Mtor

H,Σ
.

By Proposition 2.1.2.29, the pullback of ωMtor
Haux,Σaux

(resp. ωMtor
Hpaux,Σ

p
aux

)

to Mtor
H,Σ is canonically isomorphic to

ω⊗ a1

Mtor
H,Σ
⊗

Mtor
H,Σ

(ω′Mtor
H,Σ

)⊗ a2 .
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(This is consistent with Lemma 2.1.2.34.) By [80, IX, 2.4, and its
proof], there exists an integer 1 ≤ a0 ≤ 2 such that

ω⊗ a0

Mtor
H,Σ

∼= (ω′Mtor
H,Σ

)⊗ a0 .

Hence, up to replacing a0 with 1 when a2 is even, the lemma follows. �

Let Mmin
Haux

(resp. Mmin
Hpaux

) denote the minimal compactification of

MHaux (resp. MHpaux
), which is by construction a projective variety over

S0,aux = Spec(F0,aux) (resp. ~S0,aux = Spec(OF0,aux,(p))) containing the
coarse moduli space [MHaux ] of MHaux (resp. [MHpaux

] of MHpaux
) as an

open subscheme. By [62, Thm. 7.2.4.1], there exists an integer N1 ≥ 1
(depending onHp

aux, which is 1 whenHp
aux is neat) such that ω⊗N1

Mtor
Hpaux,Σ

p
aux

descends to an ample invertible sheaf over Mmin
Hpaux

, which we denote by

ω⊗N1

Mmin
Hpaux

by abuse of notation. In this case, by Lemma 2.1.2.34 and by

the universal property of the projective spectra

Mmin
Haux
∼= Proj

(
⊕
k≥0

Γ(Mtor
Haux,Σaux

, ω⊗ k
Mtor
Haux,Σaux

)
)

and

Mmin
Hpaux

∼= Proj
(
⊕
k≥0

Γ(Mtor
Hpaux,Σ

p
aux
, ω⊗ k

Mtor
Hpaux,Σ

p
aux

)
)

(see (3) of Theorem 1.3.1.5), ω⊗N1

Mtor
Haux,Σaux

also descends to an ample

invertible sheaf over Mmin
Haux

, which we denote by ω⊗N1

Mmin
Haux

by abuse of

notation, and the morphism (2.1.2.28) induces a morphism

(2.1.2.36) Mmin
Haux
→ Mmin

Hpaux
⊗
Z
Q

under which the pullback of ω⊗N1

Mmin
Hpaux

is canonically isomorphic to ω⊗N1

Mmin
Haux

.

On the other hand, since H is neat, ωMtor
H,Σ

descends to an ample

invertible sheaf ωMmin
H

over Mmin
H .

Proposition 2.1.2.37. With assumptions as in Proposition
2.1.1.15, there exists a morphism

(2.1.2.38) Mmin
H → Mmin

Haux

extending (2.1.1.16) and compatible with (2.1.2.30), which induces by
composition with (2.1.2.36) a morphism

(2.1.2.39) Mmin
H → Mmin

Hpaux
⊗
Z
Q

extending (2.1.1.17) and compatible with (2.1.2.31). The morphism
(2.1.2.38) (resp. (2.1.2.39)) maps the [(ΦH, δH)]-stratum Z[(ΦH,δH)] of
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Mmin
H to the [(ΦHaux , δHaux)]-stratum Z[(ΦHaux ,δHaux )] of Mmin

Haux
(resp.

[(ΦHpaux
, δHpaux

)]-stratum Z[(ΦHpaux
,δHpaux

)] of Mmin
Hpaux

) when [(ΦHaux , δHaux)]

(resp. [(ΦHpaux
, δHpaux

)]) is assigned to [(ΦH, δH)] as in (2.1.2.20) (with
the filtrations ZH, ZHaux, and ZHpaux

suppressed in the notation). If
N1 ≥ 1 is as above, and if a0 ≥ 1 and a ≥ 1 are integers as in
Lemma 2.1.2.35, then the pullback of ω⊗ a0N1

Mmin
Haux

(resp. ω⊗ a0N1

Mmin
Hpaux

) to Mmin
H

is canonically isomorphic to ω⊗ aN1

Mmin
H

.

Consequently, Mmin
H is the normalization of Mmin

Haux
(resp. Mmin

Hpaux
⊗
Z
Q)

in MH under the morphism MH → Mmin
Haux

(resp. MH → Mmin
Hpaux
⊗
Z
Q)

induced by (2.1.1.16) (resp. (2.1.1.17)) and the canonical morphism
MHaux → Mmin

Haux
(resp. MHpaux

⊗
Z
Q→ Mmin

Hpaux
⊗
Z
Q).

Proof. The first paragraph follows from Proposition 2.1.2.29, from
Lemma 2.1.2.35, and from the universal properties of the projective
spectrum

Mmin
H
∼= Proj

(
⊕
k≥0

Γ(Mtor
H,Σ, ω

⊗ k
Mtor
H,Σ

)
)

(and the ones for Mmin
Haux

and Mmin
Hpaux

above).

Since ω⊗ a0N1

Mmin
Haux

(resp. ω⊗ a0N1

Mmin
Hpaux

) is ample over Mmin
Haux

(resp. Mmin
Hpaux

), since

ω⊗ aN1

Mmin
H

is ample over Mmin
H , and since the pullback of the former is

canonically isomorphic to the latter, the canonical morphism from Mmin
H

to the normalization of Mmin
Haux

(resp. Mmin
Hpaux
⊗
Z
Q) in MH is finite (see [35,

II, 5.1.6, and III-1, 4.4.2]). Since both the source and target of this finite
morphism are normal, and since they share an open dense subscheme
MH, the second paragraph follows from Zariski’s main theorem (see
[35, III-1, 4.4.3, 4.4.11]), as desired. �

2.2. Flat Integral Models as Normalizations and Blow-Ups

2.2.1. Flat Integral Models for Minimal Compactifications.

Proposition 2.2.1.1. Let ~MH denote the normalization of
MGaux(Ẑp) in MH under the morphism MH → MHpaux

induced by

(2.1.1.17) (with Hp
aux = Gaux(Ẑp) there). Then ~MH is a normal

algebraic stack flat over ~S0 := Spec(OF0,(p)) equipped with a canonical

isomorphism ~MH×
~S0

S0
∼= MH over S0, and with a morphism

~MH → MHpaux
= MGaux(Ẑp) extending (2.1.1.17).
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The tautological tuple (A, λ, i, αH) over MH extends to a degener-

ating family ( ~A,~λ,~i, ~αH) of type MH over ~MH (see [62, Def. 5.3.2.1]

and Definition 1.3.1.1), where ( ~A,~λ) is a polarized abelian scheme with

an O-structure ~i such that Lie ~A/~MH with its O⊗
Z
Z(p)-module structure

given naturally by ~i satisfies the determinantal condition in [62, Def.
1.3.4.1] given by (L⊗

Z
R, 〈 · , · 〉, h0), and where ~αH is defined only over

MH. If we denote by ( ~Aaux, ~λaux,~iaux, ~αGaux(Ẑp)) the pullback of the tau-

tological tuple (Aaux, λaux, iaux, αGaux(Ẑp)) over MGaux(Ẑp) under the mor-

phism ~MH → MHpaux
induced by (2.1.1.17), then ( ~Aaux, ~λaux) is isomor-

phic to the polarized abelian scheme ( ~A′aux,
~λ′aux) defined by ( ~A,~λ) as in

(2) of Lemma 2.1.1.1, ~i is the unique extension of i over the noetherian

normal base scheme ~MH (by [92, IX, 1.4], [28, Ch. I, Prop. 2.7], or [62,
Prop. 3.3.1.5]), and ~αGaux(Ẑp) is determined by αH in the sense that its
further pullback to MH is determined by αH as in Proposition 2.1.1.15
(with Hp

aux = Gaux(Ẑp) there). Then ωMH extends to the invertible sheaf

ω~MH := ∧top Lie∨~A/~MH
= ∧top e∗~AΩ1

~A/~MH

over ~MH, which is ample if H is neat. If a0 ≥ 1 and a ≥ 1 are
integers as in Lemma 2.1.2.35, then ω⊗ a~MH

is canonically isomorphic to

the pullback of ω⊗ a0
MGaux(Ẑp)

under the morphism ~MH → MGaux(Ẑp) induced

by (2.1.1.17).

The coarse moduli space [~MH] of ~MH is canonically isomorphic
to the normalization of [MGaux(Ẑp)] in [MH] under the morphism

[MH] → [MGaux(Ẑp)] induced by (2.1.1.17), which is a normal

scheme quasi-projective and flat over ~S0 equipped with a canonical

isomorphism [~MH]×
~S0

S0
∼= [MH] over S0. In particular, if H is neat,

then ~MH ∼= [~MH] is a scheme.

We obtain the same normalization ~MH (up to canonical
isomorphism) satisfying the analogous properties if we replace

Gaux(Ẑp) with any open compact subgroup Hp
aux of Gaux(Ẑp) such that

Hp
auxGaux(Zp) still contains the image of H under the homomorphism

G(Ẑ)→ Gaux(Ẑ) given by (2.1.1.10).

Up to canonical isomorphism, ~MH and hence [~MH] depend only on
the linear algebraic data defining MH, but not on the auxiliary choices
in Section 2.1 defining MGaux(Ẑp) or MHpaux

.
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Proof. The first paragraph is self-explanatory. As for the sec-
ond paragraph, except for the ampleness of ω~MH when H is neat, it

suffices to show that the tautological (A, λ) over MH extends to some

polarized abelian scheme ( ~A,~λ) over ~MH. (Once this is shown, the
remainder of the paragraph will follow from the uniqueness of exten-
sions by [92, IX, 1.4], [28, Ch. I, Prop. 2.7], or [62, Prop. 3.3.1.5].)
Since the genus of A and the polarization degree of λ is determined
by the level structure αH, the tautological (A, λ) over MH defines
(by forgetting the additional structures) a morphism from MH to the
Siegel moduli Ag,d of genus g = 1

2
rkZ(L) and polarization degree

d2 = [L# : L], which induces a finite morphism MH → Ag,d⊗
Z
Q by

[62, Prop. 1.3.3.7, Cor. 2.2.2.8, and Prop. 2.2.2.9]. Similarly, the tau-
tological (Aaux, λaux) defines a morphism from MGaux(Ẑp) to the Siegel

moduli Agaux,daux of genus gaux = 1
2

rkZ(Laux) and polarization degree

d2
aux = [L#

aux : Laux], which induces a finite morphism MGaux(Ẑp) →
Agaux,daux ⊗

Z
Z(p). As explained in the proof of Lemma 2.1.1.5, the

construction as in (2) of Lemma 2.1.1.1 defines a finite morphism
Ag,d → Agaux,daux . By comparing the universal properties, the com-
position MH → MGaux(Ẑp)⊗Z

Q → Agaux,daux ⊗
Z
Q of finite morphisms co-

incides with the composition MH → Ag,d⊗
Z
Q→ Agaux,daux ⊗

Z
Q of finite

morphisms. Since Ag,d → Agaux,daux and MGaux(Ẑp) → Agaux,daux ⊗
Z
Z(p)

are finite, it follows that ~MH is canonically isomorphic to the normal-
ization of Ag,d⊗

Z
Z(p) under the canonical morphism MH → Ag,d⊗

Z
Z(p).

In particular, the tautological object (A, λ) over MH extends to an ob-

ject ( ~A,~λ) parameterized by the canonical morphism ~MH → Ag,d. This
also shows, as in the last paragraph of the statement of the proposition,

that ~MH is canonical and independent of the auxiliary choices.

The coarse moduli space [~MH] of ~MH is canonically isomorphic to
the normalization of [MGaux(Ẑp)] in [MH] by the universal property of

coarse moduli spaces, and by Zariski’s main theorem (see [35, III-1,
4.4.3, 4.4.11], or the formulation in [62, Prop. 7.2.3.4] for algebraic

spaces). Except for the quasi-projectivity of [~MH] over ~S0, and for
the ampleness of ω~MH when H is neat, both of which will follow from
Proposition 2.2.1.2 below, the remaining statements of the proposition
are self-explanatory. �

Although Proposition 2.2.1.1 is stated without any reference to
compactifications, the easiest way to show the quasi-projectivity of
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[~MH] over ~S0, and the ampleness of ω~MH when H is neat, is to intro-

duce the minimal compactifications. (This is a natural consideration
because this is what the minimal compactifications in [5] did over C.)

Proposition 2.2.1.2. Let ~Mmin
H denote the normalization of

Mmin
Gaux(Ẑp)

in Mmin
H under the morphism Mmin

H → Mmin
Gaux(Ẑp)

induced by

(2.1.2.39) (with Hp
aux = Gaux(Ẑp) there). Then ~Mmin

H is a normal

scheme projective and flat over ~S0 = Spec(OF0,(p)) equipped with a

canonical isomorphism ~Mmin
H ×

~S0

S0
∼= Mmin

H over S0.

By construction, [~MH] is an open dense subscheme of ~Mmin
H , be-

cause [MGaux(Ẑp)] is an open dense subscheme of Mmin
Gaux(Ẑp)

(by [62, Thm.

7.2.4.1]).
If N1 ≥ 1 is as in the paragraph preceding Proposition 2.1.2.37 (for

Hp
aux = Gaux(Ẑp)), and if a0 ≥ 1 and a ≥ 1 are integers as in Lemma

2.1.2.35, then ω⊗ aN1
MH

and ω⊗ aN1

Mmin
H

compatibly extend to an ample invert-

ible sheaf over ~Mmin
H , which we denote by ω⊗ aN1

~Mmin
H

by abuse of notation,

such that the pullback of ω⊗ aN1

~Mmin
H

to ~MH is canonically isomorphic to

ω⊗ aN1

~MH
, such that the pullback of ω⊗ a0N1

Mmin
Gaux(Ẑp)

to ~Mmin
H is canonically iso-

morphic to ω⊗ aN1

~Mmin
H

, and so that there is a canonical isomorphism

~Mmin
H
∼= Proj

(
⊕
k≥0

Γ(~Mmin
H , ω⊗ aN1k

~Mmin
H

)
)
.

We obtain the same normalization ~Mmin
H (up to canonical isomor-

phism) if we replace Gaux(Ẑp) with any open compact subgroup Hp
aux

of Gaux(Ẑp) such that Hp
auxGaux(Zp) still contains the image of H un-

der the homomorphism G(Ẑ) → Gaux(Ẑ) given by (2.1.1.10), in which
case we might reduce the size of N1 in the above statements. By
Lemma 2.1.1.18, if the image of H under the canonical homomorphism
G(Ẑ) → G(Ẑp) is neat, then we can choose Hp

aux to be neat, so that
N1 = 1.

We also obtain the same ~Mmin
H (up to canonical isomorphism) if

we replace Mmin
H with [MH], and if we replace the morphism Mmin

H →
Mmin

Gaux(Ẑp)
induced by (2.1.2.39) with the morphism [MH] → Mmin

Gaux(Ẑp)

induced by (2.1.1.17) (cf. the second paragraph of Proposition 2.1.2.37).

As in the case of ~MH in Proposition 2.2.1.1, it is also true that, up to

canonical isomorphism, ~Mmin
H depends only on the linear algebraic data

defining MH, but not on the auxiliary choices in Section 2.1 defining
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MGaux(Ẑp) or MHpaux
. However, the proof of this is somewhat indirect

and will be postponed until Corollary 2.2.1.15 below.

Proof of Proposition 2.2.1.2. By construction as a normaliza-

tion, we know that ~Mmin
H is normal, and that the morphism ~Mmin

H →
Mmin

Gaux(Ẑp)
is finite. Since ω⊗ a0N1

Mmin
Gaux(Ẑp)

is ample over Mmin
Gaux(Ẑp)

, its pullback

to ~Mmin
H is also ample, which we define as the common extension ω⊗ aN1

~Mmin
H

of ω⊗ aN1
MH

and ω⊗ aN1

Mmin
H

. (This is consistent with Lemma 2.1.2.35 and

Proposition 2.1.2.37.) This shows in particular that ~Mmin
H is projective

over ~S0. Since the structural sheaf of ~Mmin
H is normal and hence has

no p-torsion, it is also flat over ~S0. Since the pullback of ω⊗ a0N1

Mmin
Gaux(Ẑp)

to MGaux(Ẑp) is canonically isomorphic to ω⊗ a0N1
MGaux(Ẑp)

, its further pull-

back to ~MH, which is canonically isomorphic to the pullback of ω⊗ aN1

~Mmin
H

by construction, is canonically isomorphic to ω⊗ aN1

~MH
(by the part of

Proposition 2.2.1.1 we have proved). The remaining statements of the
proposition are self-explanatory. �

Now the proof of Proposition 2.2.1.1 is also complete.

Remark 2.2.1.3. In our constructions (including ones to be given
below), taking normalizations will never introduce pathologies, either
because we are talking integral closures in (products of) separable field
extensions (see [77, Sec. 33, Lem. 1]), or because the schemes in ques-
tions are all excellent (being a localization of a scheme of finite type
over Z; see [76, Sec. 31–34] for more discussions).

For each stratum Z[(ΦH,δH)] as in (4) of Theorem 1.3.1.5, consider

its closure Z[(ΦH,δH)] in Mmin
H and its closure ~Z[(ΦH,δH)] in ~Mmin

H . Then we
define a locally closed subscheme

(2.2.1.4) ~Z[(ΦH,δH)] := ~Z[(ΦH,δH)] − ∪
Z[(ΦH,δH)]*Z[(Φ′H,δ

′
H)]

~Z[(Φ′H,δ
′
H)]

of ~Mmin
H . By definition, we have the following:

Lemma 2.2.1.5. If Z[(ΦH,δH)] is contained in the closure Z[(Φ′H,δ
′
H)] of

Z[(Φ′H,δ
′
H)], then ~Z[(ΦH,δH)] is contained in ~Z[(Φ′H,δ

′
H)], and the latter agrees

with the closure of ~Z[(Φ′H,δ
′
H)].

Remark 2.2.1.6. It is nontrivial that the collection
{~Z[(ΦH,δH)]}[(ΦH,δH)] does define a stratification of ~Mmin

H (see [65, Sec.
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12]). Nevertheless, without actually using this fact, we shall still call
~Z[(ΦH,δH)] the [(ΦH, δH)]-stratum, by abuse of language.

For showing that ~Mmin
H is canonical and independent of the auxiliary

choices, and for many applications, it is desirable to know the following:

Proposition 2.2.1.7. The image of the canonical morphism

(2.2.1.8) ~MH⊗
Z
Fp → ~Mmin

H ⊗
Z
Fp

(see Proposition 2.2.1.2) is an open and dense subset.

Proof. Let s be any point of ~Mmin
H . Consider any morphism ξ :

Spec(R) → ~Mmin
H , where R is a complete discrete valuation ring with

fraction field K of characteristic zero and with algebraically closed
residue field k of characteristic p, such that the special point Spec(k)
is mapped to s, and such that the restriction of ξ to the generic point
Spec(K) factors as the composition of a morphism ξK : Spec(K)→ MH
with the canonical morphism MH → ~Mmin

H . (Such morphisms ξ and ξK
exist because MH and ~Mmin

H are of finite type over ~S0, and because the

image [MH] of MH is open dense in ~Mmin
H .) By the semistable reduction

theorem (see, for example, [28, Ch. I, Thm. 2.6] or [62, Thm. 3.3.2.4]),
and by the theory of Néron models (see [10]; cf. [92, IX, 1.4], [28, Ch.
I, Prop. 2.7], or [62, Prop. 3.3.1.5]), up to replacing K with a finite
extension field and replacing R accordingly, the pullback under ξK of
the tautological tuple (A, λ, i, αH) over MH extends to a degenerating

family (G†, λ†, i†, α†H) of type MH over Spec(R), where α†H is defined
only over the generic point Spec(K).

By applying the construction of elevators as in the proof of [58,

Thm. 3.1] to (G†, λ†, i†), there exists a degenerating family (G̃, λ̃, ĩ) of
type (PE,O) (see [58, Def. 2.1]; see also Definition 4.1.3.2 below) over
S := Spec(R̃), where R̃ is a noetherian integral domain over R which is
complete with respect to some ideal Ĩ such that rad(Ĩ) = Ĩ, satisfying
the following properties:

(1) There exists a morphism Spec(R)→ S under which (G†, λ†, i†)

is isomorphic to the pullback of (G̃, λ̃, ĩ).
(2) There exists an open dense subscheme S1 of S over which G̃ is

an abelian scheme, such that S1⊗
Z
Fp is nonempty and dense

in S⊗
Z
Fp. (This is because, in the proof of [58, Thm. 3.1] in

[58, Sec. 3], the scheme Ξ◦ is smooth over S and where Ξ◦⊗
Z
Fp

is nonempty and dense in Ξ◦(σ)⊗
Z
Fp.)
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(3) For any morphism Spec(V )→ S as in (6) of Theorem 1.3.1.3,
centered at the geometric point Spec(k) → S induced by the

morphism Spec(R) → S above, there exist some (Z‡H,Φ
‡
H, δ

‡
H)

and σ‡ such that σ‡ is a one-dimensional cone in P+

Φ‡H
. (This

is because the cone σ in the proof of [58, Thm. 3.1] in [58,
Sec. 3] can be taken to be one-dimensional.)

Let K̄ be an algebraic closure of K. Then there exists an affine
integral scheme S ′1,Q finite étale over S1,Q, together with a morphism

η̄ := Spec(K̄) → S ′1,Q lifting the above morphism η → S1,Q, such

that (G̃S′1,Q
, λ̃S′1,Q , ĩS′1,Q) satisfies the determinantal condition in [62,

Def. 1.3.4.1] given by (L⊗
Z
R, 〈 · , · 〉, h0) and is equipped with a lev-

el-H structure α̃H,S′1,Q of type (L⊗
Z
Ẑ, 〈 · , · 〉) as in [62, Def. 1.3.7.6],

and such that the pullbacks of (G̃S′1,Q
, λ̃S′1,Q , ĩS′1,Q , α̃H,S′1,Q) → S ′1,Q and

(G†, λ†, i†, α†H) → Spec(R) to η̄ are isomorphic to each other. By the
universal property of MH, there is a canonical morphism

(2.2.1.9) S ′1,Q → MH

under which (G̃S′1,Q
, λ̃S′1,Q , ĩS′1,Q , α̃H,S′1,Q) is isomorphic to the pullback

of the tautological tuple (A, λ, i, αH) over MH. By construction, the
compositions η̄ → S ′1,Q → MH and η̄ → η → MH coincide with each
other (cf. the proof of [58, Thm. 4.1]).

Let S ′ and S ′1 denote the normalizations of S and S1 under the
canonical morphisms S ′1,Q → S and S ′1,Q → S1, respectively. Then

(G̃S′1,Q
, λ̃S′1,Q , ĩS′1,Q , α̃H,S′1,Q) canonically extends to degenerating families

(G̃S′ , λ̃S′ , ĩS′ , α̃H,S′) → S ′ and (G̃S′1
, λ̃S′1 , ĩS′1 , α̃H,S′1) → S ′1 of type MH,

where (G̃S′ , λ̃S′ , ĩS′) and (G̃S′1
, λ̃S′1 , ĩS′1) are just the pullbacks of (G̃, λ̃, ĩ)

from S to S ′ and S ′1, respectively, and where α̃H,S′ and α̃H,S′1 are defined
only over S ′1,Q.

By definition, ~MH and ~Mmin
H are the normalizations of MHpaux

and
Mmin
Hpaux

in MH, as in Propositions 2.2.1.1 and 2.2.1.2, for some open

compact subgroup Hp
aux of Gaux(Ẑp). By the same argument as in the

proof of Proposition 2.1.1.15, by forgetting the factor of α̃H,S′1 at p, the

tuple (G̃S′1
, λ̃S′1 , ĩS′1 , α̃H,S′1) induces a tuple parameterized by MHpaux

, and
induces a morphism

(2.2.1.10) S ′1 → MHpaux

by the universal property of MHpaux
, whose restriction to S ′1,Q coincides

with the composition of (2.2.1.9) with the morphism MH → MHpaux
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induced by (2.1.1.17) (as in Proposition 2.2.1.1). Consequently, by the

definition of ~MH as a normalization, (2.2.1.10) induces a morphism

(2.2.1.11) S ′1 → ~MH

extending (2.2.1.9).
By the same argument as in the proof of Proposition 2.1.2.29, the

degenerating family (G̃S′ , λ̃S′ , ĩS′ , α̃H,S′)→ S ′ of type MH induces a de-

generating family (G̃Oaux,S′ , λ̃
O
aux,S′ , ĩ

O
aux,S′ , α̃

O
Hpaux,S′

) → S ′ of type MHpaux
,

which defines a morphism

(2.2.1.12) S ′ → Mtor
Hpaux,Σ

p
aux

for any compatible choice of Σp
aux for MHpaux

as in [62, Def. 6.3.3.4]
(cf. Definition 1.2.2.13), because the property (3) above ensures that

the degenerating family (G̃Oaux,S′ , λ̃
O
aux,S′ , ĩ

O
aux,S′ , α̃

O
Hpaux,S′

) → S ′ satis-

fies the condition as in [62, Thm. 6.4.1.1(6)] (cf. the proof of [62,
Prop. 6.3.3.17].) By composition with the canonical morphism

∮
Hpaux

:

Mtor
Hpaux,Σ

p
aux
→ Mmin

Hpaux
as in [62, Thm. 7.2.4.1(3)] (cf. (3) of Theorem

1.3.1.5), (2.2.1.12) induces a morphism

(2.2.1.13) S ′ → Mmin
Hpaux

,

whose restriction to S ′1 is the composition of (2.2.1.11) with the canon-

ical morphism ~MH → ~Mmin
H . Consequently, by the definition of ~Mmin

H as
a normalization, (2.2.1.13) induces a morphism

(2.2.1.14) S ′ → ~Mmin
H

extending (2.2.1.11).
Since the geometric point s̄→ S lifts to some geometric point s̄→

S ′ by the finiteness of S ′ → S, and since S ′1⊗
Z
Fp is nonempty and dense

in S ′⊗
Z
Fp because S1⊗

Z
Fp is nonempty and dense in S⊗

Z
Fp (by the

property (2) above), the image s of s̄ in ~Mmin⊗
Z
Fp is the specialization

of some point of ~MH⊗
Z
Fp. Since s is arbitrary, this shows that the open

image of (2.2.1.8) is a dense subset, as desired. �

Corollary 2.2.1.15. Up to canonical isomorphism, the scheme
~Mmin
H constructed in Proposition 2.2.1.2 depends only on the linear al-

gebraic data defining MH, but not on the auxiliary choices defining
MGaux(Ẑp) or MHpaux

.

Proof. By Propositions 2.2.1.2 and 2.2.1.7, ~Mmin
H is flat over Z(p)

and is noetherian normal, and the complement of [~MH]∪Mmin
H in ~Mmin

H is



2.2. AS NORMALIZATIONS AND BLOW-UPS 151

of codimension at least two. Hence, the canonical restriction morphism

(2.2.1.16) Γ(~Mmin
H , ω⊗ aN1k

~Mmin
H

)→ Γ([~MH]∪Mmin
H , (ω⊗ aN1k

~Mmin
H

)|[~MH]∪Mmin
H

)

is an isomorphism for each k ≥ 0. By Propositions 2.2.1.1 and 2.2.1.2,
the right-hand side of (2.2.1.16) depends only on the linear algebraic

data defining MH. Since ~Mmin
H
∼= Proj

(
⊕
k≥0

Γ(~Mmin
H , ω⊗ aN1k

~Mmin
H

)
)

, the corol-

lary follows, as desired. �

2.2.2. Flat Integral Models for Projective Toroidal Com-
pactifications.

Proposition 2.2.2.1. Let H, Σ, pol, H,dpol, and JH,dpol be as in
Theorem 1.3.1.10 (for each integer d ≥ 1). (In particular, H is neat and

Σ is projective.) For each d ≥ 1, let ~JH,dpol be the coherent O~Mmin
H

-ideal

defining the schematic closure in ~Mmin
H of the closed subscheme of Mmin

H
defined by the coherent OMmin

H
-ideal JH,dpol. Suppose d0 ≥ 1 is any

integer such that the statement in Theorem 1.3.1.10 is true. Let

~Mtor
H,d0pol

:= NBl ~JH,d0pol
(~Mmin
H ).

Then ~Mtor
H,d0pol

is a normal scheme projective and flat over
~S0 = Spec(OF0,(p)) equipped with a canonical isomorphism
~Mtor
H,d0pol

×
~S0

S0
∼= Mtor

H,Σ over S0 = Spec(F0). The canonical

morphism
∮
H : Mtor

H,Σ → Mmin
H extends to a canonical morphism

~∮
H : ~Mtor

H,d0pol
→ ~Mmin

H . Moreover, the canonical morphisms

(2.2.2.2) O~Mmin
H
→ ~∮

H,∗O~Mtor
H,d0pol

is an isomorphism. Since closed subscheme of ~Mmin
H defined by ~JH,dpol

necessarily lies in the closed complement of ~MH in ~Mmin
H , the pull-

back of ~
∮
H under the canonical morphism ~MH → ~Mmin

H is an isomor-

phism, which canonically identifies ~MH as an open dense subscheme of
~Mtor
H,d0pol

.

By abuse of notation, we denote the pullback of ω⊗ aN1

~Mmin
H

to ~Mtor
H,d0pol

by ω⊗ aN1

~Mtor
H,d0pol

(cf. Proposition 2.2.1.2). Then ω⊗ aN1k
~Mtor
H,d0pol

is generated by

global sections for sufficiently large k ≥ 1, and we have a canonical
isomorphism

~Mmin
H
∼= Proj

(
⊕
k≥0

Γ(~Mtor
H,d0pol

, ω⊗ aN1k
~Mtor
H,d0pol

)
)
.
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Proof. The statements in the first paragraph are all
self-explanatory. The statement in the second paragraph is true

because, for each k ≥ 0, Γ(~Mtor
H,d0pol

, ω⊗ aN1k
~Mtor
H,d0pol

) ∼= Γ(~Mmin
H , ω⊗ aN1k

~Mmin
H

) by

the projection formula [35, 0I, 5.4.10.1], and because ω⊗ aN1

~Mmin
H

is ample

over ~Mmin
H (see Proposition 2.2.1.2). �

Proposition 2.2.2.3. With the assumptions in Proposition 2.2.2.1,
suppose H′, Σ′, and pol′ are as in Proposition 1.3.1.11. Then we define

~JH′,d0pol
′ := (~Mmin

H′ → ~Mmin
H )∗ ~JH,d0pol

and
~Mtor
H′,d0pol

′ := NBl ~JH′,d0pol′
(~Mmin
H′ ).

Then ~Mtor
H′,d0pol

′ enjoys analogues of properties of ~Mtor
H,d0pol

in Proposition
2.2.2.1, and we have a canonical morphism

(2.2.2.4) ~Mtor
H′,d0pol

′ → ~Mtor
H,d0pol

which is finite. Moreover, ~Mtor
H′,d0pol

′ is canonically isomorphic to the

normalization of ~Mtor
H,d0pol

in MH′ under the composition of canonical

morphisms MH′ → MH ↪→ Mtor
H,Σ → ~Mtor

H,d0pol
.

If Σ′ is smooth, then ~Mtor
H′,d0pol

′ can also be constructed as in Propo-
sition 2.2.2.1, and the schemes we obtain in the two constructions are
canonically isomorphic.

Proof. As in the proof of Proposition 1.3.1.11, since ~JH′,d0pol
′ is

the pullback of ~JH,d0pol under the finite morphism ~Mmin
H′ → ~Mmin

H , the
morphism (2.2.2.4) exists and is finite, by the universal property of the

normalization of blow-up. Since ~Mtor
H′,d0pol

′ is normal, it is canonically

isomorphic to the normalization of ~Mtor
H,d0pol

in MH′ by Zariski’s main
theorem (see [35, III-1, 4.4.3, 4.4.11]).

If Σ′ is smooth, then the ~JH′,d0pol
′ defined as a pullback is canon-

ically isomorphic to the ~JH′,d0pol
′ defined on ~Mmin

H′ itself, and hence

the two constructions of ~Mtor
H′,d0pol

′ by normalizations of blow-ups give
canonically isomorphic schemes. �

Remark 2.2.2.5. We introduce the scheme ~Mtor
H,d0pol

in Proposition
2.2.2.1 mainly for technical reasons, and for the sake of completeness.

This is even more so for the scheme ~Mtor
H′,d0pol

′ in Proposition 2.2.2.3.

(We will need special cases of them in Sections 5.2.3 and 6.1.1 below.)
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For each stratum Z[(ΦH,δH,σ)] as in (2) of Theorem 1.3.1.3, consider

its closure Z[(ΦH,δH,σ)] in Mtor
H,Σ and its closure ~Z[(ΦH,δH,σ)],d0pol in ~Mtor

H,d0pol
.

Then we define a locally closed subscheme
(2.2.2.6)
~Z[(ΦH,δH,σ)],d0pol := ~Z[(ΦH,δH,σ)],d0pol − ∪

Z[(ΦH,δH,σ)]*Z[(Φ′H,δ
′
H,τ)]

~Z[(Φ′H,δ
′
H,τ)],d0pol

of ~Mtor
H,d0pol

. By definition, we have the following:

Lemma 2.2.2.7. If Z[(ΦH,δH,σ)] is contained in the closure Z[(Φ′H,δ
′
H,τ)]

of Z[(Φ′H,δ
′
H,τ)], then ~Z[(ΦH,δH,σ)],d0pol is contained in ~Z[(Φ′H,δ

′
H,τ)],d0pol,

and the latter agrees with the closure of ~Z[(Φ′H,δ
′
H,τ)],d0pol in ~Mtor

H,d0pol
.

Moreover, the canonical morphism ~∮
H : ~Mtor

H,d0pol
→ ~Mmin

H maps each
~Z[(ΦH,δH,σ)],d0pol to (an open subscheme of) ~Z[(ΦH,δH)].

Remark 2.2.2.8. It is not clear whether the collection
{~Z[(ΦH,δH,σ)],d0pol}[(ΦH,δH,σ)] defines a stratification of ~Mtor

H,d0pol
(cf.

Remark 2.2.1.6). However, we shall still call ~Z[(ΦH,δH,σ)],d0pol the
[(ΦH, δH, σ)]-stratum, by abuse of language.

2.2.3. Hecke Actions.

Proposition 2.2.3.1. (Compare with Proposition 1.3.1.14.) Sup-
pose that g = (g0, gp) ∈ G(A∞,p)×G(Zp) ⊂ G(A∞) and that H and H′
are two open compact subgroups of G(Ẑ) such that H′ ⊂ gHg−1. Then
there is a canonical finite surjection

~[g] : ~MH′ → ~MH

(over ~S0 = Spec(OF0,(p))) extending the canonical finite surjection [g] :
MH′ → MH (over S0 = Spec(F0)) defined by the Hecke action of g,

such that ω⊗ k~MH
over ~MH is pulled back to ω⊗ k~MH′

over ~MH′ (up to canon-

ical isomorphism) whenever k is divisible by the integer a in Lemma
2.1.2.35. Moreover, there is a canonical finite surjection

~[g]
min

: ~Mmin
H′ → ~Mmin

H

(over ~S0) extending the canonical finite surjection [[g]] : [MH′ ]→ [MH]

(over S0) induced by [g], such that ω⊗ k~Mmin
H

over ~Mmin
H is pulled back to

ω⊗ k~Mmin
H′

over ~Mmin
H′ (up to canonical isomorphism, compatible with the pre-

vious one) whenever the former is defined. (This canonical morphism

is compatible with the canonical isomorphism ([g]min)∗ω⊗ k
Mmin
H

∼→ ω⊗ k
Mmin
H′
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in Proposition 1.3.1.14.) By restriction, the surjection ~[g]
min

induces

the surjection [ ~[g]] : [~MH′ ]→ [~MH] induced by ~[g].

The surjection ~[g]
min

maps the [(Φ′H′ , δ
′
H′)]-stratum ~Z[(Φ′H′ ,δ

′
H′ )]

of

~Mmin
H′ to the [(ΦH, δH)]-stratum ~Z[(ΦH,δH)] of ~Mmin

H if and only if there are
representatives (ΦH, δH) and (Φ′H′ , δ

′
H′) of [(ΦH, δH)] and [(Φ′H′ , δ

′
H′)],

respectively, such that (ΦH, δH) is g-assigned to (Φ′H′ , δ
′
H′) as in [62,

Def. 5.4.3.9].
If g = g1g2, where g1 = (g1,0, g1,p) and g2 = (g2,0, g2,p) are elements

of G(A∞,p)×G(Zp) ⊂ G(A∞), each having a setup similar to that of

g, then we have ~[g] = ~[g2] ◦ ~[g1], [ ~[g]] = [ ~[g2]] ◦ [ ~[g1]], and ~[g]
min

=
~[g2]

min
◦ ~[g1]

min
.

Proof. Since H′ ⊂ gHg−1, by considering their images under the
canonical homomorphisms G(Ẑ)→ G(Ẑp) and G(Ẑ)→ G(Zp) (and the

canonical homomorphisms G(Ẑp) → Gaux(Ẑp) and G(Zp) → Gaux(Zp)
given by (2.1.1.10)), there exist an open compact subgroup H′,paux of

Gaux(Ẑp) contained in g0Gaux(Ẑp)g−1
0 such that H′,pauxGaux(Zp) contains

the image of H′ under the homomorphism G(Ẑ) → Gaux(Ẑ) given by
(2.1.1.10).

Since gp ∈ G(Zp), the Hecke twists of tautological objects over MH′
and MH′,paux

⊗
Z
Q are realized by compatible Z×(p)-isogenies, and hence [g] :

MH′ → MH and [g0]⊗
Z
Q : MH′,paux

⊗
Z
Q → MGaux(Ẑp)⊗Z

Q are compatible

(see (2) of Lemma 2.1.1.1 and Proposition 2.1.1.15). Then we have a
commutative diagram

MH′ //

[g]

''

(2.1.1.17)

��

~MH′
~[g]

%%

��

MH //

(2.1.1.17)

��

~MH

��

MH′,paux
⊗
Z
Q //

[g0]⊗
Z
Q

&&

MH′,paux

[g0]

$$

MGaux(Ẑp)⊗Z
Q // MGaux(Ẑp)

of solid arrows, in which all unnamed morphisms are canonical mor-
phisms, inducing the desired (compatible) dotted arrow.
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By taking normalizations and by Zariski’s main theorem (see [35,
III-1, 4.4.3, 4.4.11]), we obtain a commutative diagram

Mmin
H′

//

[g]min

''

(2.1.2.39)

��

~Mmin
H′

~[g]
min

$$

��

Mmin
H

//

(2.1.2.39)

��

~Mmin
H

��

Mmin
H′,paux
⊗
Z
Q //

[g0]min⊗
Z
Q

&&

Mmin
H′,paux

[g0]min

##

Mmin
Gaux(Ẑp)

⊗
Z
Q // Mmin

Gaux(Ẑp)

of solid arrows compatible with the previous one, in which all unnamed
morphisms are canonical morphisms, inducing the desired dotted ar-
row (compatible with all the other arrows in both diagrams). The
remaining statements in the proposition then follow from the known
statements (including those in Proposition 1.3.1.14) and from the var-
ious universal properties. �

Corollary 2.2.3.2. (Compare with [62, Cor. 7.2.5.2].) Suppose

we have two open compact subgroups H and H′ of G(Ẑ) such that H′
is a normal subgroup of H. Then the canonical morphisms defined in

Proposition 2.2.3.1 induce an action of the finite group H/H′ on ~Mmin
H′ .

The canonical surjection ~[1]
min

: ~Mmin
H′ � ~Mmin

H defined by Proposition

2.2.3.1 can be identified with the quotient of ~Mmin
H′ by this action.

Proof. The existence of such an action is clear. Since ~Mmin
H′

is projective over S0 and normal, the quotient ~Mmin
H′ /(H/H′) exists

as a scheme (cf. [25, V, 4.1]). Then it follows from Zariski’s
main theorem (see [35, III-1, 4.4.3, 4.4.11]) that the induced

morphism ~Mmin
H′ /(H/H′) → ~Mmin

H (with noetherian normal target)

is an isomorphism, because it is generically so (over ~Mmin
H , by [62,

Cor. 7.2.5.2]—in fact, the proof here is part of that of [62, Cor.
7.2.5.2]). �

For later references, let us define:

Definition 2.2.3.3. For each integer i ≥ 0, we define S0,i :=

Spec(F0[ζpi ]) and ~S0,i := Spec(OF0,(p)[ζpi ]).
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Definition 2.2.3.4. For each integer i ≥ 0, we define MH,i (resp.
Mmin
H,i , resp. Mtor

H,Σ,i) to be the base change MH×
S0

S0,i (resp. Mmin
H ×

S0

S0,i,

resp. Mtor
H,Σ×

S0

S0,i) over S0,i. For each locally closed subscheme Z[(ΦH,δH)]

of Mmin
H as in (4) of Theorem 1.3.1.5, we denote by Z[(ΦH,δH)],i its

pullback under the canonical morphism Mmin
H,i → Mmin

H . For each lo-
cally closed subalgebraic stack Z[(ΦH,δH,σ)] of Mtor

H,Σ as in (2) of Theorem
1.3.1.3, we denote by Z[(ΦH,δH,σ)],i its pullback under the canonical mor-
phism Mtor

H,Σ,i → Mtor
H,Σ.

Definition 2.2.3.5. For each integer i ≥ 0, we define ~MH,i (resp.
~Mmin
H,i ) to be the normalization of ~MH×

~S0

~S0,i (resp. ~Mmin
H ×

~S0

~S0,i). For each

locally closed subscheme ~Z[(ΦH,δH)] of ~Mmin
H as in (2.2.1.4), we denote by

~Z[(ΦH,δH)],i its pullback under the canonical morphism ~Mmin
H,i → ~Mmin

H .
For each integer i ≥ 0, and for each H, Σ, pol, and d0

as in Proposition 2.2.2.1 such that ~Mtor
H,d0pol

is defined, we also

define ~Mtor
H,d0pol,i

to be the normalization of ~Mtor
H,d0pol

×
~S0

~S0,i. For

each locally closed subscheme ~Z[(ΦH,δH,σ)],d0pol of ~Mtor
H,d0pol

as in

(2.2.2.6), we denote by ~Z[(ΦH,δH,σ)],d0pol,i its pullback under the

canonical morphism ~Mtor
H,d0pol,i

→ ~Mtor
H,d0pol

. Then the base change
~∮
H×
~S0

~S0,i : ~Mtor
H,d0pol

×
~S0

~S0,i → ~Mmin
H ×

~S0

~S0,i induces a canonical morphism

~∮
H,i : ~Mtor

H,d0pol,i
→ ~Mmin

H,i , mapping each ~Z[(ΦH,δH,σ)],d0pol,i as above to

~Z[(ΦH,δH)],i. We naturally extend these definitions to the schemes
~Mtor
H′,d0pol

′ constructed in Proposition 2.2.2.3.

For all integers i′ ≥ i ≥ 0, if ~[g]
min

: ~Mmin
H′ → ~Mmin

H is defined as in
Proposition 2.2.3.1, then we denote the canonically induced morphism
~Mmin
H′,i′ → ~Mmin

H,i (compatible with ~S0,i′ → ~S0,i) by ~[g]
min

i′,i .

2.2.4. The Case When p is a Good Prime. Suppose p is a good
prime (for the integral PEL datum (O, ?, L, 〈 · , · 〉, h0)) as in Definition

1.1.1.6. Suppose H ⊂ G(Ẑ) is an open compact subgroup. By consid-

ering the image of H under the canonical morphism G(Ẑ) → G(Ẑp),
we know that there exists some open compact subgroup Hp ⊂ G(Ẑp)
such that H ⊂ H′ := HpG(Zp).
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By [62, Prop. 1.4.4.3], there is a canonical open and closed immer-
sion

(2.2.4.1) MH′ ↪→ MHp ×
~S0

S0.

(By [53, Sec. 8], this is an isomorphism at least when O⊗
Z
Q is simple,

but we do not need to know that.)

Lemma 2.2.4.2. With assumptions as above, there is a canonical
open and closed immersion

(2.2.4.3) ~Mmin
H′ ↪→ Mmin

Hp

inducing a canonical open and closed immersion

(2.2.4.4) [~MH′ ] ↪→ [MHp ],

so that ~Mmin
H′ (resp. [~MH′ ]) is the scheme closure of [MH′ ] in Mmin

Hp (resp.
[MHp ]) under the canonical morphism induced by (2.2.4.1).

In particular, the construction of ~Mmin
H′ (resp. [~MH′ ]) is independent

of the auxiliary choice of (Oaux, ?aux, Laux, 〈 · , · 〉aux, h0,aux). The same

is true for ~Mmin
H (resp. [~MH]), regardless of the choice of H′.

Proof. With the setting in Proposition 2.1.1.15, under the addi-
tional assumption in this lemma that p is a good prime, we can arrange
that the canonical morphism (2.1.1.17) extends to a composition

(2.2.4.5) MH′ → MHp → MGaux(Ẑp)

of canonical morphisms, the latter one being finite by the same ar-
gument as in the proof of Proposition 2.1.1.15. (In fact, by Lemma
2.1.1.1, we can take MGaux(Ẑp) to be MG(Ẑp) in this case.) Then (2.2.4.5)
induces a composition

(2.2.4.6) MH′ → Mmin
Hp → Mmin

Gaux(Ẑp)

of canonical morphisms, the latter one being finite by the same argu-
ment as in the proofs of Proposition 2.1.2.29 and Corollary 2.1.2.37.
(Again by Lemma 2.1.1.1, we can take MGaux(Ẑp) to be MG(Ẑp), in which

case Mmin
Gaux(Ẑp)

is Mmin
G(Ẑp)

.) Since Mmin
Hp is normal, by definition of [~MH′ ]

and ~Mmin
H′ (see Propositions 2.2.1.1 and 2.2.1.2) and by Zariski’s main

theorem (see [35, III-1, 4.4.3, 4.4.11]), the open and closed immersion
(2.2.4.1) induces the desired open and closed immersions (2.2.4.4) and
(2.2.4.3).

The last assertion (concerning ~Mmin
H and [~MH]) then follows, because

the canonical morphism [MH] → Mmin
Gaux(Ẑp)

induced by (2.1.1.17) (see
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Proposition 2.2.1.2) factors as a composition [MH]→ [MH′ ]→ Mmin
Hp →

Mmin
Gaux(Ẑp)

of canonical morphisms (see (2.2.4.6)), and hence ~Mmin
H (resp.

[~MH]) is the normalization of ~Mmin
H′ (resp. [~MH′ ]) under the canonical

morphism [MH] → ~Mmin
H′ (resp. [MH] → [~MH′ ]). This does not depend

on the choice of H′ because replacing H′ with a finite index subgroup
only results in finite morphisms between normal schemes, and the con-

struction of ~Mmin
H′ (resp. [~MH′ ]) by normalization is insensitive to such

morphisms. �



CHAPTER 3

Ordinary Loci

In this chapter, we introduce the notions of ordinary (semi-)abelian
schemes and ordinary level structures, define the moduli problems pa-
rameterizing them, and construct the ordinary loci by normalizing
these moduli problems after suitable base changes. The terminology of
ordinary loci is, admittedly, an abuse of language. Nevertheless, these
ordinary loci can be embedded into (normalizations of suitable base
changes) of the flat integral models constructed in Chapter 2 (which
we view as the total models). The main point is that, while we can-
not describe the local structures of the total models in detail, we can
describe the local structures of these ordinary loci rather precisely, be-
cause these ordinary loci are constructed as normalizations of moduli
problems with explicit and mild singularities.

3.1. Ordinary Semi-Abelian Schemes and Serre’s
Construction

3.1.1. Ordinary Abelian Schemes and Semi-Abelian
Schemes.

Definition 3.1.1.1. Let U be a scheme. We say that a quasi-
finite flat commutative group scheme H of finite presentation over U
is of étale-multiplicative type if it is étale locally an extension of
a (commutative) étale group scheme by a finite flat group scheme of
multiplicative type. (For simplicity, we shall often suppress the modi-
fiers such as being commutative or being of finite presentation when we
mention group schemes of étale-multiplicative type.)

Definition 3.1.1.2. Let U be a scheme. We say that a semi-abelian
scheme Z → U is ordinary if, for every integer m ≥ 1, the (commu-
tative) quasi-finite flat group scheme Z[m] (of finite presentation over
U) is of étale-multiplicative type. We say an abelian scheme Z → U is
ordinary if it is ordinary as a semi-abelian scheme.

Remark 3.1.1.3. It suffices to verify this condition over strict local
rings of U for rational prime numbers m > 1 that are residue charac-
teristics of U .

159
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Remark 3.1.1.4. Suppose U is the spectrum of a strict local ring of
residue characteristic p > 0. Then it suffices to verify that, at a geomet-
ric point above the special point, the connected part of the p-divisible
group of the pullback of the semi-abelian scheme is of multiplicative
type. This is a condition for the slopes in the Dieudonné–Manin clas-
sification of isogeny classes of p-divisible groups over an algebraically
closed field of characteristic p (see [75]).

If U is a scheme over Spec(Q), then every semi-abelian scheme
Z → U is ordinary. If U is the spectrum of an algebraic closed field
of characteristic p, then a semi-abelian scheme Z → U , which is an
extension of an abelian scheme Zab by a torus Ztor, is ordinary if and
only if Zab is an ordinary abelian variety.

Lemma 3.1.1.5. If Z → Z ′ is an isogeny between semi-abelian
schemes over U , then Z is ordinary if and only if Z ′ is.

Proof. This follows from Remarks 3.1.1.3 and 3.1.1.4. �

For later reference, let us define:

Definition 3.1.1.6. For each scheme S over Spec(Z) and any in-
teger n ≥ 1, we define a functor on the category of étale sheaves of
Z/nZ-modules over S by setting

( · )mult := HomS(HomS( · , ((Z/nZ)(1))S),µn,S)
∼= HomS(HomS( · , ((Z/nZ)(1))S),Gm,S).

For constant sheaves of Z/nZ-modules, we denote (( · )S)mult by ( · )mult
S .

By functoriality, étale sheaves carrying O-actions are sent to finite flat
group schemes of multiplicative type also carrying O-actions.

Definition 3.1.1.7. When S is a scheme of characteristic p, we
extend such a definition to the category of étale sheaves of Zp-modules
over S by setting

( · )mult := lim−→
r

( · /(pr · ))mult,

which is a p-divisible group of multiplicative type.

Example 3.1.1.8. Let S be a scheme of characteristic p. Let
(Qp/Zp)S = lim−→

r

(( 1
pr
Zp)/Zp)S denote the split rank-one étale p-divisible

group over S. (For such constant objects, if S is a geometric point, and
if the context is clear, we shall often suppress S from the notation.) Let
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µp∞,S = lim−→
r

µpr,S = lim−→
r

Gm,S[pr] denote the split rank-one p-divisible

group of multiplicative type over S. Then we have

(Zp(1))mult = lim−→
r

((Z/prZ)(1))mult ∼= lim−→
r

µpr,S = µp∞,S,

which is the Serre dual of (Qp/Zp)S.

3.1.2. Serre’s Construction for Ordinary Abelian Schemes.
The following definition has been alluded to when we cited [62, Prop.
5.2.3.9] in Section 1.3.3:

Definition 3.1.2.1. (See [62, Def. 5.2.3.6].) Let U be a scheme,
and let N be an étale sheaf of left O-modules that becomes a constant
finitely generated O-module N over a finite étale covering of U . Let
(Z, λZ) be a polarized abelian scheme over U with a left O-action given
by some iZ : O → EndU(Z). Then we denote by HomO(N,Z) the
(commutative) group functor of O-equivariant group homomorphisms
from the group functor N to the group functor Z.

The aim of this subsection is to further generalize [62, Prop. 5.2.3.9],
to include a treatment of the fiberwise geometric identity components
and group schemes of fiberwise geometric connected components when
the base scheme U has residue characteristics ramified in O and when
the abelian scheme Z → U in question is ordinary (see Definition
3.1.1.2).

Lemma 3.1.2.2. Suppose that W is a commutative proper group
scheme of finite presentation over U . Suppose that W0 is an abelian
subscheme of W (i.e. a subgroup scheme that is an abelian scheme),
and that there is an integer m ≥ 1 such that multiplication by m de-
fines a homomorphism [m] : W → W with schematic image a (closed)
subscheme of W0 and such that W [m], the m-torsion subgroup scheme
of W , is finite flat over U . Then, for every geometric point s̄ → U ,
the fiber (W0)s̄ is the reduced subscheme of the connected component of
Ws̄ containing the identity section. Moreover, W is flat and the quo-
tient group functor W/W0 is representable by a commutative finite flat
group scheme E. The group π0(Ws̄) of connected components can be
canonically identified with the s̄-valued points of Es̄.

Proof. Since W is commutative and since W0 is (fppf locally)
m-divisible as an abelian scheme, the condition that [m] sends W to
W0 shows that W/W0 can be identified with the quotient of W [m]
by W0[m] = W0 ∩ W [m]. Since W0 is an abelian scheme, W0[m] is
finite flat over U and the quotient W/W0 is representable (by [25, V,
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4.1]). Since W [m] is finite flat, the quotient W [m]/W0[m] is also finite
flat (by [25, VIA, 3.2 and 5.4]). (All of these statements are over U .)
The statements on the identity components and group of connected
components of geometric fibers are obvious. �

Definition 3.1.2.3. (Compare with [62, Def. 5.2.3.8].) Suppose W0

is an abelian subscheme of a proper group scheme W of finite presenta-
tion over a base scheme U , such that for every geometric point s̄→ U ,
the fiber (W0)s̄ is the reduced subscheme of the connected component
of Ws̄ containing the identity section. Then we say (for simplicity) that
W0 is the fiberwise geometric identity component of W (with-
out emphasizing that it is reduced), and denote it by W ◦. (By [35,
IV-2, 4.5.13], it is also correct to say that W0 is the fiberwise identity
component, without the term geometric.)

Suppose the quotient group functor W/W0 is representable by a fi-
nite group scheme E. Then we say that E is the group scheme
of fiberwise geometric connected components, and denote it by
π0(W/U).

By Lemma 3.1.2.2, the finite group scheme π0(W/U) is defined and
is finite flat over U if W is commutative and if there is an integer m ≥ 1
such that multiplication by m defines a homomorphism [m] : W → W
with schematic image a (closed) abelian subscheme of W0 and such
that W [m] is finite flat over U .

Now we can state our (slight) generalization of [62, Prop. 5.2.3.9]:

Proposition 3.1.2.4. With the setting as in Definition 3.1.2.1,
suppose N is constant with value some finitely generated O-module N .
Then the following are true:

(1) The group functor HomO(N,Z) is representable by a proper
subgroup scheme of an abelian scheme over U .

(2) Suppose that N is torsion of order annihilated by some integers
m ≥ 1, and that Z[m] is a finite flat group scheme of étale-
multiplicative type over U . Then HomO(N,Z) is also finite
flat of étale-multiplicative type over U .

(3) If N is projective as an O-module, then HomO(N,Z) is repre-
sentable by an abelian scheme.

(4) Suppose that N is an O-lattice, and that Z is an ordinary
abelian scheme over U (see Definition 3.1.1.2). Then
HomO(N,Z) is representable by a proper flat group scheme
which is an extension of a (commutative) finite flat group
scheme of étale-multiplicative type, whose rank has no prime
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factors other than those of the discriminant of Disc = DiscO/Z
[62, Def. 1.1.1.6], by an abelian scheme over U .

Following Definition 3.1.2.3, we shall say that
HomO(N,Z) is the extension of the finite flat group scheme
π0(HomO(N,Z)/U) of étale-multiplicative type by the abelian
scheme HomO(N,Z)◦.

We shall still call this Serre’s construction (as in [62, Prop. 5.2.3.9]).

Proof. (This is essentially the same proof of [62, Prop. 5.2.3.9].)
SinceO is (left) noetherian (see, for example, [93, Cor. 2.10]), and since
N is finitely generated, there is a free resolution O⊕ r1 → O⊕ r0 → N →
0 for some integers r0, r1 ≥ 0. By taking HomO( · , Z), we obtain an
exact sequence

(3.1.2.5) 0→ HomO(N,Z)→ Zr0 → Zr1

(of fppf sheaves) over U , where Zr0 (resp. Zr1) stands for the fiber prod-
ucts of r0 (resp. r1) copies of Z over U , which shows that HomO(N,Z) is
representable because it is the kernel of the homomorphism Zr0 → Zr1

between abelian schemes in (3.1.2.5).
To show that HomO(N,Z) is proper over U , note that the first ho-

momorphism in (3.1.2.5) is a closed immersion because Zs is separated
over U , and every closed subscheme of Zr is proper over U . This proves
(1) of Proposition 3.1.2.4.

Suppose that N is torsion of order annihilated by some integers m ≥
1, and that Z[m] is a finite flat group scheme of étale-multiplicative
type over U . Then HomO(N,Z) is isomorphic to the closed subscheme
HomO(N,Z[m]) of the finite flat group scheme HomZ(N,Z[m]) of étale-
multiplicative type over U . Over an étale covering of U over which
Z[m] admits an O-equivariant filtration by finite flat subgroup schemes
whose graded pieces are either constant group schemes or dual to con-
stant group schemes (i.e., split multiplicative), the condition of com-
patibilities with O-actions on the constant schemes involved is both
open and closed. This implies that HomO(N,Z) is also finite flat of
étale-multiplicative type over U . This proves (2) of Proposition 3.1.2.4.

If N is projective, then it is flat by [93, Cor. 2.16]. This is the
same for its dual (right) O-module N∨. Hence, for every embedding
U ↪→ Ũ defined by an ideal I such that I 2 = 0, the surjectivity of
the morphism Z(Ũ) → Z(U) of O-modules implies the surjectivity of
the morphism

(N∨⊗
O
Z)(Ũ) ∼= N∨⊗

O
Z(Ũ)→ (N∨⊗

O
Z)(U) ∼= N∨⊗

O
Z(U).
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This shows that HomO(N,Z) → U is formally smooth, and hence
smooth because it is (locally) of finite presentation (see [35, IV-4, 17.3.1
and 17.5.2]). Moreover, since N is projective, there exists some pro-
jective O-module N ′ such that N ⊕N ′ ∼= O⊕ r for some r ≥ 0. Then
we have HomO(N,Z)×

U
HomO(N ′, Z) ∼= Zr, which shows that the geo-

metric fibers of HomO(N,Z)→ U are connected. Hence, by definition,
HomO(N,Z) is an abelian scheme over U . This proves (3) of Proposi-
tion 3.1.2.4.

Finally, suppose that N is an O-lattice, and that Z and hence Z∨

are ordinary abelian schemes over U (see Lemma 3.1.1.5).
Let O′ be any maximal order in O⊗

Z
Q containing O. By [62, Prop.

1.1.1.21], there exists an integer m ≥ 1, with no prime factors other
than those of Disc, such that mO′ ⊂ O. Consider the intersection K
of the kernels of [b]∨ : Z∨[m] → Z∨[m] for all b ∈ mO′. By working
over an étale covering over which Z[m] and Z∨[m] admit O-equivariant
filtrations by finite flat subgroup schemes whose graded pieces are either
constant group schemes or split multiplicative (as in the proof of (2)
of Proposition 3.1.2.4 above), we see that K is a finite flat subgroup
scheme of Z∨[m], and hence so is its orthogonal complement K⊥ in
Z[m] (with respect to the canonical pairing eZ[m] : Z[m]×Z∨[m] →
µm,U). By construction, this K⊥ is the smallest subgroup scheme of
Z[m] containing the images of [b] : Z[m] → Z[m] for all b ∈ mO′.
Therefore, by forming the isogeny Z � Z ′ := Z/K⊥, the action of O
on Z induces an action ofO′ on Z ′. In this case, there is also a canonical
isogeny Z ′ � Z whose pre- and post-compositions with the previous
isogeny Z � Z ′ are multiplications by m on Z and Z ′, respectively.

Let N ′ be the O′-span of N in N ⊗
Z
Q. Since N ′ is the O′-space of

N , the canonical isogeny Z � Z ′ induces a canonical homomorphism

HomO(N,Z)→ HomO′(N
′, Z ′).

On the other hand, the canonical isogeny Z ′ � Z above induces a
canonical homomorphism

HomO′(N
′, Z ′)→ HomO(N,Z),

whose pre- and post-composition with the previous canonical homo-
morphism is nothing but the multiplications by m on HomO(N,Z)
and HomO′(N

′, Z ′), respectively. As usual, we denote by [m] all such
multiplications by m.

Since O′ is maximal, N ′ is projective as an O′-module
by [62, Prop. 1.1.1.23]. By (3) of Proposition 3.1.2.4
proved above, we know that HomO′(N

′, Z ′) is an abelian
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scheme. Since [m] : HomO(N,Z) → HomO(N,Z) fac-
tors as the composition of canonical homomorphisms
HomO(N,Z) → HomO′(N

′, Z ′) → HomO(N,Z), this shows that
the schematic image of [m] : HomO(N,Z) → HomO(N,Z) is an
abelian scheme. On the other hand, by working over an étale
covering over which Z[m] admits an O-equivariant filtration by
finite flat subgroup schemes whose graded pieces are either constant
group schemes or split multiplicative (as above), we see that
HomO(N,Z)[m] ∼= HomO(N,Z[m]) is finite flat of étale-multiplicative
type (of rank dividing a power of m) over U . Hence, by Lemma
3.1.2.2, we see that both π0(HomO(N,Z)/U) and HomO(N,Z)◦ are
defined with the desired properties. �

Remark 3.1.2.6. The materials in this subsection generalize nat-
urally to the case when U is an algebraic stack (which is Deligne–
Mumford by our convention).

3.1.3. Extensibility of Isogenies. Suppose that U is noetherian
scheme and that U is a noetherian normal scheme containing U as
an open dense subscheme. Let f : Z → Z ′ be an isogeny of semi-
abelian schemes over U (cf. Lemma 3.1.1.5), and let Z → U be a semi-
abelian scheme extending Z → U (cf. Definition 3.1.1.2), in the sense
that ZU = Z ×

U

U is isomorphic to U as a group scheme. (Then Z is

determined up to canonical isomorphism by Z, by noetherian normality
of U and by [92, IX, 1.4], [28, Ch. I, Prop. 2.7], or [62, Prop. 3.3.1.5].)

Let K := ker(f), which is quasi-finite flat and of finite presentation
over U . Let K denote the schematic closure of K in Z. Let N be an
integer such that K is a closed subgroup scheme of Z[N ], which exists
because U is noetherian. Then K is a closed subgroup scheme of Z[N ]
(by the universal property of schematic closures), which is quasi-finite
over U .

Lemma 3.1.3.1. With assumptions as above, suppose U is Dedekind
(i.e., noetherian normal and of dimension at most one). Then K is a
group scheme quasi-finite flat over U , and there exists a semi-abelian

scheme Z
′ → U , unique up to unique isomorphism, such that the

isogeny f : Z → Z ′ over U uniquely extends to an isogeny f : Z → Z
′

over U .

Proof. Since U is one-dimensional, as explained in [10, Sec. 10.1,
Prop. 4 and 7; see also the middle of paragraph 2 on p. 310], the (lo-
cally of finite type) Néron models of Z and Z ′ over U (uniquely) exist,
and the (fiberwise) identity components of them are group schemes
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Z and Z
′

over U (the former being up to canonical isomorphism the
same Z as above) which are commutative, separated, smooth, and of

finite type, and have geometrically connected fibers. (Since Z
′ → U

admits the identity section, by [35, IV-2, 4.5.13], its connected fibers
are also geometrically connected.) Moreover, by the universal prop-
erty of Néron models and by the definition of identity components,
the homomorphism f : Z → Z ′ uniquely extends to a homomorphism

f : Z → Z
′

over U . Since K = ker(f) because the latter is the
(closed) preimage of the identity section of the separated group scheme

Z
′ → U , if N is any integer as above such that K = ker(f) ⊂ Z[N ],

then K = ker(f) ⊂ Z[N ]. This forces f to be quasi-finite and hence
surjective (because it is between schemes with geometrically connected
fibers that are separated, smooth, of finite type, and of the same di-
mension). Therefore, K = ker(f) is quasi-finite and flat over U (see

[62, Lem. 1.3.1.11]), and Z
′ → U is also semi-abelian (begin an isoge-

nous quotient of Z → U , whose fibers are still extensions of abelian
varieties by tori), as desired. �

Lemma 3.1.3.2. With assumptions as above, suppose moreover that
Z → U is an ordinary semi-abelian scheme (but suppose no longer
that U is one-dimensional). Then K is a group scheme quasi-finite
flat over U (of fiber degrees dividing those of K), and there exists a

semi-abelian scheme Z
′ → U such that the isogeny f : Z → Z ′ over U

extends to an isogeny f : Z → Z
′

over U . (Then Z
′

and f are deter-
mined up to unique isomorphism by Z and f , by noetherian normality
of U and by [92, IX, 1.4], [28, Ch. I, Prop. 2.7], or [62, Prop. 3.3.1.5].)

Proof. Since U is noetherian normal, by [92, XI, 1.13], Z is lo-
cally quasi-projective. Hence, by [80, IV, 7.1.2] (see also [62, Lem.
3.4.3.1]), over any open subscheme U ′ of U over which the quasi-finite
group scheme K is flat, the quotient (Z ×

U

U ′)/(K ×
U

U ′) is representable

by a semi-abelian scheme over U ′, which is also ordinary by Lemma

3.1.1.5. Hence, the flatness of K and the constructibility of Z
′

and f
are equivalent conditions over open subschemes of U .

If K were not flat, then it must be so at some point u, and we
may take this point to be maximally so. Therefore, to show that K is
flat, we may replace U with its strict localization at an arbitrary point
u (see [35, 0I, (6.6.3), and IV-4, 18.8.8(iii)]), and we may enlarge U
and assume that U is the full open complement of u in U . By Lemma
3.1.3.1, we may assume that u has codimension at least two.
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Let N be any integer as above such that K = ker(f) ⊂ H := Z[N ].
By the assumption that Z → U is ordinary, and by arguing as in [62,
Sec. 3.4.1], H := Z[N ] admits a filtration

0 ⊂ H
mult ⊂ H

f ⊂ H,

where H
mult

is finite flat of multiplicative type, where H
f
is the maximal

finite flat subgroup scheme of H over U (which is open and closed in

H, because U is Henselian), where the quotient H
f,ét

:= H
f
/H

mult
is

finite étale, and where the quotient H/H
f

is quasi-finite étale (whose
special fiber over u consists of only the identity section). Let Hmult :=

H
mult×

U

U , H f := H
f×
U

U , H f,ét := H
f,ét×

U

U , Kmult := K ∩Hmult, and

K f := K ∩H f. Note that K f is (finite and) flat over U because H f is
open and closed in H.

Let us denote Cartier duals by superscripts “D”. Note that Kmult is
the kernel of the composition of morphisms Hmult ↪→ H f � H f/K f be-
tween finite flat group schemes. (The quotientH f/K f is defined because
K f is finite flat.) The Cartier dual of this morphism is (H f/K f)D →
(Hmult)D. Since (Hmult)D is étale over U , its fibers over U are disjoint
unions of closed points. Hence, by the fiberwise criterion of flatness as
in [35, IV-3, 11.3.10 a)⇒b)], the image of (H f/K f)D → (Hmult)D is fi-
nite flat. Then the cokernel of (H f/K f)D → (Hmult)D is defined and also
finite flat of finite presentation; and its Cartier dual is Kmult and is also
finite flat of finite presentation. Thus, we can define K f,ét := K f/Kmult,
which is a finite étale subgroup scheme of H f,ét.

Let K
mult

(resp. K
f,ét

) be the schematic closure of Kmult (resp. K f,ét)

in Hmult (resp. H f,ét). Since U is strict local and normal, H
mult

(resp.

H
f,ét

) is dual to (resp. is) a constant group scheme over U . Hence,

K
mult

(resp. K
f,ét

) is also finite flat of multiplicative (resp. finite étale).

Let K
+

:= (H
f
� H

f,ét
)−1(K

f,ét
) and let K+ := K

+×
U

U . Given

K f as an extension of K f,ét by Kmult, the natural inclusion Hmult ↪→
K+ induces an isomorphism Hmult/Kmult ∼= K+/K f, and induces a
surjection

K+ � Hmult/Kmult.

Note that this surjection determines K f in the sense that its kernel is a
finite flat subgroup scheme of H f that is an extension of K f,ét by Kmult,
which is just K f.
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Since U is normal and K
+

and H
mult

/K
mult

are finite flat, the above
surjection extends to a surjection

K
+
� H

mult
/K

mult
,

whose kernel defines a finite flat subgroup scheme of H
f

that is an

extension of K
f,ét

by K
mult

, which must coincide with the closure of K f

in H
f
, which is nothing but K

f
:= K ∩H f

. Hence, K
f

is finite flat over

U . Since K −K f
has an empty fiber over u and coincides with K −K f

over U = U − {u}, we see that K is flat over all of U , as desired. �

Remark 3.1.3.3. Lemma 3.1.3.2 is incorrect if we do not assume
that Z → U is ordinary. See [18, Sec. 6] for an example even when U
is regular. (One might as well introduce conditions on U as in [101]
to ensure that it is healthy regular . However, such conditions tend to
impose restrictions on the ramification of the universal base ring, which
conflicts with our goal.)

Proposition 3.1.3.4. Let (Z, λZ)→ U be as in Definition 3.1.2.1.
Let N be an O-lattice. Suppose Z is ordinary, so that HomO(N,Z) is
defined and representable by a proper flat subgroup scheme over U ,
which is an extension of a finite flat group scheme π0(HomO(N,Z)/U)
of étale-multiplicative type by the abelian scheme HomO(N,Z)◦

as in Proposition 3.1.2.4. Suppose that U is noetherian normal
and that Z → U is an ordinary semi-abelian scheme extending
Z → U . Then HomO(N,Z) is defined and representable over U by
an extension of a quasi-finite flat group scheme π0(HomO(N,Z)/U)
of étale-multiplicative type by a semi-abelian scheme HomO(N,Z)◦.
The restriction of this extension to U is the extension HomO(N,Z) of
the finite flat group scheme π0(HomO(N,Z)/U) of étale-multiplicative
type by an abelian scheme HomO(N,Z)◦ in (4) of Proposition 3.1.2.4.

Proof. The same argument of the proof of (1) of Proposition
3.1.2.4 shows that HomO(N,Z) is representable by a (closed) subgroup
scheme of a semi-abelian scheme over U .

The same argument of the proof of (3) of Proposition 3.1.2.4 shows
that, when N is projective as anO-module, there exists some projective

O-module N ′ such that HomO(N,Z)×
U

HomO(N ′, Z) ∼= Z
× r

for some

integer r, which implies that HomO(N,Z) is a semi-abelian scheme
over U , because it is commutative, separated, smooth, and of finite
type, and because its geometric fibers are all connected with trivial
unipotent radicals (see [10, Sec. 7.3, paragraph following Lem. 1]).
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Let m ≥ 1, O′, Z � Z ′, Z ′ � Z, and N ′ be as in the proof of (4) of
Proposition 3.1.2.4. Since U is noetherian normal, by Lemma 3.1.3.2,

there exist a semi-abelian scheme Z
′

and two isogenies Z � Z
′

and

Z
′
� Z over U extending the isogenies Z � Z ′ and Z ′ � Z over U . By

the previous paragraph, we know that HomO′(N
′, Z
′
) is representable

by a semi-abelian scheme over U . Moreover, the same argument of the
proof of (2) of Proposition 3.1.2.4 shows that HomO(N,Z)[m] is quasi-
finite flat of étale-multiplicative type over U for every integer m ≥ 1.
Hence, the same argument of the proof of (4) of Proposition 3.1.2.4
shows that the schematic-image of [m] : HomO(N,Z) → HomO(N,Z)
is an semi-abelian scheme over U , which is an isogenous quotient of

HomO′(N
′, Z
′
) (by Lemma 3.1.3.2 again). Let us denote this semi-

abelian scheme by HomO(N,Z)◦.
As in the proof of Lemma 3.1.2.2, since HomO(N,Z)◦ is (fppf

locally) m-divisible (as a semi-abelian scheme) over U , the quotient
HomO(N,Z)/HomO(N,Z)◦ can be identified (as a fppf sheaf over
U) with HomO(N,Z)[m]/HomO(N,Z)◦[m], which is representable
by a quasi-finite flat scheme π0(HomO(N,Z)/U) over U because
HomO(N,Z)◦[m] is closed in HomO(N,Z)[m] (by [52, II, 6.16], an
algebraic space quasi-finite and separated over a scheme is a scheme).

Thus, HomO(N,Z) is an extension of a quasi-finite flat group
scheme π0(HomO(N,Z)/U) of étale-multiplicative type by a
semi-abelian scheme HomO(N,Z)◦ over U . By its very construction,
this extension extends the corresponding extension in (4) of
Proposition 3.1.2.4, as desired. �

3.2. Linear Algebraic Data for Ordinary Loci

3.2.1. Necessary Data for Ordinary Reductions. Suppose
there exists an abelian scheme A over S = Spec(R), where R is a
complete noetherian normal domain with fraction field K of charac-
teristic zero and algebraically closed residue field k of characteristic

p > 0, and suppose there exist a morphism ξ : S → ~MH (see Proposi-
tion 2.2.1.1), which induces a field homomorphism F0 → K factoring
through (F0)υ → K for a place υ of F0 above p. Let K̄ be an algebraic
closure of K. Let s := Spec(k), η := Spec(K), and η̄ := Spec(K̄).

For simplicity, let us assume that H is neat. Then the restriction
ξ0 : η → MH of ξ defines an object (Aη, λη, iη, αH,η) of MH(η). By [92,
IX, 1.4], [28, Ch. I, Prop. 2.7], or [62, Prop. 3.3.1.5], λη : Aη → A∨η
extends to an isogeny λ : A → A∨ over S, and iη : O → Endη(Aη)
extends to a homomorphism i : O → EndS(A). By [92, XI, 1.16], the
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symmetric invertible sheaf (IdA, λ)∗PA is ample because its restriction
to η is. Therefore, λ is also a polarization (by definition; cf. [23, 1.2, 1.3,
1.4] and [62, Prop. 1.3.2.15 and Def. 1.3.2.16]). Note that the extension
i satisfies the Rosati condition defined by λ, because it already does over
η. Hence, i is an O-endomorphism structure as in [62, Def. 1.3.3.1].
Moreover, LieA/S with its O⊗

Z
Z(p)-module structure given naturally

by i satisfies the determinantal condition in [62, Def. 1.3.4.1] given
by (L⊗

Z
R, 〈 · , · 〉, h0), because the condition is given by an identity of

polynomial functions, and because η is dense in S.
For each p-divisible group G, we denote by Gmult (resp. Gconn, resp.

G ét) the multiplicative-type (resp. connected, resp. étale) part of G,
whose formation is functorial and compatible with all automorphisms
of G. Let As[p

∞] = lim−→
r

As[p
r] (resp. A∨s [p∞] = lim−→

r

A∨s [pr]) denote the

p-divisible group attached to the abelian variety As (resp. A∨s ). The
canonical perfect duality

eAs[p∞] : As[p
∞]×A∨s [p∞]→ µp∞,s

induces canonical perfect dualities

As[p
∞]mult×A∨s [p∞]ét → µp∞,s

and

As[p
∞]ét×A∨s [p∞]mult → µp∞,s,

which induce canonical isomorphisms

As[p
∞]mult ∼→ Homs(A

∨
s [p∞]ét,µp∞,s)

and

As[p
∞]ét ∼→ Homs(A

∨
s [p∞]mult,µp∞,s),

respectively, compatible with their O-actions induced by i.

Proposition 3.2.1.1. With the setting as above, suppose moreover
that the abelian scheme A over S is ordinary as in Definition 3.1.1.2.
Let us fix the choice of a system of compatible isomorphisms {ζpr,η̄ :

(Z/prZ)(1)
∼→ µpr,η̄}r≥0, which exists because K is of characteristic

zero. Then the following are true:

(1) As is an ordinary abelian variety in the usual sense.
(2) The physical Tate modules TpAs and TpA

∨
s are free

Zp-modules of rank dimsAs (when their O-module structures
are ignored).
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(3) Let (α̂, ν̂) : L⊗
Z
Ẑ ∼→ TAη̄ be any lifting of αH (whose H orbit

determines αH) (as in [62, Lem. 1.3.6.5]). Then the factor

α̂p : L⊗
Z
Zp

∼→ TpAη̄

of α̂ at p and the canonical O⊗
Z
Zp-equivariant extension

0→ As[p
∞]mult → As[p

∞]→ As[p
∞]ét → 0

define a filtration

(3.2.1.2) D1 = 0 ⊂ D0 ⊂ D−1 = L⊗
Z
Zp

of O⊗
Z
Zp-modules, whose H-orbit is canonical. Let us set

Gr−1
D := D−1/D0 and Gr0

D := D0/D1 as usual. Then there exists
canonically induced O⊗

Z
Zp-equivariant isomorphisms

(Gr0
D)

mult
s
∼= As[p

∞]mult

(see Definition 3.1.1.7),

Gr−1
D
∼= TpAs,

and
Gr−1

D ⊗
Zp

(Qp/Zp) ∼= As[p
∞]ét.

(4) By duality, we have an analogous filtration

(3.2.1.3) D#,1 = 0 ⊂ D#,0 ⊂ D#,−1 = L#⊗
Z
Zp

of O⊗
Z
Zp-modules, together with canonically induced

O⊗
Z
Zp-equivariant isomorphisms

(Gr0
D#)mult

s
∼= A∨s [p∞]mult,

Gr−1
D#
∼= TpA

∨
s ,

and
Gr−1

D# ⊗
Zp

(Qp/Zp) ∼= A∨s [p∞]ét,

where Gr−1
D# := D#,−1/D#,0 and Gr0

D# := D#,0/D#,1 as usual.

(5) The canonical (O-equivariant) embedding L ↪→ L# and the
polarization λ : A → A∨ induce canonical O⊗

Z
Zp-equivariant

morphisms

(φ0
D)

mult
s : (Gr0

D)
mult
s → (Gr0

D#)mult
s

and
φ−1
D : Gr−1

D → Gr−1
D# ,
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such that (φ0
D)

mult
s and φ−1

D ⊗
Zp

(Qp/Zp) are canonically dual to

each other, making the diagrams

(Gr0
D)

mult
s

ν̂ord(φ0
D)mult
s

��

∼
// As[p

∞]mult

λ
��

(Gr0
D#)mult

s
∼
// A∨s [p∞]mult

Gr−1
D

φ−1
D

��

∼
// TpAs

λ

��

Gr−1
D#

∼
// TpA

∨
s

and
Gr−1

D ⊗
Zp

(Qp/Zp)

φ−1
D ⊗

Zp
(Qp/Zp)

��

∼
// As[p

∞]ét

λ

��

Gr−1
D# ⊗

Zp
(Qp/Zp)

∼
// A∨s [p∞]ét

commutative for some canonically determined ν̂ord ∈ Z×p .
(6) Let us consider LieA/S as an O⊗

Z
R-module using the

O-structure i. Then there are canonical isomorphisms

HomZp(Gr−1
D# ,Zp)⊗

Zp
R ∼= LieA/S

and
HomZp(Gr−1

D ,Zp)⊗
Zp
R ∼= LieA∨/S

of O⊗
Z
R-modules making the diagram

HomZp(Gr−1
D# ,Zp)⊗

Zp
R

t(φ−1
D )
��

∼
// LieA/S

dλ

��

HomZp(Gr−1
D ,Zp)⊗

Zp
R

∼
// LieA∨/S

commutative. These are dual to canonical isomorphisms

Lie∨A/S
∼→ Gr−1

D# ⊗
Zp
R

and
Lie∨A∨/S

∼→ Gr−1
D ⊗

Zp
R
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of O⊗
Z
R-modules making the diagram

Lie∨A∨/S

λ∗

��

∼
// Gr−1

D ⊗
Zp
R

φ−1
D

��

Lie∨A/S
∼
// Gr−1

D# ⊗
Zp
R

commutative.
(7) Let F ′0 and L0 be as in Section 1.4. Then, for each homomor-

phism F ′0 → K̄ of extension fields of F0, there is an isomor-
phism

L0⊗
F ′0

K̄ ∼= LieA/S ⊗
R
K̄

of O⊗
Z
K̄-modules. (This follows from the fact that

(Aη, λη, iη, αH,η), as an object of MH(η), satisfies the Lie
algebra condition in [62, Def. 1.3.4.1].) Consequently, we
have an isomorphism

(3.2.1.4) L0⊗
F ′0

K̄ ∼= HomZp(Gr−1
D# ,Zp)⊗

Zp
K̄

of O⊗
Z
K̄-modules.

(8) The canonical homomorphism Qp → (F0)υ is an isomorphism.

Proof. Statements (1) and (2) are clear form the definitions
(see Remark 3.1.1.4). Statements (3), (4), and (5) follow from
the rigidity of groups of multiplicative type (see [26, IX, 3.6 and
3.6 bis]), by (uniquely) lifting the torsion subgroup schemes As[p

r]mult

and A∨s [pr]mult to subgroup schemes A[pr]mult and A∨[pr]mult of
multiplicative type of A[pr] and A∨[pr], respectively, for each r ≥ 0, so

that α̂ induces via {ζpr,η̄}r≥0 an isomorphism (Gr0
D)

mult
η̄

∼→ Aη̄[p
∞]mult,

extending to an isomorphism over the normalization R̄ of R in K̄
and inducing the desired isomorphism (Gr0

D)
mult
s

∼→ As[p
∞]mult; so

that the dual of α̂ induces an isomorphism (Gr0
D#)mult

η̄
∼= A∨η̄ [p∞]mult,

compatible with the above isomorphism (Gr0
D)

mult
η̄

∼→ Aη̄[p
∞]mult up to

a scalar ν̂ord ∈ Z×p such that (ν̂ord mod pr) ζpr,η̄ = ν̂ mod pr for every

r ≥ 0, extending to an isomorphism over R̄ as above and inducing the
desired isomorphism (Gr0

D)
mult
s

∼→ As[p
∞]mult; and so that the rest of

the assertions follow by various canonical identifications. Statement
(6) follows from [47, 3.4], and statement (7) is self-explanatory.
Because of the isomorphism (3.2.1.4), the subfield of K̄ generated by
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traces TrC(b|L0⊗
F ′0

K̄) for b ∈ O is contained in Qp. Since this is true

for every field homomorphism F ′0 → K̄, statement (8) follows. �

3.2.2. Maximal Totally Isotropic Submodules at p. Now we
will turn the observations made in Proposition 3.2.1.1 into formal def-
initions.

Let p > 0 be any rational prime number.

Lemma 3.2.2.1. Consider the following two kinds of data:

(1) A filtration

(3.2.2.2) D1
Qp = 0 ⊂ D0

Qp ⊂ D−1
Qp = L⊗

Z
Qp

of O⊗
Z
Qp-modules such that D0

Qp is (maximal) totally isotropic

under the pairing induced by 〈 · , · 〉 and such that D0
Qp is its own

annihilator under the pairing. For simplicity, we shall call
D0
Qp a maximal totally isotropic submodule of L⊗

Z
Qp,

without mentioning the O⊗
Z
Qp-submodule structure.

(2) A filtration

(3.2.2.3) D1 = 0 ⊂ D0 ⊂ D−1 = L⊗
Z
Zp

of O⊗
Z
Zp-modules such that D0 is totally isotropic under

the pairing induced by 〈 · , · 〉, such that the quotient
O⊗

Z
Zp-module Gr−1

D = D−1/D0 is torsion-free (as a

Zp-module), and such that D0 is its own annihilator under the
pairing. For simplicity, we shall call D0 a maximal totally
isotropic submodule of L⊗

Z
Zp, without mentioning the

O⊗
Z
Zp-submodule structure.

These two kinds of data determine each other in the following way: D0
Qp

is the Qp-span of D0 in L⊗
Z
Qp, while D0 is the intersection of D0

Qp with

L⊗
Z
Zp.

Proof. The statements are self-explanatory. �

Lemma 3.2.2.4. Each choice of a filtration (3.2.2.2) (or equivalently
a filtration (3.2.2.3); see Lemma 3.2.2.1) determines the following list
of data:

(1) A filtration

(3.2.2.5) D#,1 = 0 ⊂ D#,0 ⊂ D#,−1 = L#⊗
Z
Zp
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such that D#,0 = D
#,0
Qp ∩(L#⊗

Z
Zp) in L⊗

Z
Qp, so that Gr−1

D# =

D#,−1/D#,0 is torsion-free (as a Zp-module).
(2) A perfect duality

Gr0
D×Gr−1

D# → Zp(1)

induced by 〈 · , · 〉.
(3) A perfect duality

Gr0
D# ×Gr−1

D → Zp(1)

induced by 〈 · , · 〉.
(4) An canonical inclusion

φ0
D : Gr0

D ↪→ Gr0
D#

(with finite cokernel) dual to a canonical inclusion

φ−1
D : Gr−1

D ↪→ Gr−1
D#

(with finite cokernel).
(5) For each integer r ≥ 0, we have Gr0

D,pr := D0
pr := D0/prD0,

Gr0
D#,pr := D

#,0
pr := D#,0/prD#,0, Gr−1

D,pr := Gr−1
D /pr Gr−1

D , and

Gr−1
D#,pr

:= Gr−1
D# /p

r Gr−1
D# , together with the morphisms φ0

D,pr :

Gr0
D,pr → Gr0

D#,pr and φ−1
D,pr : Gr−1

D,pr → Gr−1
D#,pr

induced by φ0
D

and φ−1
D , respectively.

Proof. The statements are self-explanatory. �

Lemma 3.2.2.6. Under the assumption that L satisfies Condition
1.2.1.1, any filtration (3.2.2.3) as in Lemma 3.2.2.1 (noncanonically)
splits. The filtration (3.2.2.5) it determines as in Lemma 3.2.2.4 also
splits. (The splittings might not be compatible with each other under
the canonical morphisms induced by L ↪→ L# and λ : A→ A∨.)

Proof. By Condition 1.2.1.1, the action of O on L extends to an
action of some maximal order O′ in O⊗

Z
Q containing O. By Lemma

3.2.2.1, D0 is the intersection of D0
Qp with L⊗

Z
Zp. Hence, the action of

O on the submodule D0 of L⊗
Z
Zp extends to an action of O′ (compat-

ible with those on D0
Qp and L⊗

Z
Zp), and the filtration D of L⊗

Z
Zp is

O′⊗
Z
Zp-equivariant. A similar argument shows that the filtration D#

on L#⊗
Z
Zp is also O′⊗

Z
Zp-equivariant. Since O′ is maximal, O′⊗

Z
Zp is

also maximal, which is hereditary in the sense that all O′⊗
Z
Zp-lattices
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(namely, finitely generated O′⊗
Z
Zp-modules with no p-torsion) are pro-

jective O′⊗
Z
Zp-modules (cf. [62, Prop. 1.1.1.12 and 1.1.1.23]). Hence,

the filtrations (3.2.2.3) and (3.2.2.5) split because Gr−1
D and Gr−1

D# are
torsion-free (as Zp-modules), as desired. �

Definition 3.2.2.7. Let O, (L, 〈 · , · 〉) be given as above. We define
for each Zp-algebra R

Pord
D (R) :=

(g, r) ∈ GLO⊗
Z
R(L⊗

Z
R)×Gm(R) :

(g, r) ∈ G(R), g(D⊗
Zp
R) = D⊗

Zp
R

 ,

Mord
D (R) :=


(g, r) ∈ GLO⊗

Z
R(GrD⊗

Zp
R)×Gm(R) :

〈gx, gy〉 = r〈x, y〉, ∀x, y ∈ GrD⊗
Zp
R

 ,

Uord
D (R) := ker(GrD : Pord

D (R)→ Mord
D (R)),

and

Uord,i
D (R) := ker(GriD : Pord

D (R)→ GLO⊗
Z
R(GriD⊗

Zp
R))

for each i. These assignments are functorial in R and define group
functors Pord

D , Mord
D , Uord

D , and Uord,i
D over Spec(Zp). By definition, Pord

D

is a subgroup of G⊗
Z
Zp, and (by Lemma 3.2.2.6) there is an exact

sequence

1→ Uord
D → Pord

D → Mord
D → 1.

As in the case of G, the projections to the second factor (g, r) 7→ r
define homomorphisms ν : Pord

D → Gm⊗
Z
Zp, ν : Mord

D → Gm⊗
Z
Zp,

and ν : Uord,i
D → Gm⊗

Z
Zp, which we call the similitude characters.

For simplicity, we shall often denote elements (g, r) by simply g, and
denote by ν(g) the value of r when we need it.
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Definition 3.2.2.8. For all integers 0 ≤ r and 0 ≤ r1 ≤ r0, we
set:

Up(pr) := ker(G(Zp)→ G(Z/prZ)),

Up,0(pr) := (G(Zp)→ G(Z/prZ))−1(Pord
D (Z/prZ)),

Up,1(pr) := (G(Zp)→ G(Z/prZ))−1(Uord,−1
D (Z/prZ)),

Ubal
p,1 (pr) := (G(Zp)→ G(Z/prZ))−1(Uord

D (Z/prZ)),

Up,1,0(pr1 , pr0) := Up,1(pr1)∩Up,0(pr0),

Ubal
p,1,0(pr1 , pr0) := Ubal

p,1 (pr1)∩Up,0(pr0),

Uord(pr) := ker(Mord
D (Zp)→ Mord

D (Z/prZ)).

Definition 3.2.2.9. We say that an open compact subgroup Hp ⊂
G(Zp) is of standard form with respect to D if there exists an
integer r ≥ 0 such that

Ubal
p,1 (pr) ⊂ Hp ⊂ Up,0(pr).

In this case, we say that r is the depth of Hp, and write
r = depthD(Hp).

We say that an open compact subgroup H ⊂ G(Ẑ) is of standard
form with respect to D if it is of the form H = HpHp, where Hp ⊂
G(Ẑp) and Hp ⊂ G(Zp), such that Hp is of standard form with respect
to D. In this case, we set depthD(H) := depthD(Hp).

We say that two open compact subgroups Hp and H′p of G(Zp) (resp.

H and H′ of G(Ẑ)) of standard form with respect to D are equally deep
if depthD(Hp) = depthD(H′p) (resp. depthD(H) = depthD(H′)).

We shall suppress the term “with respect to D” when the choice of
D is clear from the context.

By Proposition 3.2.1.1, for the filtration D = {Di}i of
O⊗

Z
Zp-modules of L⊗

Z
Zp as in Lemma 3.2.2.1 to be useful for

our purpose of defining and studying the ordinary loci in mixed
characteristics, we need the following:

Assumption 3.2.2.10. There exists a place υ of F0 above p such
that the canonical homomorphism Qp → (F0)υ is an isomorphism, and
there exists an extension field K of (F0)υ (and F0), together with a
homomorphism F ′0 → K of fields over F0, such that

(3.2.2.11) L0⊗
F ′0

K ∼= HomZp(Gr−1
D# ,Zp)⊗

Zp
K

as O⊗
Z
K-modules.
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This assumption will be made when we define moduli problems for
ordinary level structures.

3.2.3. Compatibility with Cusp Labels. Let H ⊂ G(Ẑ) be
of standard form (with respect to D) as in Definition 3.2.2.9, so that
H = HpHp and Ubal

p,1 (pr) ⊂ Hp ⊂ Up,0(pr) for r = depthD(H). Let
[(ZH,ΦH, δH)] be a cusp label at level H for the PEL-type O-lattice
(L, 〈 · , · 〉, h0).

By definition, ZH is an H-orbit of strongly symplectic
admissible filtrations Z on L⊗

Z
Ẑ. This includes, in particular, the

datum of an Hp/U(pr)-orbit of symplectic admissible filtrations
Z⊗

Ẑ
Zp = {Z−i⊗

Ẑ
Zp}i on L⊗

Z
Zp.

Definition 3.2.3.1. We say that the cusp label [(ZH,ΦH, δH)] is
compatible with the filtration D if there exists at least one repre-
sentative Z in the H-orbit ZH such that we have

(3.2.3.2) Z−2⊗
Ẑ
Zp ⊂ D0 ⊂ Z−1⊗

Ẑ
Zp,

which induces a filtration D−1 = {Di−1}i on GrZ−1⊗
Ẑ
Zp given by

D1
−1 := 0 ⊂ D0

−1 := D0/(Z−2⊗
Ẑ
Zp) ⊂ D−1

−1 := GrZ−1⊗
Ẑ
Zp

(serving the same purpose as the filtration D does for L⊗
Z
Zp).

By taking reduction modulo pr, we have the compatibility

(3.2.3.3) Z−2,pr ⊂ D0
pr ⊂ Z−1,pr ,

which induces a filtration D−1,pr = {Di−1,pr}i on GrZ−1,pr given by

(3.2.3.4) D1
−1,pr := 0 ⊂ D0

−1,pr := D0
pr/Z−2,pr ⊂ D−1

−1,pr := GrZ−1,pr

(serving the same purpose as the filtration Dpr does for L/prL). Simi-
larly, we have the compatibility

(3.2.3.5) Z
#
−2,pr ⊂ D

#,0
pr ⊂ Z

#
−1,pr ,

which induces a filtration D
#
−1,pr = {D#,i

−1,pr}i on GrZ
#

−1,pr given by

(3.2.3.6) D
#,1
−1,pr := 0 ⊂ D

#,0
−1,pr := D

#,0
pr /Z

#
−2,pr ⊂ D

#,−1
−1,pr := GrZ

#

−1,pr .

Remark 3.2.3.7. Since Ubal
p,1 (pr) ⊂ Hp ⊂ Up,0(pr), and since the

action of Up,0(pr) stabilizes D0
pr as an O⊗

Z
(Z/prZ)-submodule of L/prL,

the compatibilities (3.2.3.2), (3.2.3.3), and (3.2.3.5) are independent of
the choice of Z.
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Hence, it is justified to have the following:

Definition 3.2.3.8. We say that a cusp label [(ZH,ΦH, δH)] at level
H is D-ordinary if it is compatible with the filtration D as in Definition
3.2.3.1. We shall simply say that [(ZH,ΦH, δH)] is ordinary, or an
ordinary cusp label, if the choice of D is clear in the context.

For later references, let us define:

Definition 3.2.3.9. (Compare with Definition 1.2.1.11.) Suppose
Z is compatible with D as in (3.2.3.2). For each Zp-algebra R, we define
the following quotients of subgroups of PZ(R) (see Definitions 1.2.1.10
and 1.2.1.11):

(1) Pord
Z,D (R) := PZ(R)∩Pord

D (R).
(2) Because of the compatibility (3.2.3.2),

ZZ(R)∩Pord
D (R) = ZZ(R) does not define a new

group. This is similar for UZ(R), U2,Z(R), U1,Z(R) , Gl,Z(R),
and G′l,Z(R).

(3) Pord
h,Z,D(R) := Pord

Z,D (R)/Zord
Z,D (R) is the subgroup of elements of

Gh,Z(R) preserving the filtration D−1 induced by D on GrZ−1⊗
Ẑ
Zp

as in Definition 3.2.3.1.
(4) Pord,′

Z,D (R) := P′Z(R)∩Pord
D (R) is the kernel of the canonical ho-

momorphism (ν−1 GrZ−2,GrZ0) : Pord
Z,D (R)→ G′l,Z(R).

(5) Pord
1,Z,D(R) := Pord,′

Z,D (R)/U2,Z(R), which is (under any splitting δ

above) isomorphic to (Pord
h,Z,DnU1,Z)(R) := Pord

h,Z,D(R)nU1,Z(R).

(6) Pord,′
h,Z,D(R) := Pord

1,Z,D(R)/U1,Z(R) ∼= Pord,′
Z,D (R)/UZ(R) ∼=

Pord
Z,D (R)/Zord

Z,D (R) ∼= Pord
h,Z,D(R).

3.3. Level Structures

3.3.1. Level Structures Away from p. Suppose Hp ⊂ G(Ẑp) is
an open compact subgroup. Suppose n0 ≥ 1 is an integer prime to p
such that Up(n0) ⊂ Hp. Let Hn0 := Hp/Up(n0).

Definition 3.3.1.1. (Compare with [62, Def. 1.3.6.1].) Let S be
a scheme over Spec(Z(p)). Let A be an abelian scheme over S, with a
polarization λ : A → A∨ and an O-endomorphism structure i : O ↪→
EndS(A) as in [62, Def. 1.3.3.1]. Let H, n0, and Hn0 be as above. A
naive principal level-n0 structure of (A, λ, i) of type (L/n0L, 〈 · , · 〉)
is a pair (αn0 , νn0), where

(1) αn0 : (L/n0L)S
∼→ A[n0] is an O-equivariant isomorphism of

(étale) group schemes over S.
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(2) νn0 : ((Z/n0Z)(1))S
∼→ µn0,S is an isomorphism of group

schemes over S making the diagram

(L/n0L)S ×
S

(L/n0L)S
〈 · , · 〉

//

αn0×αn0 o
��

((Z/n0Z)(1))S

o νn0

��

A[n0]×
S
A[n0]

eλ
// µn0,S

commutative, where eλ is the λ-Weil pairing.

By abuse of notation, we often denote such a symplectic isomorphism by
(αn0 , νn0) : (L/n0L)S

∼→ A[n0], or simply by αn0 : (L/n0L)S
∼→ A[n0],

and denote νn0 by ν(αn0) (although αn0 does not always determine νn0).

Definition 3.3.1.2. (Compare with [62, Def. 1.3.6.2].) We
say a naive principal level-n0 structure (αn0 , νn0) of (A, λ, i) of
type (L/n0L, 〈 · , · 〉) in Definition 3.3.1.1 is a principal level-n0

structure of type (L⊗
Z
Ẑp, 〈 · , · 〉) if it satisfies the following

symplectic-liftability condition:
There exists (noncanonically) a tower (Sm0 � S)n0|m0,p-m0 of finite

étale coverings such that we have the following:

(1) Sn0 = S.
(2) For each l0 such that n0|l0 and l0|m0, there is a finite étale

covering Sm0 � Sl0 whose composition with Sl0 → S is the
finite étale covering Sm0 → S.

(3) There is a naive principal level-m0 structure (αm0,Sm0
, νm0,Sm0

)
of (A, λ, i)×

S
Sm0 of type (L/m0L, 〈 · , · 〉) over each Sm0.

(4) For each l0 such that n0|l0 and l0|m0, the pullback
of (αl,Sl0 , νl0,Sl0 ) to Sm0 is the reduction modulo l0 of
(αm0,Sm0

, νm0,Sm0
).

Definition 3.3.1.3. (Compare with [62, Def. 1.3.7.3].) Let S and
(A, λ, i) be as in Definition 3.3.1.1. Let Hp, n0, and Hn0 be as above.
A naive level-Hn0 structure of (A, λ, i) of type (L/n0L, 〈 · , · 〉) is

an Hn0-orbit αHn0
of naive principal level-n0 structures (L/n0L)S

∼→
A[n0], namely a (finite étale) subscheme αHn0

of the finite étale scheme

IsomS((L/n0L)S, A[n0])×
S

IsomS(((Z/n0Z)(1))S,µn0,S)

over S that becomes the disjoint union of elements in some Hn0-orbit
of naive principal level-n0 structures of type (L/n0L, 〈 · , · 〉) after a
finite étale surjective base change in S. In this case, we denote by
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ν(αHn0
) the projection of αHn0

to IsomS(((Z/n0Z)(1))S,µn0,S), which
is a ν(Hn0)-orbit of étale-locally-defined isomorphisms with its natural
interpretation.

Definition 3.3.1.4. (Compare with [62, Def. 1.3.7.6].) Let S and
(A, λ, i) be as in Definition 3.3.1.1. Let Hp be as above. For each inte-
ger n0 ≥ 1 such that p - n0 and Up(n0) ⊂ Hp, set Hn0 := Hp/Up(n0) as

above. Then a level-Hp structure of (A, λ, i) of type (L⊗
Z
Ẑp, 〈 · , · 〉)

is a collection αHp = {αHn0
}n0 labeled by integers n0 ≥ 1 such that

p - n0 and Up(n0) ⊂ Hp, with elements αHn0
described as follows:

(1) For each index n0, the element αHn0
is a naive level structure of

(A, λ, i) of type (L/n0L, 〈 · , · 〉) and level Hn0 as in Definition
3.3.1.3.

(2) For all indices n0 and m0 such that n0|m0, the Hn0-orbit αHn0

is the schematic image of the Hm0-orbit αHm0
under the canon-

ical (finite étale) morphism

IsomS((L/m0L)S, A[m0])×
S

IsomS(((Z/m0Z)(1))S,µm0,S)

→ IsomS((L/n0L)S, A[n0])×
S

IsomS(((Z/n0Z)(1))S,µn0,S),

which is equivalent to the formation of Up(n0)/Up(m0)-orbits
(see [62, Lem. 1.3.7.5]).

Remark 3.3.1.5. In these definitions, unlike in [62, Sec. 1.3.6], we
no longer assume that the polarization λ has degree prime to p. Hence,
these level structures away from p do not detect the polarization type
of λ.

Lemma 3.3.1.6. Let S and (A, λ, i) be as in Definition 3.3.1.1. Let
Hp be as above, and let αHp be a level-Hp structure of (A, λ, i) of type

(L⊗
Z
Ẑp, 〈 · , · 〉) as Definition 3.3.1.4. Let s̄ be any geometric point of

S. Then there exists an O-equivariant symplectic isomorphism

(3.3.1.7) (α̂ps̄, ν̂
p
s̄ ) : L⊗

Z
Ẑp ∼→ TpAs̄

such that, for each integer n0 ≥ 1 such that p - n0 and Up(n0) ⊂ Hp, the

Hn0-orbit of the reduction of (αn0,s̄, νn0,s̄) : L/n0L
∼→ A[n0]s̄ of (α̂ps̄, ν̂

p
s̄ )

modulo n0 coincides with the pullback of αHn0
from S to s̄. We say that

this (α̂ps̄, α̂
p
s̄), or for simplicity just α̂ps̄, is a lifting of αHp at s̄. The

Hp-orbit [α̂ps̄]Hp of α̂ps̄ is unique (i.e., independent of the choice of α̂ps̄).
If S is locally noetherian, then the Hp-orbit [α̂ps̄]Hp is

π1(S, s̄)-invariant. Moreover, we can recover the collection
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αHp = {αHn0
}n0 over the connected component of s̄ on S from the

π1(S, s̄)-invariant Hp-orbit [α̂ps̄]Hp.

Proof. The pullback of the compatible collection αHn0
to s̄ al-

lows us to choose a compatible collection of O-equivariant isomor-
phisms {(αn0,s̄, νn0,s̄) : L/n0L

∼→ A[n0]s̄}n0 , such that the Hn0-orbit
of (αn0,s̄, νn0,s̄) is αHn0

for each n0, which is equivalent to the desired
(α̂s̄, ν̂s̄) in (3.3.1.7). When S is locally noetherian, the Hp-orbit of
(α̂ps̄, ν̂

p
s̄ ) is invariant under the action of π1(S, s̄) because the Hn0-orbit

of (αn0,s̄, νn0,s̄), or rather the pullback αHn0 ,s̄
of αHn0

to s̄, is invari-
ant under π1(S, s̄) by definition of αHn0

(see Definition 3.3.1.3) and by
definition of π1(S, s̄). �

3.3.2. Hecke Twists Defined by Level Structures
Away from p. Suppose g0 ∈ G(A∞,p), and suppose we have

two open compact subgroups Hp and H′,p of G(Ẑp) such that
H′,p ⊂ g0Hpg−1

0 . Let S and (A, λ, i) be as in Definition 3.3.1.1, and
let αH′,p = {αH′m0

}m0 be a level-H′,p structure of (A, λ, i) of type

(L⊗
Z
Ẑp, 〈 · , · 〉) as in Definition 3.3.1.4, indexed by integers m0 ≥ 1

such that p - m0 and Up(m0) ⊂ H′,p, defining H ′m0
:= H′,p/Up(m0) for

each such m0.

Proposition 3.3.2.1. With assumptions as above, there exists a
tuple (A′, λ′, i′, α′Hp) (over S, unique up to isomorphism), called the
Hecke twist of (A, λ, i, αH′,p) by g0, equipped with a Z×(p)-isogeny [g−1

0 ] :

A → A′ of abelian schemes (whose formal inverse we denote by [g0] :
A′ → A), satisfying the following characterizing conditions:

(1) λ′ : A′ → A′,∨ is a polarization defined by λ′ = r0[g0]∨ ◦λ ◦ [g0]
(as positive Q×-isogenies), where r0 is the unique number in

Z×(p),>0 such that r0ν(g0)Ẑp = Ẑp.
(2) i′ : O → EndS(A′) is an O-structure of (A′, λ′) making [g−1

0 ]
an O-equivariant Z×(p)-isogeny.

(3) α′Hp is a level-Hp structure of (A′, λ′, i′) of type

(L⊗
Z
Ẑp, 〈 · , · 〉).

(4) At each geometric point s̄, there exist a lifting

(α̂ps̄, ν̂
p
s̄ ) : L⊗

Z
Ẑp ∼→ TpAs̄ (resp. (α̂p,′s̄ , ν̂

p,′
s̄ ) : L⊗

Z
Ẑp ∼→ TpA′s̄)

of αH′,p (resp. α′Hp) as in Lemma 3.3.1.6, such that

the induced morphisms α̂ps̄,A∞,p : L⊗
Z
A∞,p ∼→ VpAs̄,

α̂p,′s̄,A∞,p : L⊗
Z
A∞,p ∼→ VpA′s̄, and Vp([gp]) : VpAs̄

∼→ VpA′s̄
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satisfy α̂p,′s̄,A∞,p = Vp([g−1
0 ]) ◦ α̂ps̄,A∞,p ◦ g0, and such that

ν̂p,′s̄ = ν̂ps̄ ◦ (r0ν(g0)) as isomorphisms Ẑp(1)
∼→ Tp Gm,s̄,

where r0 as in (1) above. In this case, the H′,p-orbit
[α̂ps̄]H′,p determines a (g0Hpg−1

0 )-orbit [α̂ps̄]g0Hpg−1
0

because

H′,p ⊂ g0Hpg−1
0 , and hence induces an Hp-orbit [α̂p,′s̄ ]Hp.

We consider such a Hecke twist to be away from p because the two
tuples are related by a canonical Z×(p)-isogeny [g−1

0 ] : A → A′ which

induces an isomorphism A[pr]→ A′[pr] for each integer r ≥ 1.

If g0 = g1,0g2,0, where g1,0 and g2,0 are elements of G(Ẑp), each
having a setup analogous to that of g0, then the Hecke twists by g0 can
be constructed in two steps using Hecke twists by g1,0 and g2,0, such that
[g−1

0 ] = [g−1
2,0] ◦ [g−1

1,0] (or, equivalently, [g0] = [g1,0] ◦ [g2,0]).

Proof. For [g−1
0 ] to exist, at each geometric point s̄ of S and for

each lifting α̂s̄ of αH′,p , the induced isomorphism Vp([g−1
0 ]s̄) : VpAs̄

∼→
VpA′s̄ must map α̂s̄(g0(L⊗

Z
Ẑp)) to TpA′s̄ = α̂′s̄(L⊗

Z
Ẑp). (Since Hp and

H′,p are subgroups of G(Ẑp), this condition is independent of the choice
of α̂s̄.)

Let us construct [g−1
0 ] as follows. (When S is locally noetherian,

the construction can be much simpler using π1(S, s̄)-modules, as in
[62, Sec. 6.4.3]. But we spell out the details in a more general context,
because later we will encounter some analogue of this construction, for
which the techniques of π1(S, s̄)-modules do not work.)

Let n0, m0, and N0 be positive integers prime to p such that n0|m0,
Up(n0) ⊂ Hp, Up(m0) ⊂ H′,p, and
(3.3.2.2)

L⊗
Z
Ẑp ⊂ N−1

0 g0(L⊗
Z
Ẑp) ⊂ n−1

0 N−1
0 g0(L⊗

Z
Ẑp) ⊂ m−1

0 (L⊗
Z
Ẑp).

(Such integers always exist.) Then we have in particular an
O-submodule
(3.3.2.3)

(N−1
0 g0(L⊗

Z
Ẑp))/(L⊗

Z
Ẑp) ⊂ (m−1

0 (L⊗
Z
Ẑp))/(L⊗

Z
Ẑp) ∼= L/m0L.

By (3.3.2.2), we have Up(m0) ⊂ g0Up(n0)g−1
0 , and the inclusion H′,p ↪→

g0Hpg−1
0 induces a homomorphism H ′m0

= H′,p/Up(m0) → Hn0 =
Hp/Up(n0).

By definition of αH′,p = {αH′m0
}m0 , over the scheme S̃ = αH′m0

,

which is an H ′m0
-torsor (finite étale) over S, there is a tautological prin-

cipal level-m0 structure (αm0 , νm0), where αm0 : (L/m0L)S̃
∼→ AS̃[m0]

is an O-equivariant isomorphism of (étale) group schemes over S, and
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where νm0 : ((Z/m0Z)(1))S̃
∼→ µm0,S̃

is an isomorphism of group

schemes over S̃, satisfying the usual symplectic and liftability condi-
tions defining a (principal) level structure.

Let KS̃ be the schematic image of (N−1
0 g0(L⊗

Z
Ẑp))/(L⊗

Z
Ẑp) (see

(3.3.2.3)) under αm0 , which is an O-invariant subgroup scheme of
AS̃[m0], which is finite étale over Sm0 . Since the tautological action

of H ′m0
on S̃ → S is compatible with the isomorphism αm0 , we can

descend KS̃ to a finite étale subgroup scheme K of A[m0], and define
an isogeny

(3.3.2.4) A→ A′ := A/K.

Then we define the Z×(p)-isogeny [g−1
0 ] : A→ A′ (see [62, Def. 1.3.1.17])

to be the composition of (3.3.2.4) with [N0]−1, and denote the isogeny
(3.3.2.4) as [N0g

−1
0 ]. (Note that [N0g

−1
0 ] = N0[g−1

0 ], and [g−1
0 ] = [N0]−1

if g0 = N0 Id.) The Z×(p)-isogeny [g−1
0 ] is independent of the choice

of m0 and N0. (When S is locally noetherian, we can reformulate
the definition of level structures away from p using the language of
π1(S, s̄)-modules, for a geometric point s̄ on each connected component
of S. Then we can construct [g−1

0 ] as in [62, Sec. 6.4.3].)

Let r0 ∈ Z×(p),>0 be such that r0ν(g0)Ẑp = Ẑp. Note that N2
0 r0 ∈

Z>0 because L⊗
Z
Ẑp ⊂ N−1

0 g0(L⊗
Z
Ẑp). Then we define a Q×-isogeny

λ′ : A′ → A′,∨ by setting λ′ := r0[g0]∨ ◦ λ ◦ [g0] = (N2
0 r0)([N0g

−1
0 ]
∨
)−1 ◦

λ ◦ [N0g
−1
0 ]−1. This Q×-isogeny λ′ is a Q×-polarization by [62, Cor.

1.3.2.18 and 1.3.2.21]. It is an isogeny (and hence a polarization) be-
cause we have the inclusions

L⊗
Z
Ẑp ⊂ N−1

0 g0(L⊗
Z
Ẑp) ⊂ N−1

0 g0(L#⊗
Z
Ẑp)

= N−2
0 r−1

0 (N−1
0 g0(L⊗

Z
Ẑp))# ⊂ N−2

0 r−1
0 (L#⊗

Z
Ẑp),

(3.3.2.5)

which by the descent construction of [N0g
−1
0 ] corresponds to a factor-

ization of N2
0 r0λ : A→ A∨ as a composition of isogenies

A
[N0g

−1
0 ]
→ A′

λ′→ A′,∨
[N0g

−1
0 ]
∨

→ A∨,

in which [N0g
−1
0 ] induces an isomorphism ker(N2

0 r0λ)[pr]
∼→ ker(λ′)[pr]

for each integer r ≥ 1.
The above constructions of [g−1

0 ] : A→ A′ and λ′ are both compat-
ible with the actions of O. Hence, we obtain an induced O-structure
i′ : O ↪→ EndS(A′).
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By construction, and by (3.3.2.2), the isomorphism αm0 ◦g0 induces
an isomorphism

α′n0
: L/n0L ∼= (n−1

0 N−1
0 L)/(N−1

0 L)

g0
∼→ (n−1

0 N−1
0 g0(L⊗

Z
Ẑp))/(N−1

0 g0(L⊗
Z
Ẑp))

αm0
∼→ A′

S̃
[n0],

together with an isomorphism

ν ′n0
: ((Z/n0Z)(1))Sn0

∼→ µn0,S̃

induced by restricting νm0 ◦(r0ν(g0)). The homomorphism H ′m0
→ Hn0

induced by H′,p ↪→ g0Hpg−1
0 (i.e., conjugation by g0) induces a well-

defined Hn0-orbit of (α′n0
, ν ′n0

) over S̃, which descends to a naive level
structure α′Hn0

of (A′, λ′, i′) of type (L/n0L, 〈 · , · 〉) and level Hn0 as in

Definition 3.3.1.3. Since we can repeat the above procedure for each
integer n0 ≥ 1 such that p - n0 and Up(n0) ⊂ Hp, we obtain a level-Hp

structure α′Hp = {α′Hn0
}n0 of (A′, λ′, i′) of type (L⊗

Z
Ẑp, 〈 · , · 〉) as in

Definition 3.3.1.4.
This finishes the construction of the Hecke twist (A′, λ′, i′, α′Hp).
Since Hecke twists (in this proposition) are constructed using

prime-to-p isogenies (and their formal inverses), which are uniquely
determined by their behaviors on geometric fibers of torsion subgroup
schemes of abelian schemes over S of ranks prime to p (which are finite
étale group schemes over S), the last statement of the proposition
follows from the characterizing conditions preceding it. �

3.3.3. Ordinary Level Structures at p. Let us fix a choice of a
filtration D as in Lemma 3.2.2.1. For each integer r ≥ 0, the perfect du-
alities in Lemma 3.2.2.4 induce canonical isomorphisms (Gr0

D,pr)
mult
S
∼=

HomS(Gr−1
D#,pr

,Gm,S) and (Gr0
D#,pr)

mult
S
∼= HomS(Gr−1

D,pr ,Gm,S) (cf. Def-

inition 3.1.1.6), and a morphism φ0
D,pr : Gr0

D,pr → Gr0
D#,pr .

Let Hp ⊂ G(Zp) be an open compact subgroup of standard form
as in Definition 3.2.2.9, so that Ubal

p,1 (pr) ⊂ Hp ⊂ Up,0(pr) for r =

depthD(Hp), where Up,0(pr) and Ubal
p,1 (pr) are as in Definition 3.2.2.8.

Let Hord
pr := Hp/Ubal

p,1 (pr), which is a subgroup of Mord
D (Z/prZ).

Definition 3.3.3.1. Let S be a scheme over Spec(Z). Let A be
an abelian scheme over S, with a polarization λ : A → A∨ and an
O-endomorphism structure i : O ↪→ EndS(A) as in [62, Def. 1.3.3.1].
Let L⊗

Z
Zp, D, Hp, H

ord
pr , and φ0

D,pr : Gr0
D,pr → Gr0

D#,pr be as above.

A naive principal ordinary level-pr structure of (A, λ, i) of type
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(L/prL, 〈 · , · 〉, Dpr), or rather of type φ0
D,pr : Gr0

D,pr → Gr0
D#,pr , is a triple

αord
pr = (αord,0

pr , αord,#,0
pr , νord

pr ),

where the first two entries are O-equivariant homomorphisms

αord,0
pr : (Gr0

D,pr)
mult
S → A[pr]

and

αord,#,0
pr : (Gr0

D#,pr)
mult
S → A∨[pr]

that are closed immersions, and where the third entry νord
pr is a section

of

(Z/prZ)×S
∼= IsomS(((Z/prZ)(1))S, ((Z/prZ)(1))S)
∼= IsomS(µpr,S,µpr,S)

which are symplectic in the sense that the two homomorphisms are
compatible with the homomorphisms

νord
pr ◦ (φ0

D,pr)
mult
S : (Gr0

D,pr)
mult
S → (Gr0

D#,pr)
mult
S

and

λ : A[pr]→ A∨[pr],

namely that the following diagram

(Gr0
D,pr)

mult
S

αord,0
pr

//

νord
pr ◦(φ

0
D,pr )mult

S

��

A[pr]

λ

��

(Gr0
D#,pr)

mult
S

αord,#,0
pr

// A∨[pr]

is commutative, or equivalently that the following diagram

(Gr0
D,pr)

mult
S

αord,0
pr

//

(φ0
D,pr )mult

S

��

A[pr]

λ

��

(Gr0
D#,pr)

mult
S

νord
pr ◦α

ord,#,0
pr

// A∨[pr]

is commutative, and that the schematic images of the two homomor-
phisms αord,0

pr and αord,#,0
pr are annihilators of each other under the

canonical pairing eA[pr] : A[pr]×A∨[pr] → µpr,S. We shall denote

νord
pr by ν(αord

pr ). We shall also denote the schematic image of αord,0
pr

(resp. αord,#,0
pr ), which is a closed subgroup scheme of A (resp. A∨), by

image(αord,0
pr ) (resp. image(αord,#,0

pr )).
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Definition 3.3.3.2. We say a naive principal ordinary
level-pr structure αord

pr = (αord,0
pr , αord,#,0

pr , νord
pr ) of (A, λ, i) of type

(L/prL, 〈 · , · 〉, Dpr) in Definition 3.3.3.1 is a principal ordinary
level-pr structure of type (L⊗

Z
Zp, 〈 · , · 〉, D) if it satisfies the

following symplectic-liftability condition:
There exists (noncanonically) a tower (Spr′ � S)r′≥r of quasi-finite

étale coverings such that we have the following:

(1) Spr = S.
(2) For each r′′ such that r′ ≥ r′′ ≥ r, there is a quasi-finite étale

covering Spr′ � Spr′′ whose composition with Spr′′ → S is the
quasi-finite étale covering Spr′ → S.

(3) There is a naive principal ordinary level structure αord
pr′ ,S

pr
′

of

(A, λ, i)×
S
Spr′ of type (L/pr

′
L, 〈 · , · 〉, Dpr′ ) over each Spr′ .

(4) For each r′′ such that r′ ≥ r′′ ≥ r, the pullback of αord
pr′′ ,S

pr
′′

to

Spr′ is the reduction modulo pr
′′

of αord
pr′ ,S

pr
′
.

Definition 3.3.3.3. Let S and (A, λ, i) be as in Definition 3.3.3.1,
and let Hord

pr be as above. A naive ordinary level-Hord
pr structure

of (A, λ, i) of type (L/prL, 〈 · , · 〉, Dpr) is an Hord
pr -orbit αord

Hord
pr

of

étale-locally-defined (naive) principal ordinary level structures of type
(L⊗

Z
Zp, 〈 · , · 〉, D) and level pr, namely a (finite étale) subscheme

αord
Hord
pr

of the quasi-finite étale scheme

HomS

(
(Gr0

D,pr)
mult
S , A[pr]

)
×
S

HomS

(
(Gr0

D#,pr)
mult
S , A∨[pr]

)
×
S

(Z/prZ)×S

over S that becomes the (scheme-theoretic) Hord
pr -orbit of some naive

principal ordinary level structures of type (L⊗
Z
Zp, 〈 · , · 〉, D) and level

pr (see Definition 3.3.3.2) after a finite étale surjective base change in
S.

We shall denote by αord,0

Hord
pr

(resp. αord,#,0

Hord
pr

, resp. νord
Hord
pr

= ν(αord
Hord
pr

))

the schematic image of αord
Hord
pr

in HomS

(
(Gr0

D,pr)
mult
S , A[pr]

)
(resp.

HomS

(
(Gr0

D#,pr)
mult
S , A∨[pr]

)
, resp. (Z/prZ)×S ).

Since the action of Hord
pr does not modify the schematic image of

αord,0
pr (resp. αord,#,0

pr ) in an orbit, it makes sense (by étale descent, and

by abuse of language) to consider the common schematic image of αord,0

Hord
pr
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(resp. αord,#,0

Hord
pr

), which is a closed subgroup scheme of A (resp. A∨), by

image(αord,0

Hord
pr

) (resp. image(αord,#,0

Hord
pr

)).

Definition 3.3.3.4. Let S and (A, λ, i) be as in Definition 3.3.3.1,
and let Hord

pr be as above. Consider the open compact subgroup
(3.3.3.5)

Hord
p :=

(
Mord

D (Zp)
can.→ Mord

D (Z/prZ)
can.
∼→
(
Up,0(pr)/Ubal

p,1 (pr)
))−1

(Hord
pr )

of Mord
D (Zp), so that Hord

p /Uord(pr) ∼= Hord
pr = Hp/Ubal

p,1 (pr). Let S
and (A, λ, i) be as in Definition 3.3.3.1. For each integer r′ such that
r′ ≥ r, set Hord

pr′
:= Hord

p /Uord(pr
′
), which is then viewed as a sub-

group of Up,0(pr
′
)/Ubal

p,1 (pr
′
). Then an ordinary level-Hp structure

αord
Hp of (A, λ, i) of type (L⊗

Z
Zp, 〈 · , · 〉, D) is a naive ordinary level-Hord

pr

structure αord
Hord
pr

of (A, λ, i) of type (L/prL, 〈 · , · 〉, Dpr) that satisfies the

following symplectic-liftability condition:
There exists (noncanonically) a tower (Spr′ � S)r′≥r of quasi-finite

étale coverings such that we have the following:

(1) Spr = S.
(2) For each r′′ such that r′ ≥ r′′ ≥ r, there is a quasi-finite étale

covering Spr′ � Spr′′ whose composition with Spr′′ → S is the
quasi-finite étale covering Spr′ → S.

(3) There is a naive ordinary level-Hord
pr
′ structure αord

Hord

pr
′

of (A, λ, i)

of type (L/pr
′
L, 〈 · , · 〉, Dpr′ ) over each Spr′ .

(4) For each r′′ such that r′ ≥ r′′ ≥ r, the pullback of αord
Hord

pr
′′ ,Spr′′

to Spr′ is the reduction modulo pr
′′

of αord
Hord

pr
′ ,Spr′

, in the sense

that αord
Hord

pr
′′ ,Spr′′

is the schematic image of αord
Hord

pr
′ ,Spr′

under the

canonical (quasi-finite étale) morphism

HomS
pr
′

(
(Gr0

D,pr′
)mult
S
pr
′ , A[pr

′
]
)

×
S
pr
′
HomS

pr
′

(
(Gr0

D#,pr′
)mult
S
pr
′ , A

∨[pr
′
]
)
×
S
pr
′
(Z/pr′Z)

×
S
pr
′

→HomS
pr
′′

(
(Gr0

D,pr′′
)mult
S
pr
′′ , A[pr

′′
]
)

×
S
pr
′′

HomS
pr
′′

(
(Gr0

D#,pr′′
)mult
S
pr
′′ , A

∨[pr
′′
]
)
×
S
pr
′′

(Z/pr′′Z)
×
S
pr
′′

defined by restriction to the pr
′′
-torsion in the sources.
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We shall denote αord,0

Hord
pr

(resp. αord,#,0

Hord
pr

, resp. νord
Hord
pr

= ν(αord
Hord
pr

), resp.

image(αord,0

Hord
pr

), resp. image(αord,#,0

Hord
pr

)) by αord,0
Hp (resp. αord,#,0

Hp , resp.

νord
Hp = ν(αord

Hp ), resp. image(αord,0
Hp ), resp. image(αord,#,0

Hp )).

Remark 3.3.3.6. Even when r = 0, the existence of a principal
ordinary level-pr structure of (A, λ, i) of type (L⊗

Z
Zp, 〈 · , · 〉, D) in Def-

inition 3.3.3.2 forces A to be ordinary (see Definition 3.1.1.2). The same
is true for the existence of an ordinary level-Hp structure of (A, λ, i) of
type (L⊗

Z
Zp, 〈 · , · 〉, D) in Definition 3.3.3.4.

Lemma 3.3.3.7. Let S and (A, λ, i) be as in Definition 3.3.3.1.
Suppose moreover that S is a scheme over Spec(Fp). For each inte-

ger i ≥ 0, let A(pi) := A ×
S,FiS

S (resp. A∨,(p
i) := A∨ ×

S,FiS

S) denote the

pullback of A (resp. A∨) under the i-th iteration FiS : S → S of the

absolute Frobenius morphism FS : S → S, and let F
(i)
A/S : A → A(pi)

(resp. F
(i)
A∨/S : A∨ → A∨,(p

i)) denote the relative Frobenius morphism

induced by the universal property of A(pi) (resp. A∨,(p
i)) as a fiber prod-

uct. Then A∨,(p
i) is the dual abelian scheme of A(pi), with polarization

λ(pi) := λ ×
S,FiS

S.

Let αord
Hp = (αord,0

Hp , αord,#,0
Hp , νord

Hp ) be any ordinary level-Hp

structure of (A, λ, i) of type (L⊗
Z
Zp, 〈 · , · 〉, D) as in Definition

3.3.3.4. Then we have image(αord,0

Hord
pr

)[pi] = ker(F
(i)
A/S) and

image(αord,#,0

Hord
pr

)[pi] = ker(F
(i)
A∨/S), for each 0 ≤ i ≤ r. (In particular, we

have image(αord,0
pr )[pi] = ker(F

(i)
A/S) and image(αord,#,0

pr )[pi] = ker(F
(i)
A∨/S)

for a principal ordinary level-pr structure αord
pr = (αord,0

pr , αord,#,0
pr , νord

pr )
of type (L⊗

Z
Zp, 〈 · , · 〉, D) as in Definition 3.3.3.2.)

Proof. The first paragraph is nothing but definitions. For the sec-
ond paragraph, since it is about comparison of finite flat group schemes
of finite presentation over S, we may reduce to the case that S is
Henselian local, and hence to the case that S is the spectrum of an
algebraically closed field of characteristic p > 0. Then the assertions
follow from the fact that, given their ranks, both image(αord,0

Hord
pr

)[pi] (resp.

image(αord,#,0

Hord
pr

)[pi]) and ker(F
(i)
A/S) (resp. ker(F

(i)
A∨/S)) are the unique
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maximal subgroup scheme of multiplicative type of the ordinary abelian
variety A[pi] (resp. A∨[pi]) over S (see Remark 3.3.3.6). �

Corollary 3.3.3.8. In Definitions 3.3.3.2 and 3.3.3.4, if S is a
scheme over Spec(Fp), then we may assume that the tower (Spr′ �
S)r′≥r of quasi-finite étale coverings is finite étale.

Proof. In this case, for each r′ ≥ r, we know before construct-
ing αord

Hord

pr
′

= (αord,0

Hord

pr
′
, αord,#,0

Hord

pr
′
, νord
Hord

pr
′
) that we must have image(αord,0

Hord

pr
′
) =

ker(F
(r′)
A/S) and image(αord,#,0

Hord

pr
′

) = ker(F
(i)
A∨/S), and hence the desired

αord
Hord

pr
′

(tautologically) exists over some open and closed subscheme Spr′

of the finite étale scheme

IsomS

(
(Gr0

D,pr′
)mult
S , ker(F

(r′)
A/S)

)
×
S

IsomS

(
(Gr0

D#,pr′
)mult
S , ker(F

(r′)
A∨/S)

)
×
S

(Z/pr′Z)
×
S ,

which is finite étale over S (and we can compatibly form a tower of such
subschemes such that the necessary compatibility conditions between
Spr′ and Spr′′ , when r′′ ≥ r′ ≥ r, are satisfied). �

Lemma 3.3.3.9. Let S and (A, λ, i) be as in Definition 3.3.3.1. Let
Hp and Hord

pr be as above, and let αord
Hp be an ordinary level-Hp structure

of (A, λ, i) of type (L⊗
Z
Zp, 〈 · , · 〉, D) as Definition 3.3.3.4. Let s̄ be any

geometric point of S. Then there exists a triple

(3.3.3.10) α̂ord
s̄ = (α̂ord,0

s̄ , α̂ord,#,0
s̄ , ν̂ord

s̄ )

where the first two entries are injective O-equivariant homomorphisms

α̂ord,0
s̄ : (Gr0

D)
mult
s̄ → As̄[p

∞]

and

α̂ord,#,0
s̄ : (Gr0

D#)mult
s̄ → A∨s̄ [p∞],

(see Definition 3.1.1.7) and where the third entry ν̂ord
s̄ is a section of

(Z×p )s̄ ∼= Isoms̄(((Zp)(1))s̄, ((Zp)(1))s̄) ∼= Isoms̄(µp∞,s̄,µp∞,s̄),

satisfying the symplectic condition as in Definition 3.3.3.1 which we
shall spell out below, such that the Hord

pr -orbit of the restriction αord
pr,s̄

of α̂ord
s̄ to the pr-torsion in the sources coincides with the pullback of

αord
Hord
pr

from S to s̄. We say that this α̂ord
s̄ is a lifting of αord

Hp at s̄. The

Hord
p -orbit [α̂ord

s̄ ]Hord
p

of α̂ord
s̄ is unique (i.e., independent of the choice

of α̂ord
s̄ ).
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The symplectic condition for α̂ord
s̄ = (α̂ord,0

s̄ , α̂ord,#,0
s̄ , ν̂ord

s̄ ) is that the

two homomorphisms α̂ord,0
s̄ and α̂ord,#,0

s̄ are compatible with the homo-
morphisms

ν̂ord
s̄ ◦ (φ0

D)
mult
s̄ : (Gr0

D)
mult
s̄ → (Gr0

D#)mult
s̄

and

λs̄ : As̄[p
∞]→ A∨s̄ [p∞],

namely that the following diagram

(Gr0
D)

mult
s̄

α̂ord,0
s̄

//

ν̂ord
s̄ ◦(φ0

D)mult
s̄
��

As̄[p
∞]

λs̄
��

(Gr0
D#)mult

s̄
α̂ord,#,0
s̄

// A∨s̄ [p∞]

is commutative, or equivalently that the following diagram

(Gr0
D)

mult
s̄

α̂ord,0
s̄

//

(φ0
D)mult
s̄
��

As̄[p
∞]

λs̄
��

(Gr0
D#)mult

s̄
ν̂ord
s̄ ◦α̂

ord,#,0
s̄

// A∨s̄ [p∞]

is commutative, and that the images of the two homomorphisms α̂ord,0
s̄

and α̂ord,#,0
s̄ are annihilators of each other under the canonical pairing

eAs̄[p∞] : As̄[p
∞]×A∨s̄ [p∞]→ µp∞,s̄.

Proof. As in the proof of Lemma 3.3.1.6, the pullback of the com-
patible tower (αord

Hord

pr
′
)r′≥r defined over (Spr′ � S)r′≥r to the geometric

point s̄ of S (with a compatible choice of liftings to each Spr′ → S)

allows us to choose a compatible tower (αord
pr′

)r′≥r of principal ordi-

nary level structures, such that the Hord
pr′

-orbit of each αord
pr′

is αord
Hord

pr
′

for each r′ ≥ r, which is equivalent to the desired α̂ord
s̄ in (3.3.3.10).

The symplectic condition for α̂ord
s̄ follows from that of αord

pr′
over each

Spr′ → S. �

3.3.4. Hecke Twists Defined by Ordinary Level Structures
at p. For each element gp of Pord

D (Qp) ⊂ G(Qp), we denote by gord
p =

(gp,0, gp,−1) the action of gp on the graded pieces GrD ∼= Gr0
D⊕Gr−1

D ,
and by gp,#,0 = tg−1

p,−1, where tgp,−1 is the induced action on Gr0
D#

by transposition (with respect to the perfect pairing Gr0
D# ×Gr−1

D →
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Zp(1); see Lemma 3.2.2.4). Note that gp,#,0 and ν(gp)
−1gp,0 induce the

same element in GLO⊗
Z
Qp(D

0
Qp).

Although a more general theory might exist, we shall construct or-
dinary Hecke twists defined by ordinary level structures at p under a list
of conditions. Nevertheless, such ordinary Hecke twists are sufficient
for the applications we know.

Suppose we have two open compact subgroups Hp and H′p of G(Qp)
of standard form as in Definition 3.2.2.9 such that r = depthD(Hp) ≤
r′ = depthD(H′p). Suppose that gp ∈ Pord

D (Qp) satisfies the following
conditions:

(1) H′p ⊂ gpHpg
−1
p .

(2) There exist integers r0 and r′ ≥ r′′ ≥ r such that

(3.3.4.1) Gr0
D ⊂ p−r0gp,0(Gr0

D) ⊂ p−r
′′−r0gp,0(Gr0

D) ⊂ p−r
′
Gr0

D

and

(3.3.4.2) Gr0
D# ⊂ pr0gp,#,0(Gr0

D#) ⊂ p−r+r0gp,#,0(Gr0
D#) ⊂ p−r

′′
Gr0

D#

Note that (3.3.4.2) is equivalent (by duality) to

pr
′′

Gr−1
D ⊂ pr−r0gp,−1(Gr−1

D ) ⊂ p−r0gp,−1(Gr−1
D ) ⊂ Gr−1

D .

The relations (3.3.4.1) and (3.3.4.2) define O-submodules

(3.3.4.3) (p−r0gp,0(Gr0
D))/Gr0

D ⊂ (p−r
′
Gr0

D)/Gr0
D
∼= Gr0

D,pr′

and

(3.3.4.4) (pr0gp,#,0(Gr0
D#))/Gr0

D# ⊂ (p−r
′′

Gr0
D#)/Gr0

D#
∼= Gr0

D#,pr′′

respectively.
Since these conditions are complicated, we include some basic ex-

amples:

Example 3.3.4.5 (elements in Pord
D (Zp)). Suppose gp ∈ Pord

D (Zp)
and H′p ⊂ gpHpg

−1
p . Then the remaining conditions above are auto-

matic, because gp,0(Gr0
D) = Gr0

D, gp,#,0(Gr0
D#) = Gr0

D# , and r′ ≥ r, and
because we can take r0 = 0 and take any r′ ≥ r′′ ≥ r for (3.3.4.1) and
(3.3.4.4) to hold. (We will continue in Example 3.3.4.18 below.)

Example 3.3.4.6 (multiplication by powers of p).
Suppose gp ∈ Pord

D (Qp) acts on GrDQp
∼= Gr0

DQp
⊕Gr−1

DQp
by

gord
p = (gp,0, gp,−1) = (pr0 IdGr0

D
, pr0 IdGr−1

D
) for some integer

r0. Suppose H′p ⊂ gpHpg
−1
p = Hp. Then gp,0(Gr0

D) = pr0 Gr0
D,

gp,#,0(Gr0
D#) = p−r0 Gr0

D# , r′ ≥ r, and the remaining conditions are
automatic, because we can take r0 as it is and take any r′ ≥ r′′ ≥ r for
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(3.3.4.1) and (3.3.4.4) to hold. (We will continue in Example 3.3.4.19
below.)

Example 3.3.4.7 (Up operator). Suppose gp ∈ Pord
D (Qp) acts on

GrDQp
∼= Gr0

DQp
⊕Gr−1

DQp
by gord

p = (gp,0, gp,−1) = (p−1 IdGr0
D
, IdGr−1

D
). Sup-

pose H′p ⊂ gpHpg
−1
p . Then gp,0(Gr0

D) = p−1 Gr0
D, gp,#,0(Gr0

D#) = Gr0
D# ,

and r′ > r. Then the remaining conditions are automatic, because we
can take r0 = 0 and take any r′ > r′′ ≥ r for (3.3.4.1) and (3.3.4.4) to
hold. (We will continue in Example 3.3.4.20 below.)

Example 3.3.4.8 (generalized Up operator). Ignoring the
O-module structures, suppose L = Z⊕ 2n for some integer
n ≥ 0, with D defined by D0 = Z⊕np ⊂ L⊗

Z
Zp. Suppose

gp ∈ Pord
D (Qp) acts on GrDQp

∼= Gr0
DQp
⊕Gr−1

DQp
by gord

p = (gp,0, gp,−1) =

(diag(p−r1 , p−r2 , . . . , p−rn), diag(p−rn+1 , p−rn+2 , . . . , p−r2n)) for
some integers r1 ≥ r2 ≥ · · · ≥ rn. Since ri + rn+i (satisfying
p−ri−rn+i = ν(gp)) is a constant independent of 1 ≤ i ≤ n, this forces
rn+1 ≤ rn+2 ≤ · · · ≤ r2n. Suppose H′p ⊂ gpHpg

−1
p . Suppose rn ≥ r2n

and r′ − r ≥ r1 − rn+1. Then the remaining conditions hold if we
take any r0 such that rn ≥ −r0 ≥ r2n and take any r′′ such that
r′ − (r1 + r0) ≥ r′′ ≥ r− (rn+1 + r0) for (3.3.4.1) and (3.3.4.4) to hold.
(This rather elaborate example includes both Examples 3.3.4.6 and
3.3.4.7 as special cases. However, we will not continue this example as
in Examples 3.3.4.19 and 3.3.4.20 below.)

Let S and (A, λ, i) be as in Definition 3.3.3.1, and let αord
H′p be an

ordinary level-H′p structure of (A, λ, i) of type (L⊗
Z
Zp, 〈 · , · 〉, D) as in

Definition 3.3.3.4, with H′,ord
p (resp. H ′,ord

pr′′
, for each integer r′′ ≥ r′)

defined by H′p as Hord
p (resp. Hord

pr′′
, for each integer r′′ ≥ r) is defined

by Hp.

Proposition 3.3.4.9. With assumptions as above, there exists a
tuple (A′, λ′, i′, αord,′

Hp ) (over S, up to isomorphism), called the ordi-

nary Hecke twist of (A, λ, i, αord
H′p ) by gp, equipped with a Q×-isogeny

[g−1
p ]ord : A→ A′ (whose formal inverse we denote by [gp]

ord : A′ → A)
satisfying the following characterizing conditions:

(1) [g−1
p ]ord is the composition ([p−r0gp,−1]ord)−1 ◦ [pr0g−1

p,0]ord ◦
[pr0 ]−1, where [pr0 ] : A → A is the multiplication by pr0 on
A when r0 ≥ 0, or the formal inverse of the multiplication
by p−r0 on A when r0 < 0; and where [pr0g−1

p,0]ord : A → A′′

and [p−r0gp,−1]ord : A′ → A′′ are isogenies of p-power degrees
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(whose formal inverses we denote by [p−r0gp,0]ord : A′′ → A
and [pr0g−1

p,−1]ord : A′′ → A′, respectively).

(2) λ′ : A′ → A′,∨ is a polarization defined by λ′ = rp([gp]
ord)

∨ ◦λ◦
[gp]

ord (as positive Q×-isogenies), where rp is the unique power
of p such that rpν(gp)Zp = Zp.

(3) i′ : O → EndS(A′) is an O-structures of (A′, λ′) making [gp]
ord

an O-equivariant Q×-isogeny.
(4) αord,′

Hp is an ordinary level-Hp structure of (A′, λ′, i′) of type

(L⊗
Z
Zp, 〈 · , · 〉, D).

(5) At each geometric point s̄, there exist a lift-

ing α̂ord
s̄ = (α̂ord,0

s̄ , α̂ord,#,0
s̄ , ν̂ord

s̄ ) (resp.

α̂ord,′
s̄ = (α̂ord,0,′

s̄ , α̂ord,#,0,′
s̄ , ν̂ord,′

s̄ )) of αord
H′p (resp.

αord,′
Hp ) as in Lemma 3.3.3.9, such that α̂ord,′

s̄ is compatible

with α̂ord
s̄ ◦ gord

p under the Q×-isogeny [pr0 ] : A → A and the

isogenies [pr0g−1
p,0]ord : A→ A′′ and [p−r0gp,−1]ord : A′ → A′′, in

the following sense:
(a) ker([pr0g−1

p,0]ord)s̄ is the schematic image of the submodule

((p−r0gp,0(Gr0
D))/Gr0

D)
mult
s̄

of (Gr0
D,pr′

)mult
s̄ ⊂ (Gr0

D)
mult
s̄ (see (3.3.4.3)) under α̂ord,0

s̄ :

(Gr0
D)

mult
s̄ → As̄[p

∞]. Then

α̂ord,−1
s̄ : As̄[p

∞]→ Gr−1
D ⊗

Zp
(Qp/Zp)

(which is the Serre dual of α̂ord,#,0
s̄ : (Gr0

D#)mult
s̄ → A∨s̄ [p∞])

satisfies

ker(α̂ord,−1
s̄ ) = image(α̂ord,0

s̄ ),

and induces an injection

α̂ord,0,′′
s̄ := [pr0g−1

p,0]ord
s̄ ◦ α̂

ord,0
s̄ ◦ (p−r0gp,0) : (Gr0

D)
mult
s̄ → A′′s̄ [p

∞]

and a surjection

α̂ord,−1,′′
s̄ : A′′s̄ [p

∞]� Gr−1
D ⊗

Zp
(Qp/Zp)

satisfying

ker(α̂ord,−1,′′
s̄ ) = image(α̂ord,0,′′

s̄ ).

Consequently,

α̂ord,#,0
s̄ : (Gr0

D#)mult
s̄ → A∨s̄ [p∞]
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is liftable to an injection

α̂ord,#,0,′′
s̄ : (Gr0

D#)mult
s̄ → A′′,∨s̄ [p∞].

(b) The isogeny [p−r0gp,−1]ord : A′ → A′′ is dual to an isogeny
[p−r0g−1

p,#,0]ord : A′′,∨ → A′,∨, and ker([p−r0g−1
p,#,0]ord)s̄ is the

schematic image of the submodule

((pr0gp,#,0(Gr0
D#))/Gr0

D#)mult
s̄

of (Gr0
D#,pr′′

)mult
s̄ ⊂ (Gr0

D#)mult
s̄ (see (3.3.4.4)) under

α̂ord,#,0,′′
s̄ . Then

α̂ord,#,0,′
s̄ : (Gr0

D#)mult
s̄ → A′,∨s̄ [p∞]

agrees with the composition

[p−r0g−1
p,#,0]s̄ ◦ α̂ord,#,0,′′

s̄ ◦ (pr0gp,#,0).

(c) The kernel of the dual surjection

α̂ord,#,−1,′′
s̄ : A′′,∨s̄ [p∞]→ Gr−1

D# ⊗
Zp

(Qp/Zp)

of α̂ord,0,′′
s̄ is the schematic image of α̂ord,#,0,′′

s̄ , which con-
tains ker([pr0g−1

p,#,0])s̄. Hence, α̂ord,#,−1,′′
s̄ induces a surjec-

tion

A′,∨s̄ [p∞]→ Gr−1
D# ⊗

Zp
(Qp/Zp),

which is dual to an injection

(Gr0
D)

mult
s̄ → A′s̄[p

∞]

lifting α̂ord,0,′′
s̄ . This injection coincides with α̂ord,0,′

s̄ .
(d) ν̂ord,′

s̄ : µp∞,s̄
∼→ µp∞,s̄ is induced by ν̂ord

s̄ ◦ (rpν(gp)), where
rp is as in (2) above.

By abuse of language, we say that α̂ord,′
s̄ = [g−1

p ]ord
s̄ ◦ α̂ord

s̄ ◦ gord
p .

In this case, the H′,ord
p -orbit [α̂ord

s̄ ]H′,ord
p

determines

a (gord
p Hord

p (gord
p )−1)-orbit [α̂ord

s̄ ]gord
p Hord

p (gord
p )−1 because

H′,ord
p ⊂ gord

p Hord
p (gord

p )−1, and hence induces an Hord
p -orbit

[α̂ord,′
s̄ ]Hord

p
.

If gp = g1,pg2,p, where g1,p and g2,p are elements of Pord
D (Qp), each

having a setup similar to that of gp, then the ordinary Hecke twist
by gp can be constructed in two steps using ordinary Hecke twists by
g1,p and g2,p, such that [g−1

p ]ord = [g−1
2,p]

ord ◦ [g−1
1,p]

ord (or, equivalently,

[gp]
ord = [g1,p]

ord ◦ [g2,p]
ord).
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Proof. Since ordinary Hecke twists (in this proposition) are con-
structed using p-power isogenies (and their formal inverses), which are
uniquely determined by their behaviors on geometric fibers of p-power
torsion subgroup schemes of (ordinary) abelian schemes over S (which
are finite flat group schemes of étale-multiplicative type over S), the
last statement of the proposition follows from the characterizing con-
ditions preceding it. Therefore, we can construct the desired ordinary
Hecke twist by gp in two steps using the ordinary Hecke twists by
p−r0gp and by pr0 Id (the latter being given by [p−r0 ] = [pr0 ]−1, which
is defined for all r0 ∈ Z and does not alter the additional structures
λ, i, and αord

H′p ; see Example 3.3.4.19 below). Hence, our main tasks

are to construct [pr0g−1
p,0]ord and [p−r0gp,−1]ord, so that [pr0g−1

p ]ord =

([p−r0gp,−1]ord)−1 ◦ [pr0g−1
p,0]ord, and to construct the additional struc-

tures λ′, i′, and αord,′
Hp (the main focus being on αord,′

Hp ).

By definition of αord
H′p , over the scheme S̃ = αord

H′,ord

pr
′

, which is an

H ′,ord
pr -torsor (finite étale) over S, there is a tautological principal or-

dinary level-pr
′

structure αord
pr′

= (αord,0

pr′
, αord,#,0

pr′
, νord
pr′

) as in Definition

3.3.3.2, where

αord,0

pr′
: (Gr0

D,pr
′ )mult
S̃
→ AS̃[pr

′
]

and

αord,#,0

pr
′ : (Gr0

D#,pr′
)mult
S̃
→ A∨

S̃
[pr
′
]

are closed immersions, and where the third entry

νord
pr′

: µpr′ ,S̃ → µpr′ ,S̃

is a section of (Z/pr′Z)
×
S̃ , satisfying the usual symplectic and liftability

conditions defining a (principal) ordinary level structure.
The schematic image of the submodule

((p−r0gp,0(Gr0
D))/Gr0

D)
mult
S̃

of (Gr0
D,pr′

)mult
S̃

(see (3.3.4.3)) under the closed immersion αord,0

pr′
de-

fines a subgroup scheme K0,S̃ of AS̃[pr
′
]. Since K0,S̃ is isomorphic to

((p−r0gp,0(Gr0
D))/Gr0

D)
mult
S̃

, it is finite flat, of finite presentation, and of

multiplicative type over S̃. Since the tautological action of H ′,ord
pr on

S̃ → S is compatible with the homomorphism αord,0

pr′
, we can descend

K0,S̃ to a subgroup scheme K0 of A[pr
′
], which is also finite flat, of finite

presentation, and of multiplicative type over S. (This is a question of
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descending the finite étale character group scheme of K0,S̃.) Hence, we
can define the isogeny

(3.3.4.10) [pr0g−1
p,0]ord : A→ A′′ := A/K0,

inducing an embedding A[pr
′
]/K0 ↪→ A′′. By (3.3.4.1), we know that

(3.3.4.11) A′′[pr
′′
] ⊂ A[pr

′
]/K0

(as a closed subgroup scheme).

Over S̃, the homomorphism αord,0

pr′
induces a homomorphism

αord,0,′′
pr′′

:=
(

[pr0g−1
p,0]ord

S̃
◦ αord,#,0

pr′
◦ (p−r0gp,0)

)
|(Gr0

D,pr
′′ )

mult
S̃

:

(Gr0
D,pr′′

)mult
S̃
→ A′′

S̃
[pr
′′
]

that is a closed immersion by (3.3.4.1). Since the kernel K0,S̃ of

[pr0g−1
p,0]ord

S̃
: AS̃ → A′′

S̃
is contained in the kernel of the surjection

αord,−1

pr
′ : AS̃[pr

′
]→ (Gr−1

D,pr′
)S̃

dual to αord,#,0

pr′
, the surjection αord,−1

pr′
induces a surjection

AS̃[pr
′
]/K0,S̃ → (Gr−1

D,pr′
)S̃.

By restriction to A′′
S̃
[pr
′′
] (see (3.3.4.11)), we obtain an induced surjec-

tion
αord,−1,′′
pr′′

: A′′
S̃
[pr
′′
]→ (Gr−1

D,pr′′
)S̃,

which is dual to a homomorphism

αord,#,0,′′
pr′′

: (Gr0
D#,pr′′

)mult
S̃
→ A′′,∨

S̃
[pr
′′
]

that is a closed immersion, lifting the homomorphism

αord,#,0

pr′′
: (Gr0

D#,pr′′
)mult
S̃
→ A∨

S̃
[pr
′′
]

induced by αord,#,0

pr′
.

The schematic image of the submodule

((pr0gp,#,0(Gr0
D#))/Gr0

D#)mult
S̃

of (Gr0
D#,pr′′

)mult
S̃

(see (3.3.4.4)) under the closed immersion αord,#,0,′′
pr′′

de-

fines a subgroup scheme K0,#,S̃ of A′′,∨
S̃

[pr
′′
]. Since K0,#,S̃ is isomorphic

to ((pr0gp,#,0(Gr0
D#))/Gr0

D#)mult
S̃

, it is finite flat, of finite presentation,

and of multiplicative type over S̃. Since the tautological action of
H ′,ord
pr on S̃ → S is compatible with the homomorphism αord,#,0,′′

pr′′
(and

the other homomorphisms involved in its definition), we can descend
K0,#,S̃ to a subgroup scheme K0,# of A′′,∨[pr

′′
], which is also finite flat,
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of finite presentation, and of multiplicative type over S. (This is a ques-
tion of descending the finite étale character group scheme of K0,#,S̃.)
Hence, we can define the isogeny

(3.3.4.12) [p−r0g−1
p,#,0]ord : A′′,∨ → A′,∨ := A′′,∨/K0,#,

and define the isogeny

(3.3.4.13) [p−r0gp,−1]ord : A′ → A′′

to be the dual of [p−r0gp,#,0]ord, with kernel isomorphic to the Cartier
dual of K0,#. By (3.3.4.2), we know that

(3.3.4.14) A′,∨[pr] ⊂ A′′,∨[pr
′′
]/K0,#

(as a closed subgroup scheme).

Over S̃ again, the homomorphism αord,#,0,′′
pr′′

induces a homomor-

phism

αord,#,0,′
pr :=

(
[p−r0g−1

p,#,0]ord
S̃
◦ αord,#,0,′′

pr′′
◦ (pr0gp,#,0)

)
|(Gr0

D#,pr
)mult
S̃

:

(Gr0
D#,pr)

mult
S̃
→ A′,∨

S̃
[pr]

(3.3.4.15)

that is a closed immersion by (3.3.4.2). Since the kernel K0,#,S̃ of

[p−r0g−1
p,#,0]ord

S̃
: A′′,∨

S̃
→ A′,∨

S̃
is contained in the kernel of the surjection

αord,#,−1,′′
pr′′

: A′′,∨
S̃

[pr
′′
]→ (Gr−1

D#,pr′′
)S̃

dual to αord,0,′′
pr′′

, the surjection αord,#,−1,′′
pr′′

induces a surjection

A′′,∨[pr
′′
]/K0,# → (Gr−1

D#,pr′′
)S̃.

By restriction to A′,∨
S̃

[pr] (see (3.3.4.14)), we obtain an induced surjec-
tion

αord,#,−1,′
pr : A′,∨

S̃
[pr]→ (Gr−1

D#,pr
)S̃,

which is dual to a homomorphism

(3.3.4.16) αord,0,′
pr : (Gr0

D,pr)
mult
S̃
→ A′

S̃
[pr]

that is a closed immersion, lifting the homomorphism

αord,0,′′
pr : (Gr0

D,pr′′
)mult
S̃
→ A′′

S̃
[pr]

induced by αord,0,′′
pr′′

.

Since r′ ≥ r by assumption, the section νord
pr′
◦ (r−1

p ν(gp)) over S̃,

where rp is as in the statement of the proposition, induces a section

(3.3.4.17) νord,′
pr : µpr,S̃

∼→ µpr,S̃
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of (Z/prZ)×
S̃

.
Before moving on, let us first justify the construction of λ′ and i′

outlined in the statements of the proposition. The only part that is
not clear is that the Q×-polarization λ′ is indeed a polarization. This
is only a statement of checking whether a Q×-isogeny is an isogeny,
which can be verified after pulled back to geometric points of S, which
we can always lift to geometric points of S̃. Hence, it follows from
the above construction of [pr0g−1

p,0]ord, [p−r0g−1
p,#,0]ord, and [p−r0gp,−1]ord

(see (3.3.4.10), (3.3.4.12), and (3.3.4.13)), and the relations among the
various (O⊗

Z
Zp)-submodules of Gr0

D and Gr0
D# .

Since all the above constructions over S̃ are compatible with the
action of the tautological action of H ′,ord

pr on S̃ → S, the homomorphism

H ′,ord

pr′
→ Hord

pr induced by H′,ord
p ↪→ gord

p Hord
p (gord

p )−1 (i.e., conjugation

by gord
p ), or rather by H′p ↪→ gpHpg

−1
p , induces a well-defined Hord

pr -orbit

of αord,′
pr = (αord,0,′

pr , αord,#,0,′
pr , νord,′

pr ) over S̃ (see (3.3.4.16), (3.3.4.15), and

(3.3.4.17)), which descends to a naive ordinary level-Hord
pr structure

αord,′
Hord
pr

of (A′, λ′, i′) of type (L/prL, 〈 · , · 〉, Dpr) as in Definition 3.3.3.3.

Since we can repeat the above procedure when the objects involved are
(étale locally) liftable to higher levels, we obtain an ordinary level-Hp

structure αord,′
Hp of (A′, λ′, i′) of type (L⊗

Z
Zp, 〈 · , · 〉, D) as in Definition

3.3.3.4. By construction, at each geometric point s̄ of S, there exist
liftings of αord,′

Hp satisfying the characterizations in (5) of the proposition.
This finishes the construction of the ordinary Hecke twist

(A′, λ′, i′, αord,′
Hp ). �

Example 3.3.4.18 (elements in Pord
D (Zp)). (This is a continuation of

Example 3.3.4.5.) In this case, the ordinary Hecke twist (A′, λ′, i′, αord,′
Hp )

of (A, λ, i, αord
H′p ) by gp can be described as follows: The isogeny [g−1

p ] :

A → A′ is an isomorphism allowing us to identify (A′, λ′, i′) with
(A, λ, i). Over the scheme S̃ = αord

H′,ord

pr
′

, where there is a tautological

principal ordinary level-pr
′

structure αord
pr′

= (αord,0

pr′
, αord,#,0

pr′
, νord
pr′

), we

have a twisted triple αord
pr′
◦ gord

p := (αord,0

pr′
◦ gp,0, αord,#,0

pr′
◦ gp,#,0, νord

pr′
◦

ν(gp)), whose reduction modulo pr defines a triple αord,′
pr . The Hord

pr -orbit

of αord,′
pr descends to S and agrees with αord,′

Hp .

Example 3.3.4.19 (multiplication by powers of p). (This is a con-
tinuation of Example 3.3.4.6.) In this case, the ordinary Hecke twist

(A′, λ′, i′, αord,′
Hp ) of (A, λ, i, αord

H′p ) by gp can be described as follows: The
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triple (A′, λ′, i′) can be identified with (A, λ, i), so that the Q×-isogeny
[g−1
p ] : A→ A′ is identified with the Q×-isogeny [p−r0 ] = [pr0 ]−1 : A→

A, as in (1) of Proposition 3.3.4.9. Over the scheme S̃ = αord

H′,ord

pr
′

, where

there is a tautological principal ordinary level-pr
′

structure αord
pr′

=

(αord,0

pr′
, αord,#,0

pr′
, νord
pr′

), we can take αord,′
pr to be the reduction modulo

pr of the triple αord
pr′

. The Hord
pr -orbit of αord,′

pr descends to S and agrees

with αord,′
Hp .

Example 3.3.4.20 (Up operator and relative Frobenius). (This is
a continuation of Example 3.3.4.7.) In this case, the ordinary Hecke

twist (A′, λ′, i′, αord,′
Hp ) of (A, λ, i, αord

H′p ) by gp can be described as fol-

lows: Consider K0 := image(αord,0
H′p )[p], the p-torsion subgroup scheme

of image(αord,0
H′p ). Then [g−1

p ]ord : A → A′ can be identified with the

quotient A → A/K0. If S is a scheme over Spec(Fp), we can iden-
tify A′ with the pullback A(p) of A by the absolute Frobenius mor-
phism FS : S → S, and identify [g−1

p ] : A → A′ with the rela-

tive Frobenius morphism FA/S : A → A(p); and, accordingly, we can

also identify λ′ and i′ with the pullbacks λ(p) and i(p) by FS, respec-
tively. Over the scheme S̃ = αord

H′,ord

pr
′

(but no longer assuming that

S is a scheme over Spec(Fp)), where there is a tautological principal

ordinary level-pr
′

structure αord
pr′

= (αord,0

pr′
, αord,#,0

pr′
, νord
pr′

), we can take

αord,′
pr = (αord,0,′

pr , αord,#,0,′
pr , νord,′

pr′
) such that αord,0,′

pr is obtained from αord,0

pr′

by first taking the quotient of the source and target by the p-torsion
subgroup and K0, respectively, and restrict the induced morphism
(which has image in A′

S̃
) to the pr-torsion subgroup; such that αord,#,0,′

pr

is the restriction of αord,#,0

pr′
to the pr-torsion subgroup (whose image in

A∨
S̃

canonically lifts to a subgroup scheme of A′,∨
S̃

under the pullback

to S̃ of the étale dual morphism ([gp]
ord)

∨
: A′,∨ → A∨ of [gp]

ord); and

such that νord,′
pr′

is induced by νord
pr′
◦ (p−1ν(gp)). The Hord

pr -orbit of αord,′
pr

descends to S and agrees with αord,′
Hp .

Proposition 3.3.4.21. Suppose that g = (g0, gp) ∈
G(A∞,p)×Pord

D (Qp) ⊂ G(A∞) (see Definition 3.2.2.7), and that H and

H′ are two open compact subgroups of G(Ẑ) such that H′ ⊂ gHg−1,
and such that H and H′ are of standard form as in Definition 3.2.2.9.
Suppose moreover that gp satisfies the conditions given in Section
3.3.4.
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Let S be a scheme over Spec(Z(p)), let A be an abelian scheme
over S, let λ : A → A∨ be a polarization, let i : O ↪→ EndS(A)
be an O-endomorphism structure as in [62, Def. 1.3.3.1], let αH′,p =

{αH′n0
}n0 be a level-H′,p structure of (A, λ, i) of type (L⊗

Z
Ẑp, 〈 · , · 〉) as

in Definition 3.3.1.4, and let αord
H′p be an ordinary level-H′p structure of

(A, λ, i) of type (L⊗
Z
Zp, 〈 · , · 〉, D) as in Definition 3.3.3.4.

Under these assumptions, the constructions in Propositions 3.3.2.1
and 3.3.4.9 are both applicable and are compatible with each other.

By Proposition 3.3.2.1, the tuple (A, λ, i, αH′,p) admits a Hecke twist
by g0, which is a tuple (A′′, λ′′, i′′, α′′Hp) equipped with a Z×(p)-isogeny

[g−1
0 ] : A→ A′′ compatible with all other structures. Since [g−1

0 ] induces

an isomorphism A[pr]
∼→ A′′[pr] for each r ≥ 0, we have a canonically

induced ordinary level structure αord,′′
H′p on (A′′, λ′′, i′′, α′′Hp).

By Proposition 3.3.4.9, the tuple (A′′, λ′′, i′′, αord,′′
H′p ) admits an

ordinary Hecke twists by gp, which is a tuple (A′, λ′, i′, αord,′
Hp ) equipped

with a Q×-isogeny [g−1
p ]ord : A′′ → A′, which is the composition

([p−r0gp,−1]ord)−1 ◦ [pr0g−1
p,0]ord ◦ [pr0 ]−1 of isogenies of p-power degrees

or their formal inverses. Since [g−1
p ]ord induces an isomorphism

A′′[n0]
∼→ A′[n0] for each integer n0 ≥ 1 such that p - n0, we have a

canonically induced level structure α′Hp on (A′, λ′, i′).

Thus, we have obtained a tuple (A′, λ′, i′, α′Hp , α
ord,′
Hp ), which we call

the ordinary Hecke twist of (A, λ, i, αH′,p , α
ord
H′p ) by g = (g0, gp), which

is equipped with a Q×-isogeny [g−1]ord : A → A′ defined by the com-
position [g−1]ord := [g−1

p ]ord ◦ [g−1
0 ], whose formal inverse we denote by

[g]ord : A′ → A. By construction, we have λ′ = r([g]ord)
∨ ◦ λ ◦ [g]ord (as

positive Q×-isogenies), where r is the unique number in Q×>0 such that

rν(g)Ẑ = Ẑ.
If g = g1g2, where g1 = (g1,0, g1,p) and g2 = (g2,0, g2,p) are elements

of G(A∞,p)×Pord
D (Qp), each having a setup similar to that of g, then

the ordinary Hecke twists by g can be constructed in two steps using
ordinary Hecke twists by g1 and g2, such that [g−1]ord = [g−1

2 ]ord◦[g−1
1 ]ord

(or, equivalently, [g]ord = [g1]ord ◦ [g2]ord).

Proof. The statements are self-explanatory. (Since the construc-
tions of isogenies in Propositions 3.3.2.1 and 3.3.4.9 are achieved by
quotients by torsion subgroup schemes of prime-to-p and p-power ranks,
respectively, and since the quotients by two torsion subgroup schemes
of ranks relative prime to each other can be performed in any order, in
order to construct the Hecke twists by g = (g0, gp), we might as well
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form the ordinary Hecke twist by gp first, and form the Hecke twist by
g0 second, so that [g−1]ord = [g−1

p ]ord ◦ [g−1
0 ] = [g−1

0 ] ◦ [g−1
p ]ord, by abuse

of notation. For the same reason, the last statement of the proposition
follows from the last statements of Propositions 3.3.2.1 and 3.3.4.9,
because [g−1]ord = [g−1

p ]ord ◦ [g−1
0 ] = [g−1

2,p]
ord ◦ [g−1

1,p]
ord ◦ [g−1

2,0] ◦ [g−1
1,0] =

[g−1
2,p]

ord ◦ [g−1
2,0] ◦ [g−1

1,p]
ord ◦ [g−1

1,0] = [g−1
2 ]ord ◦ [g−1

1 ]ord, by a similar abuse
of notation.) �

3.3.5. Comparison with Level Structures in Characteristic
Zero. Let H ⊂ G(Ẑ) be of standard form (with respect to D) as in
Definition 3.2.2.9, so that H = HpHp, Ubal

p,1 (pr) ⊂ Hp ⊂ Up,0(pr), and

ν(Hp) = ker(Z×p → (Z/prνZ)×) for some integer rν ≤ r = depthD(H).
Over each scheme S over Spec(Q[ζprν ]), there exists a canonical iso-

morphism ζprν ,S : ((Z/prνZ)(1))S
∼→ µprν ,S (which is the pullback of

the canonical ζprν over Spec(Q[ζprν ])).

Proposition 3.3.5.1. Let S be a scheme over S0,rν = Spec(F0[ζprν ])
(see Definition 2.2.3.3), and let (A, λ, i, αH) be an object of MH(S) (see
Section 1.1.2). Then the level-H structure αH = {αHn}n (labeled by
integers n ≥ 1 such that U(n) ⊂ H) determines the following data:

(1) Since Up(pr) ⊂ Ubal
p,1 (pr) ⊂ Hp, for each integer n0 ≥ 1 such

that p - n0 and Up(n0) ⊂ Hp, we have U(n0p
r) ⊂ H. Let

αHn0
be the schematic image of αHn0p

r under the canonical

(reduction modulo n0) morphism

IsomS((L/n0p
rL)S, A[n0p

r])×
S

IsomS(((Z/n0p
rZ)(1))S,µn0pr,S)

→ IsomS((L/n0L)S, A[n0])×
S

IsomS(((Z/n0Z)(1))S,µn0,S).

(3.3.5.2)

Then the collection αHp = {αHn0
}n0 labeled by integers n0 ≥ 1

such that p - n0 and Up(n0) ⊂ Hp defines a level-Hp structure

αHp of (A, λ, i) of type (L⊗
Z
Ẑp, 〈 · , · 〉) (see Definition 3.3.1.4).

(2) Let αHpr be the schematic image of αHn0p
r under the canonical

(reduction modulo pr) morphism

IsomS((L/n0p
rL)S, A[n0p

r])×
S

IsomS(((Z/n0p
rZ)(1))S,µn0pr,S)

→ IsomS((L/prL)S, A[pr])×
S

IsomS(((Z/prZ)(1))S,µpr,S).

(3.3.5.3)

Over some finite flat covering S ′ → S of finite
presentation, suppose that there exists some isomorphism
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ζpr,S′ : ((Z/prZ)(1))S′
∼→ µpr,S′ lifting the pullback ζprν ,S′ of

ζprν ,S : ((Z/prνZ)(1))S
∼→ µprν ,S to S ′.

Consider the canonical morphism

IsomS′((L/p
rL)S′ , AS′ [p

r])×
S′

IsomS′(((Z/prZ)(1))S′ ,µpr,S′)

→ HomS′((Gr0
D,pr)

mult
S′ , AS′ [p

r])×
S′

HomS′((Gr0
D#,pr)

mult
S′ , A∨S′ [p

r])

×
S′

(Z/prZ)×S′

(3.3.5.4)

over S ′ defined by sending

(αpr : (L/prL)S′
∼→ AS′ [p

r], νpr : ((Z/prZ)(1))S′
∼→ µpr,S′)

in the source to

αord
pr = (αord,0

pr , αord,#,0
pr , νord

pr )

in the target, where:
(a) αord,0

pr : (Gr0
D,pr)

mult
S′ → AS′ [p

r] is composition of ζ−1
pr,S′ :

(Gr0
D,pr)

mult
S′

∼→ (Gr0
D,pr)S′ with the restriction of αpr to

(Gr0
D,pr)S′.

(b) αord,#,0
pr : (Gr0

D#,pr)
mult
S′ → A∨S′ [p

r] is the

restriction of α#,mult
pr to (Gr0

D#,pr)
mult
S′ , where

α#,mult
pr : (L#/prL#)mult

S′
∼→ A∨S′ [p

r] is the inverse of the
Cartier dual of αpr over S ′.

(c) νord
pr is a section of (Z/prZ)×S′ defined by the composition

ζ−1
pr,S′ ◦ νpr : (Z/prZ)(1))S′

∼→ ((Z/prZ)(1))S′.
Then the schematic image of αHpr ×

S
S ′ under this canonical

morphism is independent of the lifting ζpr,S′ of ζprν ,S′ over S ′,
and defines by descent (see [33, VIII, 1.9, 1.11, 5.5]) a sub-
scheme αord

Hord
pr

of

HomS((Gr0
D,pr)

mult
S , A[pr])×

S
HomS((Gr0

D#,pr)
mult
S , A∨[pr])×

S
(Z/prZ)×S

that defines an ordinary level-Hp structure αord
Hp of (A, λ, i) of

type (L⊗
Z
Zp, 〈 · , · 〉, D) (see Definition 3.3.3.4).

This assignment

(3.3.5.5) αH 7→ (αHp , α
ord
Hp )

induces an injection from the set of level-H structures of (A, λ, i) of

type (L⊗
Z
Ẑ, 〈 · , · 〉) as in [62, Def. 1.3.7.6] to the set of pairs (αHp , α

ord
Hp ),
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where αHp is a level-Hp structure αHp of (A, λ, i) of type (L⊗
Z
Ẑp, 〈 · , · 〉)

(see Definition 3.3.1.4), and where αord
Hp is an ordinary level-Hp struc-

ture αord
Hp of (A, λ, i) of type (L⊗

Z
Zp, 〈 · , · 〉, D) (see Definition 3.3.3.4).

Suppose α̂s̄ : L⊗
Z
Ẑ ∼→ TAs̄ is a lifting of αH as in Lemma

3.3.1.6 (or rather in [62, Sec. 1.3.7]). Then α̂s̄ induces an

O⊗
Z
A∞,p-equivariant isomorphism α̂ps̄ : L⊗

Z
Ẑp ∼→ TpAs̄, which is

a lifting of αHp as in Lemma 3.3.1.6, because the assignment of
αHp to αH in (1) above is defined by the canonical morphisms as in
(3.3.5.2). Similarly, α̂s̄ induces an O⊗

Z
Zp-equivariant isomorphism

α̂s̄,p : L⊗
Z
Zp

∼→ TpAs̄, which induces by taking graded pieces and

by duality a triple α̂ord
s̄ = (α̂ord,0

s̄ , α̂ord,#,0
s̄ , ν̂ord

s̄ ), which is a lifting of
αord
Hp as in Lemma 3.3.3.9, because the assignment of αord

Hp to αH in

(2) above is defined by the canonical morphisms as in (3.3.5.3) and
(3.3.5.4).

Proof. It is clear that the assignments define αHp and αord
Hp as

naive level structures. The symplectic-liftability conditions are verified
because αH itself is symplectic-liftable, and its symplectic liftings to
higher levels induce the desired symplectic liftings of αHp and αord

Hp .

As for the injectivity of (3.3.5.5), first note that if two geometric
points of

IsomS((L/n0p
rL)S, A[n0p

r])×
S

IsomS(((Z/n0p
rZ)(1))S,µn0pr,S)

have the same images under both the morphisms (3.3.5.2) and (3.3.5.3),
then they must be the same. Second note that if two geometric points
of

IsomS′((L/p
rL)S′ , AS′ [p

r])×
S′

IsomS′(((Z/prZ)(1))S′ ,µpr,S′)

are mapped to the same point under the morphism (3.3.5.4), then they
are in the same Up,0(pr)-orbit. Since Hord

pr = Hp/Ubal
p,1 (pr) by definition

(see the beginning of Section 3.3.3), the injectivity of (3.3.5.5) follows.
The last paragraph of the proposition is self-explanatory. �

Proposition 3.3.5.6. Let g, H, and H′ be as in Proposition
3.3.4.21. Suppose ν(H′p) = ker(Z×p → (Z/prν′Z)×). (Then rν′ ≥ rν
because H′p ⊂ Hp.) Let S be a scheme over S0,rν′

= Spec(F0[ζprν′ ]),

and let (A, λ, i, αH′) be an object of MH′(S). Let αH′,p and αord
H′p be

determined by αH′ as in Proposition 3.3.5.1. Let (A′, λ′, i′, α′H)
be the Hecke twist of (A, λ, i, αH′) by g as in [62, Sec. 6.4.3],
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equipped with a Q×-isogeny [g] : A → A′, and let α′Hp and αord,′
Hp be

determined by α′H as in Proposition 3.3.5.1. Let (A′′, λ′′, i′′, α′′Hp , α
ord,′′
Hp )

be the ordinary Hecke twist of (A, λ, i, αH′,p , α
ord
H′p ) by g as in

Proposition 3.3.4.21. Then there is a canonical isomorphism
between (A′, λ′, i′, α′Hp , α

ord,′
Hp ) and (A′′, λ′′, i′′, α′′Hp , α

ord,′′
Hp ) matching

[g−1] : A→ A′ and [g−1]ord : A→ A′′.

Proof. Since we are in characteristic zero, all kernels of isogenies
involved are finite étale group schemes, and all level structures are de-
fined by homomorphisms between étale group schemes. Hence, the
statements of this proposition can be verified after pulled back to geo-
metric points of S. At each geometric point s̄ of S, the validity of the
corresponding statements follows from the last paragraph of Proposi-
tion 3.3.5.1, and from the descriptions of the effects of Hecke twists
over geometric points in (4) of Proposition 3.3.2.1 and (5) of Proposi-
tion 3.3.4.9 (and in the analogue of (4) of Proposition 3.3.2.1 for usual
Hecke twists defined by g in characteristic zero). �

3.3.6. Valuative Criteria.

Definition 3.3.6.1. We say an element gp ∈ Pord
D (Qp) is of Up

type if it acts on GrDQp
∼= Gr0

DQp
⊕Gr−1

DQp
by gord

p = (gp,0, gp,−1) =

(p−a IdGr0
D
, IdGr−1

D
) for some integer a > 0, and if for one (and hence

every) splitting of the filtration (3.2.2.3) (resp. (3.2.2.5)), gp (resp.
gp,# = tg−1

p ) maps the image of Gr−1
D (resp. Gr−1

D#) to L⊗
Z
Zp (resp.

L#⊗
Z
Zp).

We say an element gp ∈ Pord
D (Qp) is of twisted Up type

if it acts on GrDQp
∼= Gr0

DQp
⊕Gr−1

DQp
by gord

p = (gp,0, gp,−1) such

that gp,0(Gr0
D) = p−a Gr0

D and gp,−1(Gr−1
D ) = p−b Gr−1

D , so that
gp,#,0(Gr0

D#) = tg−1
p,−1(Gr0

D#) = pb Gr0
D#, for some integers a ≥ b. In

this case, we define depthD(gp) := a− b.

Remark 3.3.6.2. Suppose gp ∈ Pord
D (Qp) is of Up type, then

pZ g
Z≥0
p Pord

D (Zp) is a subsemigroup of Pord
D (Qp), whose elements are all

of twisted Up type. (Thus, the elements of twisted Up type includes
Examples 3.3.4.5, 3.3.4.7, and 3.3.4.7 as special cases.)

Remark 3.3.6.3. Suppose that Hp, H′p, and gp ∈ Pord
D (Qp) satisfies

the conditions given in Section 3.3.4, with r := depthD(Hp) and r′ :=
depthD(H′p), and that gp is of twisted Up type as in Definition 3.3.6.1,
such that r′−depthD(gp) = r. Then, by setting r0 := −b as in Definition
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3.3.6.1 and r′′ := r, we have

(3.3.6.4) Gr0
D ⊂ p−r0gp,0(Gr0

D) ⊂ p−r
′′−r0gp,0(Gr0

D) = p−r
′
Gr0

D

and

(3.3.6.5) Gr0
D# = pr0gp,#,0(Gr0

D#) ⊂ p−r+r0gp,#,0(Gr0
D#) = p−r

′′
Gr0

D#

(cf. (3.3.4.1) and (3.3.4.2)).

Lemma 3.3.6.6. Suppose that Hp, H′p, gp ∈ Pord
D (Qp), r0, r, r′, r′′

are as in Remark 3.3.6.3, and that r > 0. Suppose R is a discrete val-
uation ring over Z(p), with fraction field Frac(R) and residue field k of

characteristic p > 0. Let ~S := Spec(R) and S := Spec(Frac(R)). Sup-

pose that (A, λ, i, αord
H′p ) = (αord,0

H′p , αord,#,0
H′p , νord

H′p ) is defined over S as in

Proposition 3.3.4.9, so that the ordinary Hecke twist (A′, λ′, i′, αord,′
Hp =

(αord,0,′
Hp , αord,#,0,′

Hp , νord,′
Hp )) of (A, λ, i, αord

H′p ) by gp is defined, equipped with

a Q×-isogeny [g−1
p ]ord : A→ A′ over S.

Moreover, suppose that A′ extends to a semi-abelian scheme ~A′

over ~S, so that ~A′,∨ is defined (as in [62, Thm. 3.4.3.2]), and so

that λ′ and i′ also (uniquely) extend to some ~λ′ : ~A′ → ~A′,∨ and
~i′ : O → End~S( ~A′) by [92, IX, 1.4], [28, Ch. I, Prop. 2.7], or [62,

Prop. 3.3.1.5]; and suppose that image(αord,0,′
Hp ) (resp. image(αord,#,0,′

Hp ))

extends to a finite flat subgroup scheme K ′ (resp. K#,′) of multiplica-

tive type of ~A′[pr] (resp. ~A′,∨[pr]), so that αord,′
Hp (uniquely) extends to

some ~αord,′
Hp = (~αord,0,′

Hp , ~αord,#,0,′
Hp , ~νord,′

Hp ), which is étale locally over S

an Hp/Ubal
p,1 (pr)-orbit of some ~αord,′

pr = (~αord,0,′
pr , ~αord,#,0,′

pr , ~νord,′
pr ), where

~αord,0,′
pr : (Gr0

D,pr)
mult
~S
→ ~A′[pr], ~αord,#,0,′

Hp : (Gr0
D#,pr)

mult
~S
→ ~A′,∨[pr], and

~νord,′
pr ∈ (Z/prZ)×~S satisfy the same compatibility conditions as in Def-

initions 3.3.3.1, 3.3.3.2, 3.3.3.3, and 3.3.3.4; and so that ~A → ~S is
ordinary, by Remark 3.3.3.6.

Then (A, λ, i, αord
H′p ) also extends to an analogous tuple ( ~A,~λ,~i, ~αord

H′p )

over ~S, equipped with a Q×-isogeny [g−1
p ]ord : ~A → ~A′, extending

[g−1
p ]ord : A → A′, between ordinary semi-abelian schemes. If ~A′ is

an abelian scheme, then ~A is also an abelian scheme; ~αord,′
Hp is an or-

dinary level-H′p structure of ( ~A,~λ,~i) of type (L⊗
Z
Zp, 〈 · , · 〉, D) as in

Definition 3.3.3.4; and ( ~A′, ~λ′,~i′, ~αord,′
Hp ) is the ordinary Hecke twist of

( ~A,~λ,~i, ~αord
H′p ) by gp as in Proposition 3.3.4.9.
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Proof. By Lemma 3.1.3.1, sufficiently divisible multiples of the
formal inverse [gp]

ord : A′ → A of [g−1
p ]ord extends to sufficiently divis-

ible multiples of the formal inverse [gp]
ord : ~A′ → ~A of [g−1

p ]ord, where
~A is determined by any such extensions by [92, IX, 1.4], [28, Ch. I,
Prop. 2.7], or [62, Prop. 3.3.1.5]; and λ and i also (uniquely) extends

to some ~λ : ~A → ~A∨ and ~i : O → End~S( ~A) (by the same references).

Moreover, by Lemma 3.1.1.5, ~A→ ~S is ordinary because ~A′ → ~S is.
Hence, the question is whether the schematic closure K (resp. K#)

of image(αord,0

Hord
pr

) (resp. image(αord,0

Hord
pr

)) in ~A (resp. ~A∨), which is quasi-

finite flat and of étale-multiplicative type over ~S because ~A → ~S is
ordinary, is of multiplicative type. (The rest of the lemma will be
self-explanatory.)

By (3.3.6.4) and (3.3.6.5) in Remark 3.3.6.3, using the crucial con-
dition that r′ − depthD(gp) = r, we have the following exact sequences
of finite flat group schemes

0→ primage(αord,0
H′p )→ image(αord,0

H′p )→ image(αord,0,′
Hp )→ 0

and

0→ primage(αord,#,0
H′p )→ image(αord,#,0

H′p )→ image(αord,#,0,′
Hp )

of multiplicative type over S. By definition of the ordinary level struc-
tures, both are étale locally (after forgetting theirO-module structures)
filtered by subobjects whose graded pieces are isomorphic to

0→ (prZ/pr′Z)mult
S → (Z/pr′Z)mult

S → (Z/prZ)mult
S .

Their closures in ~A and ~A∨, respectively, correspond to the exact se-
quences

0→ prK → K → K ′ → 0

and

0→ prK# → K# → K#,′ → 0.

By taking normalizations over the étale cover, both are fppf locally (af-
ter forgetting their O-module structures) filtered by subobjects whose
graded pieces are exact sequences of the form

0→ prC → C → (Z/prZ)mult
~S
→ 0,

where C is cyclic of order pr
′
, and where r > 0 by assumption. Hence,

C must also be of multiplicative type, by the same argument in the
proof of [49, Thm. 6.7.11(2)]; and so are K and K#, as desired. �
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Remark 3.3.6.7. The proof of Lemma 3.3.6.6 shows that, in or-
der to have similar valuative criteria for more general elements gp ∈
Pord
D (Qp), such as those generalized Up operators in Example 3.3.4.8

(which are, in general, not of twisted Up type as in Definition 3.3.6.1),
we should consider not just the group Up,0(pr) stabilizing a maxi-
mal totally isotropic subgroup D0

pr of L⊗
Z

(Z/pr) (which can be called

the canonical subgroup), but also a sequence of isotropic subgroups
Dipri ⊂ L⊗

Z
(Z/pri) such that ri ≥ rj and D

j
pri = (Dj

prj
/priDj

prj
) ⊂ Dipri

whenever j ≥ i (which can be considered a sequence of partial canoni-
cal subgroups of increasing depth). This is technically possible, but we
omit its treatment because it introduces complications that we do not
immediate need (in an already lengthy work).

Lemma 3.3.6.8. In Lemma 3.3.6.6, if the characteristic of Frac(R)
is p > 0, then the same conclusion holds without the assumptions that
r′−depthD(gp) = r in Remark 3.3.6.3 and that r > 0 in Lemma 3.3.6.6.

Proof. By Lemma 3.3.3.7, since ~S is a scheme over Spec(Fp), we

have the identities image(αord,0
H′p ) = ker(F

(r′)
A/S) and image(αord,#,0

H′p ) =

ker(F
(r′)
A∨/S) over S, which necessarily extends to the identities K =

ker(F
(r′)
~A/~S

) and K# = ker(F
(r′)
~A∨/~S

) over ~S, where K and K# are as in the

proof of Lemma 3.3.6.6. Hence, K and K# are of multiplicative type
without the assumption that r′ − depthD(gp) = r > 0. �

3.4. Ordinary Loci

From now on, we fix the choice of D as in Lemma 3.2.2.1 that satisfies
Assumption 3.2.2.10.

3.4.1. Naive Moduli Problems with Ordinary Level Struc-
tures. Let H ⊂ G(Ẑ) be of standard form as in Definition 3.2.2.9, so
that H = HpHp and Ubal

p,1 (pr) ⊂ Hp ⊂ Up,0(pr) for r = depthD(H). Let

Hord
pr := Hp/Ubal

p,1 (pr) and let Hord
p be defined as in (3.3.3.5).

Definition 3.4.1.1. Let H, Hp, Hp, r, and Hord
p be as above. The

moduli problem
...
M

ord

H is defined as the category fibered in groupoids
over (Sch / Spec(Z(p))) whose fiber over each scheme S is the groupoid
...
M

ord

H (S) described as follows: The objects of
...
M

ord

H (S) are tuples
(A, λ, i, αHp , α

ord
Hp ), where:

(1) A is an abelian scheme over S.
(2) λ : A→ A∨ is a polarization.
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(3) i : O ↪→ EndS(A) is an O-endomorphism structure as in [62,
Def. 1.3.3.1].

(4) αHp is a level-Hp structure of (A, λ, i) of type

(L⊗
Z
Ẑp, 〈 · , · 〉) (see Definition 3.3.1.4).

(5) αord
Hp is an ordinary level-Hp structure of (A, λ, i) of type

(L⊗
Z
Zp, 〈 · , · 〉, D) (see Definition 3.3.3.4). (This forces A to

be ordinary. See Remark 3.3.3.6.)

The morphisms of
...
M

ord

H (S) are naive isomorphisms (between the abelian
schemes, matching all additional structures).

If Hp = Up(n0) and Hp = Ubal
p,1 (pr), then we denote

...
M

ord

H by
...
M

ord

n0pr
=

...
M

ord

n , and we denote by αn0 (resp. αord
pr ) the unique principal level-n0

structure (resp. principal ordinary level-prstructure) determined by αHp
(resp. αord

Hp ).

As always, the symplectic isomorphisms carry the additional data
of isomorphisms between values of pairings, which can be called the
similitudes of the symplectic isomorphisms.

If p is a good prime, then an argument similar to that in [62, Ch.

2] shows that the moduli problem
...
M

ord

H is an algebraic stack separated
and of finite type over Spec(Z(p)). (See the proof of Theorem 3.4.1.9
below.) However, the argument there used the crucial technical result
[62, Thm. B.3.11] (due to Artin) to suppress the technical condition
[62, Sec. 2.3.4, Cond. 4] in the verification of Artin’s criterion, which
requires the infinitesimal deformation rings to be noetherian and nor-
mal. As we will see below, when p is not a good prime, the infinitesimal
deformation rings might not even be geometrically unibranched (and
hence not geometrically normal either), a situation to which no variant
of [62, Thm. B.3.11] along the lines of [3, Thm. 3.9] seems to apply.
To circumvent this difficulty, we shall again introduce some auxiliary
moduli problems. (For later references, in this subsection, we will de-
velop more about these auxiliary moduli problems than we need for
the proof of representability.)

Construction 3.4.1.2. Let (Oaux, ?aux, Laux, 〈 · , · 〉aux, h0,aux) be
chosen as in the paragraph preceding Lemma 2.1.1.9, where (Laux =
L⊕ a1 ⊕(L#)⊕ a2 , 〈 · , · 〉aux) is as in Lemma 2.1.1.1. Then the filtration
D on L⊗

Z
Zp induces a filtration

D1
aux = 0 ⊂ D0

aux := (D0)⊕ a1 ⊕(D#,0)⊕ a2 ⊂ D−1
aux = Laux⊗

Z
Zp.
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Since D0
aux,Qp := D0

aux⊗
Zp
Qp is mapped to (D0)⊕(a1+a2)⊗

Zp
Qp under the

canonical isomorphism Laux⊗
Z
Qp
∼= L⊕(a1+a2)⊗

Z
Qp, its submodule

D0
aux = D0

aux,Qp ∩(Laux⊗
Z
Zp) is maximal totally isotropic under the

pairing on Laux⊗
Z
Zp induced by 〈 · , · 〉aux (cf. Lemma 3.2.2.1). Since

〈 · , · 〉aux is self-dual at p, the pairing 〈 · , · 〉aux induces an isomorphism

Laux⊗
Z
Zp

∼→ L#
aux⊗

Z
Zp matching Daux with D#

aux (cf. Lemma 3.2.2.4),

and induces an isomorphism φ0
Daux

: Gr0
Daux

∼→ Gr0

D
#
aux

. Hence, we have a

commutative diagram:

(3.4.1.3) (Gr0
D)
⊕(a1+a2)
� _

φ0
D ⊗( · , · )∗aux

��

� � // Gr0
Daux

φ0
Dauxo
��

(Gr0
D#)⊕(a1+a2) Gr0

D
#
aux

? _oo

(This finishes Construction 3.4.1.2.)

Suppose H = HpHp such that Hp ⊂ G(Ẑp) and Hp = Ubal
p,1 (pr)

for some integer r ≥ 0. Let Haux ⊂ Gaux(Ẑ) be of the form Haux =
Hp

auxHaux,p such that Hp,aux = Ubal
p,1,aux(pr), where Up,1,aux(pr) is defined

by the filtration Daux on Laux⊗
Z
Zp as in Definition 3.2.2.8, and such that

H is mapped into Haux under the homomorphism G(Ẑ) → Gaux(Ẑ)
given by (2.1.1.10).

Lemma 3.4.1.4. Let H and Haux be as above. Then there is a mor-
phism

(3.4.1.5)
...
M

ord

H →
...
M

ord

Haux

compatible with (2.1.1.17).

Proof. The construction of (3.4.1.5) is similar to the construction
of (2.1.1.17), but let us still spell out the details in steps where they
slightly differ.

Suppose (A, λ, i, αHp , α
ord
Hp ) is the tautological tuple over

...
M

ord

H .

Then we obtain the abelian schemes AMaux := A×(a1+a2) and
AOaux := A× a1 ×...

M
ord
H

(A∨)× a2 , the canonical morphism f : AMaux → AOaux,

the polarization λMaux and the Oaux-structure iMaux, and the polarization
λOaux of degree prime to p and the Oaux⊗

Z
Q-structure iOaux as in (2) of

Lemma 2.1.1.1 and in the proof of Proposition 2.1.1.15.
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The kernel K of the canonical isogeny f : AMaux → AOaux decomposes
canonically as a fiber product Kp ×...

M
ord
H

Kp, where Kp is a finite étale

group scheme of rank prime-to-p such that, at each geometric point s̄

of
...
M

ord

H , any lifting α̂ps̄ : L⊗
Z
Ẑp ∼→ TpAs̄ of αHp (as in Lemma 3.3.1.6)

defines an isomorphism

(L#/L)⊕ a2 ⊗
Z
Ẑp ∼→ Kp

s̄ ;

and where Kp is a finite flat group scheme of p-primary rank

such that, at each geometric point s̄ of
...
M

ord

H , any lifting

α̂ord
s̄ = (α̂ord,0

s̄ , α̂ord,#,0
s̄ , ν̂ord

s̄ ) of αord
Hp (as in Lemma 3.3.3.9) defines a

short exact sequence

0→ ((Gr0
D# /Gr0

D)
⊕ a2)mult

s̄ → Kp,s̄ → ((Gr−1
D# /Gr−1

D )⊕ a2)s̄ → 0.

(Although [62, Lem. 1.3.5.2] is not applicable to isogenies of degree
not prime to p, we can use such short exact sequences to study quasi-
isogenies formed by isogenies whose kernels are finite flat group schemes
of étale-multiplicative type.) Therefore, the O⊗

Z
Q-structure iOaux :

Oaux⊗
Z
Q → End...

M
ord
H

(AOaux)⊗
Z
Q induces an O-structure iOaux : Oaux →

End...
M

ord
H

(AOaux) of (AOaux, λ
O
aux).

Moreover, away from p, at each geometric point s̄ of
...
M

ord

H ,
the isomorphism Vp(f) : VpAMaux,s̄

∼→ VpAOaux,s̄ (which can be
defined even though f : AMaux → AOaux is not prime to p) and the

lifting α̂ps̄ above induces an Oaux⊗
Z
Ẑp-equivariant isomorphism

α̂O,ps̄ : Laux⊗
Z
Ẑp ∼→ TpAOaux,s̄ (matching similitudes, implicitly).

Since the Hp-orbit of α̂ps̄ is π1(
...
M

ord

H , s̄)-invariant, and since Hp is

mapped into Hp
aux under the homomorphism G(Ẑp)→ Gaux(Ẑp) given

by (2.1.1.10), the Hp
aux-orbit [α̂O,ps̄ ]Hpaux

of α̂O,ps̄ is invariant under

π1(
...
M

ord

H , s̄). This allows us to construct a level structure αOHpaux
(away

from p) as in the proof of [62, Prop. 1.4.3.4] such that α̂O,ps̄ lifts αOHpaux

(as in Lemma 3.3.1.6).
Finally, at p, since Hp = Ubal

p,1 (pr) and Haux,p = Ubal
p,1,aux(pr) for some

integer r ≥ 0, we can start with the unique triple

αord
pr = (αord,0

pr , αord,#,0
pr , νord

pr )

determined by αord
Hp , and define αord,O

Haux,p
by defining

αord,O
pr := (αord,0,O

pr , αord,#,0,O
pr , νord,O

pr ),



212 3. ORDINARY LOCI

where:

(1) αord,0,O
pr := (αord,0,O

pr )× a1 ×...
M

ord
H

(αord,#,0,O
pr )× a2

as homomorphisms from (Gr0
Daux,pr)

mult...
M

ord
H

∼=
((Gr0

D,pr)
mult...
M

ord
H

)× a1 ×...
M

ord
H

((Gr0
D#,pr)

mult...
M

ord
H

)× a2 to AOaux[pr].

(2) αord,#,0,O
pr := λOaux ◦ α

ord,0,O
pr ◦ ((φ0

Daux
)mult...
M

ord
H

)−1 (cf. (3.4.1.3)) as

homomorphisms from (Gr0

D
#
aux,pr

)mult...
M

ord
H

to AO,∨aux[pr].

(3) νord,O
pr := νord

pr as a section of (Z/prZ)×...
M

ord
H

.

Thus, we assigned to the tautological tuple (A, λ, i, αHp , α
ord
Hp ) over

...
M

ord

H a tuple (AOaux, λ
O
aux, i

O
aux, α

O
Hpaux

, αord,O
Haux,p

) parameterized by the mod-

uli problem
...
M

ord

Haux
, which then induces the desired morphism (3.4.1.5)

by the universal property of
...
M

ord

Haux
. By their very constructions, the

pullback to
...
M

ord

H of the tuple (AOaux, λ
O
aux, i

O
aux, α

O
Hpaux

) constructed in the
proof of Proposition 2.1.1.15 gives, via Proposition 3.3.5.1, the pull-

back to
...
M

ord

H of the tuple (AOaux, λ
O
aux, i

O
aux, α

O
Hpaux

, αord,O
Haux,p

) constructed

here. (It is nevertheless an abuse of notation when we use the notation
AOaux, λOaux, and iOaux in both of them.) Hence, (3.4.1.5) is compatible
with (2.1.1.17), as desired. �

Assuming no longer that Hp = Ubal
p,1 (pr), we still have:

Lemma 3.4.1.6. Suppose H = HpHp ⊂ G(Ẑ) and (resp.

Haux = Hp
auxHaux,p ⊂ Gaux(Ẑ)) is an open compact subgroup such that

there exists integers r ≥ r′ such that Ubal
p,1 (pr) ⊂ Hp ⊂ Ubal

p,0 (pr) and

Ubal
p,1,aux(pr

′
) ⊂ Haux,p ⊂ Up,0,aux(pr

′
), and such that H is mapped into

Haux under the homomorphism G(Ẑ) → Gaux(Ẑ) given by (2.1.1.10).
In this case, there is a morphism

(3.4.1.7)
...
M

ord

H →
...
M

ord

Haux

compatible with (2.1.1.17) (and with (3.4.1.5)).

Proof. The operations of taking orbits of level structures on both
sides of (3.4.1.5) are compatible with each other. Hence, the morphism
(3.4.1.5) at any sufficiently high level induces the morphism (3.4.1.7)
by forgetting part of the structures. �

Lemma 3.4.1.8. The morphism (3.4.1.7) is schematic, separated,
and quasi-finite.
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Proof. As in the proof of Proposition 2.1.1.15, this follows from
Lemma 2.1.1.5 (for the abelian schemes and polarizations), from [62,
Prop. 1.3.3.7] (for the endomorphism structures), from the fact that
the level structures away from p are defined by isomorphisms between
finite étale group schemes, and from the fact that the ordinary level
structures are defined by morphisms between finite flat group schemes
of étale-multiplicative type. �

Theorem 3.4.1.9. The moduli problem
...
M

ord

H is an algebraic stack
separated and of finite type over Spec(Z(p)). It is representable by an
algebraic space if the objects it parameterizes have no nontrivial auto-
morphism, which is, in particular, the case when Hp is neat. Its local
structures can be described as follows: Let φ−1

D : Gr−1
D → Gr−1

D# be as in
Lemma 3.2.2.4, and consider the finitely generated Zp-module
(3.4.1.10)

~SD := (Gr−1
D ⊗

Zp
Gr−1

D#)/

(
d⊗ φ−1

D (d′)− d′ ⊗ φ−1
D (d)

(bd)⊗ d# − d⊗ (b?d#)

)
d,d′∈Gr−1

D ,

d#∈Gr−1

D#
,b∈O

.

Let ~SD,Z be any noncanonical choice of a finitely generated Z-module

such that ~SD,Z⊗
Z
Zp ∼= ~SD and such that the maximal torsion submodule

~SD,Z,tor of ~SD,Z is isomorphic to the maximal torsion submodule ~SD,tor

of ~SD (as Z-modules). (This latter condition is not necessary for our
purpose, but we impose it for simplicity of later exposition.) Then the

completions of strict local rings of
...
M

ord

H at geometric points of charac-
teristic p are isomorphic to the completions of strict local rings of the
group scheme ED,Z of multiplicative type of finite type over Spec(Z(p))

with character group the finitely generated commutative group ~SD,Z.

Proof. By Lemma 3.4.1.8,
...
M

ord

H is schematic, separated, and

quasi-finite over
...
M

ord

Haux
. Since p is a good prime for the moduli

problem
...
M

ord

Haux
, we can show that

...
M

ord

Haux
is an algebraic stack

separated and of finite type over Spec(Z(p)) by an argument similar to

that in [62, Ch. 2]: The moduli problem
...
M

ord

Haux
is an algebraic stack

(quasi-separated and) locally of finite type over Spec(Z(p)) by the
theory of infinitesimal deformations and Artin’s criterion. Note that,
since the infinitesimal deformation rings are smooth (by [62, Prop.
2.2.4.9] and by the fact that αHpaux

and αord
Haux,p

are both parameterized

by étale objects), and since the moduli problem
...
M

ord

Haux
can be

extended to a moduli problem over a Dedekind ring having infinitely
many residue characteristics, we can suppress the technical condition
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[62, Sec. 2.3.4, Cond. 4] in Artin’s criterion by [62, Thm. B.3.11].

The diagonal 1-morphism ∆...
M

ord
Haux

:
...
M

ord

Haux
→

...
M

ord

Haux
×

Spec(Z(p))

...
M

ord

Haux
is

finite by the theory of Néron models (applied to the abelian schemes
and the additional structures—the ordinary level structures, once
they exist, have finite automorphism group schemes). This shows that
...
M

ord

Haux
is separated over Spec(Z(p)) (by definition). The algebraic stack

...
M

ord

Haux
is quasi-compact (and hence of finite type over Spec(Z(p)))

because it can be covered by a quasi-compact scheme parameterizing
the sections of ample invertible sheaves, the endomorphism structures,
and the ordinary level structures. (See [62, Ch. 2] for more details.)

Thus, we have shown that
...
M

ord

Haux
and hence

...
M

ord

H are algebraic stacks
separated and of finite type over Spec(Z(p)).

If Hp is neat, then the tuple (A, λ, i, αHp) admits no nontrivial au-
tomorphism (regardless of the level structure αord

Hp at p), in which case
...
M

ord

H is representable by an algebraic space.
The existence of ordinary level structures in Definition 3.4.1.1 forces

the abelian varieties parameterized by geometric points of character-

istic p of
...
M

ord

H to be ordinary (see Remark 3.3.3.6). Hence, we can

describe the completion of strict local rings of
...
M

ord

H at geometric points
of characteristic p using the Serre–Tate deformation theory of ordi-
nary abelian varieties (as in, for example, [47]). By [47, Thm. 2.1,
1) and 2)], the formal moduli of any ordinary abelian variety A over
s̄ := Spec(k), where k is an algebraically closed field of characteristic

p, is canonically isomorphic to formal torus HomZp(TpA⊗
Zp

TpA
∨, Ĝm),

where TpA and TpA
∨ are the physical Tate modules of A and A∨, which

are free Zp-modules of rank dim(A) = dim(A∨). If A is part of an ob-

ject (A, λ, i, αHp , α
ord
Hp ) of

...
M

ord

H (s̄), then any lifting αord
s̄ of αord

Hp as in

Lemma 3.3.3.9 defines isomorphisms TpA ∼= Gr−1
D and TpA

∨ ∼= Gr−1
D#

compatible with each other under φ−1
D and λ (cf. Proposition 3.2.1.1).

Hence, the formal moduli of A itself is canonically isomorphic to the
formal torus HomZp(Gr−1

D ⊗
Zp

Gr−1
D# , Ĝm). By [47, Thm. 2.1, 3) and 4)],

the formal submoduli for liftings of A also carrying liftings of the addi-
tional structures λ, i, αHp , and αord

Hp is the formal subgroup scheme of

multiplicative type HomZp(~SD, Ĝm), where the condition for λ is dual

to the relations d⊗φ−1
D (d′)− d′⊗φ−1

D (d) for all d, d′ ∈ Gr−1
D ; where the

condition for i is dual to the relations (bd) ⊗ d# − d ⊗ (b?d#) for all
d ∈ Gr−1

D and b ∈ O; and where no conditions are needed for the level
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structures, because they are given by morphisms between finite étale
group schemes, or by morphisms between finite flat groups schemes of
multiplicative type, which always uniquely lift. Hence, the completion

of strict local rings of
...
M

ord

H can be described as in the statement of the
theorem, as desired. (We emphasize that the elegant argument in [47,
Sec. 1] requires the prorepresentability as an input. Therefore, it is not
true that one can avoid the references as in [62, Ch. 2] to the original
theory of deformation of abelian schemes developed by Grothendieck,
Mumford, and others.) �

3.4.2. Ordinary Loci as Normalizations. Let H be as at the

beginning of Section 3.4.1, so that
...
M

ord

H is defined as in Definition
3.4.1.1. Suppose that ν(Hp) = ker(Z×p → (Z/prνZ)×) (where rν ≤ r)
(cf. also Section 3.3.5).

Definition 3.4.2.1. Let ~SD be as in Theorem 3.4.1.9. Then we
define rD ≥ 0 to be the smallest nonnegative integer such that prD an-
nihilates all (p-primary) torsion elements in ~SD, and we define rH :=
max(rD, rν).

Remark 3.4.2.2. If p is a good prime as in Definition 1.1.1.6, then
rD = 0 by [62, Prop. 1.2.2.3], and hence rH = rν .

Lemma 3.4.2.3. The canonical morphism

(3.4.2.4) MH,rν →
...
M

ord

H ⊗
Z
F0[ζprν ]

over S0,rν = Spec(F0[ζprν ]) induced by the assignment (3.3.5.5) is an
open and closed immersion.

Proof. The morphism (3.4.2.4) is an open and closed immersion
because over F0 the Lie algebra condition given by (L⊗

Z
R, 〈 · , · 〉, h0)

(in [62, Def. 1.3.4.1]) is defined and is an open and closed condition
by [62, Prop. 2.2.2.9], because all level structures involved are defined
by homomorphisms between finite étale group schemes, and because
(3.3.5.5) is injective. �

Theorem 3.4.2.5. Let Mord
H denote the open and closed subalgebraic

stack of
...
M

ord

H ⊗
Z
F0[ζprH ] over S0,rH = Spec(F0[ζprH ]) (see Definition

2.2.3.3) given by the image of the induced canonical open and closed

immersion MH,rH ↪→
...
M

ord

H ⊗
Z
F0[ζprH ]. Then the normalization ~Mord

H of
...
M

ord

H in Mord
H under the canonical morphism Mord

H →
...
M

ord

H is a regu-
lar algebraic stack which is separated, smooth, and of finite type over
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~S0,rH = Spec(OF0,(p)[ζprH ]) (see Definition 2.2.3.3). (In particular, the

nonsmoothness of the structural morphism ~Mord
H → Spec(Z(p)) all comes

from that of the finite flat morphism ~S0,rH = Spec(OF0,(p)[ζprH ]) →
Spec(Z(p)).) The algebraic stack ~Mord

H is representable by an algebraic

space when the moduli problem
...
M

ord

H is (see Theorem 3.4.1.9), which is
the case when Hp is neat.

Let ~SD,Z be noncanonically chosen as in Theorem 3.4.1.9, and let
~SD,Z,free be the maximal free quotient of ~SD,Z. Then the completions of

strict local rings of ~Mord
H are isomorphic to the completions of strict

local rings of the torus ED,Z,free over ~S0,rH with character group ~SD,Z,free.

If Hp = Up(n0) and Hp = Ubal
p,1 (pr), then we denote ~Mord

H by ~Mord
n0pr

=
~Mord
n , where n = n0p

r, and we denote by αn0 (resp. αord
pr ) the unique

principal level-n0 structure (resp. principal ordinary level-prstructure)
determined by αHp (resp. αord

Hp ).

Proof. The statements in the first paragraph are self-explanatory.
Since all objects involved are excellent (see [35, IV-2, 7.8.3]), the op-
erations of taking formal completions and taking normalizations are
interchangeable. Hence, by Theorem 3.4.1.9, it suffices to study the
normalization of ED,Z in ED,Z ⊗

Z(p)

F0[ζprH ]. With ~SD,Z, ~SD,Z,tor, ~SD,Z,free,

ED,Z, and ED,Z,free as in the statements of Theorem 3.4.1.9 and this the-
orem, let ED,Z,tor denote the group scheme of multiplicative type over

Spec(Z(p)) with character group ~SD,Z,tor. Then we have a short exact
sequence

(3.4.2.6) 0→ ED,Z,free → ED,Z → ED,Z,tor → 0

of group schemes of multiplicative type over Spec(Z(p)). Since rH ≥ rD,
we have a canonical isomorphism

ζprD ,~S0,rH
: ((Z/prDZ)(1))~S0,rH

∼→ µprD ,~S0,rH

over S0,rH = Spec(F0[ζprH ]), inducing a canonical isomorphism

ED,Z,tor ⊗
Z(p)

F0[ζprH ] ∼= HomS0,rH
((SD,tor)S0,rH

,µprD ,S0,rH
)

ζ−1

prD ,~S0,rH
∼→ Hom(SD,tor, (Z/prDZ)(1))S0,rH

(under the assumption that the torsion submodule ED,Z,tor is p-primary
in Theorem 3.4.1.9), which shows that the underlying scheme of
ED,Z,tor ⊗

Z(p)

F0[ζprH ] is isomorphic to a disjoint union of duplicates of
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the base scheme S0,rH . Therefore, the scheme ED,Z ⊗
Z(p)

F0[ζprH ] over

S0,rH is a disjoint union of duplicates of the scheme ED,Z,free ⊗
Z(p)

F0[ζprH ]

over S0,rH , which admit smooth models ED,Z,free ⊗
Z(p)

OF0,(p)[ζprH ] over

~S0,rH = Spec(OF0,(p)[ζprH ]). This shows that the normalization of ED,Z
in ED,Z ⊗

Z(p)

F0[ζprH ] is a disjoint union of duplicates of the smooth

scheme ED,Z,free ⊗
Z(p)

OF0,(p)[ζprH ] over ~S0,rH = Spec(OF0,(p)[ζprH ]), which

is regular and satisfies the descriptions of the completions of strict
local rings in the proposition, as desired. �

Remark 3.4.2.7. It is not obvious that ~Mord
H ⊗

Z
Fp is nonempty.

Nevertheless, in some special cases, we can show the nonemptiness

of ~Mord
H ⊗

Z
Fp by constructing its partial toroidal compactifications. See

Section 6.3.3 for more discussions.

Remark 3.4.2.8. (Compare with Remark 1.1.2.1.) As in Remark
1.1.2.1, if we have chosen another PEL-type O-lattice L′ in L⊗

Z
Q

which satisfies L⊗
Z
Z(p) = L′⊗

Z
Z(p), then (by [62, Prop. 1.4.3.4 and

Cor. 1.4.3.8]) we have an Z×(p)-isogeny between the tautological abelian

schemes over MH (matching their additional structures), and hence also

between those over Mord
H (in characteristic zero). Since ~Mord

H is noe-

therian normal, and since the tautological abelian scheme A → ~Mord
H

is ordinary, by Lemma 3.1.3.2, the Z×(p)-isogeny between tautological

abelian schemes over Mord
H extends to a Z×(p)-isogeny A → A′ relating

the corresponding tautological abelian schemes over ~Mord (which can be
identified with the isomorphic moduli problem defined using L′), and
their additional structures are automatically matched by [92, IX, 1.4],
[28, Ch. I, Prop. 2.7], or [62, Prop. 3.3.1.5]. Hence, the Z×(p)-isogenous

class of the tautological object depends only on the choice of L⊗
Z
Z(p).

Then we can define a collection {~Mord
H }H indexed by H of the form

HpHp, with Hp an arbitrary open compact subgroup of G(A∞,p) (not

just one of G(Ẑp)), and with Hp satisfying Ubal
p,1 (pr) ⊂ Hp ⊂ Up,0(pr) for

some integer r ≥ 0 (carrying a Hecke action as in Proposition 3.4.4.1
below). The choice of L⊗

Z
Zp and its filtration D, however, are more
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substantial. Modifying the choice of L⊗
Z
Zp will inevitably incur isoge-

nies of degree divisible by p, which can still be done (because Lemma
3.1.3.2 also works) but will make the theory much more complicated.

Convention 3.4.2.9. To facilitate the language, for S a

scheme over ~S0,rH = Spec(OF0,(p)[ζprH ]), we say that an object

(A, λ, i, αHp , α
ord
Hp ) of

...
M

ord

H (S) is parameterized by ~Mord
H if the

tautological morphism S →
...
M

ord

H determined by the universal property

factors through S → ~Mord
H . Then it also makes sense to consider the

pullback of the tautological tuple over
...
M

ord

H as the tautological tuple

over ~Mord
H .

Definition 3.4.2.10. (Compare with [62, Def. 5.3.2.1] and Defi-
nition 1.3.1.1.) Let S be a normal locally noetherian algebraic stack

over ~S0,rH. A tuple (G, λ, i, αHp , α
ord
Hp ) over S is called a degenerating

family of type ~Mord
H , or simply a degenerating family when the

context is clear, if there exists a dense subalgebraic stack S1 of S, such
that we have the following:

(1) By viewing group schemes as relative schemes (cf. [37]), G is
a semi-abelian scheme over S whose restriction GS1 to S1 is
an abelian scheme. In this case, the dual semi-abelian scheme
G∨ exists (up to unique isomorphism; cf. [80, IV, 7.1] or [62,
Thm. 3.4.3.2]), whose restriction G∨S1

to S1 is the dual abelian
scheme of GS1.

(2) λ : G→ G∨ is a group homomorphism that induces by restric-
tion a polarization λS1 of GS1.

(3) i : O → EndS(G) is a homomorphism that defines by restric-
tion an O-structure iS1 : O → EndS1(GS1) of (GS1 , λS1).

(4) (GS1 , λS1 , iS1 , αHp , α
ord
Hp )→ S1 defines a tuple parameterized by

~Mord
H (see Convention 3.4.2.9).

(5) The ordinary level structure αord
Hp , which is an orbit

of étale-locally-defined triples (αord,0
pr , αord,#,0

pr , νord
pr ),

where αord,0
pr : (Gr0

D,pr)
mult
S1

→ GS1 [pr] and

αord,#,0
pr : (Gr0

D#,pr)
mult
S1

→ G∨S1
[pr] are closed im-

mersions and where νord
pr is a section of (Z/prZ)×S1

,
extend to an orbit of étale-locally-defined triples
(αord,0

pr,S , α
ord,#,0
pr,S , νord

pr,S), where αord,0
pr,S : (Gr0

D,pr)
mult
S → G[pr]

and αord,#,0
pr,S : (Gr0

D#,pr)
mult
S → G∨[pr] are closed immersions

and where νord
pr,S is a section of (Z/prZ)×S , that is also
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symplectic-liftable as in Definition 3.3.3.4. By abuse of
language, we say in this case that αord

Hp extends to an ordinary

level structure of (G, λ, i) over S. Since αord
Hp is determined

by its restriction to every dense subalgebraic stack, by abuse
of notation, we shall use the same notation for every such
restriction.

Remark 3.4.2.11. The extensibility condition (5) in Definition
3.4.2.10 is nontrivial even when G is an abelian scheme, because it
forces G to be an ordinary abelian scheme over S. If S1 is merely (of
characteristic zero) defined over S0,rν , then GS1 is always ordinary
over S1, but G is not an ordinary abelian scheme over S in general.

Remark 3.4.2.12. Conditions (2), (3), and (4) are closed condi-

tions for structures on abelian schemes defined over ~S0,rH . Hence, the
rather weak condition for S1 in Definition 3.4.2.10 is justified because
S1 can always be replaced with the largest subalgebraic stack of S over
~S0,rH (which is open dense in S) such that GS1 is an abelian scheme.
(Conditions (2) and (3) are closed by [62, Lem. 4.2.1.6] and by [92,
IX, 1.4], [28, Ch. I, Prop. 2.7], or [62, Prop. 3.3.1.5]. Condition (4) is
closed thanks to condition (5); see Remark 3.4.2.11.)

3.4.3. Properties of Kodaira–Spencer Morphisms.

Definition 3.4.3.1. (Compare with Definitions 1.1.2.8 and
1.3.1.2.) Let

(G, λ, i, αHp , α
ord
Hp )→ S

be a degenerating family of type ~Mord
H (as in Definition 3.4.2.10). Then

we define the OS-module

KS = KS(G,λ,i)/S = KS(G,λ,i,αHp ,α
ord
Hp )/S

by setting

KS := (Lie∨G/S ⊗
OS

Lie∨G∨/S)/

(
λ∗(y)⊗ z − λ∗(z)⊗ y
(b?x)⊗ y − x⊗(by)

)
x∈Lie∨G/S ,

y,z∈Lie∨
G∨/S ,

b∈O

.

We also define the OS-module

KSfree = KS(G,λ,i)/S,free = KS(G,λ,i,αHp ,α
ord
Hp )/S,free

to be the quotient of KS defined as the image of the canonical morphism

KS→ KS⊗
Z
Q

of OS-modules.
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Remark 3.4.3.2. By definition, the sheaf KS(G,λ,i)/S,free contains no

p-torsion and hence is flat over ~S0,rH = Spec(OF0,(p)[ζprH ]) (although it
can be pathologically different from KS(G,λ,i)/S if S is not flat over
~S0,rH).

Proposition 3.4.3.3. (Compare with [62, Prop. 2.3.5.2].) Let

(A, λ, i, αHp , α
ord
Hp )→ S

be a tuple parameterized by ~Mord
H , with tautological morphism f : S →

~Mord
H . Suppose that S is smooth over ~S0,rH, which implies that S is flat

over Spec(Z(p)), and that the OS-module Ω1
S/~S0,rH

is locally free. Let

KS(A,λ,i)/S and KS(A,λ,i)/S,free be defined by (A, λ, i, αHp , α
ord
Hp ) → S as

in Definition 3.4.3.1 (with G = A and S1 = S; cf. Definition 1.1.2.8).
Then the Kodaira–Spencer morphism

KS = KSA/S/~S0,rH
: Lie∨A/S ⊗

OS
Lie∨A∨/S → Ω1

S/~S0,rH

(see [62, Def. 2.1.7.9]) canonically induces a morphism

(3.4.3.4) KS : KS(A,λ,i)/S → Ω1
S/~S0,rH

,

which factors through

(3.4.3.5) KS : KS(A,λ,i)/S,free → Ω1
S/~S0,rH

.

Moreover, the morphism f is étale if and only if it is flat and
(3.4.3.5) is an isomorphism.

Proof. The canonical morphism (3.4.3.4) exist by the same argu-
ment in the proof of [62, Prop. 2.3.5.2], because only the properties of
(A, λ, i) are used there. Since Ω1

S/~S0,rH
is locally free over the scheme

S flat over Spec(Z(p)), it is also torsion-free. Hence, (3.4.3.4) factors
through (3.4.3.5).

Suppose the morphism f is étale. To show that (3.4.3.5) is an iso-

morphism over S, it suffice to show it (universally) over ~Mord
H , or rather

over the completions of the strict local rings of ~Mord
H at its geometric

points. Let us replace S with the spectrum of any such complete local

rings, and replace Ω1
S/~S0,rH

with its completion Ω̂1
S/~S0,rH

(with respect

to the topology of the complete local ring). At geometric points of
residue characteristic zero, we can conclude the proof by citing [62,
Prop. 2.3.5.2]. Hence, we only need to consider geometric points of

residue characteristic p. By the construction of ~Mord
H (see Theorem

3.4.2.5), the scheme S is the normalization of the spectrum S ′ of the
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completion of a strict local ring of
...
M

ord

H ⊗
Z(p)

OF0,(p)[ζprH ], and we may

assume that (A, λ, i)→ S is the pullback of some (A′, λ′, i′)→ S ′. Let

Ω̂1
S′/~S0,rH

denote the similar completion of Ω1
S′/~S0,rH

. (These are the cor-

rect targets of the Kodaira–Spencer morphisms over completed bases

which are not necessarily of finite type over ~S0,rH ; cf. the proof of [62,
Prop. 2.3.5.2].) The canonical morphism

(S → S ′)∗Ω̂1
S′/~S0,rH

→ Ω̂1
S/~S0,rH

can be identified with the pullback (from Spec(Z(p)) to S) of the canon-
ical morphism

Lie∨ED,Z/Spec(Z(p))
→ Lie∨ED,Z,free/Spec(Z(p))

induced by (3.4.2.6), with kernel the maximal torsion subsheaf
of Lie∨ED,Z/Spec(Z(p))

. This identification is compatible with the

Kodaira–Spencer isomorphism

(3.4.3.6) KS(A′,λ′,i′)/S′
∼→ Ω̂1

S′/~S0,rH

induced by the Kodaira–Spencer morphism in the Serre–Tate deforma-
tion theory (see [47]) (which is compatible with the usual Kodaira–
Spencer morphism defined over smooth schemes), and with the com-
patible canonical isomorphisms from KS(A′,λ′,i′)/S′ and KS(A,λ,i)/S to

pullbacks of Lie∨ED,Z/Spec(Z(p))
to S ′ and S, respectively, induced by (6)

of Proposition 3.2.1.1. Thus, we see that the pullback of the isomor-
phism (3.4.3.6) (from S ′ to S) induces the desired isomorphism.

Conversely, suppose (3.4.3.5) is an isomorphism.
By the previous paragraph, we have an isomorphism
KS : KS(A,λ,i)/~Mord

H ,free

∼→ Ω1
~Mord
H /~S0,rH

, where by abuse of notation

we have also used (A, λ, i) to denote the tautological objects over
~Mord
H . Since the construction of KS(A,λ,i)/S,free commutes with flat

base change (between schemes smooth over ~S0,rH), and since the
association of Kodaira–Spencer morphisms is functorial, the first
morphism in the exact sequence

f ∗Ω1
~MH,rH/

~S0,rH
→ Ω1

S/~S0,rH
→ Ω1

S/~MH,rH
→ 0

is an isomorphism. This shows that f is unramified, and hence étale
because it is flat by assumption. �
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3.4.4. Hecke Actions.

Proposition 3.4.4.1. (Compare with Propositions
1.3.1.14 and 2.2.3.1.) Suppose we have an element
g = (g0, gp) ∈ G(A∞,p)×Pord

D (Qp) ⊂ G(A∞) (see Definition 3.2.2.7),

and suppose we have two open compact subgroups H and H′ of G(Ẑ)
such that H′ ⊂ gHg−1, and such that H and H′ are of standard form

as in Definition 3.2.2.9 (so that
...
M

ord

H and
...
M

ord

H′ are defined as in
Definition 3.4.1.1). Suppose moreover that gp satisfies the conditions
given in Section 3.3.4. Then the assignment in Proposition 3.3.4.21 of
ordinary Hecke twists by g induces a canonical quasi-finite surjection

...
[g]

ord
:

...
M

ord

H′ →
...
M

ord

H

(over Spec(Z(p))), such that the tautological tuple over
...
M

ord

H is pulled

back to the ordinary Hecke twist of the tautological tuple over
...
M

ord

H′

by g. The surjection
...
[g]

ord
is finite if the levels Hp and H′p at p are

equally deep as in Definition 3.2.2.9, or if gp is of twisted Up type as
in Definition 3.3.6.1 and depthD(H′p)− depthD(gp) = depthD(Hp) > 0.

By Proposition 3.3.5.6, the surjection
...
[g]

ord
:

...
M

ord

H′ →
...
M

ord

H is com-
patible with the surjection [g] : MH′ → MH over Mord

H′ , and induces
surjective quasi-finite flat morphisms

[g]ord : Mord
H′ → Mord

H

(compatible with S0,rH′
→ S0,rH) and

~[g]
ord

: ~Mord
H′ → ~Mord

H

(compatible with ~S0,rH′
→ ~S0,rH) compatible with each other. If gp ∈

Pord
D (Zp), then the induced morphisms

[g]ord
rH′

: Mord
H′ → Mord

H ×
~S0,rH

~S0,rH′

and

~[g]
ord

rH′
: ~Mord
H′ → ~Mord

H ×
~S0,rH

~S0,rH′

are quasi-finite étale. These morphisms induced by
...
[g]

ord
are charac-

terized by the property that the pullback of the tautological tuple is the
ordinary Hecke twist of the tautological tuple by g. They are finite if
...
[g]

ord
is finite (see the previous paragraph).
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If g = g1g2, where g1 = (g1,0, g1,p) and g2 = (g2,0, g2,p) are elements
of G(A∞,p)×Pord

D (Qp), each having a setup similar to that of g, then

we have
...
[g]

ord
=

...
[g2]

ord
◦

...
[g1]

ord
, inducing ~[g]

ord
= ~[g2]

ord
◦ ~[g1]

ord
.

Proof. The morphism
...
[g]

ord
:

...
M

ord

H′ →
...
M

ord

H (uniquely) exists by

the definition of ordinary Hecke twists, and by the definition of
...
M

ord

H
as a moduli problem. Its surjectivity is a consequence of the liftability
conditions in the definitions of level structures. Its quasi-finiteness, and
its finiteness when the levels Hp and H′p at p are equally deep, follow
from the definition of ordinary level structures as orbits of étale-locally-
defined principal ordinary level structures (see Definitions 3.3.3.3 and
3.3.3.4). When gp is of twisted Up type as in Definition 3.3.6.1 and

depthD(H′p) − depthD(gp) = depthD(Hp) > 0, since
...
[g]

ord
is (of finite

presentation and) quasi-finite, its finiteness follows from Lemma 3.3.6.6
(which verifies its properness by the valuative criterion; cf. [35, IV-3,

8.11.1]). Since ~Mord
H′ and ~Mord

H are regular and equidimensional of the

same dimension (see Theorem 3.4.2.5), the morphism [g]ord : ~Mord
H′ →

~Mord
H is automatically flat (by [35, IV-3, 15.4.2 e′)⇒b)]; cf. [62, Lem.

6.3.1.11]). The induced morphism ~[g]
ord

rH′
: ~Mord

H′ → ~Mord
H ×

~S0,rH

~S0,rH′
is

étale because it induces an isomorphism between the completions of
strict local rings (again see Theorem 3.4.2.5). The last statement of
this proposition follows from the last statement of Proposition 3.3.4.21.
The remaining statements of this proposition are self-explanatory. �

Definition 3.4.4.2. For each algebraic stack or scheme over

Spec(Z), such as ~MH, we denote in Fraktur its formal completion

along its fiber over Spec(Fp)→ Spec(Z), such as ~MH, and consider it
a formal algebraic stack over Spf(Zp), with support an algebraic stack
over Spec(Fp). By abuse of notation, we denote the formal completion

of [~MH] as [ ~MH].

Corollary 3.4.4.3. With the setting as in Proposition 3.4.4.1, the
morphism

~[g]
ord

: ~Mord
H′ → ~Mord

H

induced by ~[g]
ord

: ~Mord
H′ → ~Mord

H is finite flat. Hence, if gp ∈ Pord
D (Zp),

then the induced morphism

~[g]
ord

rH′
: ~Mord

H′ → ~Mord
H ×

~S0,rH

~S0,rH′

is finite étale (because it is quasi-finite étale by Proposition 3.4.4.1).
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Proof. The quasi-finite flat morphisms ~[g]
ord

: ~Mord
H′ → ~Mord

H and

~[g]
ord

rH′
: ~Mord

H′ → ~Mord
H ×

~S0,rH

~S0,rH′
are finite because the induced mor-

phism

~[g]
ord

: ~Mord
H′ ⊗

Z
Fp → ~Mord

H ⊗
Z
Fp

is proper by Lemma 3.3.6.8 (cf. [35, IV-3, 8.11.5, or IV-4, 8.12.6]). �

Corollary 3.4.4.4. With the setting as in Proposition 3.4.4.1, if
g = (g0, gp) ∈ G(Ẑp)×Pord

D (Zp) (cf. Examples 3.3.4.5 and 3.3.4.18), if

H′,p = g0Hpg−1
0 in G(Ẑp), and if H′p

ord = (gpHpg
−1
p )ord in Mord

D (Zp) (see

(3.3.3.5)), then (rH′ = rH and) the induced morphism ~[g]
ord

: ~Mord
H′ →

~Mord
H is an isomorphism. (These conditions are true, in particular,

when g = 1 and when H = HpHp and H′ = H′,pH′p satisfy H′,p = Hp

and H′p
ord = Hord

p .)

Proof. By assumption (and by the moduli interpretations), the

canonical morphism
...
[g] :

...
MH′ →

...
MH between the moduli problems

induces a bijection
...
MH′(F̄p)→

...
MH(F̄p) between their F̄p-valued points.

Hence, by the description of the local structures of
...
MH′ and

...
MH in

Theorem 3.4.2.5 (which asserts that the completions of strict local rings
of both of them at their F̄p-points are isomorphic to the completions
of strict local rings of the same group of multiplicative type), and by

the definition of ~Mord
H′ and ~Mord

H as their respective normalizations, we

see that ~[g]
ord

: ~Mord
H′ → ~Mord

H also induces a bijection ~Mord
H′ (F̄p) →

~Mord
H (F̄p) between their F̄p-valued points. Hence, by Corollary 3.4.4.3,

the induced morphism ~[g]
ord

: ~Mord
H′ → ~Mord

H (being finite étale and a
bijection on F̄p-valued points) is an isomorphism. �

Example 3.4.4.5. The condition in Corollary 3.4.4.4 that
H′p

ord = (gpHpg
−1
p )ord is also true, for example, when gp = 1,

Hp = Up,1,0(pr1 , pr0), and H′p = Up,1,0(pr1 , pr
′
0) for some r1 ≤ r0 ≤ r′0.

Corollary 3.4.4.6 (elements of Up type). Suppose in Proposition
3.4.4.1 that g0 = 1 and gp is of Up type as in Definition 3.3.6.1 (so
that it is of twisted Up type and depthD(gp) = 1). Then the induced
morphism

(3.4.4.7) ~[g]
ord

: ~Mord
H′ ⊗

Z
Fp → ~Mord

H ⊗
Z
Fp
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is finite flat and coincides with the composition of the (finite flat) ab-
solute Frobenius morphism

F~Mord
H′ ⊗Z

Fp : ~Mord
H′ ⊗

Z
Fp → ~Mord

H′ ⊗
Z
Fp

with the canonical finite flat morphism

(3.4.4.8) ~[1]
ord

: ~Mord
H′ ⊗

Z
Fp → ~Mord

H ⊗
Z
Fp

(see Corollary 3.4.4.3).

If H′p
ord = Hord

p as open compact subgroups of Mord
D (Zp) (see

(3.3.3.5)), then (rH′ = rH and) the canonical morphism (3.4.4.8) is an
isomorphism by Corollary 3.4.4.4, and the composition

~Mord
H ⊗

Z
Fp

( ~[1]
ord

)−1

∼→ ~Mord
H′ ⊗

Z
Fp

~[g]
ord

→ ~Mord
H ⊗

Z
Fp

coincides with the (finite flat) absolute Frobenius morphism

F~Mord
H ⊗

Z
Fp : ~Mord

H ⊗
Z
Fp → ~Mord

H ⊗
Z
Fp.

Proof. Since g0 = 1, the ordinary Hecke twist (A′, λ′, i′, α′Hp , α
ord
Hp )

of the tautological object (A, λ, i, αH′,p , α
ord
H′p ) over ~Mord

H′ ⊗Z
Fp by g =

(g0, gp) is defined essentially only by gp, equipped with the morphism
[g−1
p ] : A → A′ which is nothing but the relative Frobenius morphism

FA/~Mord
H′ ⊗Z

Fp : A → A′ ∼= A(p), with the additional structures natu-

rally induced, as explained in Examples 3.3.4.7 and 3.3.4.20. Hence,
(A′, λ′, i′, α′Hp , α

ord
Hp ) coincides with the object naturally induced by the

pullback of (A, λ, i, αH′,p , α
ord
H′p ) by the absolute Frobenius F~Mord

H′ ⊗Z
Fp .

Hence, the first paragraph of the corollary follows. The second para-
graph of the corollary is self-explanatory. �

Remark 3.4.4.9. By Kunz’s theorem [54] (cf. [76, Sec. 42, Thm.
107]), the absolute Frobenius morphisms F~Mord

H′ ⊗Z
Fp and F~Mord

H ⊗
Z
Fp in

Corollary 3.4.4.6 are flat because ~Mord
H′ ⊗Z

Fp and ~Mord
H ⊗

Z
Fp are regular

(by smoothness of ~Mord
H′ and ~Mord

H over ~S0,rH′
and ~S0,rH , respectively; see

Theorem 3.4.2.5).

3.4.5. The Case When p is a Good Prime. Let H, Hp, and
Hp be as in Section 3.4.1.

When p is a good prime (for the integral PEL datum

(O, ?, L, 〈 · , · 〉, h0); see Definition 1.1.1.6), we can define ~Mord
H directly
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without taking the normalization of an object in characteristic zero.
In this case, the pairing 〈 · , · 〉 is self-dual after base change to Zp,
and hence we can define MHp over ~S0 = Spec(OF0,(p)) as in [62, Def.
1.4.1.4].

On the other hand, consider Up,0(p0) = G(Zp). Then rD = 0 by
[62, Prop. 1.2.2.3] and by the assumption that p is a good prime, and
ν(G(Zp)) = Z×p implies that rHpG(Zp) = rν(G(Zp)) = 0 (see Definition

3.4.2.1). Let H′ := HpG(Zp). Then we can define ~Mord
H′ over ~S0 as in

Theorem 3.4.2.5, such that ~Mord
H′ ⊗Z

Q ∼= Mord
H′
∼= MH′ over S0.

Lemma 3.4.5.1. There is a canonical open immersion

(3.4.5.2) ~Mord
H′ ↪→ MHp

such that the pullback of the tautological object (A, λ, i, αHp) over MHp

is part of the tautological object over ~Mord
H′ (cf. Convention 3.4.2.9).

Proof. Consider the open immersion (cf. [35, IV-4, 17.9.1, and
IV-2, 6.15.3])

(3.4.5.3) Mord
Hp ↪→ MHp

representing the ordinary level structure αord
G(Zp) over MHp (which is

unique up to isomorphism if it exists). The two moduli problems Mord
Hp

and
...
M

ord

H′ (cf. Definition 3.4.1.1) are almost identical, except that the
former requires the Lie algebra condition in [62, Def. 1.3.4.1] given by
(L⊗

Z
R, 〈 · , · 〉, h0) (and hence has to be defined over the finite extension

OF0,(p) of Z(p)). Therefore, we have a canonical finite morphism

(3.4.5.4) Mord
Hp →

...
M

ord

H′ .

On the other hand, the tautological tuple over ~Mord
H′ satisfies the Lie

algebra condition, because the condition is given by an identity of poly-
nomials (which is a closed condition), and because it is already satisfied
over the generic fiber Mord

H′
∼= MH′ . Therefore, by Proposition 3.4.3.3

and [62, Prop. 2.3.5.2], and by the valuative criterion of properness,
there is a canonical finite étale morphism

(3.4.5.5) ~Mord
H′ → Mord

Hp

by the universal property of Mord
Hp , whose composition with (3.4.5.4) is

the canonical finite morphism from ~Mord
H′ to

...
M

ord

H′ . Comparing this with
the open and closed immersion (2.2.4.1), we see that (3.4.5.5) is also
an open and closed immersion, and that the composition of (3.4.5.5)
with (3.4.5.3) gives the desired open immersion (3.4.5.2). �
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By the liftability of level structures, we have a canonical finite étale
surjection MH � MH′ and a canonical quasi-finite étale surjection
...
M

ord

H �
...
M

ord

H′ , which induces a canonical quasi-finite étale morphism

(3.4.5.6) ~Mord
H � ~Mord

H′ ×
~S0

~S0,rH .

(Here rH = rν because rD = 0.)
Alternatively, we have:

Proposition 3.4.5.7. With assumptions as above, we can con-
struct (3.4.5.6), or rather the canonical quasi-finite étale morphism

(3.4.5.8) ~Mord
H → MHp ×

~S0

~S0,rH

(which is the composition of (3.4.5.6) with (3.4.5.2)), as a canonical
open and closed subalgebraic stack, given by taking the schematic clo-
sure of Mord

H , in a relatively representable functor of ordinary level-Hp

structures of type (L⊗
Z
Zp, 〈 · , · 〉, D).

Proof. The relative representability, quasi-finiteness, and
étaleness are all clear form the definitions. �

3.4.6. Quasi-Projectivity of Coarse Moduli. In this subsec-
tion, we no longer assume that p is a good prime (for the integral PEL
datum (O, ?, L, 〈 · , · 〉, h0)).

Our ultimate source of projectivity or quasi-projectivity is [80, IX,
2.1], or its reformulation in [28, Ch. V, Prop. 2.1] and [62, Prop.
7.2.1.1]. For this purpose, we need a semi-abelian scheme over a proper
algebraic stack, and we shall resort to the auxiliary moduli problems
(again) and their compactifications (also). (This seems to be our only
source of projectivity, since geometric invariant theory as in [83] is not
known to be applicable to the construction of minimal compactifica-
tions.)

Lemma 3.4.6.1. Let H and Haux be as in Lemma 3.4.1.6. Let

ω~Mord
H

:= ∧top Lie∨
A/~Mord

H
= ∧top e∗AΩ1

A/~Mord
H
,

and

ω~Mord
Haux

:= ∧top Lie∨
Aaux/~Mord

Haux

= ∧top e∗Aaux
Ω1
Aaux/~Mord

Haux

,

where A → ~Mord (resp. Aaux → ~Mord
Haux

) is the tautological abelian

scheme with identity section eA : ~Mord → A (resp. eAaux : ~Mord
Haux

→
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Aaux). Then the morphism (3.4.1.7) canonically induces a quasi-finite
morphism

(3.4.6.2) ~Mord
H → ~Mord

Haux

compatible with (2.1.1.17), such that the pullback of ω⊗ a0

~Mord
Haux

is canoni-

cally isomorphic to ω⊗ a~Mord
H

, where a0 ≥ 1 and a ≥ 1 are integers as in

Lemma 2.1.2.35.

Proof. These follow from the constructions of the morphisms
(3.4.1.5) and (3.4.1.7) (see the proofs of Lemmas 3.4.1.4 and 3.4.1.6)
and the two normalizations Mord

H and Mord
Haux

, and from Lemma
3.4.1.8. �

Proposition 3.4.6.3. With the setting as in Proposition 3.4.2.5,
there is a canonical morphism

(3.4.6.4) ~Mord
H → ~MH

(see Proposition 2.2.1.1) inducing an open immersion

(3.4.6.5) [~Mord
H ] ↪→ [~MH,rH ]

(see Definition 2.2.3.5). Under (3.4.6.4), the pullback of the tautolog-

ical ( ~A,~λ,~i) (see Proposition 2.2.1.1) is canonically isomorphic to the

tautological (A, λ, i) over ~Mord
H . If Hp is neat, then (H = HpHp is also

neat and) ~MH,rH is a scheme quasi-projective over ~S0,rH by Proposition

2.2.1.1, and the algebraic stack ~Mord
H (which, a priori, is an algebraic

space by Theorem 3.4.2.5) is a scheme quasi-projective over ~S0,rH and

is canonically embedded as an open subscheme of ~MH,rH.

Proof. By Lemma 3.4.6.1, we have a quasi-finite morphism

~Mord
H → ~Mord

Gaux(Ẑ)

(cf. (3.4.6.2)). By composition with the canonical open immersion

~Mord
Gaux(Ẑ)

↪→ MGaux(Ẑp)

as in (3.4.5.2), we obtain a quasi-finite morphism

~Mord
H → MGaux(Ẑp),

which induces the morphism (3.4.6.4) by the universal property of
~MH as a normalization, and induces the open immersion (3.4.6.5) by
Zariski’s main theorem (see [35, III-1, 4.4.3, 4.4.11], and the formula-
tion in [62, Prop. 7.2.3.4] for algebraic spaces).
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Since the morphism (3.4.6.4) extends the canonical morphism

Mord
H
∼= MH,rH → MH,

the pullback of ( ~A,~λ,~i) to Mord
H is canonically isomorphic to the pull-

back of the tautological (A, λ, i) over ~Mord
H to Mord

H . Since ~Mord
H is noe-

therian and normal, and since Mord
H is dense in ~Mord

H , by [92, IX, 1.4],
[28, Ch. I, Prop. 2.7], or [62, Prop. 3.3.1.5], it follows that the pullback

of ( ~A,~λ,~i) under (3.4.6.4) is canonically isomorphic to the tautological

(A, λ, i) over ~Mord
H , as desired. �





CHAPTER 4

Degeneration Data and Boundary Charts

In this chapter, we explain how to incorporate the considerations
of ordinary level structures into the theory of degeneration data and
the boundary construction in [62]. (We no longer assume as in Section
3.4.5 that p is a good prime.) This is the technical heart of the whole
work. Readers are encouraged to read this chapter only after mastering
the earlier results in [82], [28, Ch. II–IV], and [62, Ch. 4–6]. Although
the notation is quite heavy, it is designed to be as close as possible to
the one in [62, Ch. 4–6], so that readers who are already familiar with
the arguments there can easily see what the new considerations here
are.

4.1. Theory of Degeneration Data

4.1.1. Degenerating Families of Type (PE,O). Let O be as
above; that is, as in Definition 1.1.1.1, O is an order in a finite-
dimensional semisimple Q-algebra with a positive involution ? stabi-
lizing O.

Definition 4.1.1.1. Let S be any normal locally noetherian scheme
over Spec(Z). A degenerating family of type (PE,O) is a tuple
(G, λ, i) over S such that we have the following:

(1) G is a semi-abelian scheme over S.
(2) There exists an open dense subscheme S1 of S such that GS1 is

an abelian scheme. In this case, there is a unique semi-abelian
scheme G∨ (up to unique isomorphism), called the dual semi-
abelian scheme of G (cf. cf. [80, IV, 7.1] or [62, Thm. 3.4.3.2]),
such that G∨S1

is the dual abelian scheme of GS1.
(3) λ : G→ G∨ is a group homomorphism that induces by restric-

tion a polarization λS1 of GS1.
(4) i : O → EndS(G) is a map that defines by restriction an
O-structure iS1 : O → EndS1(GS1) of (GS1 , λS1). (See [62,
Def. 1.3.3.1].)

231
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Remark 4.1.1.2. In Definition 4.1.1.1, we allow S to be an arbi-
trary scheme over Spec(Z) (without any reference to the reflex field F0,
as opposed to the case in Definition 1.3.1.1).

4.1.2. Common Setting for the Theory of Degeneration.
Let R be a noetherian normal domain complete with respect to an ideal
I, with rad(I) = I for convenience. Let S := Spec(R), K := Frac(R),
η := Spec(K) the generic point of S, and S0 := Spec(R/I). We shall
denote the pullbacks to η or S0 with subscripts “η” or “0”, respectively.

4.1.3. Degeneration Data for Polarized Abelian Schemes
with Endomorphism Structures.

Definition 4.1.3.1. (See [62, Def. 5.1.1.2].) With notation and
assumptions as in Section 4.1.2, the category DEGPE,O(R, I) has ob-
jects consisting of degenerating families (G, λ, i) of type (PE,O) (over
S = Spec(R)) such that G0 is an extension of an abelian scheme B0 by
a isotrivial torus T0 (see [62, Def. 3.1.1.5]) over S0.

Definition 4.1.3.2. (See [62, Def. 5.1.1.3].) With notation and as-
sumptions as in Section 4.1.2, the category DDPE,O(R, I) has objects of
the form (B, λB, iB, X, Y , φ, c, c

∨, τ), with entries described as follows:

(1) B is an abelian scheme over S, λB : B → B∨ is a polarization
of B, and iB : O ↪→ EndS(B) is an O-endomorphism structure
of (B, λB).

(2) X and Y are two étale sheaves (of O-lattices) canonically
dual to two isotrivial tori T and T∨, respectively, carrying
O-actions over S, together with an O-equivariant embedding
φ : Y → X with finite cokernel. (We shall denote the actions
of an element b ∈ O on X and Y by iX(b) and iY (b), respec-
tively. When the context is clear, we shall simply denote the
actions by b.)

(3) c : X → B∨ and c∨ : Y → B are two O-equivariant morphisms
of group schemes over S, satisfying the compatibility cφ =
λBc

∨.
(4) τ : 1Y ×X,η

∼→ (c∨× c)∗P⊗−1
B,η is a trivialization of biextensions

with symmetric pullback under IdY ×φ : Y ×Y → Y ×X,
satisfying the following conditions:
(a) (Compatibility with O-actions:) For each b ∈ O,

we have a canonical identification of sections (iY (b) ×
IdX)∗τ = (IdY ×iX(b?))∗τ under the canonical isomor-
phism (iB(b)× IdB∨)∗PB ∼= (IdB ×(iB(b))∨)∗PB.

(b) (Positivity:) After a finite étale surjective base change
in S if necessary, let us assume that X and Y are
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constant with values in X and Y , respectively. For each
y ∈ Y and χ ∈ X, the trivialization τ(y, χ) defines an
isomorphism of invertible sheaves from (c∨(y), c(χ))∗PB,η
to 1η. Under this isomorphism (which we again
denote by τ(y, χ)), the canonical R-integral structure
(c∨(y), c(χ))∗PB of (c∨(y), c(χ))∗PB,η determines an
invertible R-submodule Iy,χ of K. Then the positivity
condition is that Iy,φ(y) ⊂ I for all nonzero y in Y .
(Clearly, I0,0 = R.)

By the theory of degeneration data for polarized abelian varieties
in [28, Ch. II and III] (explained in [62, Ch. 4]), generalized by func-
toriality for polarized abelian varieties with endomorphism structures
(see [62, Sec. 5.1.1]), the so-called Mumford’s construction induces an
equivalence of categories

MPE,O(R, I) : DDPE,O(R, I)→ DEGPE,O(R, I) :

(B, λB, iB, X, Y , φ, c, c
∨, τ) 7→ (G, λ, i)

(4.1.3.3)

realizing (G, λ, i) (up to isomorphism) as the image of an object of
DDPE,O(R, I).

We say that (B, λB, iB, X, Y , φ, c, c
∨, τ) is the degeneration datum

of (G, λ, i). The theory works even when X and Y are zero. (Then, by
[28, Ch. I, 2.8], G ∼= B is an abelian scheme over S, and the positivity
condition for τ is trivially verified.)

We shall suppress I from the notation when it is clear from the
context. (This is the case, for example, when R is a discrete valuation
ring.)

4.1.4. Degeneration Data for Principal Ordinary Level
Structures. Let S = Spec(R) be as in Section 4.1.2. Let (G, λ, i)
be a degenerating family of type (PE,O) over S as in Definition
4.1.3.1, with degeneration datum (B, λB, iB, X, Y , φ, c, c

∨, τ) given by
(4.1.3.3).

Suppose (Gη, λη, iη) is equipped with some naive principal

ordinary level-pr structure αord
pr = (αord,0

pr , αord,#,0
pr , νord

pr ) of type
(L/prL, 〈 · , · 〉, Dpr) (see Definition 3.3.3.1). Explicitly, the first two
entries are O-equivariant homomorphisms

αord,0
pr : (Gr0

Dpr
)mult
η → G[pr]η

and

αord,#,0
pr : (Gr0

D
#
pr

)mult
η → G∨[pr]η
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that are closed immersions, which, together with the third entry

νord
pr : µpr,η

∼→ µpr,η,

satisfy the symplectic condition

λη ◦ αord,0
pr = νord

pr ◦ α
ord,#,0
pr ◦ (φ0

D,pr)
mult
η

in Definition 3.3.3.2.
Assume in addition that it satisfies the following:

Condition 4.1.4.1. The schematic image of αord,0
pr (resp. αord,#,0

pr )
contains the subscheme T [pr]η (resp. T∨[pr]η) of G[pr]η (resp. G∨[pr]η).

Definition 4.1.4.2. If the principal ordinary level-pr structure αord
pr

satisfies Condition 4.1.4.1, then we say that αord
pr is compatible with

the degeneration.

One immediate consequence of the assumption that αord
pr satisfies

Condition 4.1.4.1 (i.e., is compatible with degeneration) is that the
pullbacks of the two subgroup schemes of multiplicative type

T [pr]η ⊂ image(αord,0
pr ) = αord,0

pr ((Gr0
Dpr

)mult
η )

and

T∨[pr]η ⊂ image(αord,#,0
pr ) = αord,#,0

pr ((Gr0

D
#
pr

)mult
η )

under αord,0
pr and αord,#,0

pr determine, respectively, two totally isotropic

O-submodules of Gr0
D,pr and Gr0

D#,pr which are compatible with φ0
D,pr :

Gr0
D,pr → Gr0

D#,pr in the sense that φ0
D,pr maps the first submodule to

the second submodule. This is equivalent to the determination of a
symplectic filtration

(4.1.4.3) Z−3,pr = 0 ⊂ Z−2,pr ⊂ Z−1,pr ⊂ Z0,pr = L/prL

of O-submodules, with dual filtration

(4.1.4.4) Z
#
−3,pr = 0 ⊂ Z

#
−2,pr ⊂ Z

#
−1,pr ⊂ Z

#
0,pr = L#/prL#

with respect to the pairing 〈 · , · 〉 (which implies that canonical mor-

phism L/prL → L#/prL# induces morphisms Z−i,pr → Z
#
−i,pr for each

i), satisfying the compatibilities

(4.1.4.5) Z−2,pr ⊂ D0
pr ⊂ Z−1,pr

and

(4.1.4.6) Z
#
−2,pr ⊂ D

#,0
pr ⊂ Z

#
−1,pr



4.1. THEORY OF DEGENERATION DATA 235

(cf. (3.2.3.3) and (3.2.3.5)) such that the above two submodules of
Gr0

D,pr and Gr0
D#,pr are respectively the two submodules

(4.1.4.7) GrZ−2,pr ⊂ Gr0
D,pr

and

(4.1.4.8) GrZ
#

−2,pr ⊂ Gr0
D#,pr ,

together with two isomorphisms

(4.1.4.9) (ϕ−2,pr)
mult
η : (GrZ−2,pr)

mult
η

∼→ T [pr]η

and

(4.1.4.10) (ϕ#
−2,pr)

mult
η : (GrZ

#

−2,pr)
mult
η

∼→ T∨[pr]η

determined by

νord
pr ◦ (ϕ−2,pr)

mult
η := αord,0

pr |(GrZ−2,pr )mult
η

and

(ϕ#
−2,pr)

mult
η := αord,#,0

pr |
(GrZ

#

−2,pr )mult
η

.

These two morphisms (ϕ−2,pr)
mult
η and (ϕ#

−2,pr)
mult
η are equivalent to the

two isomorphisms

(4.1.4.11) ϕ−2,pr : GrZ−2,pr
∼→ Hom((X/prX)η, (Z/prZ)(1))

and

(4.1.4.12) ϕ#
−2,pr : GrZ

#

−2,pr
∼→ Hom((Y /prY )η, (Z/prZ)(1)),

respectively. (Thus far, by abuse of notation, we have used

notation such as GrZ−2,pr and GrZ
#

−2,pr for the constant sheaves

(GrZ−2,pr)η and (GrZ
#

−2,pr)η over the point η. We will adopt a
similar abuse of notation in what follows.) By the perfect duality

〈 · , · 〉02 : GrZ0,pr ×GrZ
#

−2,pr → (Z/prZ)(1) induced by 〈 · , · 〉 (by the

definition of (3.2.3.3) and (3.2.3.5)), this last isomorphism ϕ#
−2,pr is

canonically equivalent to an isomorphism

(4.1.4.13) ϕ0,pr : GrZ0,pr
∼→ (Y /prY )η.

The compatibility (4.1.4.5) induces a filtration D−1,pr = {Di−1,pr}i on

GrZ−1,pr given by

(4.1.4.14) D1
−1,pr := 0 ⊂ D0

−1,pr := D0
pr/Z−2,pr ⊂ D−1

−1,pr := GrZ−1,pr
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(serving the same purpose as the filtration Dpr does for L/prL). Simi-

larly, the compatibility (4.1.4.6) induces a filtration D
#
−1,pr = {D#,i

−1,pr}i
on GrZ

#

−1,pr given by

(4.1.4.15) D
#,1
−1,pr := 0 ⊂ D

#,0
−1,pr := D

#,0
pr /Z

#
−2,pr ⊂ D

#,−1
−1,pr := GrZ

#

−1,pr .

The filtrations (4.1.4.14) and (4.1.4.15) are dual to each other with re-

spect to the pairing 〈 · , · 〉11 : GrZ−1,pr ×GrZ
#

−1,pr → (Z/prZ)(1) induced
by 〈 · , · 〉. Then we have

(4.1.4.16) Gr0
D−1,pr

= Gr0
D,pr /GrZ−2,pr

and

(4.1.4.17) Gr0

D
#
−1,pr

= Gr0
D#,pr /GrZ

#

−2,pr ,

and we have a morphism

(4.1.4.18) φ0
D−1,pr

: Gr0
D−1,pr

→ Gr0

D
#
−1,pr

.

Lemma 4.1.4.19. With the setting as above, if the homomorphisms
αord,0
pr and αord,#,0

pr extend to homomorphisms αord,0
pr,S : (Gr0

Dpr
)mult
S →

G[pr] and αord,#,0
pr,S : (Gr0

D
#
pr

)mult
S → G∨[pr] over S, respectively, then these

extensions are closed immersions with schematic images contained in
G\[pr] and G∨,\[pr], respectively, and αord

pr = (αord,0
pr , αord,#,0

pr , νord
pr ) satis-

fies Condition 4.1.4.1.

Proof. The extension αord,0
pr,S (resp. αord,#,0

pr,S ) is a closed immersion
over S because it is so over η, and the closure of the identity section over
η is the identity section over S because G (resp. G∨) is separated over S.
Since G\[pr] (resp. G∨,\[pr]) is the maximal finite flat closed subgroup
scheme of G[pr] (resp. G∨[pr]) (see [62, Sec. 3.4.2], or rather [34, IX,

7.3]), this shows that the schematic image of αord,0
pr,S (resp. αord,#,0

pr,S ) is

contained in G\[pr] (resp. G∨,\[pr]). Since the schematic images of αord,0
pr

are αord,#,0
pr are annihilators of each other under the canonical pairing

eG[pr]η : G[pr]η×G∨[pr]η → µpr,η, and since T [pr]η (resp. T∨[pr]η) is the

annihilator of G∨,\[pr]η (resp. G\[pr]η) under this canonical pairing, we
see by duality that αord

pr satisfies Condition 4.1.4.1, as desired. �

Lemma 4.1.4.20. With the setting as above, suppose
αord
pr = (αord,0

pr , αord,#,0
pr , νord

pr ) satisfies Condition 4.1.4.1. Then there
exist homomorphisms

αord,0,\
pr : (Gr0

Dpr
)mult
η → G\[pr]η
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and
αord,#,0,\
pr : (Gr0

D
#
pr

)mult
η → G∨,\[pr]η

over η such that αord,0
pr (resp. αord,#,0

pr ) is the composition of αord,0,\
pr

(resp. αord,#,0,\
pr ) with the canonical morphism G\[pr]η ↪→ G[pr]η (resp.

G∨,\[pr]η ↪→ G∨[pr]η).

The homomorphism αord,0
pr (resp. αord,#,0

pr ) extends to a homomor-

phism αord,0
pr,S : (Gr0

Dpr
)mult
S → G[pr] (resp. αord,#,0

pr,S : (Gr0

D
#
pr

)mult
S → G∨[pr])

over S if and only if the homomorphism αord,0,\
pr (resp. αord,#,0,\

pr ) also

extends to a homomorphism αord,0,\
pr,S : (Gr0

Dpr
)mult
S → G\[pr] (resp.

αord,#,0,\
pr,S : (Gr0

D
#
pr

)mult
S → G∨,\[pr]) over S.

Proof. Since the schematic image of αord,0
pr (resp. αord,#,0

pr ) contains
the subscheme T [pr]η (resp. T∨[pr]η) of G[pr]η (resp. G∨[pr]η), by dual-

ity as in the proof of Lemma 4.1.4.19, the homomorphisms αord,0
pr and

αord,#,0
pr have schematic images contained in G\[pr]η and G∨,\[pr]η, re-

spectively, and induce the two homomorphisms αord,0,\
pr and αord,#,0,\

pr .
The assertion about extensions over S is obvious. �

Proposition 4.1.4.21. Let S = Spec(R), η = Spec(K),
and (G, λ, i) be as at the beginning of this Section 4.1.4. Let
(B, λB, iB, X, Y , φ, c, c

∨, τ) be the degeneration datum associated with
(G, λ, i) under the equivalence (4.1.3.3). A naive principal ordinary
level structure

αord
pr = (αord,0

pr , αord,#,0
pr , νord

pr )

of type (L⊗
Z
Zp, 〈 · , · 〉, D) and level pr on (Gη, λη, iη) (see Definition

3.3.3.1) satisfying Condition 4.1.4.1 determines (up to isomorphism) a
tuple

(Zpr , (ϕ−2,pr , ϕ0,pr), D−1,pr , ϕ
ord
−1,pr)

with entries described as follows:

(1) A symplectic admissible filtration Zpr = {Z−i,pr}i of
O-submodules on L/prL (see (4.1.4.5) and (4.1.4.6))
satisfying the compatibilities (3.2.3.3) and (3.2.3.5) and
determining the O-submodules GrZ−2,pr ⊂ Gr0

D,pr and

GrZ
#

−2,pr ⊂ Gr0
D#,pr (see (4.1.4.7) and (4.1.4.8)).

(2) A pair of isomorphisms (ϕ−2,pr , ϕ
#
−2,pr), or equivalently a pair

of isomorphisms (ϕ−2,pr , ϕ0,pr) (see (4.1.4.11), (4.1.4.12), and
(4.1.4.13)), inducing isomorphisms

(ϕ−2,pr)
mult
S : (GrZ−2,pr)

mult
S

∼→ T [pr]
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and
(ϕ#
−2,pr)

mult
S : (GrZ

#

−2,pr)
mult
S

∼→ T∨[pr]

(uniquely extending (4.1.4.9) and (4.1.4.10)), the latter of
which is equivalent to an isomorphism

ϕ0,pr,S : (GrZ0,pr)S
∼→ (Y /prY )S

(uniquely extending (4.1.4.11)).
(3) A filtration D−1,pr = {Di−1,pr}i on GrZ−1,pr (see (4.1.4.14)) that

satisfies the analogous conditions as the filtration Dpr does for
L/prL (see Lemma 3.2.2.1).

(4) A (naive) principle ordinary level structure

ϕord
−1,pr = (ϕord,0

−1,pr , ϕ
ord,#,0
−1,pr , νord

−1,pr)

of type φ0
D−1,pr

: Gr0
D−1,pr

→ Gr0

D
#
−1,pr

(see (4.1.4.18)) on

(Bη, λB,η, iB,η) as in Definition 3.3.3.2 such that

νord
−1,pr : µpr,η

∼→ µpr,η

is equal to νord
pr . Explicitly, the first two entries are

O-equivariant homomorphisms

ϕord,0
−1,pr : (Gr0

D−1,pr
)mult
η → B[pr]η

and
ϕord,#,0
−1,pr : (Gr0

D
#
−1,pr

)mult
η → B∨[pr]η

that are closed immersions, satisfying the symplectic condition

λB,η ◦ ϕord,0
−1,pr = νord

−1,pr ◦ ϕ
ord,#,0
−1,pr ◦ (φ0

D−1,pr
)mult
η

as in Definition 3.3.3.2.

The homomorphism αord,0
pr (resp. αord,#,0

pr , resp. νord
pr ) extends to a ho-

momorphism αord,0
pr,S : (Gr0

Dpr
)mult
S → G[pr] (resp. αord,#,0

pr,S : (Gr0

D
#
pr

)mult
S →

G∨[pr], resp. νord
pr,S : µpr,S

∼→ µpr,S) over S if and only if the homomor-

phism ϕord,0
−1,pr (resp. ϕord,#,0

−1,pr , resp. νord
−1,pr) also extends to a homomor-

phism ϕord,0
−1,pr,S : (Gr0

D−1,pr
)mult
S → B[pr] (resp. ϕord,#,0

−1,pr,S : (Gr0

D
#
−1,pr

)mult
S →

B∨[pr], resp. νord
−1,pr,S : µpr,S

∼→ µpr,S) over S.

If αord
pr is a principal ordinary level-pr structure of type

(L⊗
Z
Zp, 〈 · , · 〉, D) such that, for each integer r′ ≥ r, there exists

some lifting to level pr
′

(over some extension of η) compatible with
degeneration (i.e., satisfying the analogue of Condition 4.1.4.1 at level
pr
′
), then all of the above data determined by αord

pr are compatibly
liftable to their analogues over Zp.
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Proof. Only statement (4) of the proposition requires some expla-

nation: The two homomorphisms ϕord,0
−1,pr and ϕord,#,0

−1,pr are induced, re-

spectively, by the two homomorphisms αord,0,\
pr and αord,#,0,\

pr in Lemma
4.1.4.20. (The statements on extensions over S also follow from there.
The statements on liftability are obvious.) �

However, not all tuples (Zpr , (ϕ−2,pr , ϕ0,pr), D−1,pr , ϕ
ord
−1,pr) as in

Proposition 4.1.4.21 come from (naive) principal ordinary level
structures. To formulate the additional condition needed, we
introduce splittings both for the constant side, namely the filtrations

0 ⊂ GrZ−2,pr ⊂ Gr0
D,pr and 0 ⊂ GrZ

#

−2,pr ⊂ Gr0
D#,pr (see (4.1.4.7)

and (4.1.4.8)), and for the geometric side, namely the filtrations

0 ⊂ T [pr]η ⊂ αord,0
pr ((Gr0

Dpr
)mult
η ) and 0 ⊂ T∨[pr]η ⊂ αord,#,0

pr ((Gr0

D
#
pr

)mult
η )

of group schemes of multiplicative type over η.

Lemma 4.1.4.22. Let GrZ−2,pr ⊂ Gr0
D,pr , GrZ

#

−2,pr ⊂ Gr0
D#,pr , Gr0

D−1,pr
,

and Gr0

D
#
−1,pr

be determined by αord
pr = (αord,0

pr , αord,#,0
pr , νord

pr ) as above (see

(4.1.4.7), (4.1.4.8), (4.1.4.16), and (4.1.4.17)). Suppose that Condition
1.2.1.1 holds, and that, for each integer r′ ≥ r, there exists some lift-
ing to level pr

′
(over some extension of η) satisfying the analogue of

Condition 4.1.4.1. Then there are splittings

(4.1.4.23) δord,0
pr : GrZ−2,pr ⊕Gr0

D−1,pr

∼→ Gr0
D,pr

and

(4.1.4.24) δord,#,0
pr : GrZ

#

−2,pr ⊕Gr0

D
#
−1,pr

∼→ Gr0
D#,pr ,

of O-modules, which are compatible with φ0
D,pr : Gr0

D,pr → Gr0
D#,pr only

in the sense that φ0
D,pr(GrZ−2,pr) ⊂ GrZ

#

−2,pr (inducing the expected mor-

phisms φ∗ : GrZ−2,pr → GrZ
#

−2,pr and φ0
D−1,pr

: Gr0
D−1,pr

→ Gr0

D
#
−1,pr

between

the subquotients), but not that φ0
D,pr(δ

ord,0
pr (Gr0

D−1,pr
)) ⊂ δord,#,0

pr (Gr0

D
#
−1,pr

).

These splittings are liftable to splittings over Zp with analogous com-
patibility properties.

Proof. By Condition 1.2.1.1, the action of O on L extends
to an action of some maximal order O′ in O⊗

Z
Q containing O,

and Lemma 3.2.2.6 and its proof show that the filtrations D and
Z⊗

Ẑ
Zp on L⊗

Z
Zp and the filtrations D# and Z#⊗

Ẑ
Zp on L#⊗

Z
Zp

are all O′⊗
Z
Zp-equivariant, whose graded pieces are projective

O′⊗
Z
Zp-modules. Hence, there exist (noncanonical) splittings of
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the short exact sequences 0 → GrZ−2 → Gr0
D → Gr0

D−1
→ 0 and

0 → GrZ
#

−2 → Gr0
D# → Gr0

D
#
−1

→ 0 of O′⊗
Z
Zp-lattices, which induce the

desired splittings (4.1.4.23) and (4.1.4.24) by reduction modulo pr. �

Lemma 4.1.4.25. Choices of the splittings δord,0
pr and δord,#,0

pr as in
(4.1.4.23) and (4.1.4.24) define a morphism

Gr0
D−1,pr

→ GrZ
#

−2,pr

of O-modules by sending d ∈ Gr0
D−1,pr

to(
pr

GrZ
#

−2,pr
◦(δord,#,0

pr )−1 ◦ φ0
D,pr ◦ δ

ord,0
pr

)
(0, d) ∈ GrZ

#

−2,pr ,

which (by the perfect duality 〈 · , · 〉02 : GrZ0,pr ×GrZ
#

−2,pr → (Z/prZ)(1)
induced by 〈 · , · 〉) is equivalent to a pairing

(4.1.4.26) 〈 · , · 〉ord
10,pr : Gr0

D−1,pr
×GrZ0,pr → (Z/prZ)(1)

satisfying 〈b · , · 〉ord
10,pr = 〈 · , b? · 〉ord

10,pr for every b ∈ O.

In other words, the pairing 〈 · , · 〉ord
10,pr measures the failure of the

condition that

φ0
D,pr(δ

ord,0
pr (Gr0

D−1,pr
)) ⊂ δord,#,0

pr (Gr0

D
#
−1,pr

).

On the other hand, we would like to have splittings of the filtrations

0 ⊂ T [pr]η ⊂ αord,0
pr ((Gr0

Dpr
)mult
η )

and
0 ⊂ T∨[pr]η ⊂ αord,#,0

pr ((Gr0

D
#
pr

)mult
η )

of group schemes of multiplicative type, which are O-equivariant iso-
morphisms

(4.1.4.27) ςord,0
pr : T [pr]η⊕ϕord,0

−1,pr((Gr0
D−1,pr

)mult
η )

∼→ αord,0
pr ((Gr0

Dpr
)mult
η )

and
(4.1.4.28)

ςord,#,0
pr : T∨[pr]η⊕ϕord,#,0

−1,pr ((Gr0

D
#
−1,pr

)mult
η )

∼→ αord,#,0
pr ((Gr0

D
#
pr

)mult
η )

respecting the subgroup schemes T [pr]η and T∨[pr]η, respectively. In
particular, these splittings correspond, respectively, to O-equivariant
homomorphisms

(4.1.4.29) ϕ̃ord,0
−1,pr : (Gr0

D−1,pr
)mult
η ↪→ G\[pr]η ↪→ G\

η

and

(4.1.4.30) ϕ̃ord,#,0
−1,pr : (Gr0

D
#
−1,pr

)mult
η ↪→ G∨,\[pr]η ↪→ G∨,\η
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that are closed immersions lifting ϕord,0
−1,pr and ϕord,#,0

−1,pr , respectively. (In
this last step we are not asserting any compatibilities between (4.1.4.29)

and (4.1.4.30) other than those between ϕord,0
−1,pr and ϕord,#,0

−1,pr .)
By abuse of language, let us define the canonical isogenies

(4.1.4.31)

Bη � Bord
η,pr := Bη/image(ϕord,0

−1,pr) = Bη/ϕ
ord,0
−1,pr((Gr0

D−1,pr
)mult
η )

and
(4.1.4.32)

B∨η � B∨,ord
η,pr := B∨η /image(ϕord,#,0

−1,pr ) = B∨η /ϕ
ord,#,0
−1,pr ((Gr0

D
#
−1,pr

)mult
η ).

(These definitions depend on the principal ordinary level structure
ϕord
−1,pr .)

The close immersion ϕord,0
−1,pr : (Gr0

D−1,pr
)mult
η → B[pr]η of finite flat

group schemes is dual to the surjection B∨[pr]η → (Gr−1

D
#
−1,pr

)η with ker-

nel the schematic image of ϕord,#,0
−1,pr : (Gr0

D
#
−1,pr

)mult
η → B∨[pr]η. There-

fore, (Gr−1

D
#
−1,pr

)η is embedded as an étale subgroup scheme of B∨,ord
η,pr ,

and the canonical isogeny (4.1.4.31) is dual to the (separable) isogeny

(4.1.4.33) B∨,ord
η,pr � B∨,ord

η,pr /(Gr−1

D
#
−1,pr

)η ∼= B∨η /B
∨[pr]η ∼= B∨η .

Similarly, the canonical isogeny (4.1.4.32) is dual to the (separable)
isogeny

(4.1.4.34) Bord
η,pr � Bord

η,pr/(Gr−1
D−1,pr

)η ∼= Bη/B[pr]η ∼= Bη.

Let us record our observations as follows:

Lemma 4.1.4.35. The abelian schemes Bord
η,pr and B∨,ord

η,pr over η are
canonically dual to each other. The canonical isogenies (4.1.4.31) and
(4.1.4.33) (resp. (4.1.4.32) and (4.1.4.34)) are dual to each other.

Lemma 4.1.4.36. (1) The embeddings ϕ̃ord,0
−1,pr as in (4.1.4.29)

correspond to liftings of cη : Xη → B∨η to

cord
pr : 1

pr
Xη → B∨,ord

η,pr ,

where the morphisms Xη ↪→ 1
pr
Xη and B∨η � B∨,ord

η,pr are the

canonical ones (see (4.1.4.32)).

(2) The embeddings ϕ̃ord,#,0
−1,pr as in (4.1.4.30) correspond to liftings

of c∨η : Y η → Bη to

c∨,ord
pr : 1

pr
Y η → Bord

η,pr ,
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where the morphisms Y η ↪→ 1
pr
Y η and Bη � Bord

η,pr are the

canonical ones (see (4.1.4.31)).

Proof. The proof is similar to that of [62, Lem. 5.2.3.1]. Let us
explain only the proof of the first part, because the proof for the second
part is essentially the same.

An embedding ϕ̃ord,0
−1,pr as in (4.1.4.29) defines in particular an isogeny

G\
η → G\

η

′
:= G\

η/ϕ̃
ord,0
−1,pr((Gr0

D−1,pr
)mult
η ).

The subgroup scheme Tη of G\
η embeds into a subgroup scheme T ′η of

G\
η because the pullback to Tη = ker(G\

η → Bη) of the schematic image

ϕord,0
−1,pr((Gr0

D−1,pr
)mult
η ) in G\

η is trivial. Hence, we have a commutative

diagram:

0 // Tη //

o
��

G\
η

//

��

Bη
//

(4.1.4.31) mod ϕord,0
−1,pr ((Gr0

D−1,pr
)mult
η )

��

0

0 // T ′η // G\
η
′

// Bord
η,pr

// 0

We can complete this into a diagram

0 // Tη //

o
��

G\
η

//

��

Bη
//

(4.1.4.31) mod ϕord,0
−1,pr ((Gr0

D−1,pr
)mult
η )

��

0

0 // T ′η //

mod T ′η [pr]

��

G\
η
′

//

��

Bord
η,pr

//

(4.1.4.34) mod (Gr−1
D−1,pr

)η

��

0

0 // Tη // G\
η

// Bη
// 0

in which every composition of two vertical arrows is the multiplica-
tion by pr. Therefore, finding an embedding of the form (4.1.4.29) is

equivalent to finding an isogeny G\
η
′
� G\

η of the form:

0 // T ′η //

modT ′η [pr]

��

G\
η
′

//

��

Bord
η,pr

//

(4.1.4.34) mod(Gr−1
D−1,pr

)S

��

0

0 // Tη // G\
η

// Bη
// 0

Since the surjection T ′η � Tη is the dual of the inclusion Xη ↪→ 1
pr
Xη,

and since the isogeny (4.1.4.34) is dual to the isogeny (4.1.4.32) by

Lemma 4.1.4.35, by [62, Prop. 3.1.5.1], isogenies G\
η
′ → G\

η of the

above form are equivalent to liftings cord
pr : 1

pr
Xη → B∨,ord

pr over η of the
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homomorphism c : X → B∨ defining the extension structure of 0 →
T → G\ → B → 0. Since all the homomorphisms we consider above
are O-equivariant, the lifting cord

pr is also O-equivariant by functoriality
of [62, Prop. 3.1.5.1]. �

Lemma 4.1.4.37. Choices of the embeddings ϕ̃ord,0
−1,pr and ϕ̃ord,#,0

−1,pr as

in (4.1.4.29) and (4.1.4.30) define splittings ςord,0
pr and ςord,#,0

pr as in
(4.1.4.27) and (4.1.4.28), respectively, and define an O-equivariant ho-
momorphism

ϕord,0
−1,pr((Gr0

D−1,pr
)mult
η )→ T∨[pr]η

of group schemes of multiplicative type by sending
a ∈ ϕord,0

−1,pr((Gr0
D−1,pr

)mult
η ) to(

prT∨[pr]η ◦(ς
ord,#,0
pr )−1 ◦ λη ◦ ϕ̃ord,0

−1,pr ◦ (ϕord,0
−1,pr)

−1
)
(a) ∈ T∨[pr]η,

which (by the perfect duality (Y /prY )η×T∨[pr]η → µpr,η) is equivalent
to a pairing

(4.1.4.38) eord
10,pr : ϕord,0

−1,pr((Gr0
D−1,pr

)mult
η )×(Y /prY )η → µpr,η

satisfying eord
10,pr(b · , · ) = eord

10,pr( · , b? · ) for every b ∈ O.

In other words, the pairing eord
10,pr measures the failure of the condi-

tion that

λ(ςord,0
pr (ϕord,0

−1,pr((Gr0
D−1,pr

)mult
η ))) ⊂ ςord,#,0

pr (ϕord,#,0
−1,pr ((Gr0

D
#
−1,pr

)mult
η )).

There is (a priori) a second pairing analogous to (4.1.4.38): Since

λB,η : Bη → B∨η maps ϕord,0
−1,pr((Gr0

D−1,pr
)mult
η ) to ϕord,#,0

−1,pr ((Gr0

D
#
−1,pr

)mult
η ),

it induces a polarization

(4.1.4.39) λord
B,η,pr : Bord

η,pr → B∨,ord
η,pr

compatible with the two isogenies (4.1.4.31) and (4.1.4.32).
Let us extend φ : Y → X naturally to φpr : 1

pr
Y → 1

pr
X. Since

λBc
∨ = cφ, for every section y of Y η, we see that

(λord
B,η,prc

∨,ord
pr − cord

pr φpr,η)(
1
pr
y)

defines a section of

ker(B∨,ord
η,pr � B∨η ) ∼= (Gr−1

D
#
−1,pr

)η

(see (4.1.4.33) and Lemma 4.1.4.35). Therefore:
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Lemma 4.1.4.40. Choices of the embeddings ϕ̃ord,0
−1,pr and ϕ̃ord,#,0

−1,pr as
in (4.1.4.29) and (4.1.4.30) define by Lemma 4.1.4.36 an O-equivariant
homomorphism

λord
B,η,prc

∨,ord
pr − cord

pr φpr,η : (Y /prY )η → (Gr−1

D
#
−1,pr

)η,

which (by the perfect duality (Gr0
D−1,pr

)mult
η ×(Gr−1

D
#
−1,pr

)η → µpr,η; cf.

Lemma 3.2.2.4) is equivalent to a pairing

(4.1.4.41) dord
10,pr : ϕord,0

−1,pr((Gr0
D−1,pr

)mult
η )×(Y /prY )η → µpr,η

satisfying dord
10,pr(b · , · ) = dord

10,pr( · , b? · ) for every b ∈ O.

The two pairings in (4.1.4.38) and (4.1.4.41) are, without surprise,
related:

Proposition 4.1.4.42. With the same setting as in Lemmas
4.1.4.37 and 4.1.4.40, we have dord

10,pr = eord
10,pr .

Proof. Since dord
10,pr = eord

10,pr is a statement about equalities, we may
perform an injective continuous base change from R to a noetherian
complete local ring, so that (by [76, 31.C, Cor. 2]) the integral closure
of R in any finite extension of K = Frac(R) is finite over R. (This base
change is unnecessary when char(K) = 0 or when R is excellent.) By
replacing R with a finite étale extension, we may assume that X and
Y are constant with values in X and Y , respectively.

Consider the canonical morphisms

(4.1.4.43) HomZ( 1
pr
X,B∨η )� HomZ( 1

pr
X,B∨,ord

η,pr )

and

(4.1.4.44) HomZ( 1
pr
Y,Bη)� HomZ( 1

pr
Y,Bord

η,pr)

induced by (4.1.4.32) and (4.1.4.31), respectively. These are isogenies
between abelian schemes, because X and Y are Z-lattices. Consider
also the canonical homomorphism

(4.1.4.45) HomZ( 1
pr
Y,G\

η)→ HomZ(Y,G\
η),

which factors through
(4.1.4.46)

HomZ( 1
pr
Y,G\

η)→ HomZ(Y,G\
η) ×

HomZ(Y,Bη)
HomZ( 1

pr
Y,Bord

η,pr)

qy(where the canonical morphism HomZ( 1
pr
Y,G\

η)→ HomZ( 1
pr
Y,Bord

η,pr)

is the composition of the canonical morphism
HomZ( 1

pr
Y,G\

η) → HomZ( 1
pr
Y,Bη) and (4.1.4.44)). These

are isogenies with finite kernels between semi-abelian
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schemes. (The kernel of (4.1.4.45) is canonically isomorphic to
HomZ( 1

pr
Y/Y,G\[pr]η). The kernel of (4.1.4.46) is canonically

isomorphic to HomZ( 1
pr
Y/Y, αord,0,\

pr ((Gr0
Dpr

)mult
η )); see Lemma 4.1.4.20.)

The two homomorphisms cord
pr : 1

pr
Xη → B∨,ord

pr and c∨,ord
pr : 1

pr
Y →

Bord
η,pr (with their O-equivariance ignored) define η-valued points of

HomZ(X,B∨,ord
η,pr ) and HomZ(Y,Bord

η,pr), respectively. Moreover, the pair

(ι, cord
pr ), where ι : Y → G\

η is the homomorphism determined by

τ : 1Y ×X,η
∼→ (c∨× c)∗P⊗−1

B,η (which is compatible with c∨ by defi-
nition), determines a η-valued point of the target of (4.1.4.46). Since
(4.1.4.32) and (4.1.4.46) are isogenies with finite kernels between semi-
abelian varieties over η, there exists a finite extension K̃ of K such that,
with η̃ := Spec(K̃), the η-valued points of the targets of (4.1.4.43) and
(4.1.4.46) lift to η̃-valued points of the sources. Since the integral clo-
sure R̃ of R in the finite extension K̃ of K = Frac(R) is finite over R,
we may replace R (resp. K) with R̃ (resp. K̃) and assume that cord

pr and

c∨,ord
pr lift to homomorphisms

(4.1.4.47) cpr : 1
pr
X → B∨η

and

(4.1.4.48) c∨pr : 1
pr
Y → Bη,

respectively, and that ι lifts to a homomorphism

(4.1.4.49) ιpr : 1
pr
Y → G\

η

compatible with c∨pr (by composition with the canonical

morphism G\
η → Bη), which is equivalent to a lifting

τpr : 1 1
pr
Y ×X,η

∼→ (c∨pr , cη)
∗P⊗−1

B,η of τ .

By [62, Prop. 5.2.3.3], and by comparing its proof with that of
Lemma 4.1.4.36, the lifting (cpr , c

∨
pr , ιpr) of (c, c∨, ι) as in (4.1.4.47),

(4.1.4.48), and (4.1.4.49) defines a splitting

ςpr : T [pr]η⊕B[pr]η⊕( 1
pr
Y/Y )η

∼→ G[pr]η

which is not necessarily O-equivariant, which nevertheless induces
the two O-equivariant splittings (4.1.4.27) and (4.1.4.28) by
taking graded pieces with respect to the filtration defined by
image(αord,0

pr ) = αord,0
pr ((Gr0

Dpr
)mult
η ), and by duality.

By [62, Thm. 5.2.3.14], we have

d10,pr(a,
1
pr
y) = eB[pr]η(a, (λB,ηc

∨
pr − cprφpr)( 1

pr
y))

= e10,pr(a,
1
pr
y) = eλη(ςpr(0, a, 0), ςpr(0, 0,

1
pr
y))

(4.1.4.50)
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for all a ∈ B[pr]η and 1
pr
y ∈ ( 1

pr
Y/Y )η. If we consider only a ∈

image(ϕord,0
−1,pr) = ϕord,0

−1,pr((Gr0
D−1,pr

)mult
η ), then the canonical pairings

eB[pr]η : B[pr]η×B∨[pr]η → µpr,η

and

eλη : G[pr]η×G[pr]η → µpr,η

induce the canonical pairings

eimage(ϕord,0
−1,pr ) : ϕord,0

−1,pr((Gr0
D−1,pr

)mult
η )×(Gr−1

D
#
−1,pr

)η → µpr,η,

and

e
λη

image(αord,0
pr )

: αord,0
pr ((Gr0

Dpr
)mult
η )×(Gr−1

Dpr
)η → µpr,η,

respectively, and the relation (4.1.4.50) implies that

dord
10,pr(a,

1
pr
y) = eimage(ϕord,0

−1,pr )(a, (λ
ord
B,ηc

∨,ord
pr − cord

pr φpr)(
1
pr
y))

= e
λη

image(αord,0
pr )

(ςord,0
pr (0, a), ςord,−1

pr ( 1
pr
y, 0))

(4.1.4.51)

for all a ∈ image(ϕord,0
−1,pr) and 1

pr
y ∈ ( 1

pr
Y/Y )η, where ςord,0

pr is as in

(4.1.4.27), and where

ςord,−1
pr : ( 1

pr
Y/Y )η⊕(Gr−1

D−1,pr
)η
∼→ (Gr−1

Dpr
)η

is canonically dual to the inverse of the ςord,#,0
pr as in (4.1.4.28). By

comparison with the definition in Lemma 4.1.4.37, we have

eord
10,pr(a,

1
pr
y) = e

λη

image(αord,0
pr )

(ςord,0
pr (0, a), ςord,−1

pr ( 1
pr
y, 0)).

Thus, the proposition follows from (4.1.4.51), as desired. �

Now it is natural to compare the pairing (4.1.4.26) with the pairing
(4.1.4.41).

Proposition 4.1.4.52. (This is a continuation of Proposition
4.1.4.21.) With the same setting as in Proposition 4.1.4.21, the
tuple (Zpr , (ϕ−2,pr , ϕ0,pr), D−1,pr , ϕ

ord
−1,pr) there satisfies the following

condition:
For each pair of splittings δord

pr := (δord,0
pr , δord,#,0

pr ) as in Lemma
4.1.4.22, which determines a pairing

〈 · , · 〉ord
10,pr : Gr0

D−1,pr
×GrZ0,pr → (Z/prZ)(1)

as in Lemma 4.1.4.25, and accordingly a pairing

(〈 · , · 〉ord
10,pr)

mult
η : (Gr0

D−1,pr
)mult
η ×(GrZ0,pr)η → µpr,η,
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there exists a (necessarily unique) pair of liftings

(cord
pr : 1

pr
Xη → B∨,ord

η,pr , c
∨,ord
pr : 1

pr
Y η → Bord

η,pr)

of (c : X → B∨, c∨ : Y → B), which by Lemma 4.1.4.36 is equivalent

to a pair of embeddings (ϕ̃ord,0
−1,pr , ϕ̃

ord,#,0
−1,pr ) as in (4.1.4.29) and (4.1.4.30),

which determines a pairing

dord
10,pr : ϕord,0

−1,pr((Gr0
D−1,pr

)mult
η )×(Y /prY )η → µpr,η

as in Lemma 4.1.4.40, such that

(ϕord,0
−1,pr , ϕ0,pr)

∗(dord
10,pr) = νord

−1,pr ◦ (〈 · , · 〉ord
10,pr)

mult
η .

This condition is independent of the choice of (δord,0
pr , δord,#,0

pr ).

Conversely, each tuple (Zpr , (ϕ−2,pr , ϕ0,pr), D−1,pr , ϕ
ord
−1,pr) that satis-

fies this condition comes from some naive principal ordinary level-pr

structure αord
pr = (αord,0

pr , αord,#,0
pr , νord

pr ) of type (L/prL, 〈 · , · 〉, Dpr) on
(Gη, λη, iη) (see Definition 3.3.3.2) as in Proposition 4.1.4.21. If the
tuple is liftable (satisfying the analogous conditions for the liftings),
then it comes from some principal ordinary level-pr structure αord

pr of
type (L⊗

Z
Zp, 〈 · , · 〉, D).

Explicitly, we can recover the triple αord
pr = (αord,0

pr , αord,#,0
pr , νord

pr )

from the tuple (Zpr , (ϕ−2,pr , ϕ0,pr), D−1,pr , ϕ
ord
−1,pr) as follows:

Suppose (δord,0
pr , δord,#,0

pr ) and (ϕ̃ord,0
−1,pr , ϕ̃

ord,#,0
−1,pr ) have been chosen such

that the above condition is satisfied, the latter of which determines a
pair of splittings (ςord,0

pr , ςord,#,0
pr ) as in (4.1.4.27) and (4.1.4.28). Then

we have the following defining relations:

(1) The homomorphism αord,0
pr : (Gr0

D,pr)
mult
η → G[pr]η is defined as

follows: The sum of the composition

νord
−1,pr ◦ (ϕ−2,pr)

mult
η : (GrZ−2,pr)

mult
η

∼→ T [pr]η
can.
↪→ G\[pr]η

and
ϕ̃ord,0
−1,pr : (Gr0

D−1,pr
)mult
η → G\[pr]η

defines a homomorphism

(GrZ−2,pr)
mult
η ⊕(Gr0

D−1,pr
)mult
η → G\[pr]η

that is a closed embedding, and the pre-composition of this
homomorphism with

((δord,0
pr )mult

η )−1 : (Gr0
D,pr)

mult
η

∼→ (GrZ−2,pr)
mult
η ⊕(Gr0

D−1,pr
)mult
η

gives the homomorphism

αord,0,\
pr : (Gr0

D,pr)
mult
η → G\[pr]η,
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and αord,0
pr is the composition of αord,0,\

pr with the canonical em-

bedding G\[pr]η ↪→ G[pr]η.

(2) The homomorphism αord,#,0
pr : (Gr0

D#,pr)
mult
η → G∨[pr]η is de-

fined as follows: The sum of the composition

(ϕ#
−2,pr)

mult
η : (GrZ

#

−2,pr)
mult
η

∼→ T∨[pr]η
can.
↪→ G∨,\[pr]η

(note that we do not compose with νord
−1,pr here) and

ϕ̃ord,#,0
−1,pr : (Gr0

D
#
−1,pr

)mult
η → G∨,\[pr]η

defines a homomorphism

(GrZ
#

−2,pr)
mult
η ⊕(Gr0

D
#
−1,pr

)mult
η → G\[pr]η

that is a closed embedding, and the pre-composition of this
homomorphism with

((δord,#,0
pr )mult

η )−1 : (Gr0
D#,pr)

mult
η

∼→ (GrZ
#

−2,pr)
mult
η ⊕(Gr0

D
#
−1,pr

)mult
η

gives the homomorphism

αord,#,0,\
pr : (Gr0

D#,pr)
mult
η → G∨,\[pr]η,

and αord,#,0
pr is the composition of αord,#,0,\

pr with the canonical

embedding G∨,\[pr]η ↪→ G∨[pr]η.

(3) The isomorphism νord
pr : µpr,η

∼→ µpr,η is equal to νord
−1,pr , where

νord
−1,pr : µpr,η

∼→ µpr,η is part of the data of ϕord
−1,pr .

Proof. The statements are self-explanatory. �

Remark 4.1.4.53. In the theory of degeneration for naive principal
ordinary level structures, there is no need to consider some lifting τ ord

pr

of τ as in the theory for principal level structures (away from p) as in
[62, Ch. 5].

Definition 4.1.4.54. (See [62, Prop. 5.2.2.1].) Let φ : Y → X be
an O-equivariant embedding with finite cokernel between étale sheaves
of O-lattices, which is dual to an O-equivariant isogeny T � T∨ of tori
with O-actions. Then we define for each integer m the pairing

eφm : T [m]η×(Y /mY )η → µm,η

to be the canonical pairing

T [m]η×(Y /mY )η

can.
∼→ (X/mX)mult

η ×(Y /mY )η
Id×φ→ (X/mX)mult

η ×(X/mX)η
can.→ µm,η
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with the sign convention that eφm(t, y) = t(φ(y)) = (φ(y))(t) for every
section t of T [m]η and y of (Y /mY )η.

Definition 4.1.4.55. (Compare with [62, Def. 5.2.7.8].) With
the setting as in Section 4.1.2, suppose we are given a tuple
(B, λB, iB, X, Y , φ, c, c

∨, τ) in DDPE,O(R, I). A naive ordinary
pre-level-n structure datum of type (L/nL, 〈 · , · 〉, Dpr) over η is
a tuple

α\,ord
n := (Zn, ϕ−2,n, ϕ

ord
−1,n, ϕ0,n, δ

ord
n , cord

n , c∨,ord
n , τ ord

n )

consists of the following data:

(1) A symplectic admissible filtration Zn on L/nL. This deter-
mines a dual symplectic admissible filtration Z#

n on L#/nL#,
with induced perfect pairings

〈 · , · 〉ij,n : GrZ
#

−i,n×GrZj,n → (Z/nZ)(1),

for i+ j = 2, inducing (possibly nonperfect) pairings

〈 · , · 〉ij,n : GrZ−i,n×GrZ−j,n → (Z/nZ)(1)

denoted by the same symbols (by abuse of notation).
By reduction modulo n0 (resp. pr), we also obtain an ad-

missible symplectic filtration and pairings between the graded
pieces, with n replaced with n0 (resp. pr) in the above notation.

The filtration Zpr is compatible with Dpr in the sense that

Z−2,pr ⊂ Dpr ⊂ Z−1,pr ,

and hence induces a filtration D−1,pr = {Di−1,pr}i on GrZ−1,pr

(see (4.1.4.14)) that satisfies the analogous conditions as the
filtration Dpr does for L/prL (see Lemma 3.2.2.1).

(2) A pair ϕord
−1,n = (ϕ−1,n0 , ϕ

ord
−1,pr) consisting of:

(a) A (naive) principal level-n0 structure

ϕ−1,n0 : GrZ−1,n0

∼→ B[n0]η

of (Bη, λB,η, iB,η) of type (GrZ−1,n0
, 〈 · , · 〉11,n0) over η,

equipped with an isomorphism

ν−1,n0 : (Z/n0Z)(1)
∼→ µn0,η,

as in Definition 3.3.1.2.
(b) A (naive) principle ordinary level structure

ϕord
−1,pr = (ϕord,0

−1,pr , ϕ
ord,#,0
−1,pr , νord

−1,pr)
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of (Bη, λB,η, iB,η) of type φ0
D−1,pr

: Gr0
D−1,pr

→ Gr0

D
#
−1,pr

(see

(4.1.4.18)) as in Definition 3.3.3.2 (see also (4) of Propo-
sition 4.1.4.21).

(3) A pair of O-equivariant isomorphisms

ϕ−2,n : GrZ−2,n
∼→ Homη((X/nX)η, (Z/nZ)(1))

and

ϕ0,n : GrZ0,n
∼→ (Y /nY )η

satisfying

((ϕ−2,n)mult
η ×ϕ0,n)∗eφn = ((〈 · , · 〉20,n)mult

η ,

where

(ϕ−2,n)mult
η : (GrZ−2,n)mult

η
∼→ T [n]η

and

(〈 · , · 〉20,n)mult
η : (GrZ−2,n)mult

η ×(GrZ0,n)η → µn,η

are canonically induced by ϕ−2,n and 〈 · , · 〉20,n.
By reduction modulo n0, we obtain isomorphisms and pair-

ings with n replaced with n0 in the notation. By reduction
modulo pr, we obtain isomorphisms over η that are equivalent
to the pullbacks to η of the isomorphisms

(ϕ−2,pr)
mult
S : (GrZ−2,pr)

mult
S

∼→ T [pr]

and

(ϕ#
−2,pr)

mult
S : (GrZ

#

−2,pr)
mult
S

∼→ T∨[pr]

over S.
(4) A pair δord

n = (δn0 , δ
ord
pr ) consisting of:

(a) A splitting δn0 : GrZn0

∼→ L/n0L of O-modules, which de-
termines the pairings

〈 · , · 〉10,n0 : GrZ−1,n0
×GrZ0,n0

→ (Z/n0Z)(1)

and

〈 · , · 〉00,n0 : GrZ0,n0
×GrZ0,n0

→ (Z/n0Z)(1).

(b) A pair δord
pr = (δord,0

pr , δord,#,0
pr ) of splittings

δord,0
pr : GrZ−2,pr ⊕Gr0

D−1,pr

∼→ Gr0
D,pr

and

δord,#,0
pr : GrZ

#

−2,pr ⊕Gr0

D
#
−1,pr

∼→ Gr0
D#,pr
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of O-modules as in Lemma 4.1.4.22, which determines a
pairing

〈 · , · 〉ord
10,pr : Gr0

D−1,pr
×GrZ0,pr → (Z/prZ)(1)

as in Lemma 4.1.4.25, and accordingly a pairing

(〈 · , · 〉ord
10,pr)

mult
η : (Gr0

D−1,pr
)mult
η ×(GrZ0,pr)η → µpr,η.

(5) Liftings

cord
n : 1

n
Xη → B∨,ord

η,pr := B∨η /ϕ
ord,#,0
−1,pr ((Gr0

D
#
−1,pr

)mult
η ),

c∨,ord
n : 1

n
Y η → Bord

η,pr := Bη/ϕ
ord,0
−1,pr((Gr0

D−1,pr
)mult
η ),

and

τ ord
n := τn0 : 1 1

n0
Y ×
S
X,η

∼→ (c∨n0
, cη)

∗P⊗−1
B,η

of c : X → B∨, c∨ : Y → B and τ : 1Y ×
S
X,η

∼→ (c∨, cη)
∗P⊗−1

B,η

over η, respectively.
The liftings cord

n and c∨,ord
n determine and are determined by

liftings cn0 : 1
n0
X → B∨, c∨n0

: 1
n0
Y → B, cord

pr : 1
pr
Xη → B∨,ord

η,pr ,

and c∨,ord
pr : 1

pr
Y η → Bord

η,pr of c : X → B∨, c∨ : Y → B,

c : X → B∨, and c∨ : Y → B over η, respectively.
By [62, Lem. 5.2.3.12], the liftings cn0, c∨n0

, and τn0 defines
two pairings

d10,n0 : B[n0]η×(Y /n0Y )η → µn0,η

and

d00,n0 : (Y /n0Y )η×(Y /n0Y )η → µn0,η

by setting

d10,n0(a, 1
n0
y) := eB[n0](a, (λBc

∨
n0
− cn0φn0)( 1

n0
y) ∈ µn0

(η)

for sections a of B[n0]η and 1
n0
y of 1

n0
Y , and by setting

d00,n0( 1
n0
y, 1

n0
y′) := τn0( 1

n0
y, φ(y′))τn0( 1

n0
y′, φ(y))−1 ∈ µm(η)

for sections 1
n0
y and 1

n0
y′ of 1

n0
Y .

By Lemmas 4.1.4.36 and 4.1.4.40, the liftings cord
pr and

c∨,ord
pr define a pairing

dord
10,pr : ϕord,0

−1,pr((Gr0
D−1,pr

)mult
η )×(Y /prY )η → µpr,η.
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We say that the naive ordinary pre-level-n structure datum α\,ord
n is

symplectic, and call it a naive ordinary level-n structure da-
tum of type (L/nL, 〈 · , · 〉, Dpr) over η, if the following conditions are
satisfied:

(ϕ−1,n0 ×ϕ0,n0)∗(d10,n0) = ν−1,n0 ◦ 〈 · , · 〉10,n0 ,

(ϕ0,n0 ×ϕ0,n0)∗(d00,n0) = ν−1,n0 ◦ 〈 · , · 〉00,n0 ,

and

(ϕord,0
−1,pr , ϕ0,pr)

∗(dord
10,pr) = νord

−1,pr ◦ (〈 · , · 〉ord
10,pr)

mult
η .

We remove “ naive” from the above terminologies, and call them or-
dinary pre-level-n structure datum of type (L⊗

Z
Ẑ, 〈 · , · 〉, D) and

ordinary level-n structure datum of type (L⊗
Z
Ẑ, 〈 · , · 〉, D), when

the data are compatibly liftable to data (at all higher levels) satisfying
the analogous conditions.

Proposition 4.1.4.56. With the setting in Propositions
4.1.4.21 and 4.1.4.52, suppose moreover that η is a scheme over
Spec(Z(p)). Then each ordinary level-n structure datum α\,ord

n of type

(L⊗
Z
Ẑ, 〈 · , · 〉, D) (in Definition 4.1.4.55) defines an extension of the

triple (Gη, λη, iη) to an object (Gη, λη, iη, αn0 , α
ord
pr ) of

...
M

ord

n (η) (see

Definition 3.4.1.1). Moreover, each such pair (αn0 , α
ord
pr ) of level

structures comes from some α\,ord
n in this way.

Proof. The only thing not explained yet is the statements con-
cerning the principal level-n0 structure αn0 . In [62, Sec. 5.2], it was
assumed that the polarization degree is prime to the residue character-
istics, and that the generic point is defined over the rings of integers of
the reflex field, but these assumptions were not really used in a substan-
tial way. (They were only used to ensure that one obtains an object
over η parameterized by the PEL-type moduli problem.) Therefore,
the arguments there (with the liftability condition away from p) still
work here, and allows us to construct αn0 , as desired. �

However, the assignment of (αn0 , α
ord
pr ) to α\,ord

n is not one to one.
(The freedom comes from the choice of various splittings.) We can
define as in [62, Def. 5.2.7.11] a notion of equivalence classes [α\,ord

n ] of
objects like α\,ord

n . (The definition can be made precise, but we will not
record the details here.)

Definition 4.1.4.57. With the setting as in Section 4.1.2,
suppose moreover that η is a scheme over Spec(Z(p)). The category
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DEGPEL,
...
M

ord
n

(R, I) has objects of the form (G, λ, i, αn0 , α
ord
pr ) (over S),

where:

(1) (G, λ, i) defines an object of DEGPE,O(R, I) (see Definition
4.1.3.1).

(2) (Gη, λη, iη, αn0 , α
ord
pr ) defines an object of

...
M

ord

n (η) (see Defini-
tion 3.4.1.1).

(3) αord
pr is a principal ordinary level-pr structure of type

(L⊗
Z
Zp, 〈 · , · 〉, D) such that, for each integer r′ ≥ r, there

exists some lifting to level pr
′

(over some étale extension of
η) compatible with degeneration (i.e., satisfying the analogue
of Condition 4.1.4.1 at level pr

′
).

Definition 4.1.4.58. With the setting as in Section 4.1.2,
suppose moreover that η is a scheme over Spec(Z(p)). The category
DDPEL,

...
M

ord
n

(R, I) has objects of the form

(B, λB, iB, X, Y , φ, c, c
∨, τ, [α\,ord

n ]),

where:

(1) (B, λB, iB, X, Y , φ, c, c
∨, τ) defines an object of DDPE,O(R, I)

(see Definition 4.1.3.2).
(2) [α\,ord

n ] is an equivalence class of ordinary level-n structure data

α\,ord
n of type (L⊗

Z
Ẑ, 〈 · , · 〉, D) defined over η (see Definition

4.1.4.55).

Now it follows from Propositions 4.1.4.21, 4.1.4.52, and 4.1.4.56
that we have the following:

Theorem 4.1.4.59. There is an equivalence of categories

MPEL,
...
M

ord
n

(R, I) : DDPEL,
...
M

ord
n

(R, I)→ DEGPEL,
...
M

ord
n

(R, I) :

(B, λB, iB, X, Y , φ, c, c
∨, τ, [α\,ord

n ]) 7→ (G, λ, i, αn0 , α
ord
pr ).

4.1.5. Degeneration Data for General Ordinary Level
Structures.

Definition 4.1.5.1. (See [62, Def. 1.3.7.1].) For each Ẑ-algebra R,
set

Gess(R) := image(G(Ẑ)→ G(R)).

Definition 4.1.5.2. (See [62, Def. 5.3.1.4].) Let Zn be a symplectic
filtration on L/nL. Then we define the following subgroups or quotients
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of subgroups of Gess(Z/nZ):

Pess
Zn

:= {gn ∈ Gess(Z/nZ) : g−1
n (Zn) = Zn},

Zess
Zn

:= {gn ∈ Pess
Zn

: GrZn−1(gn) = IdGrZn−1
and ν(gn) = 1},

Uess
Zn

:= {gn ∈ Pess
Zn

: GrZn(gn) = IdGrZn and ν(gn) = 1},

Gess
h,Zn :=

{
(g−1,n, rn) ∈ GLO(GrZn−1)×Gm(Z/nZ) :

∃gn ∈ Pess
Zn

s.t. GrZn−1(gn) = g−1,n and ν(gn) = rn

}
,

Gess
l,Zn :=

{
(g−2,n, g0,n) ∈ GLO(GrZn−2)×GLO(GrZn0 ) :

∃gn ∈ Zess
Zn

s.t. GrZn−2(gn) = g−2,n and GrZn0 (gn) = g0,n

}
,

Uess
2,Zn :=

{
g20,n ∈ HomO(GrZn0 ,GrZn−2) :

∃gn ∈ Uess
Zn

s.t. δ−1
n ◦ gn ◦ δn =

(
1 g20,n

1
1

)}
,

Uess
1,Zn :=


(g21,n, g10,n) ∈ HomO(GrZn−1,GrZn−2)

×HomO(GrZn0 ,GrZn−1)
:

∃gn ∈ Uess
Zn

s.t. δ−1
n ◦ gn ◦ δn =

( 1 g21,n g20,n

1 g10,n

1

)
, some g20,n

 .

We define similar subgroups and quotients of subgroups with n replaced
with either n0 or pr.

Remark 4.1.5.3. Since ν(GrZn−1(gn)) = ν(gn) by definition, the con-
dition ν(gn) = 1 in the definition of Zess

Zn
is redundant if we interpret

GrZn−1(gn) = IdGrZn−1
as an identity of symplectic isomorphisms (which are

required to preserve the similitude isomorphisms; see [62, Def. 1.1.4.8]).

Lemma 4.1.5.4. (See [62, Lem. 5.3.1.6].) By definition, there are
natural inclusions

(4.1.5.5) Uess
2,Zn ⊂ Uess

Zn
⊂ Zess

Zn
⊂ Pess

Zn
⊂ Gess

Zn
,

and natural exact sequences:

1→ Zess
Zn
→ Pess

Zn
→ Gess

h,Zn → 1,(4.1.5.6)

1→ Uess
Zn
→ Zess

Zn
→ Gess

l,Zn → 1,(4.1.5.7)

1→ Uess
2,Zn → Uess

Zn
→ Uess

1,Zn → 1.(4.1.5.8)

We have similar statements with n replaced with either n0 or pr.

Definition 4.1.5.9. (See [62, Def. 5.3.1.11].) Let Hn be a sub-
group of Gess(Z/nZ). For each of the subgroups > in (4.1.5.5), we
define Hn,> := Hn ∩ >. For each of the quotients of two groups
> = >1/>2 in (4.1.5.5), (4.1.5.6), (4.1.5.7), or (4.1.5.8), we define
Hn,> := Hn,>1/Hn,>2. Thus, we have defined the groups Hn,Pess

Zn
, Hn,Zess

Zn
,
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Hn,Uess
Zn

, Hn,Gess
h,Zn

, Hn,Gess
l,Zn

, Hn,Uess
2,Zn

, and Hn,Uess
1,Zn

, so that we have the

natural inclusions

Hn,Uess
2,Zn
⊂ Hn,Uess

Zn
⊂ Hn,Zess

Zn
⊂ Hn,Pess

Zn
⊂ Hn

and natural exact sequences

1→ Hn,Zess
Zn
→ Hn,Pess

Zn
→ Hn,Gess

h,Zn
→ 1,

1→ Hn,Uess
Zn
→ Hn,Zess

Zn
→ Hn,Gess

l,Zn
→ 1,

1→ Hn,Uess
2,Zn
→ Hn,Uess

Zn
→ Hn,Uess

1,Zn
→ 1.

We define similar subgroups with n replaced with either n0or pr.

Proposition 4.1.5.10. Let Hp ⊂ G(Ẑp) be an open compact
subgroup such that Up(n0) ⊂ Hp for some integer n0 ≥ 1 is an
integer prime to p. Let Hn0 := Hp/Up(n0). Let S = Spec(R) be
as in Section 4.1.2. Let (G, λ, i) be a degenerating family of type
(PE,O) over S as in Definition 4.1.3.1, with degeneration datum
(B, λB, iB, X, Y , φ, c, c

∨, τ) given by (4.1.3.3). Suppose moreover that
η is a scheme over Spec(Z(p)). Let Zn be a symplectic-liftable filtration
on L/nL.

Consider compositions of finite étale morphisms of schemes

τHn0
� (cHn0

, c∨Hn0
)� (ϕ∼−2,Hn0

, ϕ∼0,Hn0
)

� ϕ−1,Hn0
� δHn0

∼→ ZHn0
� η

(4.1.5.11)

such that we have the following:

(1) ZHn0
� η is an Hn0-orbit of étale-locally-defined filtrations Zn0,

which is isomorphic to (the pullback of) the constant scheme
Hn0,Pess

Zn0
\Hn0 over some finite étale extension of η.

(2) δHn0

∼→ ZHn0
is an isomorphism giving choices of splittings of

filtrations parameterized by ZHn0
.

(3) ϕ−1,Hn0
� δHn0

is an Hn0,Gess
h,Zn0

-torsor realized as a finite étale

subscheme of the pullback to δHn0
of the finite étale scheme

Isomη((L/n0L)η, B[n0]η)×
η

Isomη(((Z/n0Z)(1))η,µn0,η)

over η, which is an Hn0,Gess
h,Zn0

-torsor giving an Hn0,Gess
h,Zn0

-orbit

of étale-locally-defined ϕ−1,n0. (This defines some naive level
structure on the pullback of (Bη, λB,η, iB,η) to δHn0

; cf. Defini-
tion 3.3.1.3.)

(4) (ϕ∼−2,Hn0
, ϕ∼0,Hn0

) � ϕ−1,Hn0
is an Hn0,Gess

l,Zn0
-torsor giving an

Hn0,Gess
l,Zn0

-orbit of étale-locally-defined pairs (ϕ−2,n0 , ϕ0,n0).
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(5) (cHn0
, c∨Hn0

) � (ϕ∼−2,Hn0
, ϕ∼0,Hn0

) is an Hn0,Uess
1,Zn0

-torsor giving

an Hn0,Uess
1,Zn0

-orbit of étale-locally-defined pairs (cn0 , c
∨
n0

).

(6) τHn0
� (cHn0

, c∨Hn0
) is an Hn0,Uess

2,Zn0
-torsor giving an

Hn0,Uess
2,Zn0

-orbit of étale-locally-defined τn0.

(Each of the datum or pairs of data is built on top of the earlier ones.)
Then each such scheme τHn0

� η determines a naive level-Hn0 struc-
ture αHn0

of (Gη, λη, iη) of type (L/n0L, 〈 · , · 〉) (see Definition 3.3.1.3).
If these schemes are orbits of liftable objects, then they determine a
level-Hp structure αHp of (Gη, λη, iη) of type (L⊗

Z
Ẑp, 〈 · , · 〉) (see Defi-

nition 3.3.1.4).
Conversely, each level-Hp structure αHp of (Gη, λη, iη) of type

(L⊗
Z
Ẑp, 〈 · , · 〉) arises this way for some (noncanonical choice of)

symplectic-liftable Zn0. (The Hn0-orbit of Zn0, or rather the Hp-orbit
of the lifting Zp, is nevertheless canonically determined by αHp.)

Proof. This follows from the same arguments as in [62, Sec. 5.3].
�

Definition 4.1.5.12. With the setting in Definition 4.1.5.2, let
Zpr := Zn/p

rZn, and assume moreover that Zpr satisfies the compatibil-
ity Z−2,pr ⊂ D0

pr ⊂ Z−1,pr (see (3.2.3.3)). Then we define the following
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subgroups or quotients of subgroups of Gess(Z/prZ):

Pess
Dpr

:= {gpr ∈ Gess(Z/prZ) : g−1
pr (D0

pr) = D0
pr} ∼= Up,0(pr)/Up(pr),

Pess
Zpr ,Dpr

:= {gpr ∈ Pess
Dpr

: g−1
pr (Zpr) = Zpr},

Zess
Zpr ,Dpr

:= {gpr ∈ Pess
Zpr ,Dpr

: Gr
Zpr

−1 (gpr) = Id
Gr

Zpr

−1

and ν(gpr) = 1},

Uess
Zpr ,Dpr

:= {gpr ∈ Pess
Zpr ,Dpr

: GrZpr (gpr) = IdGr
Zpr and ν(gpr) = 1},

Gess
l,Zpr ,Dpr

:=


(g−2,pr , g0,pr) ∈ GLO(Gr

Zpr

−2 )×GLO(Gr
Zpr

0 ) :
∃gpr ∈ Zess

Zpr ,Dpr
s.t.

Gr
Zpr

−2 (gpr) = g−2,pr and Gr
Zpr

0 (gpr) = g0,pr

 ,

Uess
2,Zpr ,Dpr

:=

{
g20,pr ∈ HomO(Gr

Zpr

0 ,Gr
Zpr

−2 ) :

∃gpr ∈ Uess
Zpr ,Dpr

s.t. δ−1
pr ◦ gpr ◦ δpr =

(
1 g20,pr

1
1

)} ,

Uess
1,Zpr ,Dpr

:=


(g21,pr , g10,pr) ∈

HomO(Gr
Zpr

−1 ,Gr
Zpr

−2 )

×HomO(Gr
Zpr

0 ,Gr
Zpr

−1 )
:

∃gpr ∈ Uess
Zpr ,Dpr

s.t. δ−1
pr ◦ gpr ◦ δpr =

(
1 g21,pr g20,pr

1 g10,pr

1

)
,

for some g20,pr

 .

Note that Zess
Zpr ,Dpr

= Zess
Zpr

, Uess
Zpr ,Dpr

= Uess
Zpr

, and Gess
l,Zpr ,Dpr

= Gess
l,Zpr

.

Let us consider

Ubal

p,1(pr) := Ubal
p,1 (pr)/Up(pr)

as a subgroup of Gess
Dpr

. Then we also define the following subgroups or

quotients of subgroups of Gess(Z/prZ):

Mess,ord
Zpr ,Dpr

:= Pess
Dpr
/Ubal

p,1(pr) ∼= Up,0(pr)/Ubal
p,1 (pr),

Pess,ord
Zpr ,Dpr

:= image of Pess
Zpr ,Dpr

under Pess
Dpr

can.→ Mess,ord
Zpr ,Dpr

,

Zess,ord
Zpr ,Dpr

:= image of Zess
Zpr ,Dpr

= Zess
Zpr

under Pess
Dpr

can.→ Mess,ord
Zpr ,Dpr

,

Uess,ord
Zpr ,Dpr

:= image of Uess
Zpr ,Dpr

= Uess
Zpr

under Pess
Dpr

can.→ Mess,ord
Zpr ,Dpr

,

Gess,ord
h,Zpr ,Dpr

:= Pess,ord
Zpr ,Dpr

/Zess,ord
Zpr ,Dpr

,

Gess,ord
l,Zpr ,Dpr

:= Zess,ord
Zpr ,Dpr

/Uess,ord
Zpr ,Dpr

∼= Zess
Zpr
/Uess

Zpr
= Gess

l,Zpr
,

Uess,ord
2,Zpr ,Dpr

:= {Id},

Uess,ord
1,Zpr ,Dpr

:= Uess,ord
Zpr ,Dpr

.
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Lemma 4.1.5.13. By definition, there are natural inclusions

(4.1.5.14) Uess,ord
2,Zpr ,Dpr

⊂ Uess,ord
Zpr ,Dpr

⊂ Zess,ord
Zpr ,Dpr

⊂ Pess,ord
Zpr ,Dpr

⊂ Mess,ord
Zpr ,Dpr

,

and natural exact sequences:

1→ Zess,ord
Zpr ,Dpr

→ Pess,ord
Zpr ,Dpr

→ Gess,ord
h,Zpr ,Dpr

→ 1,(4.1.5.15)

1→ Uess,ord
Zpr ,Dpr

→ Zess,ord
Zpr ,Dpr

→ Gess,ord
l,Zpr ,Dpr

→ 1,(4.1.5.16)

1→ Uess,ord
2,Zpr ,Dpr

→ Uess,ord
Zpr ,Dpr

→ Uess,ord
1,Zpr ,Dpr

→ 1.(4.1.5.17)

Definition 4.1.5.18. Let Hp be an open compact subgroup of
G(Zp) such that Ubal

p,1 (pr) ⊂ Hp ⊂ Up,0(pr), which defines a subgroup

Hpr := Hp/Up(pr) of Pess
Dpr

, and defines a subgroup Hord
pr := Hp/Ubal

p,1 (pr)

of Mess,ord
Zpr ,Dpr

. For each of the subgroups > in (4.1.5.14), we define

Hord
pr,> := Hord

pr ∩>. For each of the quotients of two groups > = >1/>2

in (4.1.5.14), (4.1.5.15), (4.1.5.16), or (4.1.5.17), we define
Hord
pr,> := Hord

pr,>1
/Hord

pr,>2
. Thus, we have defined the groups Hord

pr,Pess,ord
Zpr ,Dpr

,

Hord

pr,Zess,ord
Zpr ,Dpr

, Hord

pr,Uess,ord
Zpr ,Dpr

, Hord

pr,Gess,ord
h,Zpr ,Dpr

, Hord

pr,Gess,ord
l,Zpr ,Dpr

, Hord

pr,Uess,ord
2,Zpr ,Dpr

, and

Hord

pr,Uess,ord
1,Zpr ,Dpr

, so that we have the natural inclusions

Hord

pr,Uess,ord
2,Zpr ,Dpr

⊂ Hord

pr,Uess,ord
Zpr ,Dpr

⊂ Hord

pr,Zess,ord
Zpr ,Dpr

⊂ Hord

pr,Pess,ord
Zpr ,Dpr

⊂ Hord
pr

and natural exact sequences

1→ Hord

pr,Zess,ord
Zpr ,Dpr

→ Hord

pr,Pess,ord
Zpr ,Dpr

→ Hord

pr,Gess,ord
h,Zpr ,Dpr

→ 1,

1→ Hord

pr,Uess,ord
Zpr ,Dpr

→ Hord

pr,Zess,ord
Zpr ,Dpr

→ Hord

pr,Gess,ord
l,Zpr ,Dpr

→ 1,

1→ Hord

pr,Uess,ord
2,Zpr ,Dpr

→ Hord

pr,Uess,ord
Zpr ,Dpr

→ Hord

pr,Uess,ord
1,Zpr ,Dpr

→ 1.

Remark 4.1.5.19. By definition, we have Hord

pr,Gess,ord
l,Zpr ,Dpr

∼= Hpr,Gess
l,Zpr

under the canonical isomorphism Gess,ord
l,Zpr ,Dpr

∼= Gess
l,Zpr

.

Proposition 4.1.5.20. Let Hord
pr be as in Definition 4.1.5.18. Let

S = Spec(R) be as in Section 4.1.2. Let (G, λ, i) be a degenerating
family of type (PE,O) over S as in Definition 4.1.3.1, with degenera-
tion datum (B, λB, iB, X, Y , φ, c, c

∨, τ) given by (4.1.3.3). Let Zpr be a
symplectic filtration on L/prL, and assume moreover that Zpr satisfies
the compatibility Z−2,pr ⊂ D0

pr ⊂ Z−1,pr (see (3.2.3.3)).
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Consider compositions of finite étale morphisms of schemes

τ ord
Hord
pr

∼→ (cord
Hord
pr
, c∨,ord

Hord
pr

)� (ϕord
−2,Hord

pr
, ϕord

0,Hord
pr

)

� ϕord
−1,Hord

pr
� δord

Hord
pr

∼→ ZHord
pr
� η,

(4.1.5.21)

such that we have the following:

(1) ZHord
pr
� η is an Hord

pr -orbit (or equivalently an Hpr-orbit) of

étale-locally-defined filtrations Zpr that are compatible with Dpr

in the sense that Z−2,pr ⊂ Dpr ⊂ Z−1,pr , which is isomor-
phic to (the pullback of) the constant scheme Hord

pr,Pess,ord
Zpr ,Dpr

\Hord
pr

over some finite étale extension of η. This also determines
an Hord

pr -orbit of étale-locally-defined filtrations conjugate to

D−1,pr = {Di−1,pr}i on GrZ−1,pr .

(2) δord
Hord
pr

= (δord,0

Hord
pr
, δord,#,0

Hord
pr

)
∼→ ZHord

pr
gives choices of pairs of split-

tings δord
pr = (δord,0

pr , δord,#,0
pr ).

(3) ϕord
−1,Hord

pr
� δord

Hord
pr

is an Hord

pr,Gess,ord
h,Zpr ,Dpr

-torsor realized as a (finite

étale) subscheme of the quasi-finite étale scheme

Homδord

Hord
pr

(
(Gr0

D,Hord
pr

)mult, B[pr]δord

Hord
pr

)
×

δord

Hord
pr

Homδord

Hord
pr

(
(Gr0

D#,Hord
pr

)mult, B∨[pr]δord

Hord
pr

)
×

δord

Hord
pr

(Z/prZ)×δord

Hord
pr

over δord
Hord
pr

, which is an Hord

pr,Gess,ord
h,Zpr ,Dpr

-orbit of

étale-locally-defined triples ϕord
−1,pr = (ϕord,0

−1,pr , ϕ
ord,#,0
−1,pr , νord

−1,pr).

(4) (ϕord
−2,Hord

pr
, ϕord

0,Hord
pr

) � ϕ−1,Hord
pr

is an Hord

pr,Gess,ord
l,Zpr ,Dpr

-torsor

giving an Hord

pr,Gess,ord
l,Zpr ,Dpr

-orbit of étale-locally-defined pairs

(ϕ−2,pr , ϕ0,pr).

(5) (cord
Hord
pr
, c∨,ord

Hord
pr

) � (ϕord
−2,Hord

pr
, ϕord

0,Hord
pr

) is an Hord

pr,Uess,ord
1,Zpr ,Dpr

-torsor

giving an Hord

pr,Uess,ord
1,Zpr ,Dpr

-orbit of étale-locally-defined pairs

(cord
pr , c

∨,ord
pr ).

(6) τ ord
Hord
pr

∼→ (cord
Hord
pr
, c∨,ord

Hord
pr

) is an Hord

pr,Uess,ord
2,Zpr ,Dpr

-torsor; i.e., it is an

isomorphism giving no new structure.
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(Each of the datum or pairs of data is built on top of the earlier ones.)
Then each such scheme τ ord

Hord
pr
� η determines a naive ordinary lev-

el-Hord
pr structure αord

Hord
pr

of (Gη, λη, iη) of type (L/prL, 〈 · , · 〉, Dpr) (see

Definition 3.3.3.3). If these schemes are orbits of liftable objects, then
they determine an ordinary level-Hp structure αord

Hp of (Gη, λη, iη) of

type (L⊗
Z
Zp, 〈 · , · 〉, D) (see Definition 3.3.3.4). (This forces G to be

ordinary. See Remark 3.3.3.6.)
Conversely, each ordinary level-Hp structure αord

Hp of (Gη, λη, iη) of

type (L⊗
Z
Zp, 〈 · , · 〉, D) arises this way for some (noncanonical choice

of) symplectic-liftable Zpr . (The (Hp/Up(pr))-orbit of Zpr , or rather the
Hp-orbit of the lifting to a symplectic filtration on L⊗

Z
Zp, is neverthe-

less well defined.)

Proof. This follows from arguments similar to those in [62, Sec.
5.3]. �

Definition 4.1.5.22. (Compare with [62, Def. 5.3.1.12].)
With the setting as in Section 4.1.2, suppose we are given a tuple
(B, λB, iB, X, Y , φ, c, c

∨, τ) in DDPE,O(R, I). Let H, Hp, Hp, and r
be as in Definition 3.4.1.1. Let n0 and Hn0 := Hp/Up(n0) be as in
Proposition 4.1.5.10, and let Hord

pr be as in Definition 4.1.5.18 (and
hence in Proposition 4.1.5.20). Let n = n0p

r, and let Hn := H/U(n).
By an Hn-orbit of étale-locally-defined naive ordinary level-n
structure data of type (L/nL, 〈 · , · 〉, Dpr), we mean a scheme

α\,ord
Hn

= (ZHn , ϕ−2,Hn , ϕ
ord
−1,Hn , ϕ0,Hn , δ

ord
Hn , c

ord
Hn , c

∨,ord
Hn

, τ ord
Hn )

(or rather just τ ord
Hn

) finite étale over η, which is a composition of
schemes

τ ord
Hn � (cord

Hn , c
∨,ord
Hn

)� (ϕord
−2,Hn , ϕ

ord
0,Hn)� ϕord

−1,Hn � δord
Hn

∼→ ZHn � η

where we have

(1) τ ord
Hn
∼= τHn0

×
η
τ ord
Hord
pr

,

(2) (cord
Hn
, c∨,ord
Hn

) ∼= (cHn0
, c∨Hn0

)×
η

(cord
Hord
pr
, c∨,ord

Hord
pr

),

(3) (ϕord
−2,Hn

, ϕord
0,Hn

) ∼= (ϕ∼−2,Hn0
, ϕ∼0,Hn0

)×
η

(ϕord
−2,Hord

pr
, ϕord

0,Hord
pr

),

(4) ϕord
−1,Hn

∼= ϕ−1,Hn0
×
η
ϕord
−1,Hord

pr
,

(5) δord
Hn
∼= δHn0

×
η
δord
Hord
pr

, and

(6) ZHn
∼= ZHn0

×
η
ZHord

pr
,
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with objects at the right-hand sides in some composition (4.1.5.11) in
Proposition 4.1.5.10 and some composition (4.1.5.21) in Proposition
4.1.5.20. We use the same terminology Hn-orbit of étale-locally-
defined for each of the entries in α\,ord

Hn
.

We remove “ naive” from the terminology, and call it an Hn-orbit
of étale-locally-defined ordinary level-n structure data of type
(L⊗

Z
Ẑ, 〈 · , · 〉, D), when the data are compatibly liftable to data (at all

higher levels) satisfying the analogous conditions.

As in [62, Def. 5.3.1.13], the equivalence relations among ordi-

nary level-n structure data of type (L⊗
Z
Ẑ, 〈 · , · 〉, D) over η then induce

equivalence relations among their Hn-orbits.

Definition 4.1.5.23. (Compare with Definition [62, Def. 5.3.1.14].)
With the setting as in Section 4.1.2, suppose we are given a tuple
(B, λB, iB, X, Y , φ, c, c

∨, τ) in DDPE,O(R, I). Let H, Hp, Hp, and r
be as in Definition 3.4.1.1. For each integer n0 ≥ 1 such that p - n
and Up(n0) ⊂ Hp, set Hn0 := Hp/Up(n) and Hn0pr := H/U(n0p

r)
as usual. Then an ordinary level-H structure datum of type
(L⊗

Z
Ẑ, 〈 · , · 〉, D) over η is a collection α\,ord

H = {α\,ord
Hn0p

r
}n0 indexed by

integers n0 ≥ 1 such that p - n0 and Up(n0) ⊂ Hp, with elements α\,ord
Hn0p

r

described as follows:

(1) For each index n0, the element α\,ord
Hn0p

r
is an Hn0pr-orbit of

étale-locally-defined ordinary level-n structure data of type
(L⊗

Z
Ẑ, 〈 · , · 〉, D) as in Definition 4.1.5.22.

(2) For all indices n0 and m0 such that n0|m0, the Hn0pr-orbit

α\,ord
Hn0p

r
is determined by the Hm0pr-orbit α\,ord

Hm0p
r

by reduction

modulo n0p
r.

It is customary to denote α\,ord
H by a tuple

α\,ord
H = (ZH, ϕ−2,H, ϕ

ord
−1,H, ϕ0,H, δ

ord
H , cord

H , c∨,ord
H , τ ord

H ),

each subtuple or entry being a collection indexed by n0 as α\,ord
H is, and

to denote by ιord
H the collection corresponding to τ ord

H . For convenience,
we also write τ ord

H
∼= τHp ×

η
τ ord
Hp etc as in Definition 4.1.5.22.

As in [62, Def. 5.3.1.13], the equivalence relations among naive

ordinary level-n structure data of type (L⊗
Z
Ẑ, 〈 · , · 〉, D) over η then

induce equivalence relations among their Hn-orbits.
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Convention 4.1.5.24. (Compare with [62, Conv. 5.3.1.15].) To

facilitate the language, we shall call α\,ord
H an H-orbit, with similar us-

ages applied to other objects with subscripts “H”. If we have two open
compact subgroups H′ ⊂ H for which ordinary level structures at those
levels make sense, and if we have an object α\,ord

H′ at level H′, then there

is a natural meaning of the object α\,ord
H at level H determined by α\,ord

H′ .

We say in this case that α\,ord
H is the H-orbit of α\,ord

H′ .

As in [62, Def. 5.3.1.16], and as above, the equivalence relations
among naive ordinary level-n structure data then also induce equivalent
relations among ordinary level-H structure data.

Definition 4.1.5.25. (Compare with Definition 4.1.4.57.) With the
setting as in Section 4.1.2, suppose moreover that η is a scheme over
Spec(Z(p)). The category DEGPEL,

...
M

ord
H

(R, I) has objects of the form

(G, λ, i, αHp , α
ord
Hp ) (over S), where:

(1) (G, λ, i) defines an object of DEGPE,O(R, I) (see Definition
4.1.3.1).

(2) (Gη, λη, iη, αHp , α
ord
Hp ) defines an object of

...
M

ord

H (η) (see Defini-

tion 3.4.1.1).
(3) αord

Hp is defined by a (scheme-theoretic) Hord
pr -orbit of some prin-

cipal ordinary level-pr structure of type (L⊗
Z
Zp, 〈 · , · 〉, D) such

that, for each integer r′ ≥ r, there exists some lifting to level
pr
′

(over some étale extension of η) compatible with degenera-
tion (i.e., satisfying the analogue of Condition 4.1.4.1 at level
pr
′
).

Definition 4.1.5.26. (Compare with Definition 4.1.4.58.) With the
setting as in Section 4.1.2, suppose moreover that η is a scheme over
Spec(Z(p)). The category DDPEL,

...
M

ord
H

(R, I) has objects of the form

(B, λB, iB, X, Y , φ, c, c
∨, τ, [α\,ord

H ]),

where:

(1) (B, λB, iB, X, Y , φ, c, c
∨, τ) defines an object of DDPE,O(R, I)

(see Definition 4.1.3.2).

(2) [α\,ord
H ] is an equivalence class of ordinary level-n structure data

α\,ord
H of type (L⊗

Z
Ẑ, 〈 · , · 〉, D) defined over η. (See Definition

4.1.5.23.)

Now it follows from Propositions 4.1.4.21, 4.1.4.52, and 4.1.4.56
that we have the following:
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Theorem 4.1.5.27. There is an equivalence of categories

MPEL,
...
M

ord
H

(R, I) : DDPEL,
...
M

ord
H

(R, I)→ DEGPEL,
...
M

ord
H

(R, I) :

(B, λB, iB, X, Y , φ, c, c
∨, τ, [α\,ord

H ]) 7→ (G, λ, i, αHp , α
ord
Hp ).

4.1.6. Comparison with Degeneration Data for Level
Structures in Characteristic Zero. Let H, Hp, Hp, r, and rν be
as in beginning of Section 3.3.5. Let n0 be some integer prime to p
such that Up(n0) ⊂ Hp. Let Hn0 := Hp/Up(n0) and Hpr := Hp/Up(pr),
and let Hord

pr := Hp/Ubal
p,1 (pr) as in Section 3.3.3. Let n := n0p

r. Then
U(n) ⊂ H and we set Hn := H/U(n).

Let S = Spec(R) be as in Section 4.1.2. Assume moreover that
the generic point η of S is a point over S0,prν = Spec(F0[ζprν ]) (see
Proposition 3.3.5.1). By normality of S, this forces S to be a scheme
over Spec(Z[ζprν ]), so that there exists a canonical isomorphism ζprν ,S′ :

((Z/prνZ)(1))S′
∼→ µprν ,S′ for each scheme S ′ → S (which is the pull-

back of the canonical ζprν over Spec(Z[ζprν ])).
Let (G, λ, i) be a degenerating family of type (PE,O) over S as in

Definition 4.1.3.1, with degeneration datum (B, λB, iB, X, Y , φ, c, c
∨, τ)

given by (4.1.3.3). For simplicity, let us assume (until we finish the
proof of Proposition 4.1.6.1) that X and Y are constant with values X
and Y , respectively.

Let [(ZH,ΦH, δH)] be an ordinary cusp label at level H for the
PEL-type O-lattice (L, 〈 · , · 〉, h0) (see Definition 3.2.3.8). Let

α\H = (ZH, ϕ
∼
−2,H, ϕ−1,H, ϕ

∼
0,H, δH, cH, c

∨
H, τH)

be a level-H structure datum of type (L⊗
Z
Ẑ, 〈 · , · 〉), as in [62, Def.

5.3.1.14], with (ϕ∼−2,H, ϕ
∼
0,H) inducing the (ϕ−2,H, ϕ0,H) in a represen-

tative (ZH,ΦH = (X, Y, φ, ϕ−2,H, ϕ0,H), δH) of [(ZH,ΦH, δH)], as in the
corrected [62, Def. 5.4.2.8] in the errata. Then

(ZH, (X, Y, φ, ϕ
∼
−2,H, ϕ

∼
0,H), (B, λB, iB, ϕ−1,H), δH, (cH, c

∨
H, τH))

is an object of DDfil.-spl.
PEL,MH

(R, I), as in [62, Lem. 5.4.2.10; see also the
errata]. This means we have a composition of finite étale morphisms

τHn � (cHn , c
∨
Hn)� (ϕ∼−2,Hn , ϕ

∼
0,Hn)� ϕ−1,Hn � δHn

∼→ ZHn � η

as in [62, Sec. 5.3]. By taking reduction modulo n0 or restrictions of
various objects, we obtain an induced composition as in (4.1.5.11) in
Proposition 4.1.5.10. We claim that we can also obtain an induced
composition as in (4.1.5.21) in Proposition 4.1.5.20.
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By definition, ZH is an H-orbit of strongly symplectic admissible
filtrations Z on L⊗

Z
Ẑ. This includes, in particular, the datum of an

Hp-orbit of a symplectic admissible filtration Z⊗
Ẑ
Zp = {Z−i⊗

Ẑ
Zp}i on

L⊗
Z
Zp. By Definition 3.2.3.1, and by replacing Z with another repre-

sentative in the H-orbit ZH if necessary, we shall assume that

Z−2⊗
Ẑ
Zp ⊂ D0 ⊂ Z−1⊗

Ẑ
Zp

(see (3.2.3.2)), which induces a filtration D−1 = {Di−1}i on GrZ−1⊗
Ẑ
Zp.

By taking reduction modulo pr, we have the compatibility (3.2.3.3)
(resp. (3.2.3.5)), which induces a filtration D−1,pr = {Di−1,pr}i on

GrZ−1,pr given by (3.2.3.4) (resp. (3.2.3.6)). Note that (3.2.3.3) (resp.
(3.2.3.4), resp. (3.2.3.5), resp. (3.2.3.6)) is a special case of (4.1.4.5)
(resp. (4.1.4.14), resp. (4.1.4.6), resp. (4.1.4.15)) in the sense that we
did not assume that the latter comes from some symplectic-liftable
admissible filtration.

Since Ubal
p,1 (pr) ⊂ Hp ⊂ Up,0(pr), and since the action of Up,0(pr)

stabilizes D0
pr as an O⊗

Z
(Z/prZ)-submodule of L/prL, the compati-

bility (3.2.3.3) is independent of the choice of Z, once Z exists (cf.
Remark 3.2.3.7). Moreover, the Hord

pr -orbit ZHord
pr

(which is equiva-

lently an Hpr -orbit) of Zpr = {Z−i,pr}i determines the Hord
pr -orbits of

the two O-submodules GrZ−2,pr ⊂ Gr0
D,pr and GrZ

#

−2,pr ⊂ Gr0
D#,pr as in

(4.1.4.7) and (4.1.4.8), which in turn define Gr0
D−1,pr

= Gr0
D,pr /GrZ−2,pr

and Gr0

D
#
−1,pr

= Gr0
D#,pr /GrZ

#

−2,pr as in (4.1.4.16) and (4.1.4.17). These

are all independent of the choice of Z.
Thus, we have obtained a well-defined assignment of ZHord

pr
to ZH.

The datum δH in the cusp label [(ZH,ΦH, δH)] is by definition the
H-orbit of some splitting δ, which includes in particular the datum of
the Hpr -orbit of some splitting

δpr : GrZ−2,pr ⊕GrZ−1,pr ⊕GrZ0,pr
∼→ L/prL.

Since we have the compatibility (3.2.3.3), we have splittings

δord,0
pr : GrZ−2,pr ⊕Gr0

D−1,pr

∼→ Gr0
D,pr

and

δord,#,0
pr : GrZ

#

−2,pr ⊕Gr0

D
#
−1,pr

∼→ Gr0
D#,pr
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as in (4.1.4.23) and (4.1.4.24). Note that theHpr -orbit of δpr determines
and is determined by the Hord

pr -orbit of the pair

δord
pr := (δord,0

pr , δord,#,0
pr ).

(Since the splitting δpr does not respect pairings, the two splittings δord,0
pr

and δord,#,0
pr are compatible with φ0

D,pr : Gr0
D,pr → Gr0

D#,pr only in the

sense that φ0
D,pr(GrZ−2,pr) ⊂ GrZ

#

−2,pr ; cf. Lemma 4.1.4.22.) By abuse of

notation, let us denote the Hord
pr -orbit of the pair δord

pr = (δord,0
pr , δord,#,0

pr )

by δord
Hord
pr

= (δord,0

Hord
pr
, δord,#,0

Hord
pr

). This is the same δord
Hord
pr

as in Proposition

4.1.5.20.
Thus, we have obtained a well-defined assignment of δord

Hord
pr

to δH.

The assignment of ϕord
−1,Hord

pr
as in Proposition 4.1.5.20 to ϕ−1,H or

rather some ϕ−1,Hpr is as in Proposition 3.3.5.1 for MHh and an obvious

analogue
...
M

ord

Hh of
...
M

ord

H (cf. Definitions 1.2.1.15 and 3.4.1.9). This is
where we need η to be defined over S0,prν = Spec(F0[ζprν ]).

The datum ΦH in the cusp label [(ZH,ΦH, δH)] is by definition the

H-orbit of some tuple (X, Y, φ, ϕ−2, ϕ0) (where the action of H ⊂ G(Ẑ)
does not modify the first three entries), which includes in particular
the datum of an Hpr -orbit, or equivalently an Hord

pr -orbit, of pairs
of isomorphisms (ϕ−2,pr , ϕ0,pr), or equivalently pairs of isomorphisms

(ϕ−2,pr , ϕ
#
−2,pr), as in (4.1.4.11), (4.1.4.12), and (4.1.4.13). The two iso-

morphisms ϕ−2,pr and ϕ#
−2,pr induce respectively the two isomorphisms

(ϕ−2,pr)
mult
S : (GrZ−2,pr)

mult
S

∼→ T [pr]

and

(ϕ#
−2,pr)

mult
S : (GrZ

#

−2,pr)
mult
S

∼→ T∨[pr]

as in (2) of Proposition 4.1.4.21. By abuse of notation, let us denote

the (scheme-theoretic) Hord
pr -orbit of the pair ((ϕ−2,pr)

mult
S , (ϕ#

−2,pr)
mult
S )

by ((ϕ−2,Hord
pr

)mult
S , (ϕ#

−2,Hord
pr

)mult
S ), which determines and is determined

by a scheme (ϕ−2,Hord
pr
, ϕ0,Hord

pr
) over η.

If we also include ϕ−1,Hpr and ϕord
−1,Hord

pr
into consideration, then

we have a subscheme (ϕ∼−2,Hpr
, ϕ∼0,Hpr ) of (ϕ−2,Hpr , ϕ0,Hpr ) ×

Z
Hord
pr

ϕ−1,Hpr

which is an Hpr -orbit of étale-locally-defined ((ϕ−2,pr , ϕ0,pr), ϕ−1,pr)
and surjects under the two projections to (ϕ−2,Hpr , ϕ0,Hpr ) and ϕ−1,Hpr .

Moreover, it induces a subscheme ((ϕord
−2,Hord

pr
)mult
S , (ϕord,#

−2,Hord
pr

)mult
S )
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of ((ϕ−2,Hord
pr

)mult
S , (ϕ#

−2,Hord
pr

)mult
S ) ×

Z
Hord
pr

ϕ−1,Hord
pr

, which determines

and is determined by a subscheme (ϕord
−2,Hord

pr
, ϕord

0,Hord
pr

) of

(ϕ−2,Hord
pr
, ϕ0,Hord

pr
) ×
Z
Hord
pr

ϕ−1,Hord
pr

, both subschemes being Hord
pr -orbits

of étale-locally-defined objects inducing surjections under the two
projections.

Thus, we have obtained well-defined assignments of
(ϕ−2,Hord

pr
, ϕ0,Hord

pr
) to ΦH, or rather just to (ϕ−2,H, ϕ0,H); and of

((ϕord
−2,Hord

pr
)mult
S , (ϕord,#

−2,Hord
pr

)mult
S ) and (ϕord

−2,Hord
pr
, ϕord

0,Hord
pr

) to (ϕ∼−2,H, ϕ
∼
0,H),

which are compatible with each other.
The pair (cHn , c

∨
Hn

) as a scheme over (ϕ∼−2,Hn
, ϕ∼0,Hn) is an

Hn,Uess
1,Zn

-torsor giving an Hn,Uess
1,Zn

-orbit of étale-locally-defined pairs

(cn, c
∨
n). Each cn : 1

n
X → B∨η determines by restriction to 1

pr
X and by

composition with (4.1.4.32) a homomorphism

cord
pr : 1

n
X → B∨η → B∨,ord

η,pr = B∨η /ϕ
ord,#,0
−1,pr ((Gr0

D
#
−1,pr

)mult
η )

lifting c : X → B∨, while each c∨n : 1
n
Y → Bη determines by restriction

to 1
pr
Y and by composition with (4.1.4.31) a homomorphism

c∨,ord
pr : 1

pr
Y → Bord

η,pr = Bη/ϕ
ord,0
−1,pr((Gr0

D−1,pr
)mult
η )

lifting c∨ : Y → B. Since the actions of Hn,Uess
1,Zn

and Hord

pr,Uess,ord
1,Zpr ,Dpr

respect pairings and are compatible, the Hord

pr,Uess,ord
1,Zpr ,Dpr

-orbit of

(cord
pr , c

∨,ord
pr ) is independent of choices, and defines a scheme

(cord
Hord
pr
, c∨,ord

Hord
pr

) over (ϕord
−2,Hord

pr
, ϕord

0,Hord
pr

).

Thus, we have a well-defined assignment of (cord
Hord
pr
, c∨,ord

Hord
pr

) to (cH, c
∨
H).

Finally, the scheme τHn � (cHn , c
∨
Hn

) is an Hn,Uess
2,Zn

-torsor giving

an Hn0,Uess
2,Zn

-orbit of étale-locally-defined τn, which induces the (triv-

ial) Hord

pr,Uess,ord
2,Zpr ,Dpr

-torsor τ ord
Hord
pr

∼→ (cord
Hord
pr
, c∨,ord

Hord
pr

). (Note that the group

Hord

pr,Uess,ord
2,Zpr ,Dpr

is trivial.) This is consistent with the convention that

τ ord
n := τn0 does not see any information at p.

Thus, we have verified our claim that we can also obtain an induced
composition as in (4.1.5.21) in Proposition 4.1.5.20.
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Proposition 4.1.6.1. With the assumptions as above, there is a
commutative diagram of finite étale morphisms:

τHn

mod Hn,Uess
2,Zn

����

// τord
Hn
∼= τHn0

×
η
τord
Hord
pr

mod Hn0,U
ess
2,Zn0

×Hord

pr,U
ess,ord
2,Zpr ,Dpr����

(cHn , c
∨
Hn

)

mod Hn,Uess
1,Zn

����

// (cord
Hn
, c∨,ord
Hn

) ∼= (cHn0
, c∨Hn0

)×
η

(cord
Hord
pr
, c∨,ord

Hord
pr

)

mod Hn0,U
ess
1,Zn0

×Hord

pr,U
ess,ord
1,Zpr ,Dpr����

(ϕ∼−2,Hn
, ϕ∼0,Hn)

mod Hn0,G
ess
l,Zn0

����

// (ϕord
−2,Hn

, ϕord
0,Hn

) ∼= (ϕ∼−2,Hn0
, ϕ∼0,Hn0

)×
η

(ϕord
−2,Hord

pr
, ϕord

0,Hord
pr

)

mod Hn0,G
ess
l,Zn0

×Hord

pr,G
ess,ord
l,Zpr ,Dpr����

ϕ−1,Hn

mod Hn,Gess
h,Zn

����

// ϕord
−1,Hn

∼= ϕ−1,Hn0
×
η
ϕord
−1,Hord

pr

mod Hn0,G
ess
h,Zn0

×Hord

pr,G
ess,ord
h,Zpr ,Dpr����

δHn

o

��

∼
// δord
Hn
∼= δHn0

×
η
δord
Hord
pr

o
��

ZHn

����

ZHn
∼= ZHn0

×
η
ZHord

pr

����
η η

In this diagram, the objects at the right-hand sides form an Hn-orbit
of étale-locally-defined naive ordinary level-n structure data (see Defi-
nition 4.1.5.22), and all horizontal morphisms over ZHn are torsors of
the expected constant finite groups:

(1) The induced morphism

τHn → (cHn , c
∨
Hn) ×

(cord
Hn

,c∨,ord
Hn

)

τ ord
Hn

is a torsor under

Uess
2,Zpr ,Dpr

∼= ker(Uess
2,Zpr ,Dpr

� Uess,ord
2,Zpr ,Dpr

)

∼= ker(Hpr,Uess
2,Zpr
� Hord

pr,Uess,ord
2,Zpr ,Dpr

).

(2) The induced morphism

(cHn , c
∨
Hn)→ (ϕ∼−2,Hn , ϕ

∼
0,Hn) ×

(ϕord
−2,Hn

,ϕord
0,Hn

)
(cord
Hn , c

∨,ord
Hn

)
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is a torsor under

ker(Uess
1,Zpr ,Dpr

� Uess,ord
1,Zpr ,Dpr

) ∼= ker(Hpr,Uess
1,Zpr
� Hord

pr,Uess,ord
1,Zpr ,Dpr

).

(3) The induced morphism

(ϕ∼−2,Hn , ϕ
∼
0,Hn)→ ϕ−1,Hn ×

ϕord
−1,Hn

(ϕord
−2,Hn , ϕ

ord
0,Hn)

is an isomorphism, because Hpr,Gess
l,Zpr

∼= Hord

pr,Gess,ord
l,Zpr ,Dpr

under the

canonical isomorphism Gess
l,Zpr ,Dpr

∼= Gess,ord
l,Zpr ,Dpr

.

(4) The morphism

ϕ−1,Hn → ϕord
−1,Hn

is a torsor under

ker(Pess
h,Zpr ,Dpr

� Gess,ord
h,Zpr ,Dpr

) ∼= ker(Hpr,Gess
h,Zpr
� Hord

pr,Gess,ord
h,Zpr ,Dpr

).

In particular, all horizontal morphisms in the above commutative dia-
gram and all the induced morphisms are étale and surjective.

Proof. Since η is a point over S0,prν = Spec(F0[ζprν ]), the as-
signment to the data on the right-hand sides determines the data on
the left-hand side. (However, this does not imply that all data as in
(4.1.5.21) in Proposition 4.1.5.20 comes from such an assignment.) The
statements on the induced morphisms follow from their definitions as
forgetful functors. The isomorphisms between various kernels follow
from the very definitions of the groups (see Definition 4.1.5.12). �

Theorem 4.1.6.2. With notation and assumptions as in the first
two paragraphs of this subsection, let DDPEL,Mord

H
(R, I) be the full sub-

category of DDPEL,MH(R, I) formed by objects each of whose underlying
ZH is ordinary. (That is, each such ZH is compatible with the filtration
D in the sense that, over an étale extension of η over which ZH becomes
split and becomes part of a representative of a cusp label, it is com-
patible with D as in Definition 3.2.3.1.) Let DEGPEL,Mord

H
(R, I) be the

essential image of DDPEL,Mord
H

(R, I) under the equivalence of categories

(4.1.6.3) MPEL,MH(R,I) : DDPEL,MH(R, I)→ DEGPEL,MH(R, I)

in [62, Thm. 5.3.1.19], which induces an equivalence of categories

(4.1.6.4) MPEL,Mord
H (R,I) : DDPEL,Mord

H
(R, I)→ DEGPEL,Mord

H
(R, I).
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Then there is a commutative diagram

DDPEL,MH(R, I)

MPEL,MH(R,I) o
��

DDPEL,Mord
H

(R, I)

M
PEL,Mord

H (R,I) o
��

//oo DDPEL,
...
M

ord
H

(R, I)

M
PEL,

...
M ord
H

(R,I)o
��

DEGPEL,MH(R, I) DEGPEL,Mord
H

(R, I) //oo DEGPEL,
...
M

ord
H

(R, I)

where MPEL,
...
M

ord
H

(R, I) is the equivalence of categories as in Theorem
4.1.5.27. All horizontal morphisms in this commutative diagram are
fully faithful.

Proof. This follows from Proposition 4.1.6.1 by étale descent
(which allows us to reduce to the case where X and Y are constant),
and from the proof of Proposition 4.1.4.42 (which shows that the
pairing conditions for DDPEL,MH(R, I) and for DDPEL,

...
M

ord
H

(R, I) are

compatible with each other at principal levels). �

4.2. Boundary Charts of Ordinary Loci

In this section, let us continue with the settings in Section
4.1.6. Let rH be as in Definition 3.4.2.1. Let us fix a representative
(ZH,ΦH, δH) of an ordinary cusp label at level H for the PEL-type
O-lattice (L, 〈 · , · 〉, h0) (see Definition 3.2.3.8). Let us fix the choice
of a representative (Zn,Φn, δn) in the Hn-orbit (ZHn ,ΦHn , δHn).

4.2.1. Constructions with Level Structures but without
Positivity Conditions. The moduli problem

...
M

ord

n has a boundary

version
...
M

ord,Zn
n , with tautological object

(B, λB, iB, ϕ−1,n0 , ϕ
ord
−1,pr)

giving the abelian parts of degenerations. Then we have isogenies

(4.2.1.1) B � Bord
pr := B/image(ϕord,0

−1,pr) = B/ϕord,0
−1,pr((Gr0

D−1,pr
)mult...
M

ord,Zn
n

)

and
(4.2.1.2)

B∨ � B∨,ord
pr := B∨/image(ϕord,#,0

−1,pr ) = B∨/ϕord,#,0
−1,pr ((Gr0

D
#
−1,pr

)mult...
M

ord,Zn
n

)

as in (4.1.4.31) and (4.1.4.32), respectively, together with isogenies

(4.2.1.3) Bord
pr � Bord

pr /(Gr−1
D−1,pr

)...
M

ord,Zn
n

∼= B/B[pr] ∼= B

and

(4.2.1.4) B∨,ord
pr � B∨,ord

pr /(Gr−1

D
#
−1,pr

)...
M

ord,Zn
n

∼= B∨/B∨[pr] ∼= B∨,

as in (4.1.4.34) and (4.1.4.33), respectively.
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Consider the canonical homomorphism

(4.2.1.5) HomO( 1
n
X,B∨,ord

pr )→ HomO(X,B∨)

defined by pre-composition with X
∼→ 1

n
X and by post-composition

with

(4.2.1.6) B∨,ord
pr

(4.2.1.4)
� B∨

[n0]→ B∨.

(We can compare these with the following: The canonical morphism
HomO( 1

n
X,B∨) → HomO(X,B∨) induced by restriction to X can be

defined alternatively by pre-composition with X
∼→ 1

n
X and by post-

composition with [n] : B∨ � B∨.) Similarly, consider the canonical
homomorphism

(4.2.1.7) HomO( 1
n
Y,Bord

pr )→ HomO(Y,B)

defined by pre-composition with Y
∼→ 1

n
Y and by post-composition

with

(4.2.1.8) Bord
pr

(4.2.1.3)
� B

[n0]→ B.

Consider also the canonical homomorphisms
HomO(X,B∨) → HomO(Y,B∨) (resp. HomO(Y,B) → HomO(Y,B∨))
defined by pre-composition with the morphism φ : Y → X (resp.
by post-composition with λB : B → B∨). All these group functors
defined by HomO( · , · ) are relatively representable by Proposition
3.1.2.4, because the abelian schemes involved are all ordinary (see
Definition 3.1.1.2).

Lemma 4.2.1.9. The kernels of (4.2.1.5) and (4.2.1.7) are finite

étale group schemes over
...
M

ord,Zn
n . The kernels of HomO(X,B∨) →

HomO(Y,B∨) and HomO(Y,B) → HomO(Y,B∨) are finite flat group

schemes of étale-multiplicative type over
...
M

ord,Zn
n .

Proof. Since ker((4.2.1.4)) ∼= (Gr−1

D
#
−1,pr

)...
M

ord,Zn
n

and

ker([n0] : B∨ → B∨) ∼= B∨[n0] are finite étale, ker((4.2.1.6)) is also

finite étale. Hence, the kernel of HomO( 1
n
X,B∨,ord

pr ) → HomO(X,B∨)
is finite étale because it is a finite flat subgroup
scheme of HomZ( 1

n
X/X, ker((4.2.1.6))). Similarly, since

ker((4.2.1.3)) ∼= (Gr−1
D−1,pr

)...
M

ord,Zn
n

and ker([n0] : B → B) ∼= B[n0] are

finite étale, the kernel of HomO( 1
n
Y,Bord

pr )→ HomO(Y,B) is also finite
étale.

Since B (resp. B∨) is ordinary, its (commutative) finite flat sub-
group schemes are all of étale-multiplicative type. Hence, the kernel of
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HomO(X,B∨) → HomO(Y,B∨) (resp. HomO(Y,B) → HomO(Y,B∨))

is a finite flat group scheme of étale-multiplicative type over
...
M

ord,Zn
n

because it is a finite flat subgroup scheme of HomZ(X/Y,B∨) (resp.
HomZ(Y, ker(λB))). �

Let
...
C

ord
Φn be the (relative) proper flat group scheme over

...
M

ord,Zn
n

representing the fiber product

(4.2.1.10) HomO( 1
n
X,B∨,ord

pr ) ×
HomO(Y,B∨)

HomO( 1
n
Y,Bord

pr ).

Then
...
C

ord
Φn carries a tautological pair

(cord
n : 1

n
X → B∨,ord

pr , c∨,ord
n : 1

n
Y → Bord

pr )

of liftings of (c : X → B∨, c∨ : Y → B) satisfying the compatibility
λBc

∨ = cφ, which is equivalent to two tautological pairs

(cn0 : 1
n0
X → B∨, c∨n0

: 1
n0
Y → B)

and
(cord
pr : 1

pr
X → B∨,ord

pr , c∨,ord
pr : 1

pr
Y → Bord

pr )

of liftings of (c : X → B∨, c∨ : Y → B).
Let us extend φ : Y → X naturally to φn : 1

n
Y → 1

n
X.

Proposition 4.2.1.11. (1) Let HomO( 1
n
X,Bord

pr )◦ be
the (reduced) fiberwise geometric identity component of
HomO( 1

n
X,Bord

pr ) (see (4) of Proposition 3.1.2.4). Then the
canonical homomorphism

HomO( 1
n
X,Bord

pr )◦ → HomO( 1
n
X,B∨,ord

pr ) ×
HomO(Y,B∨)

HomO( 1
n
Y,Bord

pr )

over
...
M

ord

n has kernel the finite flat group scheme

HomO( 1
n
X/φn( 1

n
Y ), ker(λord

B,pr)) ∩ HomO( 1
n
X,Bord

pr )◦

(see (4.1.4.39)) of étale-multiplicative type (see Definition

3.1.1.1) and schematic image an abelian subscheme
...
C

ord,◦
Φn of

...
C

ord
Φn . (See Lemma 3.1.2.2 and Definition 3.1.2.3.)

(2) There exists an integer m ≥ 1 such that multiplication

by m maps
...
C

ord
Φn scheme-theoretically to a subscheme of

...
C

ord,◦
Φn , so that the group scheme π0(

...
C

ord
Φn /

...
M

ord

n ) of fiberwise

connected components of
...
C

ord
Φn over

...
M

ord

n is defined and is of
étale-multiplicative type. (See Lemma 3.1.2.2 and Definition

3.1.2.3.) Moreover, the rank of π0(
...
C

ord
Φn /

...
M

ord

n ) has no prime
factors other than those of Disc, n, [X : φ(Y )], and the rank
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of ker(λB) (or rather ker(λord
B,pr)). (This implies that the rank

of π0(
...
C

ord
Φn /

...
M

ord

n ) does not contain prime factors other than
those of Disc, n and [L# : L].)

Proof. The first claim of the lemma is clear, because the finite
flat group scheme

HomO( 1
n
X/φn( 1

n
Y ), ker(λord

B,pr))

= HomO( 1
n
X, ker(λord

B,pr)) ∩ HomO( 1
n
X/φn( 1

n
Y ), Bord

pr )

is the kernel of

HomO( 1
n
X,Bord

pr )→ HomO( 1
n
X,B∨,ord

pr ) ×
HomO(Y,B∨)

HomO( 1
n
Y,Bord

pr ),

and because B and hence Bord
pr are ordinary (by Lemma 3.1.1.5).

For the second claim, let HomO( 1
n
X,B∨,ord

pr )◦, HomO( 1
n
Y,Bord

pr )◦,
and HomO(Y,B∨)◦ denote respectively the fiberwise geometric

identity components of HomO( 1
n
X,B∨,ord

pr ), HomO( 1
n
Y,Bord

pr ), and

HomO(Y,B∨)◦, and let
...
C

ord,◦◦◦
Φn denote the proper smooth group

scheme representing the fiber product

HomO( 1
n
X,B∨,ord

pr )◦ ×
HomO(Y,B∨)◦

HomO( 1
n
Y,Bord

pr )◦.

By (4) of Proposition 3.1.2.4, the group schemes π0(
...
C

ord
Φn /

...
M

ord

n ) and

π0(
...
C

ord,◦◦◦
Φn /

...
M

ord

n ) are defined, and their ranks differ up to multiplication
by numbers having only prime factors of those of Disc. Therefore, it

suffices to show that the rank of π0(
...
C

ord,◦◦◦
Φn /

...
M

ord

n ) has no prime factors
other than those of n, [X : φ(Y )], and the rank of ker(λB) (or rather
ker(λord

B,pr)).
The kernel Kn of the canonical homomorphism...

C
ord,◦◦◦
Φn → HomO(Y,B∨)◦ is given by a fiber product Kn,1 ×

MZn
n

Kn,2,

where

Kn,1 := HomO( 1
n
X/φ(Y ), B∨,ord

pr ) ∩ HomO( 1
n
X,B∨,ord

pr )◦

and

Kn,2 := HomO( 1
n
Y, ker(λord

B,pr)) ∩ HomO( 1
n
Y,Bord

pr )◦.

Since HomO(Y,B∨)◦ is an abelian scheme, the group π0(
...
C

ord,◦◦◦
Φn /

...
M

ord

n )
can be identified with a quotient of Kn. Since the rank of Kn is the
product of the ranks of Kn,1 and of Kn,2, it has no prime factors other
than those of n, X/φ(Y ), and the rank of ker(λord

B,pr), as desired. �
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Let us consider the finitely generated commutative group (cf. [62,
(6.2.3.5)])
(4.2.1.12)
...
S

ord
Φn :=

...
SΦn0

:= (( 1
n0
Y )⊗

Z
X)/

(
y ⊗ φ(y′)− y′ ⊗ φ(y)

(b 1
n0
y)⊗ χ− ( 1

n0
y)⊗ (b?χ)

)
y,y′∈Y,
χ∈X,b∈O

.

As in [62, Sec. 6.2.2–6.2.3], the formal properties of the pullbacks
of the Poincaré biextension (as in [62, Lem. 6.2.2.5]) allow us to assign
to each

` =
∑

1≤i≤k

[( 1
n0
yi)⊗χi] ∈

...
S

ord
Φn

a well-defined rigidified invertible sheaf

(4.2.1.13) Ψord
n (`) := ⊗

O...
C ord

Φn

,1≤i≤k
(c∨n0

( 1
n0
yi), c(χi))

∗PB

over
...
C

ord
Φn , together with canonical isomorphisms

∆ord,∗
n,`,`′ : Ψord

n (`) ⊗
O...
C ord

Φn

Ψord
n (`′)

∼→ Ψord
n (`+ `′)

for all `, `′ ∈
...
S

ord
Φn , satisfying the necessary compatibilities with each

other making ⊕
`∈

...
S

ord
Φn

Ψord
n (`) an O...

C
ord
Φn

-algebra, so that we can define

...
Ξ

ord
Φn := Spec

O...
C ord

Φn

(
⊕

`∈
...
S

ord
Φn

Ψord
n (`)

)
.

If we denote by
...
E

ord
Φn = HomZ(

...
S

ord
Φn ,Gm) the group of multiplicative

type of finite type with character group
...
S

ord
Φn over Spec(Z), then

...
Ξ

ord
Φn

is an
...
E

ord
Φn -torsor, and we have tautological trivializations

τ ord
n = τn0 : 1( 1

n0
Y )×X

∼→ (c∨n0
× c)∗P⊗−1

B

over
...
Ξ

ord
Φn , which corresponds to a tautological homomorphism

ιord
n = ιn0 : 1

n0
Y → G\.

Let τ : 1Y×X
∼→ (c∨×c)∗P⊗−1

B be the restriction of τ ord
n to 1Y×X , which

corresponds to a tautological homomorphism ι : Y → G\.
Let

...
S

ord
Φn,tor denote the torsion subgroup of

...
S

ord
Φn , and let

...
S

ord
Φn,free

denote the quotient of
...
S

ord
Φn by

...
S

ord
Φn,tor, namely the free commuta-

tive quotient group of
...
S

ord
Φn . Let

...
E

ord
Φn,tor := HomZ(

...
S

ord
Φn,tor,Gm) (resp.

...
E

ord
Φn,free := HomZ(

...
S

ord
Φn,free,Gm)) be the group of multiplicative type of
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finite type with character group
...
S

ord
Φn,tor (resp.

...
S

ord
Φn,free) over Spec(Z).

Then the exact sequence

0→
...
S

ord
Φn,tor →

...
S

ord
Φn →

...
S

ord
Φn,free → 0

induces an exact sequence

0→
...
E

ord
Φn,free →

...
E

ord
Φn →

...
E

ord
Φn,tor → 0

in the reversed direction. Since
...
S

ord
Φn,free is a finitely generated free com-

mutative group,
...
E

ord
Φn,free is by definition a torus (cf. [62, Def. 3.1.1.5]).

As in Definition 4.1.5.9, the choice of Zn in the Hn-orbit ZHn deter-
mines the groups

Hn,Uess
2,Zn
⊂ Hn,Uess

Zn
⊂ Hn,Zess

Zn
⊂ Hn,Pess

Zn
⊂ Hn,

with short exact sequences

1→ Hn,Zess
Zn
→ Hn,Pess

Zn
→ Hn,Gess

h,Zn
→ 1,

1→ Hn,Uess
Zn
→ Hn,Zess

Zn
→ Hn,Gess

l,Zn
→ 1,

1→ Hn,Uess
2,Zn
→ Hn,Uess

Zn
→ Hn,Uess

1,Zn
→ 1,

together with similar subgroups or quotients of subgroups when n is
replaced with n0 or pr. Note that the quotient Hn,Pess

Zn
\Hn describes

elements in the orbit ZHn . The fiber of ΦHn → ZHn at Zn is naturally
an orbit under the image H ′n,Gess

l,Zn
of Hn,Pess

Zn
in Gess

l,Zn
. By viewing the

semidirect product Gess
h,Zn

nUess
Zn

as a subgroup of Gess(Z/nZ) using the
splitting δn, and by viewing Gess

h,Zn
nUess

1,Zn as its quotient by Uess
2,Zn , we can

define as in Definition 4.1.5.9 the groupsHn,Gess
h,Zn

nUess
Zn

andHn,Gess
h,Zn

nUess
1,Zn

,

fitting into short exact sequences

1→ Hn,Gess
h,Zn

nUess
Zn
→ Hn,Pess

Zn
→ H ′n,Gess

l,Zn
→ 1

and

1→ Hn,Uess
2,Zn
→ Hn,Gess

h,Zn
nUess

Zn
→ Hn,Gess

h,Zn
nUess

1,Zn
→ 1.

Let H ′n,Gess
h,Zn

denote the canonical image of Hn,Gess
h,Zn

nUess
1,Zn

in Gess
h,Zn

, so

that we have an exact sequence

1→ Hn,Uess
1,Zn
→ Hn,Gess

h,Zn
nUess

1,Zn
→ H ′n,Gess

h,Zn
→ 1.

Let us also define similar subgroups or quotients of subgroups when n
is replaced with n0 or pr.

As in Definition 4.1.5.18, the compatibility of Zn with Dpr allows us
to define subgroups

Hord

pr,Uess,ord
2,Zpr ,Dpr

⊂ Hord

pr,Uess,ord
Zpr ,Dpr

⊂ Hord

pr,Zess,ord
Zpr ,Dpr

⊂ Hord

pr,Pess,ord
Zpr ,Dpr

⊂ Hord
pr ,
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with short exact sequences

1→ Hord

pr,Zess,ord
Zpr ,Dpr

→ Hord

pr,Pess,ord
Zpr ,Dpr

→ Hord

pr,Gess,ord
h,Zpr ,Dpr

→ 1,

1→ Hord

pr,Uess,ord
Zpr ,Dpr

→ Hord

pr,Zess,ord
Zpr ,Dpr

→ Hord

pr,Gess,ord
l,Zpr ,Dpr

→ 1,

1→ Hord

pr,Uess,ord
2,Zpr ,Dpr

→ Hord

pr,Uess,ord
Zpr ,Dpr

→ Hord

pr,Uess,ord
1,Zpr ,Dpr

→ 1.

As in Remark 4.1.5.19, note that

Hord

pr,Gess,ord
l,Zpr ,Dpr

∼= Hpr,Gess
l,Zpr

.

Let Hord,′
pr,Gess,ord

l,Zpr ,Dpr

denote the image of Hord

pr,Pess,ord
Zpr ,Dpr

under the canonical

homomorphism Pess,ord
Zpr ,Dpr

→ Gess,ord
l,Zpr ,Dpr

. By definition, we have

Hord,′
pr,Gess,ord

l,Zpr ,Dpr

∼= H ′pr,Gess
l,Zpr

under the canonical isomorphism Gess,ord
l,Zpr ,Dpr

∼= Gess
l,Zpr

.

Let δord
pr be induced by δpr as in Section 4.1.6. Then we can view

the semidirect product Gess,ord
h,Zpr ,Dpr

n Uess,ord
Zpr ,Dpr

as a subgroup of Mess,ord
Zpr ,Dpr

using δord
pr , which coincides with the image of Pess

Zpr ,Dpr
∩(Gess

h,Zn
n Uess

Zn
)

under the canonical homomorphism Pess
Dpr
→ Mess,ord

Zpr ,Dpr
. Note that

Gess,ord
h,Zpr ,Dpr

nUess,ord
1,Zpr ,Dpr

is the (isomorphic) quotient of Gess,ord
h,Zpr ,Dpr

nUess,ord
Zpr ,Dpr

by Uess,ord
2,Zpr ,Dpr

= {Id}. Hence, we can define as in Definition 4.1.5.18 the

groups Hord

pr,Gess,ord
h,Zpr ,Dpr

nUess,ord
Zpr ,Dpr

and Hord

pr,Gess,ord
h,Zpr ,Dpr

nU1,ess,ord
Zpr ,Dpr

, fitting into short

exact sequences

1→ Hord

pr,Gess,ord
h,Zpr ,Dpr

nUess,ord
Zpr ,Dpr

→ Hord

pr,Pess,ord
Zpr ,Dpr

→ Hord,′
pr,Gess,ord

l,Zpr ,Dpr

→ 1

and

1→ Hord

pr,Uess,ord
2,Zpr ,Dpr

→ Hord

pr,Gess,ord
h,Zpr ,Dpr

nUess,ord
Zpr ,Dpr

→ Hord

pr,Gess,ord
h,Zpr ,Dpr

nUess,ord
1,Zpr ,Dpr

→ 1.

(Certainly, Hord

pr,Uess,ord
2,Zpr ,Dpr

= {Id}, so that Hord

pr,Gess,ord
h,Zpr ,Dpr

nUess,ord
Zpr ,Dpr

is isomor-

phic to Hord

pr,Gess,ord
h,Zpr ,Dpr

nUess,ord
1,Zpr ,Dpr

via the last short exact sequence above.)

Let Hord,′
pr,Gess,ord

h,Zpr ,Dpr

denote the canonical image of Hord

pr,Gess,ord
h,Zpr ,Dpr

nUess,ord
1,Zpr ,Dpr

in

Gess,ord
h,Zpr ,Dpr

, so that we have an exact sequence

1→ Hord

pr,Uess,ord
1,Zpr ,Dpr

→ Hord

pr,Gess,ord
h,Zpr ,Dpr

nUess,ord
1,Zpr ,Dpr

→ Hord,′
pr,Gess,ord

h,Zpr ,Dpr

→ 1.
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Then we define the following groups:

Hord
n := Hn0 ×Hord

pr ,

Hord
n,Pess

Zn
:= Hn0,Pess

Zn0
×Hord

pr,Pess,ord
Zpr ,Dpr

,

Hord
n,Uess

Zn
:= Hn,Uess

Zn
×Hord

pr,Uess,ord
Zpr ,Dpr

,

Hord
n,Zess

Zn
:= Hn0,Zess

Zn0
×Hord

pr,Zess,ord
Zpr ,Dpr

,

Hord
n,Gess

h,Zn
:= Hn0,Gess

h,Zn0
×Hord

pr,Gess,ord
h,Zpr ,Dpr

,

Hord,′
n,Gess

h,Zn
:= H ′n0,Gess

h,Zn0

×Hord,′
pr,Gess,ord

h,Zpr ,Dpr

,

Hord
n,Gess

l,Zn
:= Hn0,Gess

l,Zn0
×Hord

pr,Gess,ord
l,Zpr ,Dpr

,

Hord,′
n,Gess

l,Zn
:= H ′n0,Gess

l,Zn0

×Hord,′
pr,Gess,ord

l,Zpr ,Dpr

,

Hord
n,Uess

1,Zn
:= Hn0,Uess

1,Zn0
×Hord

pr,Uess,ord
1,Zpr ,Dpr

,

Hord
n,Uess

2,Zn
:= Hn0,Uess

2,Zn0
×Hord

pr,Uess,ord
2,Zpr ,Dpr

,

Hord
n,Gess

h,Zn
nUess

Zn
:= Hn0,Gess

h,Zn0
nUess

Zn
×Hord

pr,Gess,ord
h,Zpr ,Dpr

nUess,ord
Zpr ,Dpr

,

Hord
n,Gess

h,Zn
nUess

1,Zn
:= Hn0,Gess

h,Zn0
nUess

1,Zn
×Hord

pr,Gess,ord
h,Zpr ,Dpr

nUess,ord
1,Zpr ,Dpr

.

Note that some of these are not new:

Hord
n,Gess

l,Zn

∼= Hn0,Gess
l,Zn0
×Hpr,Gess

l,Zpr

∼= Hn,Gess
l,Zn
,

Hord,′
n,Gess

l,Zn

∼= H ′n0,Gess
l,Zn0

×H ′pr,Gess
l,Zpr

∼= H ′n,Gess
l,Zn
,

Hord
n,Uess

2,Zn

∼= Hn0,Uess
2,Zn0

.

Consider the following commutative diagram, in which every square is
Cartesian:
(4.2.1.14)

...
Ξ

ord
Φn

// //

%%

...
Ξ

ord
Φn /H

ord
n,Uess

2,Zn

// //

��

...
Ξ

ord
Φn /H

ord
n,Uess

Zn

// //

��

...
Ξ

ord
Φn /H

ord
n,Gess

h,Zn
nUess

Zn

��
...
C

ord
Φn

// //

''

...
C

ord
Φn /H

ord
n,Uess

1,Zn

// //

��

...
C

ord
Φn /H

ord
n,Gess

h,Zn
nUess

1,Zn

��
...
M

ord,Zn
n

// //
...
M

ord,Zn
n /Hord,′

n,Gess
h,Zn
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Now we consider the equivariant quotient of∐(...
Ξ

ord
Φn /H

ord
n,Gess

h,Zn
nUess

Zn

)
→
∐(...

C
ord
Φn /H

ord
n,Gess

h,Zn
nUess

1,Zn

)
→
∐(...

M
ord,Zn
n /Hord,′

n,Gess
h,Zn

)
by Hord,′

n,Gess
l,Zn

∼= H ′n,Gess
l,Zn

, where the disjoint unions are over elements Φn

(with the same (X, Y, φ)) in the fiber of ΦHn → ZHn above Zn, which is a

torsor under Hord,′
n,Gess

l,Zn

∼= H ′n,Gess
l,Zn

. This is (up to canonical isomorphisms)

the same as the equivariant quotient of∐ ...
Ξ

ord
Φn →

∐ ...
C

ord
Φn →

∐ ...
M

ord,Zn
n

by Hn (or rather by Hord
n , since the kernel Ubal

p,1 (pr) of Hpr → Hord
pr acts

trivially), where the disjoint unions are over representatives (Zn,Φn, δn)
(with the same (X, Y, φ)) in the Hn-orbit (ZH,ΦH, δH). Let us denote
this equivariant quotient (up to canonical isomorphisms) by

(4.2.1.15)
...
Ξ

ord
ΦH,n

→
...
C

ord
ΦH,n

→
...
M

ord,ΦH
H ,

whose terms carry compatible actions of ΓΦH (see Definition 1.2.2.3).

(We keep the subscripts “n” in the notation because
...
Ξ

ord
ΦH,n

and
...
C

ord
ΦH,n

depend on the choice of n.)

By construction,
...
Ξ

ord
ΦH,n

is universal for tuples

(ZH, (X,Y, φ, ϕ
ord
−2,H, ϕ

ord
0,H),

(B, λB, iB, ϕ−1,Hp , ϕ
ord
−1,Hp), δ

ord
H , (cord

H , c∨,ord
H , τ ord

H )),

up to automorphism by ΓΦH , describing degeneration data
without positivity condition, where (ϕord

−2,H, ϕ
ord
0,H) (resp. δord

H )
induces the same (ϕ−2,H, ϕ0,H) (resp. δH) in the representative
(ZH,ΦH = (X, Y, φ, ϕ−2,H, ϕ0,H), δH) we have fixed. The canonical

morphisms
...
Ξ

ord
ΦH,n

→
...
C

ord
ΦH,n

and
...
C

ord
ΦH,n

→
...
M

ord,ΦH
H forget the data τ ord

H

and (cord
H , c∨,ord

H ), respectively.

Lemma 4.2.1.16. The canonical morphism

(4.2.1.17)
...
M

ord,Zn
n /Hord,′

n,Gess
h,Zn
→

...
M

ord,ΦH
H

is an isomorphism, and hence the canonical morphisms

(4.2.1.18)
...
M

ord,ΦH
H →

...
M

ord,ZH
H :=

...
M

ord,ΦH
H /ΓΦH →

...
M

ord

Hh ,

(cf. Definition 1.2.1.15 and Lemmas 1.3.2.1 and 1.3.2.5) are finite
étale. If, for some (and hence every) choice of a representative
(Zn,Φn, δn) in (ZH,ΦH, δH), the image Hn,Pess

Zn
in Gess

h,Zn
×Gess

l,Zn
is the
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direct product Hn,Gess
h,Zn
×Hn,Gess

l,Zn
, then we have Hord,′

n,Gess
h,Zn

= Hord
n,Gess

h,Zn

and Hord,′
n,Gess

l,Zn
= Hord

n,Gess
l,Zn

, and the canonical morphisms in (4.2.1.18) are

isomorphisms.

Proof. The first statement is true because
...
M

ord,Zn
n /Hord,′

n,Gess
h,Zn

is finite

étale over
...
M

ord

Hh
∼=

...
M

ord,Zn
n /Hord

n,Gess
h,Zn

(since Hord
n,Gess

h,Zn
and Hord,′

n,Gess
h,Zn

act by

forming orbits of ordinary level structures), because the index set of the

disjoint union
∐(...

M
ord,Zn
n /Hord,′

n,Gess
h,Zn

)
is a torsor under Hord,′

n,Gess
l,Zn

∼= H ′n,Gess
l,Zn

,

and because ΓΦH acts on
...
M

ord,ΦH
H via the canonical homomorphisms

ΓΦH → Hord,′
n,Gess

l,Zn
/Hord

n,Gess
l,Zn

∼= Hord
n,Gess

h,Zn
/Hord,′

n,Gess
h,Zn

.

The second statement follows from the definitions of Hord,′
n,Gess

h,Zn
and

Hord
n,Gess

h,Zn
. �

Lemma 4.2.1.19. (1) The canonical morphism

(4.2.1.20)
...
C

ord
Φn /H

ord
n,Gess

h,Zn
nUess

1,Zn
→

...
C

ord
ΦH,n

is an isomorphism, compatible with (4.2.1.17).
(2) Suppose that, for some (and hence every) choice of a represen-

tative (Zn,Φn, δn) in (ZH,ΦH, δH), the splitting of the canonical
homomorphism Gess

h,Zn
n Uess

1,Zn � Gess
h,Zn

defined by δn induces
a splitting of the canonical homomorphism Hn,Gess

h,Zn
nUess

1,Zn
�

H ′n,Gess
h,Zn

, and hence an isomorphism Hn,Gess
h,Zn

nUess
1,Zn

∼= H ′n,Gess
h,Zn

n
Hn,Uess

1,Zn
. In this case, the splitting of the canonical homomor-

phism
(4.2.1.21)

(Gess
h,Zn0
×Gess,ord

h,Zpr ,Dpr
) n (Uess

1,Zn0
×Uess,ord

1,Zpr ,Dpr
)� (Gess

h,Zn0
×Gess,ord

h,Zpr ,Dpr
)

defined by δord
n = (δn0 , δ

ord
pr ) induces a splitting of the canon-

ical homomorphism Hord
n,Gess

h,Zn
nUess

1,Zn
� Hord,′

n,Gess
h,Zn

, and hence an

isomorphism Hord
n,Gess

h,Zn
nUess

1,Zn

∼= Hord,′
n,Gess

h,Zn
n Hord

n,Uess
1,Zn

. Under this

assumption,
...
C

ord
ΦH,n

is a proper flat group scheme over
...
M

ord,ΦH
H

such that there exists an integer m ≥ 1 such that multiplication
by m maps

...
C

ord
ΦH,n

scheme-theoretically to a subgroup scheme
...
C

ord,◦
ΦH,n

that is an abelian scheme over
...
M

ord,ΦH
H , so that the group

scheme π0(
...
C

ord
ΦH,n

/
...
M

ord,ΦH
H ) of fiberwise connected components

of
...
C

ord
ΦH,n

over
...
M

ord,ΦH
H is defined and is of étale-multiplicative
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type. (See Lemma 3.1.2.2 and Definition 3.1.2.3; cf. Proposi-

tion 4.2.1.11.) The rank of π0(
...
C

ord
ΦH,n

/
...
M

ord,ΦH
H ) has no prime

factors other than those of Disc, n, [X : φ(Y )], and the rank

of ker(λB). (This implies that the rank of π0(
...
C

ord
ΦH,n

/
...
M

ord,ΦH
H )

does not contain prime factors other than those of Disc, n and
[L# : L].)

(3) In general (no longer making the assumption on splittings

as in statement (2)), the morphism
...
C

ord
ΦH,n

→
...
M

ord,ΦH
H

is a torsor under a proper flat group scheme
...
C

ord,grp
ΦH,n

→
...
M

ord,ΦH
H satisfying the properties as in

statement (2), for which π0(
...
C

ord,grp
ΦH,n

/
...
M

ord,ΦH
H ) is defined.

Then, the Stein factorization (see [35, III-1, 4.3.3])

of
...
C

ord
ΦH,n

→
...
M

ord,ΦH
H , which we denote abusively as

...
C

ord
ΦH,n

→ π0(
...
C

ord
ΦH,n

/
...
M

ord,ΦH
H )→

...
M

ord,ΦH
H , is the composition of

an abelian scheme torsor
...
C

ord
ΦH,n

→ π0(
...
C

ord
ΦH,n

/
...
M

ord,ΦH
H ) with a

torsor π0(
...
C

ord
ΦH,n

/
...
M

ord,ΦH
H ) →

...
M

ord,ΦH
H under the group scheme

π0(
...
C

ord,grp
ΦH,n

/
...
M

ord,ΦH
H )→

...
M

ord,ΦH
H .

Proof. Statement (1) is true because the common index set of

the disjoint unions
∐(...

C
ord
Φn /H

ord
n,Gess

h,Zn
nUess

1,Zn

)
and

∐(...
M

ord,Zn
n /Hord,′

n,Gess
h,Zn

)
is

a torsor under Hord,′
n,Gess

l,Zn

∼= H ′n,Gess
l,Zn

. Then the morphism
...
C

ord
ΦH,n

→
...
M

ord,ΦH
H can be canonically identified with the equivariant quotient

...
C

ord
Φn /H

ord
n,Gess

h,Zn
nUess

1,Zn
→

...
M

ord,Zn
n /Hord,′

n,Gess
h,Zn

of
...
C

ord
Φn →

...
M

ord,Zn
n .

Via the splitting of (4.2.1.21) defined by δord
n = (δn0 , δ

ord
pr ), the equi-

variant action of Gess
h,Zn0
×Gess,ord

h,Zpr ,Dpr
is compatible with the group scheme

structure of
...
C

ord
Φn →

...
M

ord,Zn
n . Since the action of Hord

n,Uess
1,Zn

on
...
C

ord
Φn (mod-

ifying the tautological object (cord
n : 1

n
X → B∨,ord

pr , c∨,ord
n : 1

n
Y → Bord

pr ))
is realized by the translation action of a (commutative) finite flat sub-

group scheme of
...
C

ord
Φn →

...
M

ord,Zn
n , the quotient

...
C

ord
Φn /H

ord
n,Uess

1,Zn
→

...
M

ord,Zn
n

is a proper flat group scheme. Under the assumptions on the splittings
as in statement (2), the equivariant action ofHord

n,Gess
h,Zn

is compatible with

the group scheme structure of
...
C

ord
Φn /H

ord
n,Uess

1,Zn
→

...
M

ord,Zn
n , and hence the

equivariant quotient
...
C

ord
Φn /H

ord
n,Gess

h,Zn
nUess

1,Zn
→

...
M

ord,Zn
n /Hord,′

n,Gess
h,Zn

(see the di-

agram (4.2.1.14), in which every square is Cartesian) is again a proper



280 4. DEGENERATION DATA AND BOUNDARY CHARTS

flat group scheme, which inherits from
...
C

ord
Φn →

...
M

ord,Zn
n (see Proposition

4.2.1.11) the properties described as in statement (2).
In general, without the assumptions on the splittings as in

statement (2), Hord
n,Gess

h,Zn
nUess

1,Zn
and Hord,′

n,Gess
h,Zn

n Hord
n,Uess

1,Zn
are two

different subgroups of (Gess
h,Zn0
×Gess,ord

h,Zpr ,Dpr
) n (Uess

1,Zn0
×Uess,ord

1,Zpr ,Dpr
).

By the same reasoning as in the previous paragraph, the quotient
...
C

ord
Φn /(H

ord,′
n,Gess

h,Zn
n Hord

n,Uess
1,Zn

) →
...
M

ord,Zn
n /Hord,′

n,Gess
h,Zn

is a proper flat group

scheme, with properties described as in statement (2). The group

scheme structure of
...
C

ord
Φn /H

ord
n,Uess

1,Zn
→

...
M

ord,Zn
n might not descend to

...
C

ord
Φn /H

ord
n,Gess

h,Zn
nUess

1,Zn
→

...
M

ord,Zn
n /Hord,′

n,Gess
h,Zn

, but nevertheless makes the

latter a torsor under
...
C

ord
Φn /(H

ord,′
n,Gess

h,Zn
n Hord

n,Uess
1,Zn

) →
...
M

ord,Zn
n /Hord,′

n,Gess
h,Zn

.

Hence, statement (3) follows if we define
...
C

ord,grp
ΦH,n

to be the quotient

of
∐(...

C
ord
Φn /(H

ord,′
n,Gess

h,Zn
n Hord

n,Uess
1,Zn

)
)

by Hord,′
n,Gess

l,Zn

∼= H ′n,Gess
l,Zn

, where the

disjoint unions are over elements Φn in the fiber of ΦHn → ZHn above

Zn, as in the definition of
...
C

ord
ΦH,n

→
...
M

ord,ΦH
H . �

Lemma 4.2.1.22. The quotient by the action of Hord
n,Uess

2,Zn
on

...
E

ord
Φn is

realized by the translation action of a (commutative) finite flat subgroup

scheme, so that the quotient
...
E

ord
ΦH,n

:=
...
E

ord
Φn /H

ord
n,Uess

2,Zn
is a group scheme

of multiplicative type of finite type with character group
...
S

ord
ΦH,n

a sub-

group of
...
S

ord
Φn . Let

...
S

ord
ΦH,n,tor be the torsion subgroup of

...
S

ord
ΦH,n

, and let
...
S

ord
ΦH,n,free be the free quotient of

...
S

ord
ΦH,n

. Then the canonical short exact
sequence

0→
...
S

ord
ΦH,n,tor →

...
S

ord
ΦH,n

→
...
S

ord
ΦH,n,free → 0

induces a short exact sequence

0→
...
E

ord
ΦH,n,free →

...
E

ord
ΦH,n

→
...
E

ord
ΦH,n,tor → 0.

Then we have canonical isomorphisms
...
S

ord
ΦH,n,free

∼= SΦH and
...
E

ord
ΦH,n,free

∼= EΦH
∼= HomZ(SΦH ,Gm), where SΦH and EΦH are defined

as in [62, Lem. 6.2.4.4].

Proof. These statements are about group schemes of multiplica-
tive type of finite type over Spec(Z) with constant character groups,
and hence they can be verified after base change to Spec(Q) (or any

base ring of residue characteristics prime to the order of
...
S

ord
ΦH,n,tor).

Then they all follow from [62, Lem. 6.2.4.4]. �
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Lemma 4.2.1.23. (1) The canonical morphism

(4.2.1.24)
...
Ξ

ord
Φn /H

ord
n,Gess

h,Zn
nUess

Zn
→

...
Ξ

ord
ΦH,n

is an isomorphism, compatible with (4.2.1.17) and (4.2.1.20).

(2) The morphism
...
Ξ

ord
ΦH,n

→
...
C

ord
ΦH,n

is a torsor under the

pullback of
...
E

ord
ΦH,n

, which factors as a composition
...
Ξ

ord
ΦH,n

→
...
Ξ

ord
ΦH,n,tor →

...
C

ord
ΦH,n

, in which the morphism
...
Ξ

ord
ΦH,n

→
...
Ξ

ord
ΦH,n,tor is a torsor under the pullback of the

torus
...
E

ord
ΦH,n,free

∼= EΦH
∼= HomZ(SΦH ,Gm), and in which the

morphism
...
Ξ

ord
ΦH,n,tor →

...
C

ord
ΦH,n

is a torsor under the pullback of

the finite flat group scheme
...
E

ord
ΦH,n,tor of multiplicative type.

Proof. Statement (1) is true because the common index set of

the disjoint unions
∐(...

Ξ
ord
Φn /H

ord
n,Gess

h,Zn
nUess

Zn

)
,
∐(...

C
ord
Φn /H

ord
n,Gess

h,Zn
nUess

1,Zn

)
, and∐(...

M
ord,Zn
n /Hord,′

n,Gess
h,Zn

)
is a torsor under Hord,′

n,Gess
l,Zn

∼= H ′n,Gess
l,Zn

. Then the

morphism
...
Ξ

ord
ΦH,n

→
...
C

ord
ΦH,n

can be canonically identified with the equi-

variant quotient
...
Ξ

ord
Φn /H

ord
n,Gess

h,Zn
nUess

Zn
→

...
C

ord
Φn /H

ord
n,Gess

h,Zn
nUess

1,Zn
of

...
Ξ

ord
Φn →

...
C

ord
Φn . Since the action of Hord

n,Uess
2,Zn

(modifying the tautological object

τ ord
n = τn0 : 1( 1

n0
Y )×X

∼→ (c∨n0
× c)∗P⊗−1

B ) is realized as the same action

of a finite flat subgroup scheme of
...
E

ord
Φn as in Lemma 4.2.1.22, we see

that
...
Ξ

ord
Φn /H

ord
n,Uess

2,Zn
→

...
C

ord
Φn is a torsor under the pullback of

...
E

ord
ΦH,n

, and

hence so is
...
Ξ

ord
Φn /H

ord
n,Gess

h,Zn
nUess

Zn
→

...
C

ord
Φn /H

ord
n,Gess

h,Zn
nUess

1,Zn
after equivariant

quotient by Hord
n,Gess

h,Zn
nUess

1,Zn
. (See the diagram (4.2.1.14), in which ev-

ery square is Cartesian.) Then the factorization of
...
Ξ

ord
ΦH,n

→
...
C

ord
ΦH,n

follows. �

By [62, Prop. 6.2.4.7; see also the errata], there is an algebraic stack
ΞΦH,δH separated, smooth, and schematic over MZH

H over S0 = Spec(F0),
whose quotient by ΓΦH is universal for tuples

(ZH, (X, Y, φ, ϕ
∼
−2,H, ϕ

∼
0,H), (B, λB, iB, ϕ−1,H), δH, (cH, c

∨
H, τH))

up to automorphism by ΓΦH , describing degeneration data without
positivity condition, such that (ZH,Φ

∼
H = (X, Y, φ, ϕ∼−2,H, ϕ

∼
0,H), δH)

induces the same representative (ZH,ΦH = (X, Y, φ, ϕ−2,H, ϕ0,H), δH)
we have fixed, as in [62, Lem. 5.4.2.10; see also the errata].
The structural morphism ΞΦH,δH → MZH

H factorizes canonically

as the composition ΞΦH,δH → CΦH,δH → MΦH
H → MZH

H , where
ΞΦH,δH → CΦH,δH is a torsor under the pullback of the torus
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EΦH
∼= HomZ(SΦH ,Gm), where CΦH,δH → MΦH

H is an abelian scheme

torsor, and where MΦH
H → MZH

H is finite étale. The morphisms

ΞΦH,δH → CΦH,δH and CΦH,δH → MΦH
H forget the data τH and (cH, c

∨
H),

respectively. By the construction in [62, Sec. 6.2.4; see also the
errata], ΞΦH,δH , CΦH,δH , MΦH

H , and MZH
H , are, respectively, quotients of

objects at principal level n by suitable subgroups of H/U(n), which

are subgroups of (G(Ẑp)×Up,0(pr))/(Up(n0)×Up(pr)). (See also the
descriptions and characterizations of these objects in Section 1.3.2.)

Let Mord,ZH
H be the open subalgebraic stack of

...
M

ord,ZH
H ⊗

Z
F0[ζprH ]

given by the image of the canonical open immersion

MZH
H,rH := MZH

H ×
S0

S0,rH = MZH
H ⊗

F0

F0[prH ] ↪→
...
M

ord,ZH
H ⊗

Z
F0[ζprH ]

(cf. Theorem 3.4.2.5), and let ~Mord,ZH
H be the normalization of

...
M

ord,ZH
H

in Mord,ZH
H under the canonical morphism

Mord,ZH
H →

...
M

ord,ZH
H

(with properties analogous to those of ~Mord
H in Theorem 3.4.2.5).

Let

(4.2.1.25) Ξord
ΦH,δH

:= ΞΦH,δH ×
M

ZH
H

Mord,ZH
H ,

(4.2.1.26) Cord
ΦH,δH

:= CΦH,δH ×
M

ZH
H

Mord,ZH
H ,

and

(4.2.1.27) Mord,ΦH
H := MΦH

H ×
M

ZH
H

Mord,ZH
H .

By Theorem 4.1.6.2, they carry tuples parameterized by
...
Ξ

ord
ΦH,n

,
...
C

ord
ΦH,n

,

and
...
M

ord,ΦH
H , respectively, and induce (by universal properties) canon-

ical morphisms

Ξord
ΦH,δH

→
...
Ξ

ord
ΦH,n

,

Cord
ΦH,δH

→
...
C

ord
ΦH,n

,

and

Mord,ΦH
H →

...
M

ord,ΦH
H

compatible with each other, and with their canonical morphisms to

Mord,ZH
H and

...
M

ord,ZH
H . Let ~Ξord

ΦH,δH
(resp. ~Cord

ΦH,δH
, resp. ~Mord,ΦH

H ) be the

normalization of
...
Ξ

ord
ΦH,n

(resp.
...
C

ord
ΦH,n

, resp.
...
M

ord,ΦH
H ) in Ξord

ΦH,δH
(resp.
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Cord
ΦH,δH

, resp. Mord,ΦH
H ) under the canonical morphism. Then we obtain

the following commutative diagram
(4.2.1.28)

Ξord
ΦH,δH

//

��

~Ξord
ΦH,δH

//

��

...
Ξ

ord
ΦH,n

��

Cord
ΦH,δH

//

��

~Cord
ΦH,δH

//

��

...
C

ord
ΦH,n

��

Mord,ΦH
H

//

��

~Mord,ΦH
H

//

��

...
M

ord,ΦH
H

��

Mord,ZH
H

//

��

~Mord,ZH
H

//

��

...
M

ord,ZH
H

��

S0,rH = Spec(F0[ζprH ]) // ~S0,rH = Spec(OF0,(p)[ζprH ]) // Spec(Z(p))

of canonically induced morphisms (which is generally not Cartesian).
The objects in this diagram all carry compatible canonical actions of
ΓΦH . (The actions on those in the bottom two rows are all trivial.)

Proposition 4.2.1.29. In (4.2.1.28), the canonical morphism
~Mord,ΦH
H → ~Mord,ZH

H is finite étale, which induces an isomorphism
~Mord,ΦH
H /ΓΦH

∼→ ~Mord,ZH
H . Moreover, the canonical morphism

~Mord,ΦH
H →

...
M

ord,ΦH
H ×

...
M

ord,ZH
H

~Mord,ZH
H is an isomorphism. If the condition

in the second statement of Lemma 4.2.1.16 is satisfied, then the

canonical morphism ~Mord,ΦH
H → ~Mord,ZH

H is an isomorphism.

Proof. The morphism Mord,ΦH
H →

...
M

ord,ΦH
H ×

...
M

ord,ZH
H

Mord,ZH
H is an iso-

morphism essentially by construction. Since the canonical morphism
...
M

ord,ΦH
H →

...
M

ord,ZH
H is finite étale by Lemma 4.2.1.16, and since ~Mord,ΦH

H
is defined by normalization, the remainder of the first two statements
follows. The last statement also follows from Lemma 4.2.1.16. �

Proposition 4.2.1.30. In (4.2.1.28), the morphism
~Cord

ΦH,δH
→ ~Mord,ΦH

H is an abelian scheme torsor. Moreover, the

canonical morphism ~Cord
ΦH,δH

→
...
C

ord
ΦH,n

×
...
M

ord,ΦH
H

~Mord,ΦH
H is a closed
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immersion. If the condition in (2) of Lemma 4.2.1.19 is satisfied, then

the abelian scheme torsor ~Cord
ΦH,δH

→ ~Mord,ΦH
H is an abelian scheme.

Proof. By construction, we have the following commutative dia-
gram, in which the vertical columns in the diagram are Stein factoriza-
tions, by Lemma 4.2.1.19:

Cord
ΦH,δH

,,

//
...
C

ord
ΦH,n ×

...
M

ord,ΦH
H

M
ord,ΦH
H

��

//
...
C

ord
ΦH,n ×

...
M

ord,ΦH
H

~M
ord,ΦH
H

��

π0(
...
C

ord
ΦH,n/

...
M

ord,ΦH
H ) ×

...
M

ord,ΦH
H

M
ord,ΦH
H

��

// π0(
...
C

ord
ΦH,n/

...
M

ord,ΦH
H ) ×

...
M

ord,ΦH
H

~M
ord,ΦH
H

��

M
ord,ΦH
H

// ~M
ord,ΦH
H

Since Cord
ΦH,δH

→ Mord,ΦH
H is an abelian scheme torsor, the canoni-

cal morphism Cord
ΦH,δH

→
...
C

ord
ΦH,n

×
...
M

ord,ΦH
H

Mord,ΦH
H induces (by considering

their Stein factorizations over Mord,ΦH
H ) a section

(4.2.1.31) Mord,ΦH
H → π0(

...
C

ord
ΦH,n

/
...
M

ord,ΦH
H ) ×

...
M

ord,ΦH
H

Mord,ΦH
H .

Since π0(
...
C

ord
ΦH,n

/
...
M

ord,ΦH
H )→

...
M

ord,ΦH
H is a torsor under the group scheme

π0(
...
C

ord,grp
ΦH,n

/
...
M

ord,ΦH
H ) →

...
M

ord,ΦH
H in Lemma 4.2.1.19, which is (finite

flat, of finite presentation, and) of étale-multiplicative type, and since
~Mord,ΦH
H is normal (by definition), the schematic closure of the image of

(4.2.1.31) defines a section

(4.2.1.32) ~Mord,ΦH
H → π0(

...
C

ord
ΦH,n

/
...
M

ord,ΦH
H ) ×

...
M

ord,ΦH
H

~Mord,ΦH
H .

Since
...
C

ord
ΦH,n

→
...
M

ord,ΦH
H is a torsor under the proper flat group scheme

...
C

ord,grp
ΦH,n

→
...
M

ord,ΦH
H in Lemma 4.2.1.19, which is the extension of

π0(
...
C

ord,grp
ΦH,n

/
...
M

ord,ΦH
H ) by an abelian scheme

...
C

ord,grp,◦
ΦH,n

, the pullback of
the morphism
(4.2.1.33)

...
C

ord
ΦH,n

×
...
M

ord,ΦH
H

~Mord,ΦH
H → π0(

...
C

ord
ΦH,n

/
...
M

ord,ΦH
H ) ×

...
M

ord,ΦH
H

~Mord,ΦH
H

under the section (4.2.1.32) is a torsor C → ~Mord,ΦH
H under the abelian

scheme
...
C

ord,grp,◦
ΦH,n

×
...
M

ord,ΦH
H

~Mord,ΦH
H , which is in particular separated,
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smooth, and of finite type. By the construction of ~Cord
ΦH,δH

and C, the

canonical morphism ~Cord
ΦH,δH

→
...
C

ord
ΦH,n

×
...
M

ord,ΦH
H

~Mord,ΦH
H factors through

a canonical morphism ~Cord
ΦH,δH

→ C, which must be an isomorphism

because ~Cord
ΦH,δH

is defined by normalization. This also shows that
~Cord

ΦH,δH
→

...
C

ord
ΦH,n

×
...
M

ord,ΦH
H

~Mord,ΦH
H is a closed immersion (because the

section (4.2.1.32) is), and that ~Cord
ΦH,δH

→ ~Mord,ΦH
H is an abelian scheme

torsor.
If the condition in (2) of Lemma 4.2.1.19 is satisfied, then CΦH,δH →

MΦH
H is an abelian scheme (see [62, Prop. 6.2.4.7; see also the errata]),

and so is its pullback Cord
ΦH,δH

→ Mord,ΦH
H . By taking the closure of

the identity section Mord,ΦH
H → Cord

ΦH,δH
, we obtain a section ~Mord,ΦH

H →
~Cord

ΦH,δH
, which shows that the abelian scheme torsor ~Cord

ΦH,δH
→ ~Mord,ΦH

H
is also an abelian scheme, as desired. �

Proposition 4.2.1.34. Let ~Cord
Φ1,δ1

, ~Mord,Φ1

1 , and ~Mord,Z1

1 denote

the analogues of ~Cord
ΦH,δH

, ~Mord,ΦH
H , and ~Mord,ZH

H at principal level

1 (i.e., with H replaced with U(1) = Up(1)Ubal
p,1 (p0) = G(Ẑ)).

Then ~Mord,Φ1

1 = ~Mord,Z1

1 (by definition), and the canonical

morphism ~Cord
ΦH,δH

→ ~Cord
Φ1,δ1

×
~M

ord,Φ1
1

~Mord,ΦH
H is finite étale. (Since

~Mord,ΦH
H → ~Mord,ZH

H is finite étale by Proposition 4.2.1.29, the canonical

morphism ~Cord
ΦH,δH

→ ~Cord
Φ1,δ1

×
~M

ord,Z1
1

~Mord,ZH
H is also finite étale.)

Proof. By Lemma 4.2.1.9, for any n = n0p
r such that Up(n0) ⊂

Hp and Ubal
p,1 (pr) ⊂ Hp ⊂ Up,0(pr), the canonical morphism

...
C

ord
Φn →...

C
ord
Φ1

×...
M

ord,Z1
1

...
M

ord,Zn
n is unramified, because it is a homomorphism with a

finite étale kernel. Since this morphism factorizes as a composition of
canonical morphisms

(4.2.1.35)
...
C

ord
Φn →

...
C

ord
ΦH,n

×
...
M

ord,ΦH
H

...
M

ord,Zn
n →

...
C

ord
Φ1

×...
M

ord,Z1
1

...
M

ord,Zn
n ,

in which the first one is surjective by definition (see (4.2.1.15)
and (1) of Lemma 4.2.1.19), we see (by étale descent) that the

canonical morphism
...
C

ord
ΦH,n

→
...
C

ord
Φ1

×...
M

ord,Z1
1

...
M

ord,ΦH
H , which is the

equivariant finite étale quotient by Hord,′
n,Gess

h,Zn
of the second morphism
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in (4.2.1.35), is also unramified. Consequently, the pullback
...
C

ord
ΦH,n

×
...
M

ord,ΦH
H

~Mord,ΦH
H →

...
C

ord
Φ1

×...
M

ord,Z1
1

~Mord,ΦH
H is unramified. By Proposi-

tion 4.2.1.30, the canonical morphisms ~Cord
ΦH,δH

→
...
C

ord
ΦH,n

×
...
M

ord,ΦH
H

~Mord,ΦH
H

and ~Cord
Φ1,δ1

×
~M

ord,Φ1
1

~Mord,ΦH
H →

...
C

ord
Φ1

×...
M

ord,Z1
1

~Mord,ΦH
H are closed immersions.

Hence, the morphism ~Cord
ΦH,δH

→ ~Cord
Φ1,δ1

×
~M

ord,Φ1
1

~Mord,ΦH
H (compatible

with the above two closed immersions) is also unramified. Since this
is a morphism between abelian scheme torsors equivariant with a
homomorphism of abelian schemes of the same relative dimension
(which is automatically surjective), by [35, IV-3, 11.3.10 a)⇒b) and
15.4.2 e′)⇒b)] (cf. the proof of [62, Lem. 1.3.1.11]), it is automatically
flat, and hence finite étale, as desired. �

Corollary 4.2.1.36. Suppose H′ ⊂ H and suppose (with similar

assumptions at level H′) ~Cord
ΦH′ ,δH′

→ ~M
ord,ΦH′
H′ is also defined. Then the

canonical morphism ~Cord
ΦH′ ,δH′

→ ~Cord
ΦH,δH

×
~M

ord,ΦH
H

~M
ord,ΦH′
H′ is finite étale.

Proof. By Proposition 4.2.1.34, the composition of canonical mor-

phisms ~Cord
ΦH′ ,δH′

→ ~Cord
ΦH,δH

×
~M

ord,ΦH
H

~M
ord,ΦH′
H′ → ~Cord

Φ1,δ1
×

~M
ord,Φ1
1

~M
ord,ΦH′
H′ is

finite étale. Since these are morphisms between abelian scheme tor-
sors equivariant under homomorphisms of abelian schemes of the same
relative dimension, they are both surjective. Hence, they are both un-
ramified, and (as in the proof of Proposition 4.2.1.34) finite étale. �

Proposition 4.2.1.37. In (4.2.1.28), the morphism
~Ξord

ΦH,δH
→ ~Cord

ΦH,δH
is a torsor under the pullback to ~Cord

ΦH,δH
of the

torus EΦH
∼= HomZ(SΦH ,Gm) (see Lemma 4.2.1.22). Moreover,

the canonical morphism ~Ξord
ΦH,δH

→
...
Ξ

ord
ΦH,n

×...
C

ord
ΦH,n

~Cord
ΦH,δH

is a closed

immersion.
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Proof. By construction, we have the following commutative dia-
gram:

Ξord
ΦH,δH

))

//
...
Ξ

ord
ΦH,n

×...
C

ord
ΦH,n

Cord
ΦH,δH

��

//
...
Ξ

ord
ΦH,n

×...
C

ord
ΦH,n

~Cord
ΦH,δH

��
...
Ξ

ord
ΦH,n,tor ×...

C
ord
ΦH,n

Cord
ΦH,δH

��

//
...
Ξ

ord
ΦH,n,tor ×...

C
ord
ΦH,n

~Cord
ΦH,δH

��

Cord
ΦH,δH

// ~Cord
ΦH,δH

Since Ξord
ΦH,δH

→ Cord
ΦH,δH

is a torsor under the pullback to Cord
ΦH,δH

of

the torus EΦH
∼= HomZ(SΦH ,Gm), the canonical morphism Ξord

ΦH,δH
→

...
Ξ

ord
ΦH,n,tor ×...

C
ord
ΦH,n

Cord
ΦH,δH

induces a section

(4.2.1.38) Ξord
ΦH,δH

→
...
Ξ

ord
ΦH,n,tor ×...

C
ord
ΦH,n

Cord
ΦH,δH

.

(It suffices to show that the schematic image of

Ξord
ΦH,δH

→
...
Ξ

ord
ΦH,n,tor ×...

C
ord
ΦH,n

Cord
ΦH,δH

is isomorphic to Cord
ΦH,δH

under the structural morphism
...
Ξ

ord
ΦH,n,tor ×...

C
ord
ΦH,n

Cord
ΦH,δH

→ Cord
ΦH,δH

,

which can be verified after making an étale localization that trivializes
the torsors.) Since

...
Ξ

ord
ΦH,n,tor ×...

C
ord
ΦH,n

~Cord
ΦH,δH

→ ~Cord
ΦH,δH

is a torsor under

...
E

ord
ΦH,n,tor, which is finite flat and of multiplicative type, and since

~Cord
ΦH,δH

is normal (by definition), the schematic closure of the image of
(4.2.1.38) defines (as above) a section

(4.2.1.39) ~Cord
ΦH,δH

→
...
Ξ

ord
ΦH,n,tor ×...

C
ord
ΦH,n

~Cord
ΦH,δH

.

Since the morphism
...
Ξ

ord
ΦH,n

→
...
Ξ

ord
ΦH,n,tor is a torsor under the pull-

back to
...
Ξ

ord
ΦH,n,tor of the torus EΦH (see Lemma 4.2.1.23), the pullback

of the morphism

(4.2.1.40)
...
Ξ

ord
ΦH,n

×...
C

ord
ΦH,n

~Cord
ΦH,δH

→
...
Ξ

ord
ΦH,n,tor ×...

C
ord
ΦH,n

~Cord
ΦH,δH

under the section (4.2.1.39) is a torsor Ξ → ~Cord
ΦH,δH

under the pull-

back of EΦH to ~Cord
ΦH,δH

, which is in particular separated, smooth, and
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of finite type. By the construction of ~Ξord
ΦH,δH

and Ξ, the canonical

morphism ~Ξord
ΦH,δH

→
...
Ξ

ord
ΦH,n

×...
C

ord
ΦH,n

~Cord
ΦH,δH

factors through a canonical

morphism ~Ξord
ΦH,δH

→ Ξ, which must be an isomorphism because ~Ξord
ΦH,δH

is defined by normalization. This shows that ~Ξord
ΦH,δH

→ ~Cord
ΦH,δH

is a

torsor under the pullback of the torus EΦH to ~Cord
ΦH,δH

. This also shows

that ~Ξord
ΦH,δH

→
...
Ξ

ord
ΦH,n

×...
C

ord
ΦH,n

~Cord
ΦH,δH

is a closed immersion (because the

section (4.2.1.39) is), as desired. �

Proposition 4.2.1.41. Let ~Ξord
Φ1,δ1

denote the analogue of ~Ξord
ΦH,δH

at

principal level 1 (i.e., with H replaced with U(1) = Up(1)Ubal
p,1 (p0) =

G(Ẑ)). Then the canonical morphism ~Ξord
ΦH,δH

→ ~Ξord
Φ1,δ1

×
~Cord

Φ1,δ1

~Cord
ΦH,δH

is

finite étale.

Proof. By definition (see (4.2.1.12) and (4.2.1.15)), for any n =
n0p

r such that Up(n0) ⊂ Hp and Ubal
p,1 (pr) ⊂ Hp ⊂ Up,0(pr), the canoni-

cal morphism
...
Ξ

ord
Φn →

...
Ξ

ord
Φ1
×...
C

ord
Φ1

...
C

ord
Φn is unramified, because (as a mor-

phism between torus torsors) it is étale locally the canonical homo-

morphism
...
E

ord
Φn = HomZ(

...
S

ord
Φn ,Gm) =

...
EΦn0

= HomZ(
...
SΦn0

,Gm) →
...
E

ord
Φ1

= HomZ(
...
S

ord
Φ1
,Gm) =

...
EΦ1 = HomZ(

...
SΦ1 ,Gm) with a finite étale

kernel. Since this morphism factorizes as a composition of canonical
morphisms

(4.2.1.42)
...
Ξ

ord
Φn →

...
Ξ

ord
ΦH,n

×...
C

ord
ΦH,n

...
C

ord
Φn →

...
Ξ

ord
Φ1
×...
C

ord
Φ1

...
C

ord
Φn ,

in which the first one is surjective by definition (see (4.2.1.15)
and (1) of Lemma 4.2.1.23), we see (by étale descent) that the

canonical morphism
...
Ξ

ord
ΦH,n

→
...
Ξ

ord
Φ1
×...
C

ord
Φ1

...
C

ord
ΦH,n

, which is the

equivariant finite étale quotient by Hord
n,Gess

h,Zn
nUess

1,Zn
of the second

morphism in (4.2.1.42), is also unramified. Consequently, the pullback
...
Ξ

ord
ΦH,n

×...
C

ord
ΦH,n

~Cord
ΦH,δH

→
...
Ξ

ord
Φ1
×...
C

ord
Φ1

~Cord
ΦH,δH

is unramified. By Proposition

4.2.1.37, the canonical morphisms ~Ξord
ΦH,δH

→
...
Ξ

ord
ΦH,n

×...
C

ord
ΦH,n

~Cord
ΦH,δH

and

~Ξord
Φ1,δ1

×
~Cord

Φ1,δ1

~Cord
ΦH,δH

→
...
Ξ

ord
Φ1
×...
C

ord
Φ1

~Cord
ΦH,δH

are closed immersions. Hence,
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the morphism ~Ξord
ΦH,δH

→ ~Ξord
Φ1,δ1

×
~Cord

Φ1,δ1

~Cord
ΦH,δH

(compatible with the

above two closed immersions) is also unramified. Since this is a
morphism between torus torsors equivariant with a homomorphism of
tori of the same relative dimension (which is automatically surjective),
by [35, IV-3, 11.3.10 a)⇒b) and 15.4.2 e′)⇒b)] (cf. the proof of [62,
Lem. 1.3.1.11]), it is automatically flat, and hence finite étale, as
desired. �

Corollary 4.2.1.43. Suppose H′ ⊂ H and suppose (with similar

assumptions at level H′) ~Ξord
ΦH′ ,δH′

→ ~Cord
ΦH′ ,δH′

are also defined. Then the

canonical morphism ~Ξord
ΦH′ ,δH′

→ ~Ξord
ΦH,δH

×
~Cord

ΦH,δH

~Cord
ΦH′ ,δH′

is finite étale.

Proof. By Proposition 4.2.1.41, the composition of canonical mor-
phisms ~Ξord

ΦH′ ,δH′
→ ~Ξord

ΦH,δH
×

~Cord
ΦH,δH

~Cord
ΦH′ ,δH′

→ ~Ξord
Φ1,δ1

×
~Cord

Φ1,δ1

~Cord
ΦH′ ,δH′

is fi-

nite étale. Since these are homomorphisms between torus torsors (equi-
variant with homomorphisms between tori) of the same relative dimen-
sion, they are both surjective, and hence finite étale, as desired. �

Corollary 4.2.1.44. The algebraic stacks ~Ξord
ΦH,δH

, ~Cord
ΦH,δH

,
~Mord,ΦH
H , and ~Mord,ZH

H are all separated, smooth, and of finite type over
~S0,rH. If Hp is neat, they are all quasi-projective over ~S0,rH.

Proof. These follow from Propositions 3.4.6.3, 4.2.1.30, and
4.2.1.37. �

Convention 4.2.1.45. (Compare with Convention 3.4.2.9.) We

say that an object over a scheme S over S0,rH parameterized by
...
Ξ

ord
ΦH,n

is parameterized by ~Ξord
ΦH,δH

if the tautological morphism S →
...
Ξ

ord
ΦH,n

determined by the universal property factors through S → ~Ξord
ΦH,δH

. Then

it also makes sense to consider the tautological tuple over ~Ξord
ΦH,δH

. We

shall adopt the same convention for ~Cord
ΦH,δH

, ~Mord,ΦH
H , and ~Mord,ZH

H .

It follows from the constructions above that we have the following
proposition, in which ~Ξord

ΦH,δH
etc are explicitly realized as normaliza-

tions in the paragraph preceding (4.2.1.28) (and hence they are, up to
canonical isomorphisms, independent of the auxiliary choice of n):

Proposition 4.2.1.46. (Compare with [62, Prop. 6.2.4.7;
see also the errata].) Let H, Hp, and Hp be as in beginning of
Section 3.3.5, and let rH be as in Definition 3.4.2.1. Let us fix a
representative (ZH,ΦH, δH) of an ordinary cusp label at level H
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(see Definition 3.2.3.8), where ΦH = (X, Y, φ, ϕ−2,H, ϕ0,H), which

defines a finite étale cover ~Mord,ΦH
H of an algebraic stack ~Mord,ZH

H over
~S0,rH = Spec(OF0,(p)[ζprH ]). (Then we can talk about the tautological

tuples over ~Mord,ΦH
H and ~Mord,ZH

H as in Convention 4.2.1.45.)
Let us consider the category fibered in groupoids over the category of

locally noetherian normal schemes over ~Mord,ZH
H that are flat over ~S0,rH

whose fiber over each scheme S (with the conditions just described) has
objects the tuples

(ZH, (X,Y, φ, ϕ
ord
−2,H, ϕ

ord
0,H),

(B, λB, iB, ϕ−1,Hp , ϕ
ord
−1,Hp), δ

ord
H , (cord

H , c∨,ord
H , τ ord

H ))
(4.2.1.47)

describing degeneration data without positivity condition over S such
that (B, λB, iB, ϕ−1,Hp , ϕ

ord
−1,Hp) is the pullback of the tautological

tuple over ~Mord,ZH
H , such that (ϕord

−2,H, ϕ
ord
0,H) (resp. δord

H ) induces the
(ϕ−2,H, ϕ0,H) in ΦH (resp. δH), and such that the pullbacks of each
tuple as in (4.2.1.47) to maximal points (see [36, 0, 2.1.2]) of S are
induced as in Section 4.1.6 by the pullbacks of the corresponding tuple
(4.2.1.48)

(ZH, (X, Y, φ, ϕ
∼
−2,H, ϕ

∼
0,H), (B, λB, iB, ϕ−1,H), δH, (cH, c

∨
H, τH))

parameterized by ΞΦH,δH (see [62, Prop. 6.2.4.7; see also the errata]).

Then there is an algebraic stack ~Ξord
ΦH,δH

separated, smooth, and

schematic over ~Mord,ZH
H , together with a tautological tuple and a nat-

ural action of ΓΦH on ~Ξord
ΦH,δH

, such that the quotient ~Ξord
ΦH,δH

/ΓΦH is
isomorphic to the category described above (as categories fibered in

groupoids over ~Mord,ZH
H ). Equivalently, for each tuple as in (4.2.1.47)

over a scheme S over ~Mord,ZH
H (with properties described above), there

is a morphism S → ~Ξord
ΦH,δH

(over ~Mord,ZH
H ), which is unique after we

fix an isomorphism (fY : Y
∼→ Y, fX : X

∼→ X) in ΓΦH, such that the

tuple over S is the pullback of the tautological tuple over ~Ξord
ΦH,δH

if we
identify X by fX and Y by fY .

The structural morphism ~Ξord
ΦH,δH

→ ~Mord,ZH
H factorizes as the

composition ~Ξord
ΦH,δH

→ ~Cord
ΦH,δH

→ ~Mord,ΦH
H → ~Mord,ZH

H compatible

with the natural actions of ΓΦH (trivial on ~Mord,ZH
H ), where

~Ξord
ΦH,δH

→ ~Cord
ΦH,δH

is a torsor under the torus EΦH
∼= HomZ(SΦH ,Gm);

where ~Cord
ΦH,δH

→ ~Mord,ΦH
H is an abelian scheme torsor, which is an

abelian scheme when the condition in (2) of Lemma 4.2.1.19 is

satisfied; and where ~Mord,ΦH
H → ~Mord,ZH

H is as above (and is finite
étale), which is an isomorphism when the condition in the second
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statement of Lemma 4.2.1.16 is satisfied, inducing an isomorphism
~Mord,ΦH
H /ΓΦH

∼→ ~Mord,ZH
H . The EΦH-torsor structure of ~Ξord

ΦH,δH
defines a

canonical homomorphism

(4.2.1.49) SΦH → Pic(~Cord
ΦH,δH

) : ` 7→ ~Ψord
ΦH,δH

(`),

assigning to each ` ∈ SΦH an invertible sheaf ~Ψord
ΦH,δH

(`) over ~Cord
ΦH,δH

(up to isomorphism), together with isomorphisms

~∆ord,∗
ΦH,δH,`,`′

: ~Ψord
ΦH,δH

(`) ⊗
O~Cord

ΦH,δH

~Ψord
ΦH,δH

(`′)
∼→ ~Ψord

ΦH,δH
(`+ `′)

for all `, `′ ∈ SΦH, satisfying the necessary compatibilities with each

other making ⊕
`∈SΦH

~Ψord
ΦH,δH

(`) an O ~Cord
ΦH,δH

-algebra, such that

~Ξord
ΦH,δH

∼= Spec
O~Cord

ΦH,δH

(
⊕

`∈SΦH

~Ψord
ΦH,δH

(`)
)
.

Remark 4.2.1.50. The condition that (B, λB, iB, ϕ
ord
−1,H) is the pull-

back of the tautological tuple over ~Mord,ZH
H means in particular that

ϕord
−1,H extends over all of S, not just at a maximal point (see [36, 0,

2.1.2]) over S0,prH (cf. condition (5) in Definition 3.4.2.10). In general,
this is a nontrivial condition even when the cusp label [(ZH,ΦH, δH)]
has O-multi-rank zero [62, Def. 5.4.2.7], which implies that B is an or-
dinary abelian scheme over S (cf. Remark 3.4.2.11). (The condition of
being ordinary is irrelevant over the maximal points over S0,prH because
they are of characteristic zero.)

4.2.2. Toroidal Embeddings, Positivity Conditions, and
Mumford Families. As in [62, Sec. 6.2.5], let S∨ΦH := HomZ(SΦH ,Z)
be the Z-dual of SΦH , and let (SΦH)∨R := S∨ΦH ⊗Z

R ∼= HomZ(SΦH ,R).

By definition of SΦH (in [62, Lem. 6.2.4.4]), the R-vector space
(SΦH)∨R is isomorphic to the R-vector space of Hermitian pairings
(| · , · |) : (Y ⊗

Z
R) × (Y ⊗

Z
R) → O⊗

Z
R, by sending a Hermitian

pairing (| · , · |) to the element in (SΦH)∨R induced by the assignment
y⊗φ(y′) 7→ Tr(O⊗

Z
R)/R(|y, y′|). (See [62, Lem. 1.1.4.5].) Let PΦH (resp.

P+
ΦH

) be the subset of (SΦH)∨R corresponding to positive semi-definite
(resp. positive definite) Hermitian pairings with admissible radicals
(see [62, Def. 6.2.5.6]). Then both PΦH and P+

ΦH
are cones in (SΦH)∨R.

Let ΣΦH be a ΓΦH-admissible smooth rational polyhedral cone de-
composition of PΦH with respect to the integral structure given by
S∨ΦH in (SΦH)∨R (see Definition 1.2.2.6). For each σ ∈ ΣΦH , consider the
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affine toroidal embedding

(4.2.2.1) ~Ξord
ΦH,δH

(σ) := Spec
O~Cord

ΦH,δH

(
⊕

`∈σ∨⊂SΦH

~Ψord
ΦH,δH

(`)
)
,

with the σ-stratum defined by

(4.2.2.2) ~Ξord
ΦH,δH,σ

:= Spec
O~Cord

ΦH,δH

(
⊕

`∈σ⊥⊂SΦH

~Ψord
ΦH,δH

(`)
)
.

Then we have canonical morphisms

(4.2.2.3) ~Ξord
ΦH,δH

(τ)→ ~Ξord
ΦH,δH

(σ)

when τ ⊂ σ, which is an open immersion when τ is a face of σ. By
gluing ~Ξord

ΦH,δH
(σ) over cones σ in ΣΦH using such open immersions along

the faces, we obtain the toroidal embedding

(4.2.2.4) ~Ξord
ΦH,δH

↪→ ~Ξ
ord

ΦH,δH
= ~Ξ

ord

ΦH,δH,ΣΦH

defined by ΣΦH (as in [62, Def. 6.1.2.3]).

Proposition 4.2.2.5. (Compare with [28, Ch. IV, p. 102] and [62,

Prop. 6.2.5.8].) By construction, ~Ξ
ord

ΦH,δH
has the properties described in

[62, Thm. 6.1.2.8], with the following additional ones:

(1) There are constructible ΓΦH-equivariant étale constructible

sheaves (of O-lattices) X and Y on ~Ξ
ord

ΦH,δH
, together with an

(O-equivariant) embedding φ : Y ↪→ X, which are defined as
follows:

Each admissible surjection X � X ′ of O-lattices (see Def-
inition 1.2.1.2 and [62, Def. 1.2.6.7]) determines a surjec-
tion from (ZH,ΦH, δH) to some representative (Z′H,Φ

′
H, δ

′
H) of

a cusp label at level H by [62, Lem. 5.4.2.11], which is also
compatible with the filtration D as in Definition 3.2.3.1 and
hence also ordinary as in Definition 3.2.3.8, where Z′H and
Φ′H = (X ′, Y ′, φ′, ϕ′−2,H, ϕ

′
0,H) are uniquely determined by the

construction. Consequently, it makes sense to define PΦ′H
and an embedding PΦ′H

↪→ PΦH for each admissible surjection
X � X ′.

Over the locally closed stratum ~Ξord
ΦH,δH,σj

, the sheaf X is
the constant quotient sheaf Xσj of X, with the quotient X �
Xσj an admissible surjection defining a pair (ZH,σj ,ΦH,σj =
(Xσj , Yσj , φσj , ϕ−2,H,σj , ϕ0,H,σj)) such that σj is contained in
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the image of the embedding P+
φσj

↪→ PΦH. We shall inter-

pret this as having a sheaf version of ΦH, written as ΦH =
(X, Y , φ, ϕ−2,H, ϕ0,H).

(2) The formation of SΦH from ΦH applies to ΦH and defines a
sheaf SΦH

.

(3) There is a tautological homomorphism B : SΦH
→ Inv(~Ξ

ord

ΦH,δH
)

of constructible sheaves of groups (see [62, Def. 4.2.4.1])
which sends the class of ` ∈ SΦH,σj

to the sheaf of ideals

O~Ξord
ΦH,δH

(σj)
⊗

O~Cord
ΦH,δH

~Ψord
ΦH,δH

(`) on ~Ξord
ΦH,δH

(σj), such that we

have the following:
(a) This homomorphism B is ΓΦH-equivariant (because it is

compatible with twists of the identification of ΦH) and

EΦH-invariant (because ~Ψord
ΦH,δH

(`) corresponds to a weight
subsheaf of the O ~Cord

ΦH,δH
-algebra O~Ξord

ΦH,δH
under the action

of EΦH), and is trivial on the open subscheme ~Ξord
ΦH,δH

of

~Ξ
ord

ΦH,δH
.

(b) For each local section y of Y , the support of B(y ⊗ φ(y))
is effective, and is the same as the support of y. This is
because σ(y, φ(y)) ≥ 0 for all σ ⊂ PΦH and y ∈ Y , and
σ(y, φ(y)) > 0 when σ ⊂ P+

ΦH,σ
and 0 6= y ∈ Yσ.

Moreover, each open subalgebraic stack ~Ξord
ΦH,δH

(σ) of ~Ξ
ord

ΦH,δH
enjoys

the following universal property as in [62, Prop. 6.2.5.11]:
Let R be a noetherian normal domain with fraction field K, and

suppose we have a morphism tR : Spec(R) → ~Cord
ΦH,δH

that is liftable

over Spec(K) to a morphism t̃K : Spec(K) → ~Ξord
ΦH,δH

. By abuse of

notation, let us denote by ~Ψord
ΦH,δH

(`)R the R-invertible module de-

fined by the pullback under tR of the invertible sheaf ~Ψord
ΦH,δH

(`) over
~Cord

ΦH,δH
, and denote ~Ψord

ΦH,δH
(`)R⊗

R
K by ~Ψord

ΦH,δH
(`)K . Since ~Ξord

ΦH,δH
∼=

Spec
O~Cord

ΦH,δH

(
⊕

`∈SΦH

~Ψord
ΦH,δH

(`)
)

, the morphism t̃K defines isomorphisms

~Ψord
ΦH,δH

(`)K
∼→ K, which defines an embedding of ~Ψord

ΦH,δH
(`)R as an

R-invertible submodule I` of K. Therefore, the pullback of the ho-
momorphism (4.2.1.49) in Proposition 4.2.1.46 determines a homomor-
phism

(4.2.2.6) B : SΦH → Inv(R) : ` 7→ I`
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(see [62, Def. 4.2.4.1]). If ` = [y⊗χ] for some y ∈ Y and χ ∈ X, then
~Ψord

ΦH,δH
(`) ∼= (c∨(y), c(χ))∗PB by construction, and hence I` = Iy,χ

as R-invertible submodules of K (see [62, Def. 4.2.4.6]; cf. (4b) of
Definition 4.1.3.2). For each discrete valuation υ : K× → Z of K,
since I` is locally principal for every `, it makes sense to consider the
composition

(4.2.2.7) υ ◦B : SΦH → Z : ` 7→ υ(I`),

which is an element in S∨ΦH (cf. [62, (6.2.5.9) and (6.2.5.10)]).

Proposition 4.2.2.8. (Compare with [62, Prop. 6.2.5.11].) With

assumptions and notation as above, the universal property of ~Ξord
ΦH,δH

(σ)

is as follows: The morphism t̃K : Spec(K)→ ~Ξord
ΦH,δH

extends to a mor-

phism t̃R : Spec(R) → ~Ξord
ΦH,δH

(σ) if and only if, for every discrete
valuation υ : K× → Z of K such that υ(R) ≥ 0, the corresponding ho-
momorphism υ ◦B : SΦH → Z as in (4.2.2.7) (or rather its composition
with Z ↪→ R) lies in the closure σ of σ in (SΦH)∨R.

Proof. Since ~Ξord
ΦH,δH

(σ) ∼= Spec
O~Cord

ΦH,δH

(
⊕
`∈σ∨

~Ψord
ΦH,δH

(`)
)

is rela-

tively affine over ~Cord
ΦH,δH

, the morphism t̃K extends to a morphism

t̃R : Spec(R) → ~Ξord
ΦH,δH

(σ) if I` ⊂ R for every ` ∈ σ∨. Since R is
noetherian and normal, this is true if (υ ◦ B)(`) ≥ 0 for every dis-
crete valuation υ of K such that υ(R) ≥ 0 and for every ` ∈ σ∨, or
equivalently if υ ◦ B pairs nonnegatively with σ∨ under the canonical
pairing between S∨ΦH and (SΦH)∨R, or equivalently if υ ◦ B lies in σ, as
desired. �

Remark 4.2.2.9. If t̃K extends to t̃R, then the homomorphism B :
SΦH → Inv(R) agrees with the pullback of the homomorphism B :

SΦH
→ Inv(~Ξ

ord

ΦH,δH
) under t̃R. (Thus, the notation is consistent when

B and B can be compared over R.)

Remark 4.2.2.10. Recall that the σ-stratum ~Ξord
ΦH,δH,σ

of ~Ξord
ΦH,δH

(σ)

is defined (see [62, Def. 6.1.2.7]) by the sheaf of ideals I ord
ΦH,δH,σ

∼=
⊕
`∈σ∨0

~Ψord
ΦH,δH

(`) in O~Ξord
ΦH,δH

(σ)
∼= ⊕

`∈σ∨
~Ψord

ΦH,δH
(`) (cf. [62, Conv. 6.2.3.20]).

Since σ ⊂ PΦH is positive semidefinite, we have σ(`) ≥ 0 for every ` of
the form [y ⊗ φ(y)]. As a result, the trivialization

τ(y, φ(y)) : O~Ξord
ΦH,δH

⊗
O~Cord

ΦH,δH

~Ψord
ΦH,δH

(y ⊗ φ(y))
∼→ O~Ξord

ΦH,δH
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over ~Ξord
ΦH,δH

extends to a section
(4.2.2.11)

τ(y, φ(y)) : O~Ξord
ΦH,δH

(σ) ⊗
O~Cord

ΦH,δH

~Ψord
ΦH,δH

(y ⊗ φ(y))→ O~Ξord
ΦH,δH

(σ)

over ~Ξord
ΦH,δH

(σ). If σ ⊂ P+
ΦH

, then by [62, Lem. 6.2.5.7], we have
σ(y ⊗ φ(y)) > 0 for every y 6= 0. In this case, the section τ(y, φ(y))

over ~Ξord
ΦH,δH

(σ) as in (4.2.2.11) has image contained in I ord
ΦH,δH,σ

. This
is almost the positivity condition, except that the base scheme is not
completed along I ord

ΦH,δH,σ
.

Let ~Xord
ΦH,δH

= ~Xord
ΦH,δH,ΣΦH

be the formal completion of ~Ξ
ord

ΦH,δH
along

the union of the σ-strata ~Ξord
ΦH,δH,σ

for σ ⊂ P+
ΦH

. For each σ ⊂ P+
ΦH

, let
~Xord

ΦH,δH,σ
be the formal completion of ~Ξord

ΦH,δH
(σ) along the σ-stratum

~Ξord
ΦH,δH,σ

. Then, using the language of relative schemes over formal
algebraic stacks (see [37]), there are tautological tuples of the form

(ZH, (X,Y, φ, ϕ
ord
−2,H, ϕ

ord
0,H),

(B, λB, iB, ϕ−1,Hp , ϕ
ord
−1,Hp), δ

ord
H , (cord

H , c∨,ord
H , τ ord

H )).
(4.2.2.12)

over both the formal algebraic stacks ~Xord
ΦH,δH

and ~Xord
ΦH,δH,σ

, the one
on the latter being the pullback of the one on the former under the

canonical morphism ~Xord
ΦH,δH,σ

→ ~Xord
ΦH,δH

. Moreover, this tautological

tuple over ~Xord
ΦH,δH

satisfies the positivity condition in the following sense:
We have a functorial assignment that, to each connected affine formal
scheme U with an étale (i.e., formally étale and of finite type; see [35, I,

10.13.3]) morphism U→ ~Xord
ΦH,δH

, assigns a tuple of the form (4.2.2.12)
(with positivity condition) over the (normal) scheme Spec(Γ(U,OU))

(smooth over ~S0,rH). Let R = Γ(U,OU), and let I be (the radical of) its
ideal of definition. Then R and I satisfies the requirement in Section
4.1.2, and we obtain a tuple defining an object of DDPEL,Mord

H
(R, I).

By Theorems 4.1.5.27 and 4.1.6.2, Mumford’s construction defines
an object

(4.2.2.13) ( ♥G, ♥λ, ♥i, ♥αHp ,
♥αord
Hp )→ Spec(R)

in DEGPEL,Mord
H

(R, I), which comes from an object

(4.2.2.14) ( ♥G, ♥λ, ♥i, ♥αH)→ Spec(R)

in DEGPEL,MH(R, I) in the sense that ( ♥αHp ,
♥αord
Hp ) is assigned to ♥αH

under (3.3.5.5) over the generic point Spec(Frac(R)) of Spec(R). Since
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the tuple (4.2.2.14) is an object of DEGPEL,MH(R, I), it is a degenerat-
ing family of type MH as in Definition 1.3.1.1. Since ϕord

−1,H is defined

over all of R, the tuple (4.2.2.13) is a degenerating family of type ~Mord
H

as in Definition 3.4.2.10. Moreover, the torus part of each fiber of ♥G
over the support of U is split with character group X. If we have
an étale (i.e., formally étale and of finite type; see [35, I, 10.13.3])
morphism Spf(R1) → Spf(R2) and if the degeneration datum over
Spec(R2) pulls back to the degeneration datum over Spec(R1), then
the family constructed by Mumford’s construction over Spec(R1) pulls
back to a family over Spec(R2) with the same degeneration datum as
the datum over Spec(R2). The functoriality in [62, Thm. 4.4.16] over
Spec(R2) then assures that this pullback family agrees with the family
constructed from the datum over Spec(R2). In particular, we see that
the assignment of ( ♥G, ♥λ, ♥i, ♥αHp ,

♥αord
Hp ) → Spec(Γ(U,OU)) to U

is functorial. Hence, the assignment defines a (relative) degenerating
family

(4.2.2.15) ( ♥G, ♥λ, ♥i, ♥αHp ,
♥αord
Hp )→ ~Xord

ΦH,δH
,

which comes from a degenerating family

(4.2.2.16) ( ♥G, ♥λ, ♥i, ♥αH)→ ~Xord
ΦH,δH

in the sense that it is so over each affine formal scheme U as above. Since
the cone decomposition ΣΦH is ΓΦH-admissible, the group ΓΦH acts nat-
urally on all the objects involved in the degeneration data, and hence by
functoriality on the degenerating family ( ♥G, ♥λ, ♥i, ♥αHp ,

♥αord
Hp )→

~Xord
ΦH,δH

.
For each σ ⊂ PΦH , let ΓΦH,σ be defined as in [62, Def. 6.2.5.23],

namely the subgroup of ΓΦH consisting of elements that maps σ to
itself under the natural action of ΓΦH on PΦH . Then we have similarly
the degenerating family

(4.2.2.17) ( ♥G, ♥λ, ♥i, ♥αHp ,
♥αord
Hp )→ ~Xord

ΦH,δH,σ
,

together with an equivariant action of ΓΦH,σ, which comes from a de-
generating family

(4.2.2.18) ( ♥G, ♥λ, ♥i, ♥αH)→ ~Xord
ΦH,δH,σ

(in a sense analogous to that of (4.2.2.15) and (4.2.2.16)), together with
a compatible equivariant action of ΓΦH,σ.

By [62, Rem. 6.2.5.26 and Lem. 6.2.5.27], if the cone decomposition
ΣΦH is chosen such that [62, Cond. 6.2.5.25] is satisfied, then each ΓΦH,σ

is finite and ~Xord
ΦH,δH,σ

/ΓΦH,σ is a formal (Deligne–Mumford) algebraic
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stack. Moreover, if H is neat (which is the case, for example, when

Hp is neat), then ΓΦH,σ is trivial and ~Xord
ΦH,δH,σ

/ΓΦH,σ = ~Xord
ΦH,δH,σ

is a
formal algebraic space.

From now on, as always, let us assume that the cone decomposition
ΣΦH is chosen such that [62, Cond. 6.2.5.25] is satisfied. This is possible
by refining any given cone decomposition ΣΦH . Then the compatible

equivariant action of ΓΦH,σ on ( ♥G, ♥λ, ♥i, ♥αHp ,
♥αord
Hp ) → ~Xord

ΦH,δH,σ

and ( ♥G, ♥λ, ♥i, ♥αH) → ~Xord
ΦH,δH,σ

imply that we have a descended
family

(4.2.2.19) ( ♥G, ♥λ, ♥i, ♥αHp ,
♥αord
Hp )→ ~Xord

ΦH,δH,σ
/ΓΦH,σ,

which comes from a descended family

(4.2.2.20) ( ♥G, ♥λ, ♥i, ♥αH)→ ~Xord
ΦH,δH,σ

/ΓΦH,σ

(in a sense analogous to that of (4.2.2.15) and (4.2.2.16)).

Definition 4.2.2.21. (Compare with [62, Def. 6.2.5.28].) All
the degenerating families (4.2.2.15), (4.2.2.16), (4.2.2.17), (4.2.2.18),
(4.2.2.19), and (4.2.2.20) constructed above are called Mumford
families.

Remark 4.2.2.22. (Compare with [62, Rem. 6.2.5.29].) By abuse
of notation, we will use the same notation ( ♥G, ♥λ, ♥i, ♥αHp ,

♥αord
Hp )

and ( ♥G, ♥λ, ♥i, ♥αH) for the Mumford families over various bases.

Remark 4.2.2.23. The analogues of [62, Rem. 6.2.5.30 and
6.2.5.31] are also true in this context.

4.2.3. Extended Kodaira–Spencer Morphisms and Induced
Isomorphisms. Since we have the tautological presence of G\ and ι
(defined by the tautological tuple (B,X, Y , c, c∨, τ)) over the algebraic

stack ~Ξ
ord

ΦH,δH
separated, smooth, and locally of finite type over ~S0,rH ,

we can define (by étale descent if necessary) as in [62, Sec. 4.6.2] the
extended Kodaira–Spencer morphism

KS
(G\,ι)/~Ξ

ord

ΦH,δH/
~S0,rH

:

Lie∨
G\/~Ξ

ord

ΦH,δH

⊗
O
~Ξ

ord
ΦH,δH

Lie∨
G∨,\/~Ξ

ord

ΦH,δH

→ Ω1

~Ξ
ord

ΦH,δH/
~S0,rH

[d log∞].(4.2.3.1)

Let λ\ : G\ → G∨,\ be the homomorphism defined by the tautolog-
ical data λB : B → B∨ and φ : Y → X. Then λ\ induces an
O-equivariant morphism (λ\)∗ : Lie∨

G∨,\/~Ξ
ord

ΦH,δH

→ Lie∨
G\/~Ξ

ord

ΦH,δH

. Let
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i\ : O → End
~Ξ

ord

ΦH,δH

(G\) denote the tautological O-action morphism on

G\.

Definition 4.2.3.2. (Compare with [62, Def. 2.3.5.1] and Defini-
tions 1.1.2.8, 1.3.1.2, and 3.4.3.1.) The Oord

~ΞΦH,δH

-module

KS = KS
(G\,λ\,i\)/~Ξ

ord

ΦH,δH

is the quotient of

Lie∨
G\/~Ξ

ord

ΦH,δH

⊗
O
~Ξ

ord
ΦH,δH

Lie∨
G∨,\/~Ξ

ord

ΦH,δH

by the O
~Ξ

ord

ΦH,δH

-submodule spanned by

(λ\)∗(y)⊗ z − (λ\)∗(z)⊗ y
and

(i\(b))∗(x)⊗ y − x⊗ (i\(b)
∨
)∗(y),

for x ∈ Lie∨
G\/~Ξ

ord

ΦH,δH

, y, z ∈ Lie∨
G∨,\/~Ξ

ord

ΦH,δH

, and b ∈ O.

Remark 4.2.3.3. Unlike in the good reduction case (see [62, Rem.
6.2.5.17]), the formation of KS here may produce torsion elements.

Therefore, we also introduce the following:

Definition 4.2.3.4. (Compare with [62, Def. 6.2.5.16] and Defini-
tion 3.4.3.1.) The Oord

~ΞΦH,δH

-module

KSfree = KS
(G\,λ\,i\)/~Ξ

ord

ΦH,δH ,free

is the quotient of KS
(G\,λ\,i\)/~Ξ

ord

ΦH,δH

defined as the image of the canonical

morphism

KS
(G\,λ\,i\)/~Ξ

ord

ΦH,δH

→ KS
(G\,λ\,i\)/~Ξ

ord

ΦH,δH

⊗
Z
Q

of O
~Ξ

ord

ΦH,δH,free

-modules.

By definition, the sheaf KSfree = KS
(G\,λ\,i\)/~Ξ

ord

ΦH,δH ,free
contains no

p-torsion and hence is flat over ~S0,rH = Spec(OF0,(p)[ζprH ]).

Proposition 4.2.3.5. (Compare with [62, Prop. 6.2.5.18].) The
Kodaira–Spencer morphism (4.2.3.1) factors through the sheaf KSfree

defined in Definition 4.2.3.4, and induces an isomorphism

(4.2.3.6) KSfree
∼→ Ω1

~Ξ
ord

ΦH,δH/
~S0,rH

[d log∞].
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In particular, the Oord
~ΞΦH,δH

-module KSfree is locally free of finite rank.

Proof. Let us analyze the structural morphism ~Ξ
ord

ΦH,δH
→ ~S0,rH as

a composition of smooth morphisms:

~Ξ
ord

ΦH,δH

π0→ ~Cord
ΦH,δH

π1→ ~Mord,ΦH
H

π2→ ~S0,rH .

For simplicity, let us denote the composition π1 ◦ π0 by π10. Then
Ω1

~Ξ
ord

ΦH,δH/
~S0,rH

[d log∞] has an increasing filtration

0 ⊂ π∗01 Ω1
~M

ord,ΦH
H /~S0,rH

⊂ π∗0 Ω1
~Cord

ΦH,δH
/~S0,rH

⊂ Ω1

~Ξ
ord

ΦH,δH/
~S0,rH

[d log∞],

with graded pieces given by π∗01 Ω1
~M

ord,ΦH
H /~S0,rH

, π∗0 Ω1
~Cord

ΦH,δH
/~M

ord,ΦH
H

, and

Ω1

~Ξ
ord

ΦH,δH/
~Cord

ΦH,δH

[d log∞], all of which are locally free of finite rank.

On the other hand, the sheaf KSfree = KS
(G\,λ\,i\)/~Ξ

ord

ΦH,δH ,free
has an

increasing filtration given by π∗01 KS
(B,λB ,iB)/~M

ord,ΦH
H ,free

, the pullback

(under π0) of the free quotient KS(B,c,c∨,λ\,i\)/ ~Cord
ΦH,δH

,free of the quotient

KS(B,c,c∨,λ\,i\)/ ~Cord
ΦH,δH

of(
Lie∨

G\/ ~Cord
ΦH,δH

⊗
O~Cord

ΦH,δH

Lie∨
B∨/ ~Cord

ΦH,δH

)
+
(
Lie∨

B/~Cord
ΦH,δH

⊗
O~Cord

ΦH,δH

Lie∨
G∨,\/ ~Cord

ΦH,δH

)
(as an O ~Cord

ΦH,δH
-submodule of Lie∨

G\/ ~Cord
ΦH,δH

⊗
O~Cord

ΦH,δH

Lie∨
G∨,\/ ~Cord

ΦH,δH
) by re-

lations as in Definition 4.2.3.4, and the whole sheaf KSfree. Hence, it
suffices to show that the morphism (4.2.3.1) respects the filtrations and
matches isomorphically the (free quotients of) the graded pieces.

By Proposition 3.4.3.3, since ~Mord,ΦH
H is étale over the base change

~Mord
Hh,rH of ~Mord

Hh (defined by MHh and
...
M

ord

Hh as in Theorem 3.4.2.5)

to ~S0,rH , the Kodaira–Spencer morphism KS
B/~M

ord,ΦH
H /~S0,rH

for B over

~Mord,ΦH
H induces an isomorphism

(4.2.3.7) KS
(B,λB ,iB)/~M

ord,ΦH
H ,free

∼→ Ω1
~M

ord,ΦH
H /~S0,rH

,

and hence the same remains true after pulled back by π01. Since the
Kodaira–Spencer morphism KS

B/~Ξ
ord

ΦH,δH/
~S0,rH

= π∗01 KS
B/~M

ord,ΦH
H /~S0,rH

for B over ~Ξ
ord

ΦH,δH
is the restriction of the Kodaira–Spencer morphism
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KS in (4.2.3.1) (cf. the compatibility statements in [62, Sec. 4.6.2]), we
see that the first filtered pieces are respected.

By the deformation-theoretic interpretation of the Kodaira–Spencer
morphisms KS(B,c)/ ~Cord

ΦH,δH
/~S0,rH

and KS(B∨,c∨)/ ~Cord
ΦH,δH

/~S0,rH
in [62, Sec.

4.6.1] (see in particular [62, Def. 4.6.1.2]), we see that the restric-
tions of both of them to Lie∨

B/~Cord
ΦH,δH

⊗
O~Cord

ΦH,δH

Lie∨
B∨/ ~Cord

ΦH,δH
agree with

KSB/~Cord
ΦH,δH

/~S0,rH
, which induces a surjection onto π∗1 Ω1

~M
ord,ΦH
H /~S0,rH

.

Hence, they define a morphism(
Lie∨

G\/ ~Cord
ΦH,δH

⊗
O~Cord

ΦH,δH

Lie∨
B∨/ ~Cord

ΦH,δH

)
+
(
Lie∨

B/~Cord
ΦH,δH

⊗
O~Cord

ΦH,δH

Lie∨
G∨,\/ ~Cord

ΦH,δH

)
→ Ω1

~Cord
ΦH,δH

/~S0,rH

(4.2.3.8)

compatible with the pullback of KS
B/~M

ord,ΦH
H /~S0,rH

, which induces

(after replacing the source of (4.2.3.8) with its quotient by
Lie∨

B/~Cord
ΦH,δH

⊗
O~Cord

ΦH,δH

Lie∨
B∨/ ~Cord

ΦH,δH
) a morphism

(
Lie∨

T/~Cord
ΦH,δH

⊗
O~Cord

ΦH,δH

Lie∨
B∨/ ~Cord

ΦH,δH

)
+
(
Lie∨

B/~Cord
ΦH,δH

⊗
O~Cord

ΦH,δH

Lie∨
T∨/ ~Cord

ΦH,δH

)
→ Ω1

~Cord
ΦH,δH

/~M
ord,ΦH
H

.
(4.2.3.9)

Since c and c∨ satisfies the compatibility cφ = λBc
∨, the morphism

(4.2.3.8) is compatible with quotients by relations as in Definition
4.2.3.4, and induces a morphism

(4.2.3.10) KS(B,c,c∨,λ\,i\)/ ~Cord
ΦH,δH

→ Ω1
~Cord

ΦH,δH
/~S0,rH

compatible with the pullback of the isomorphism (4.2.3.7). Then the
morphism (4.2.3.9) induces a morphism
(4.2.3.11)(

KS(B,c,c∨,λ\,i\)/ ~Cord
ΦH,δH

/KS(B,λB ,iB)/ ~Cord
ΦH,δH

)
free
→ Ω1

~Cord
ΦH,δH

/~M
ord,ΦH
H

,

where KS(B,λB ,iB)/ ~Cord
ΦH,δH

∼= π∗1 KS
(B,λB ,iB)/~M

ord,ΦH
H

. By Propositions

4.2.1.29 and 4.2.1.34, the morphism (4.2.3.11) is the pullback of the
corresponding morphism

(4.2.3.12)
(
KS(B,c,c∨,λ\,i\)/ ~Cord

Φ1,δ1

/KS(B,λB ,iB)/ ~Cord
Φ1,δ1

)
free
→ Ω1

~Cord
Φ1,δ1

/~M
ord,Z1
1
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at principal level 1. Since
...
C

ord
Φ1

is the universal space for (c, c∨) over
...
M

ord

1 (satisfying the compatibility cφ = λBc
∨), the source of (4.2.3.12)

can be canonically identified with the pullback of the free quotient
Ω1

(
...
C

ord
Φ1

×...
M

ord,Z1
1

~M
ord,Z1
1 )/~M

ord,Z1
1 ,free

of Ω1

(
...
C

ord
Φ1

×...
M

ord,Z1
1

~M
ord,Z1
1 )/~M

ord,Z1
1

under

~Cord
Φ1,δ1

→
...
C

ord
Φ1

×...
M

ord,Z1
1

~Mord,Z1

1 . By the construction of ~Cord
Φ1,δ1

→ ~Mord,Z1

1

as the pullback of (4.2.1.33) under the section (4.2.1.32) in the proof
of Proposition 4.2.1.30, the canonical morphism

(~Cord
Φ1,δ1

→
...
C

ord
Φ1

×...
M

ord,Z1
1

~Mord,Z1

1 )∗Ω1

(
...
C

ord
Φ1

×...
M

ord,Z1
1

~M
ord,Z1
1 )/~M

ord,Z1
1 ,free

→ Ω1
~Cord

Φ1,δ1
/~M

ord,Z1
1

is an isomorphism. Thus, we see that the morphism (4.2.3.12) is an
isomorphism, and hence that the morphism (4.2.3.11) is an isomor-
phism and induces (by a simple diagram chasing) the composition of
canonical isomorphisms

KS(B,c,c∨,λ\,i\)/ ~Cord
ΦH,δH

,free/KS(B,λB ,iB)/ ~Cord
ΦH,δH

,free

∼→
(
KS(B,c,c∨,λ\,i\)/ ~Cord

ΦH,δH
/KS(B,λB ,iB)/ ~Cord

ΦH,δH

)
free

∼→ Ω1
~Cord

ΦH,δH
/~M

ord,ΦH
H

.

(4.2.3.13)

This shows that the morphism (4.2.3.10) also induces an isomorphism

(4.2.3.14) KS(B,c,c∨,λ\,i\)/ ~Cord
ΦH,δH

,free

∼→ Ω1
~Cord

ΦH,δH
/~S0,rH

.

Since the pullback of this isomorphism (4.2.3.14) (under π0) to ~Ξ
ord

ΦH,δH
is

induced by the restriction of the extended Kodaira–Spencer morphism
KS in (4.2.3.1) (cf. [62, Rem. 4.6.2.7]), we see that the second filtered
pieces are also respected, with an induced isomorphism between the
second graded pieces.

Finally, we arrive at the top filtered pieces, and the question is
about the induced morphism

(4.2.3.15) Lie∨
T/~Ξ

ord

ΦH,δH

⊗
O
~Ξ

ord
ΦH,δH

Lie∨
T∨/~Ξ

ord

ΦH,δH

→ Ω1

~Ξ
ord

ΦH,δH/
~Cord

ΦH,δH

[d log∞]
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between the top graded pieces. Let us denote by KS(T,λT ,iT )/~S0,rH ,free

the free quotient of Lie∨
T/~S0,rH

⊗
O~S0,rH

Lie∨
T∨/~S0,rH

by relations as in Defini-

tion 4.2.3.2, and by KS
(T,λT ,iT )/~Ξ

ord

ΦH,δH ,free
and KS(T,λT ,iT )/~Ξord

ΦH,δH
,free their

pullbacks to ~Ξ
ord

ΦH,δH
and ~Ξord

ΦH,δH
, respectively.

Let us first consider the restriction

(4.2.3.16) Lie∨
T/~Ξord

ΦH,δH
⊗

O~Ξord
ΦH,δH

Lie∨
T∨/~Ξord

ΦH,δH
→ Ω1

~Ξord
ΦH,δH

/ ~Cord
ΦH,δH

of (4.2.3.15) to ~Ξord
ΦH,δH

, which is induced by the Kodaira–Spencer
morphism KS(G\,ι)/~Ξord

ΦH,δH
/~S0,rH

defined deformation-theoretically as

in [62, Def. 4.6.2.6]. Since τ is compatible with the polarizations
and O-endomorphism structures, the morphism (4.2.3.16) induces a
morphism

(4.2.3.17) KS(T,λT ,iT )/~Ξord
ΦH,δH

,free → Ω1
~Ξord

ΦH,δH
/ ~Cord

ΦH,δH
.

By Proposition 4.2.1.41, the morphism (4.2.3.17) is the pullback of the
corresponding morphism

(4.2.3.18) KS(T,λT ,iT )/~Ξord
Φ1,δ1

,free → Ω1
~Ξord

Φ1,δ1
/ ~Cord

Φ1,δ1

.

Since
...
Ξ

ord
Φ1

is the universal space for ι over
...
C

ord
Φ1

(with symmetry
condition, but without positivity condition), the source of
(4.2.3.18) can be canonically identified with the pullback of the free
quotient Ω1

(
...
Ξ

ord
Φ1

×...
C ord

Φ1

~Cord
Φ1,δ1

)/ ~Cord
Φ1,δ1

,free
of Ω1

(
...
Ξ

ord
Φ1

×...
C ord

Φ1

~Cord
Φ1,δ1

)/ ~Cord
Φ1,δ1

under

~Ξord
Φ1,δ1

→
...
Ξ

ord
Φ1
×...
C

ord
Φ1

~Cord
Φ1,δ1

. By the construction of ~Ξord
Φ1,δ1

→ ~Cord
Φ1,δ1

as

the pullback of (4.2.1.40) under the section (4.2.1.39) in the proof of
Proposition 4.2.1.37, the canonical morphism

(~Ξord
Φ1,δ1

→
...
Ξ

ord
Φ1
×...
C

ord
Φ1

~Cord
Φ1,δ1

)∗Ω1
(
...
Ξ

ord
Φ1

×...
C ord

Φ1

~Cord
Φ1,δ1

)/ ~Cord
Φ1,δ1

,free

→ Ω1
~Ξord

ΦH,δH
/ ~Cord

ΦH,δH

is an isomorphism. Thus, we see that the morphism (4.2.3.18) is an iso-
morphism, and hence that the morphism (4.2.3.17) is an isomorphism

(4.2.3.19) KS(T,λT ,iT )/~Ξord
ΦH,δH

,free

∼→ Ω1
~Ξord

ΦH,δH
/ ~Cord

ΦH,δH
.
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If we work over ~Ξ
ord

ΦH,δH
, then the morphism (4.2.3.15) is induced by

the extended Kodaira–Spencer morphism KS
(G\,ι)/~Ξ

ord

ΦH,δH/
~S0,rH

defined

as in [62, Def. 4.6.2.12]. Since its image in Ω1

~Ξ
ord

ΦH,δH/
~Cord

ΦH,δH

[d log∞] con-

tains d log(~Ψord
ΦH,δH

(`)) for all ` ∈ SΦH , which are exactly the generators,
we see that (4.2.3.15) induces an isomorphism

KS
(T,λT ,iT )/~Ξ

ord

ΦH,δH ,free

∼→ Ω1

~Ξ
ord

ΦH,δH/
~Cord

ΦH,δH

[d log∞]

and (by a simple diagram chasing) the composition of canonical iso-
morphisms

KSfree/π
∗
0 KS(B,c,c∨,λ\,i\)/ ~Cord

ΦH,δH
,free

∼→
(
KS/π∗0 KS(B,c,c∨,λ\,i\)/ ~Cord

ΦH,δH

)
free
∼= KS

(T,λT ,iT )/~Ξ
ord

ΦH,δH ,free

∼→ Ω1

~Ξ
ord

ΦH,δH/
~Cord

ΦH,δH

[d log∞]

between the top graded pieces. Hence, (4.2.3.6) is an isomorphism, as
desired. �





CHAPTER 5

Partial Toroidal Compactifications

The goal of this chapter is to construct the partial toroidal com-
pactifications for the ordinary loci defined in Chapter 3, based on the
theory of degeneration and the construction of boundary charts given
in Chapter 4.

5.1. Approximation and Gluing Along the Ordinary Loci

In this section, let us continue with the setting in Sections 4.1.6
and 4.2.1, including the choices of a level H = HpHp and an integer rH
determined by H as in Definition 3.4.2.1. The materials in this section
follows those of [62, Sec. 6.3] very closely. However, we spell out the
precise statements to make sure that the definitions and constructions
can indeed be generalized after some subtle modifications.

5.1.1. Ordinary Good Formal Models.

Construction 5.1.1.1. Let S be an excellent normal
algebraic stack that is flat over ~S0,rH = Spec(OF0,(p)[ζprH ]), and

let (G, λ, i, αHp , α
ord
Hp ) be a degenerating family of type ~Mord

H
over S (see Definition 3.4.2.10). (As remarked in [62, Constr.
6.3.1.1], the excellence assumption on S might be removed by
direct limit arguments, but we do not need this generality for our
purpose.) By definition (see Condition 4 of Definition 3.4.2.10),

(G, λ, i, αHp , α
ord
Hp ) → S defines a tuple parameterized by ~Mord

H (see

Convention 3.4.2.9). By the construction of ~Mord
H (see Theorem

3.4.2.5), this implies that there is a level-H structure αH on
(G, λ, i)⊗

Z
Q → S⊗

Z
Q such that (αHp , α

ord
Hp )⊗

Z
Q is assigned to

αH under (3.3.5.5) over S⊗
Z
Q. Then (G, λ, i, αH) → S qualifies

as a degenerating family of type MH over S (by choosing S1

to be an open dense subscheme of S⊗
Z
Q in Definition 1.3.1.1),

and [62, Constr. 6.3.1.1] applies and defines the sheaf objects
ΦH = (X(G), Y (G), φ(G), ϕ−2,H(G), ϕ

0,H(G)), SΦH(G), and

(5.1.1.2) B(G) : SΦH(G) → Inv(S).

305
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(This finishes Construction 5.1.1.1.)

Let (ZH,ΦH, δH) be a representative of an ordinary cusp
label at level H (see Definition 3.2.3.8). Then we have the

Mumford families ( ♥G, ♥λ, ♥i, ♥αHp ,
♥αord
Hp ) → ~Xord

ΦH,δH,σ
/ΓΦH,σ and

( ♥G, ♥λ, ♥i, ♥αH) → ~Xord
ΦH,δH,σ

/ΓΦH,σ as in (4.2.2.19) and (4.2.2.20).
Let us summarize their properties as follows:

Proposition 5.1.1.3. (Compare with [62, Prop. 6.3.1.6].)
Let Sfor = Spf(R, I) be an affine formal scheme, with an étale
(i.e., formally étale and of finite type; see [35, I, 10.13.3])

morphism f̂ : Sfor → ~Xord
ΦH,δH,σ

/ΓΦH,σ inducing a morphism

f : S = Spec(R) → ~Ξord
ΦH,δH

(σ)/ΓΦH,σ mapping the support Spec(R/I)

of Sfor to the σ-stratum ~Ξord
ΦH,δH,σ

/ΓΦH,σ of ~Ξord
ΦH,δH

(σ)/ΓΦH,σ. (In this
case, the subscheme Spec(R/I) of S is the scheme-theoretic preimage
of its image under f .) Let ( ♦G, ♦λ, ♦i, ♦αHp ,

♦αord
Hp )→ S = Spec(R)

(resp. ( ♦G, ♦λ, ♦i, ♦αH) → S) be the pullback of

( ♥G, ♥λ, ♥i, ♥αHp ,
♥αord
Hp ) → ~Xord

ΦH,δH,σ
/ΓΦH,σ (resp.

( ♥G, ♥λ, ♥i, ♥αH) → ~Xord
ΦH,δH,σ

/ΓΦH,σ) to Sfor under f̂ (by abuse of

language). In this case, ( ♦αHp ,
♦αord
Hp ) is assigned to ♦αH under

(3.3.5.5) over the generic point η = Spec(K) of Spec(R), where K
is the fraction field of R. Then R is an I-adically complete excellent
ring, which is formally smooth over the abelian scheme ~Cord

ΦH,δH
, and

hence also formally smooth over ~S0,rH = Spec(OF0,(p)[ζprH ]).

(1) The stratification of ~Ξord
ΦH,δH

(σ)/ΓΦH,σ determines a stratifica-
tion of S = Spec(R) parameterized by {faces τ of σ}/ΓΦH,σ

such that each stratum of S (with its reduced structure, namely,
its structure as an open subscheme in a closed subscheme with
reduced structure) is the scheme-theoretic preimage of the cor-

responding stratum of ~Ξord
ΦH,δH

(σ)/ΓΦH,σ under f .

(2) The formal completion of ♦G along the preimage of Spec(R/I)

is canonically isomorphic to the pullback of G\ under f̂ (as a
formal algebraic stack, rather than a relative scheme).

(3) The étale sheaf X( ♦G) (see [62, Thm. 3.3.1.9]) is the
quotient sheaf of the constant sheaf X such that, over
the (τ mod ΓΦH,σ)-stratum, the sheaf X( ♦G) is a
constant quotient X(τ mod ΓΦH,σ) of X, with an admissible
surjection X � X(τ mod ΓΦH,σ) inducing a torus argument

ΦH,(τ mod ΓΦH,σ) from ΦH as in [62, Lem. 5.4.2.11], such that
τ is contained in the ΓΦH-orbit of the image of the induced
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embedding P+
ΦH,(τ mod ΓΦH,σ)

↪→ PΦH. (We know the surjection

is admissible because of the existence of level-H structures;
see [62, Lem. 5.2.2.2 and 5.2.2.4].) This produces a sheaf
version ΦH( ♦G) of ΦH over S.

The formation of SΦH from ΦH applies to ΦH( ♦G) and
defines a sheaf SΦH(♦G) (cf. Proposition 4.2.2.5).

Then ΦH( ♦G) is equivalent (see Definition 1.2.1.6 and
[62, Def. 5.4.2.2]) to the pullback of the tautological ΦH on
~Ξord

ΦH,δH
(σ)/ΓΦH,σ (see Proposition 4.2.2.5) under f .

(4) Under the equivalence between ΦH( ♦G) and the pullback of
ΦH above, the pullback f ∗(B) : SΦH(♦G) → Inv(S) of the

tautological homomorphism B over ~Ξord
ΦH,δH

(σ)/ΓΦH,σ (see
Proposition 4.2.2.5) under f agrees with the homomorphism
B( ♦G) defined by ( ♦G, ♦λ, ♦i, ♦αHp ,

♦αord
Hp ) → S (or rather

by ( ♦G, ♦λ, ♦i, ♦αH) → S) as in Construction 5.1.1.1 (or
rather as in [62, Constr. 6.3.1.1]).

(5) Let KS(♦G,♦λ,♦i)/S,free be the OS-module (flat over ~S0,rH)

defined by ( ♦G, ♦λ, ♦i, ♦αHp ,
♦αord
Hp ) → S as in Definition

3.4.3.1. As in [62, Sec. 4.6.3], let Ω̂1
S/~S0,rH

denote the

completion of Ω1
S/~S0,rH

with respect to the topology of R

defined by I, which is locally free of finite rank over OS (cf.

[35, 0IV, 20.4.9]), and let Ω̂1
S/~S0,rH

[d log∞] be the subsheaf of

(η ↪→ S)∗(η ↪→ S)∗Ω̂1
S/~S0,rH

generated locally by Ω̂1
S/~S0,rH

and

those d log q where q is a local generator of an irreducible
component of the normal crossings divisor of Spec(R)
induced by the corresponding normal crossings divisor of
~Ξord

ΦH,δH
(σ) (cf. [62, Thm. 6.1.2.8(5)]). Then the extended

Kodaira–Spencer morphism (see [62, Def. 4.6.3.44]) defines
an isomorphism

KS♦G/S/~S0,rH
: KS(♦G,♦λ,♦i)/S,free

∼→ Ω̂1
S/~S0,rH

[d log∞].

(6) The morphism f̂ : Sfor = Spf(R, I) → ~Xord
ΦH,δH,σ

/ΓΦH,σ, or

rather the morphism f : S = Spec(R) → ~Ξord
ΦH,δH

(σ)/ΓΦH,σ,
is tautological with respect to the universal property of
~Ξord

ΦH,δH
(σ)/ΓΦH,σ, in the following sense:

The setting is as follows: The base ring R and the ideal
I satisfy the setting of Section 4.1.6. Let (G, λ, i, αHp , α

ord
Hp )
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be a degenerating family of type ~Mord
H over S that defines

an object in the essential image of the canonical morphism
DEGPEL,Mord

H
(R, I) → DEGPEL,

...
M

ord
H

(R, I) in Theorem 4.1.6.2.
By Theorem 4.1.6.2, the family determines an object in the
essential image of DDPEL,Mord

H
(R, I) → DDPEL,

...
M

ord
H

(R, I),

which determines an object of DDPEL,Mord
H

(R, I) up
to isomorphism, which is by definition an object of
DDPEL,MH(R, I), the latter determining, in particular, an
ordinary cusp label. Suppose (ZH,ΦH, δH) is a representative
of this ordinary cusp label. By [62, Lem. 5.4.2.10; see also
the errata], there exists a tuple

(B, λB, iB, X, Y, φ, c, c
∨, τ, [α\H])

defining the above object of DDPEL,MH(R, I), together with a
representative

α\H = (ZH, ϕ
∼
−2,H, ϕ−1,H, ϕ

∼
0,H, δH, cH, c

∨
H, τH)

of [α\H], such that (ϕ∼−2,H, ϕ
∼
0,H) induces the (ϕ−2,H, ϕ0,H) in

ΦH, as in the corrected [62, Def. 5.4.2.8] in the errata. By
Theorem 4.1.6.2, this tuple is an object of DDPEL,Mord

H
(R, I),

and determines an object

(B, λB, iB, X, Y , φ, c, c
∨, τ, [α\,ord

H ])

in DDPEL,
...
M

ord
H

(R, I), with [α\,ord
H ] represented by the tuple

α\,ord
H = (ZH, ϕ

ord
−2,H, ϕ

ord
−1,H = (ϕ−1,Hp , ϕ

ord
−1,Hp), ϕ

ord
0,H, δ

ord
H , cord

H , c∨,ord
H , τ ord

H )

determined by α\H as in Section 4.1.6, so that (ϕord
−2,H, ϕ

ord
0,H)

(resp. δord
H ) induces the same (ϕ−2,H, ϕ0,H) in ΦH (resp. δH).

By Proposition 4.2.1.46, this tuple without its positivity con-
dition defines a morphism Spec(K) → ~Ξord

ΦH,δH
that is unique

up to an action of ΓΦH on the identification of ΦH, whose

composition with ~Ξord
ΦH,δH

→ ~Cord
ΦH,δH

extends to a morphism

Spec(R) → ~Cord
ΦH,δH

. Let B(G) : SΦH(G) → Inv(S) be the ho-
momorphism defined as in Construction 5.1.1.1.

Then the universal property is as follows: Suppose there
exists an identification of ΦH such that, for each discrete
valuation υ : Inv(S)→ Z defined by a height-one prime of R,
the composition υ ◦ B(G) : SΦH(G) → Z defines an element

in the closure σ of σ in (SΦH)∨R. Such an identification of
ΦH is unique up to an element in ΓΦH,σ, and all morphisms
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Spec(K) → ~Ξord
ΦH,δH

as above induce the same morphism

Spec(K) → ~Ξord
ΦH,δH

/ΓΦH,σ if they respect such identifications
of ΦH. Then this morphism extends to a (necessarily

unique) morphism f : S = Spec(R) → ~Ξord
ΦH,δH

(σ)/ΓΦH,σ,
sending the subscheme Spec(R/I) to the σ-stratum

of ~Ξord
ΦH,δH

(σ)/ΓΦH,σ and hence inducing a morphism

f̂ : Sfor = Spf(R, I) → ~Xord
ΦH,δH,σ

/ΓΦH,σ between formal

algebraic stacks, such that (G, λ, i, αHp , α
ord
Hp ) → S is

isomorphic to the pullback ( ♦G, ♦λ, ♦i, ♦αHp ,
♦αord
Hp ) → S

of ( ♥G, ♥λ, ♥i, ♥αHp ,
♥αord
Hp ) → ~Xord

ΦH,δH,σ
/ΓΦH,σ

under f̂ (and so that (G, λ, i, αH) → S is isomor-
phic to the pullback ( ♦G, ♦λ, ♦i, ♦αH) → S of

( ♥G, ♥λ, ♥i, ♥αH) → ~Xord
ΦH,δH,σ

/ΓΦH,σ under f̂ , by the
injectivity of the assignment (3.3.5.5)).

Proof. The proof of [62, Prop. 6.3.1.6] based on [62, Thm.
4.6.3.16] works here if we replace the reference to [62, Prop. 6.2.5.18]
there with an analogous reference to Proposition 4.2.3.5. �

As a byproduct of our usage of Proposition 4.2.3.5 in the proof:

Corollary 5.1.1.4. (Compare with [62, Cor. 6.3.1.8].) Suppose

f̂ : Sfor = Spf(R, I)→ ~Xord
ΦH,δH,σ

/ΓΦH,σ is a morphism between noether-

ian formal schemes formally smooth over ~S0,rH, with induced morphism

f : S = Spec(R) → ~Ξord
ΦH,δH

(σ)/ΓΦH,σ such that the support Spec(R/I)
of Sfor is the scheme-theoretic preimage under f of some subalgebraic
stack Z of the σ-stratum ~Ξord

ΦH,δH,σ
/ΓΦH,σ of ~Ξord

ΦH,δH
(σ)/ΓΦH,σ. Suppose

moreover that the pullback of the stratification of ~Ξord
ΦH,δH

(σ)/ΓΦH,σ in-
duces a stratification of S = Spec(R) such that each stratum of S =
Spec(R) (with its reduced structure, as in (1) of Proposition 5.1.1.3) is

the scheme-theoretic preimage of a stratum of ~Ξord
ΦH,δH

(σ)/ΓΦH,σ. Under
these assumptions, we have an induced morphism f0 : Spec(R/I)→ Z,
and we can define (as in [62, Thm. 4.6.3.16] and (5) of Proposition
5.1.1.3) the extended Kodaira–Spencer morphism

(5.1.1.5) KS♦G/S/~S0,rH
: KS(♦G,♦λ,♦i)/S,free → Ω̂1

S/~S0,rH
[d log∞],

where KS(♦G,♦λ,♦i)/S,free is the sheaf defined as in Definition

3.4.3.1 by the pullback ( ♦G, ♦λ, ♦i, ♦αHp ,
♦αord
Hp ) → S of

( ♥G, ♥λ, ♥i, ♥αHp ,
♥αord
Hp ) → ~Xord

ΦH,δH,σ
/ΓΦH,σ in the sense of relative

schemes. Then the morphism f̂ is formally étale if and only if it
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satisfies the conditions that f is flat, that f0 is formally smooth, and
that the morphism KS♦G/S/~S0,rH

in (5.1.1.5) is surjective.

Proof. The proof of [62, Cor. 6.3.1.8] works here if we replace the
reference to [62, Prop. 6.2.5.18] there with an analogous reference to
Proposition 4.2.3.5. �

Corollary 5.1.1.6. (Compare with [62, Cor. 6.3.1.14].) In the
context of Corollary 5.1.1.4, suppose that R is a strict local ring with
(separably closed) residue field k, so that the morphism f induces a

morphism f̃ : Spec(R)→ Spec(R̃) mapping Spec(k) to Spec(k̃), where

R̃ is a strict local ring of ~Ξord
ΦH,δH

(σ)/ΓΦH,σ with (separably closed)

residue field k̃, and suppose that k is of finite type over k̃. Then f̃
is formally étale if and only if R and f satisfy the conditions that R
is equidimensional and has the same dimension as ~Ξord

ΦH,δH
(σ)/ΓΦH,σ,

and that the induced canonical morphism (5.1.1.5) is surjective. (This

last condition forces the induced homomorphism k̃ → k to be an
isomorphism.)

Proof. The proof of [62, Cor. 6.3.1.14] also works here. �

Definition 5.1.1.7. (Compare with [28, Ch. IV, Sec. 3] and [62,
Def. 6.3.1.15].) Let (ΦH, δH) be a representative of an ordinary cusp
label at level H (see Definition 3.2.3.8), and let σ ⊂ P+

ΦH
be a nonde-

generate smooth rational polyhedral cone. An ordinary good formal
(ΦH, δH, σ)-model is a degenerating family ( ♦G, ♦λ, ♦i, ♦αHp ,

♦αord
Hp )

of type ~Mord
H over Spec(R) (see Definition 3.4.2.10) where we have the

following:

(1) R is a strict local ring that is complete with respect to an ideal
I = rad(I), together with a stratification of Spec(R) with strata
parameterized by ΓΦH,σ-orbits of faces of σ.

(2) There exists a morphism f : Spec(R) → ~Ξord
ΦH,δH

(σ)/ΓΦH,σ

such that Spec(R/I) is the scheme-theoretic preimage of the
σ-stratum under f , satisfying the following properties:
(a) The morphism f makes R isomorphic to the completion

of a strict local ring of ~Ξord
ΦH,δH

(σ)/ΓΦH,σ with respect to
the ideal defining the σ-stratum.

(b) The stratification of Spec(R) is strictly compatible with

that of ~Ξord
ΦH,δH

(σ)/ΓΦH,σ in the sense that each stratum of
Spec(R) (with its reduced structure, as in (1) of Proposi-
tion 5.1.1.3) is the scheme-theoretic preimage of the cor-

responding stratum of ~Ξord
ΦH,δH

(σ)/ΓΦH,σ.



5.1. APPROXIMATION AND GLUING ALONG THE ORDINARY LOCI 311

(c) The degenerating family ( ♦G, ♦λ, ♦i, ♦αHp ,
♦αord
Hp )

defines an object of DEGPEL,
...
M

ord
H

(R, I) in the
essential image of the canonical morphism
DEGPEL,Mord

H
(R, I) → DEGPEL,

...
M

ord
H

(R, I)

in Theorem 4.1.6.2, and (by abuse of lan-
guage) ( ♦G, ♦λ, ♦i, ♦αHp ,

♦αord
Hp ) → Spec(R)

is the pullback of the Mumford family

( ♥G, ♥λ, ♥i, ♥αHp ,
♥αord
Hp ) → ~Xord

ΦH,δH,σ
/ΓΦH,σ under the

morphism f̂ : Spf(R, I)→ ~Xord
ΦH,δH,σ

/ΓΦH,σ induced by f .

Remark 5.1.1.8. (Compare with [62, Rem.
6.3.1.16].) As in Proposition 5.1.1.3, the morphism

f̂ : Spf(R, I) → ~Xord
ΦH,δH,σ

/ΓΦH,σ in Definition 5.1.1.7 (making

( ♦G, ♦λ, ♦i, ♦αHp ,
♦αord
Hp ) → Spec(R) the pullback of the Mumford

family ( ♥G, ♥λ, ♥i, ♥αHp ,
♥αord
Hp ) → ~Xord

ΦH,δH,σ
/ΓΦH,σ) is necessarily

unique.

Remark 5.1.1.9. (Compare with [62, Rem. 6.3.1.17].) By the uni-

versal property of ~Ξord
ΦH,δH

(σ)/ΓΦH,σ (see Proposition 4.2.2.8 and (6) of

Proposition 5.1.1.3), the morphism f : Spec(R)→ ~Ξord
ΦH,δH

(σ)/ΓΦH,σ in
Definition 5.1.1.7 (with the desired properties) is tautological for the in-

duced morphism Spec(R)→ ~Cord
ΦH,δH

(σ)/ΓΦH,σ and the homomorphism

B( ♦G) : SΦH(♦G) → Inv(Spec(R)).

Corollary 5.1.1.10. (Compare with [62, Cor. 6.3.1.18].)
Suppose R is a regular strict local ring complete with
respect to an ideal I = rad(I), together with a morphism

f̂ : Sfor := Spf(R, I) → ~Xord
ΦH,δH,σ

/ΓΦH,σ inducing a morphism

f : S := Spec(R) → ~Ξord
ΦH,δH

(σ)/ΓΦH,σ such that Spec(R/I) is the
scheme-theoretic preimage of the σ-stratum under f , and inducing an
isomorphism between separable closures of residue fields. Then we can
verify the statement that f makes R isomorphic to the completion of
a strict local ring of ~Ξord

ΦH,δH
(σ)/ΓΦH,σ with respect to the ideal defining

the σ-stratum by verifying the following conditions:

(1) The scheme S has the same dimension as ~Ξord
ΦH,δH

(σ)/ΓΦH,σ.

(2) The stratification of ~Ξord
ΦH,δH

(σ)/ΓΦH,σ induces a stratification
of Spec(R) that is strictly compatible with that of
~Ξord

ΦH,δH
(σ)/ΓΦH,σ in the sense that each stratum of S (with

its reduced structure, as in (1) of Proposition 5.1.1.3) is the
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scheme-theoretic preimage of the corresponding stratum of
~Ξord

ΦH,δH
(σ)/ΓΦH,σ.

(3) The extended Kodaira–Spencer morphism (see [62, Def.
4.6.3.44]) induces an isomorphism

KS♦G/S/~S0,rH
: KS(♦G,♦λ,♦i)/S,free

∼→ Ω̂1
S/~S0,rH

[d log∞],

where ( ♦G, ♦λ, ♦i, ♦αHp ,
♦αord
Hp ) → S is the pullback of the

Mumford family ( ♥G, ♥λ, ♥i, ♥αHp ,
♥αord
Hp )→ ~Xord

ΦH,δH,σ
/ΓΦH,σ

under f̂ (by abuse of language), and where KS(♦G,♦λ,♦i)/S,free

is defined as in Definition 3.4.3.1.

Remark 5.1.1.11. (Compare with [62, Rem. 6.3.1.19].) The
various morphisms from Spec(R/I) to the support of the formal

algebraic stack ~Xord
ΦH,δH,σ

/ΓΦHσ, for the various ordinary good formal
(ΦH, δH, σ)-models, cover the whole σ-stratum.

Remark 5.1.1.12. (Compare with [62, Rem. 6.3.1.20].) An
ordinary good formal (ΦH, δH, σ)-model is an ordinary good
formal (Φ′H, δ

′
H, σ

′)-model if and only if (ΦH, δH, σ) is equivalent to
(Φ′H, δ

′
H, σ

′) (see Definition 1.2.2.10).

Remark 5.1.1.13. (Compare with [62, Rem. 6.3.1.21].) For two
smooth rational polyhedral cones σ, σ′ ∈ P+

ΦH
such that σ ⊂ σ′, an

ordinary good formal (ΦH, δH, σ)-model is not necessarily an ordinary
good formal (ΦH, δH, σ

′)-model (cf. [62, Rem. 6.2.5.31] and Remark
4.2.2.23).

5.1.2. Ordinary Good Algebraic Models.

Proposition 5.1.2.1. (Compare with [62, Prop. 6.3.2.1].) Let
(ΦH, δH) be a representative of an ordinary cusp label at level H
(see Definition 3.2.3.8), and let σ ⊂ P+

ΦH
be a nondegenerate

smooth rational polyhedral cone. Let R be the strict local ring of a
geometric point x̄ of the σ-stratum of ~Ξord

ΦH,δH
(σ)/ΓΦH,σ for some

σ ⊂ P+
ΦH

, let R∧ be the completion of R with respect to the ideal
I defining the σ-stratum, and let I∧ := I · R∧ ⊂ R∧. Suppose
( ♦G, ♦λ, ♦i, ♦αHp ,

♦αord
Hp ) → Spec(R∧) defines an ordinary good

formal (ΦH, δH, σ)-model over S∧ := Spec(R∧). Then we can find

(noncanonically) a degenerating family (G, λ, i, αHp , α
ord
Hp ) of type ~Mord

H
over S := Spec(R) as in Definition 3.4.2.10, which approximates
( ♦G, ♦λ, ♦i, ♦αHp ,

♦αord
Hp ) in the following sense:
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(1) Over Spec(R/I), we have ( ♦G, ♦λ, ♦i)⊗
R

(R/I) ∼=
(G, λ, i)⊗

R
(R/I). (We do not compare ( ♦αHp ,

♦αHp)

and (αHp , α
ord
Hp ) here, because they are not defined over

Spec(R/I).)
(2) Under the canonical homomorphism R ↪→ R∧, the pullbacks of

the objects ΦH(G), SΦ(G), and B(G) defined as in Construction

5.1.1.1 are isomorphic to the objects ΦH( ♦G), SΦ(♦G), and

B( ♦G) defined as in Proposition 5.1.1.3, respectively.
(3) The pullback of (G, λ, i, αHp , α

ord
Hp ) → S under the canonical

homomorphism R ↪→ R∧ defines an ordinary good formal
(ΦH, δH, σ)-model (G, λ, i, αHp , α

ord
Hp )⊗

R
R∧ → S∧, and

can be realized as the pullback of the Mumford family

( ♥G, ♥λ, ♥i, ♥αHp ,
♥αord
Hp ) → ~Xord

ΦH,δH,σ
/ΓΦH,σ via a

canonically defined morphism Spf(R∧, I∧) → ~Xord
ΦH,δH,σ

/ΓΦH,σ.
Comparing this isomorphism with the original morphism

Spf(R∧, I∧) → ~Xord
ΦH,δH,σ

/ΓΦH,σ making the ordinary good

formal (ΦH, δH, σ)-model ( ♦G, ♦λ, ♦i, ♦αHp ,
♦αord
Hp ) → S∧

a pullback of the Mumford family, we see that they are
approximate in the sense that the induced morphisms from

Spec(R/I) to the σ-stratum of ~Xord
ΦH,δH,σ

/ΓΦH,σ (between the
supports of the formal schemes) coincide.

(4) The extended Kodaira–Spencer morphism (see [62, Def.
4.6.3.44]) for the above pullback (G, λ, i, αHp , α

ord
Hp )⊗

R
R∧ → S∧

induces (cf. the proof of [62, Thm. 4.6.3.43]) an isomorphism

KSG/S/~S0,rH
: KS(G,λ,i)/S,free

∼→ Ω̃1
S/~S0,rH

[d log∞],

where KS(G,λ,i)/S,free is defined as in Definition 3.4.3.1,

and where Ω̃1
S/~S0,rH

[d log∞] is defined by Ω̃1
S/~S0,rH

, the

coherent sheaf associated with the module of universal finite

differentials Ω̃1
R/OF0,(p)

[ζprH ] (see [55, Sec. 11–12]), and by the

normal crossings divisor of S = Spec(R) induced by the one

of ~Ξord
ΦH,δH

(σ)/ΓΦH,σ (as in (5) of Proposition 5.1.1.3, with

Ω̂1
S/~S0,rH

there replaced with Ω̃1
S/~S0,rH

here).

Proof. The proof of [62, Prop. 6.3.2.1] using Artin’s approxima-
tion theory (cf. [2, Thm. 1.10] and [62, Prop. 6.3.2.2]) and [28, Ch.
IV, Lem. 4.2] also works here. �
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Definition 5.1.2.2. (Compare with [62, Def. 6.3.2.5].) Let
(ΦH, δH) be a representative of an ordinary cusp label at level H
(see Definition 3.2.3.8), and let σ ⊂ P+

ΦH
be a nondegenerate

smooth rational polyhedral cone. An ordinary good algebraic
(ΦH, δH, σ)-model consists of the following data:

(1) An affine scheme S = Spec(Ralg), together with a stratification
of S with strata parameterized by ΓΦH,σ-orbits of faces of σ.

(2) A strata-preserving morphism S → ~Ξord
ΦH,δH

(σ)/ΓΦH,σ making
S an étale neighborhood of some geometric point x̄ of
~Ξord

ΦH,δH
(σ)/ΓΦH,σ at the σ-stratum.

Let R∧ be the completion of the strict local ring of
~Ξord

ΦH,δH
(σ)/ΓΦH,σ at x̄ with respect to the ideal defining

the σ-stratum. Then there is a “natural inclusion”
ınat : Ralg ↪→ R∧.

(3) A degenerating family (G, λ, i, αHp , α
ord
Hp ) of type ~Mord

H over S as

in Definition 3.4.2.10, together with an embedding ıalg : Ralg ↪→
R∧, such that we have the following:
(a) There are isomorphisms between the objects ΦH(G),

SΦ(G), and B(G) (see Construction 5.1.1.1), and the
pullbacks of the tautological objects ΦH, S, and B

over ~Ξord
ΦH,δH

(σ)/ΓΦH,σ (see Proposition 4.2.2.5) under

S → ~Ξord
ΦH,δH

(σ)/ΓΦH,σ.

(b) The embedding ıalg : Ralg ↪→ R∧ is close to the natural
inclusion ınat in the sense that the following two mor-

phisms Spf(R∧, I) → ~Xord
ΦH,δH,σ

/ΓΦH,σ coincide over the
σ-stratum:

(i) The pullback (G, λ, i, αHp , α
ord
Hp ) ⊗

Ralg,ınat
R∧ →

S∧ := Spec(R∧) defines an ordinary good formal
(ΦH, δH)-model by the isomorphisms in (3a)
above, and hence defines a canonical morphism

Spf(R∧, I)→ ~Xord
ΦH,δH,σ

/ΓΦH,σ.

(ii) The embedding ıalg : Ralg ↪→ R∧ defines a composi-
tion

S∧
Spec(ıalg)→ S → ~Ξord

ΦH,δH
(σ)/ΓΦH,σ,

inducing a morphism Spf(R∧, I)→ ~Xord
ΦH,δH,σ

/ΓΦH,σ.



5.1. APPROXIMATION AND GLUING ALONG THE ORDINARY LOCI 315

(c) The extended Kodaira–Spencer morphism (see [62, Def.
4.6.3.44]) induces an isomorphism

KSG/S/~S0,rH
: KS(G,λ,i)/S,free

∼→ Ω1
S/~S0,rH

[d log∞],

where KS(G,λ,i)/S,free is defined as in Definition 3.4.3.1.

Proposition 5.1.2.3. (Compare with [62, Prop. 6.3.2.6].)
There exist ordinary good algebraic (ΦH, δH, σ)-models such that

the morphisms from them to ~Ξord
ΦH,δH

(σ)/ΓΦH,σ cover the σ-stratum
~Ξord

ΦH,δH,σ
/ΓΦH,σ of ~Ξord

ΦH,δH
(σ)/ΓΦH,σ.

Proof. The proof of [62, Prop. 6.3.2.6] works verbatim here. �

Remark 5.1.2.4. (Compare with [62, Rem. 6.3.2.7].) What is im-
plicit behind Proposition 5.1.2.3 is that, although we need to approxi-
mate the (possibly infinitely many) good formal models at all geomet-
ric points of the σ-stratum, we only need finitely many good algebraic
models to cover it, by quasi-compactness of ~Ξord

ΦH,δH
(σ).

Remark 5.1.2.5. (Compare with [62, Rem. 6.3.2.8].) An ordi-
nary good algebraic (ΦH, δH, σ)-model is an ordinary good algebraic
(Φ′H, δ

′
H, σ

′)-model if and only if (ΦH, δH, σ) is equivalent to (Φ′H, δ
′
H, σ

′)
(see Remark 5.1.1.12).

Remark 5.1.2.6. (Compare with [62, Rem. 6.3.2.9].) For two
smooth rational polyhedral cones σ, σ′ ∈ P+

ΦH
such that σ ⊂ σ′, an

ordinary good algebraic (ΦH, δH, σ)-model is not necessarily an ordi-
nary good algebraic (ΦH, δH, σ

′)-model (see [62, Rem. 6.2.5.31] and
Remark 5.1.1.13).

Proposition 5.1.2.7. (Compare with [62, Prop.
6.3.2.10].) Suppose x̄ is any geometric point in the (τ
mod ΓΦH,H,σ)-stratum of an ordinary good algebraic (ΦH, δH, σ)-model

(G, λ, i, αHp , α
ord
Hp ) → Spec(Ralg) → ~Ξord

ΦH,δH
(σ)/ΓΦH,σ, where τ is

a face of σ. By pulling back to the completion R∧x̄ of the strict
local ring of Ralg at x̄ with respect to the ideal defining the (τ
mod ΓΦH,H,σ)-stratum, we obtain a good formal (Φ′H, δ

′
H, τ

′)-model,
where:

(1) Φ′H = (X ′, Y ′, φ′, ϕ′−2,H, ϕ
′
0,H) is the pullback of ΦH to x̄, which

comes equipped with a surjection (sX : X � X ′, sY : Y � Y ′)
(as in Definition 1.2.1.17) by definition of ΦH.

(2) δ′H is any splitting that makes (Φ′H, δ
′
H) a representative of a

cusp label. Then there is a surjection (ΦH, δH) � (Φ′H, δ
′
H)

(the actual choice of δ′H does not matter).
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(3) τ ′ ⊂ P+
Φ′H

is any nondegenerate smooth rational polyhedral

cone whose image under the embedding PΦ′H
↪→ PΦH induced

by the surjection (sX , sY ) is the translation of τ by an element
of ΓΦH.

(This is the so-called openness of versality.)

Proof. The proof of [62, Prop. 6.3.2.10] also works here (with the
ingredients there replaced with their analogues above). �

Remark 5.1.2.8. (Compare with [62, Rem. 6.3.2.15].)
Suppose (Φ′H, δ

′
H, σ

′) is a face of (ΦH, δH, σ), so that σ′

is identified with some face τ of σ under some surjection
(sX : X � X ′, sY : Y � Y ′) : (ΦH, δH) � (Φ′H, δ

′
H). Then there

always exists some ordinary good algebraic (ΦH, δH, σ)-model that
has a nonempty (τ mod ΓΦH,σ)-stratum on the base scheme.

For later reference, we shall also make the following definition:

Definition 5.1.2.9. (Compare with [62, Def. 6.3.2.16].) Let
(ΦH, δH) be a representative of an ordinary cusp label at level H (see
Definition 3.2.3.8), and let σ ⊂ P+

ΦH
be a nondegenerate smooth

rational polyhedral cone. Suppose (Φ′H, δ
′
H, σ

′) is a face of (ΦH, δH, σ)
such that the image of σ′ under the embedding PΦ′H

↪→ PΦH induced
by some surjection (sX : X � X ′, sY : Y � Y ′) : (ΦH, δH)� (Φ′H, δ

′
H)

is a ΓΦH-translation of a face τ of σ (which can be σ itself). Then

we shall call the (τ mod ΓΦH,σ)-stratum of ~Ξord
ΦH,δH

(σ)/ΓΦH,σ the
[(Φ′H, δ

′
H, τ

′)]-stratum. (In this case, [(Φ′H, δ
′
H, τ

′)] is a face of
[(ΦH, δH, σ)]; see Definition 1.2.2.19.) We shall also call the induced
(τ mod ΓΦH,σ)-strata of ordinary good formal (ΦH, δH, σ)-models
and ordinary good algebraic good (ΦH, δH, σ)-models (see Definitions
5.1.1.7 and 5.1.2.2) their [(Φ′H, δ

′
H, τ

′)]-strata.

5.1.3. Gluing in the Étale Topology.

Definition 5.1.3.1. (Compare with Definition 1.2.2.13.) A com-
patible choice of admissible smooth rational polyhedral cone

decomposition data for ~Mord
H is a complete set Σord = {ΣΦH}[(ΦH,δH)]

of compatible choices of ΣΦH as in Definition 1.2.2.13, but with ΣΦH

defined only for representatives (ZH,ΦH, δH) of ordinary cusp labels (see
Definition 3.2.3.8).

Proposition 5.1.3.2. (Compare with [62, Prop. 6.3.3.5] and
Proposition 1.2.2.17.) A compatible choice Σord of admissible

smooth rational polyhedral cone decomposition data for ~Mord
H exists.
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Moreover, each Σord for ~Mord
H extends to some Σ for MH (as in

Definition 1.2.2.13), and we may assume that Σ is a refinement of
any given collection Σ′ also inducing Σord. The same is true if we
allow varying levels or twists by Hecke actions (see [62, Def. 6.4.2.8
and 6.4.3.2]). We may also assume that Σord or Σ is invariant under
any choice of an open compact subgroup H′ of G(A∞) normalizing H.
Conversely, each Σ for MH induces (by restriction to ordinary cusp

labels) a valid Σord for ~Mord
H .

Proof. By considering only ordinary cusp labels, which makes
sense because ordinary cusp labels only surject to ordinary cusp la-
bels (by definition; see Definition 3.2.3.8), the same argument of the
proof of [62, Prop. 6.3.3.5] (by induction on the magnitude of cusp
labels) works here and shows that some Σord exists. That is, assertions
in Proposition 1.2.2.17 are true when we only consider the ordinary
cusps. The same argument also shows that, by starting with cone de-

compositions in each given Σord for ~Mord
H and by extending them to

cone decompositions at other cusp labels (which may surject to either
ordinary or nonordinary cusp labels), we can extend Σord to some Σ
for MH, which can be a refinement of any given collection Σ′. The last
statement follows immediately from the definitions. �

Definition 5.1.3.3. (Compare with Definition 1.2.2.14.) A com-
patible choice Σord = {ΣΦH}[(ΦH,δH)] of admissible smooth rational poly-

hedral cone decomposition data for ~Mord
H (see Definition 5.1.3.1) is pro-

jective if there is a collection polord = {polΦH}[(ΦH,δH)] of polarization
functions labeled by representatives (ΦH, δH) as in Definition 1.2.2.14,
but with (ΣΦH and) polΦH defined only for representatives (ZH,ΦH, δH)
of ordinary cusp labels (see Definition 3.2.3.8).

Proposition 5.1.3.4. (Compare with [62, Prop. 7.3.1.4] and
Propositions 1.2.2.17 and 5.1.3.2.) There exists a compatible choice
Σord = {ΣΦH}[(ΦH,δH)] of admissible smooth rational polyhedral

cone decomposition data for ~Mord
H (see Definition 5.1.3.1) that is

projective, carrying a compatible collection of polarization functions
polord as in Definition 5.1.3.3. Moreover, each such (Σord, polord)
extends to some (Σ, pol) for MH (as in Definition 1.2.2.14), and we
may assume that Σ is a refinement of any given collection Σ′ also
inducing Σord. The same is true if we allow varying levels or twists
by Hecke actions (see [62, Def. 6.4.2.8 and 6.4.3.2]). We may also
assume that Σord and polord, or Σ and pol, are invariant under any
choice of an open compact subgroup H′ of G(A∞) normalizing H.
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Conversely, each (Σ, pol) for MH induces (by restriction to ordinary

cusp labels) a valid (Σord, polord) for ~Mord
H .

Proof. As in the proof of Proposition 5.1.3.2, by considering only
ordinary cusp labels, the same argument of the proofs of [62, Prop.
6.3.3.5 and 7.3.1.4] (by induction on the magnitude of cusp labels)
works here and shows that some Σord and polord exist. The same argu-
ment also shows that, by starting with cone decompositions and polar-

ization functions in each given (Σord, polord) for ~Mord
H and by extending

them to ones at other cusp labels (which may surject to either ordi-
nary or nonordinary cusp labels), we can extend (Σord, polord) to some
(Σ, pol) for MH, where Σ can be a refinement of any given collection
Σ′. And we may assume that these satisfy the additional requirements
as in the proposition. The last statement follows immediately from the
definitions. �

Let Σord = {ΣΦH}[(ΦH,δH)] be any compatible choice of admissible

smooth rational polyhedral cone decomposition data for ~Mord
H . To con-

struct the desired ~Mord,tor
H,Σord as an algebraic stack, it suffices to give an

étale presentation ~Uord
H � ~Mord,tor

H such that ~Rord
H := ~Uord

H ×
~Mord,tor

H,Σord

~Uord
H is

étale over ~Uord
H via the two projections (see [62, Prop. A.7.1.1 and Def.

A.7.1.3]). Equivalently, it suffices to construct the ~Uord
H and ~Rord

H that

satisfy the required groupoid relations, which then realizes ~Mord,tor
H,Σord as

the quotient of ~Uord
H by ~Rord

H . Let us first explain our choices of ~Uord
H and

~Rord
H , then show that they have the desired properties.

Construction 5.1.3.5. (Compare with [62, Constr. 6.3.3.1 and

6.3.3.9].) We shall construct ~Uord
H and a stratification on it as follows:

(1) Choose a complete set of (mutually inequivalent) representa-
tives (ΦH, δH) of ordinary cusp labels at level H.

This is a finite set because there is already a finite set
of representatives for all cusp labels (including nonordinary
ones, when we constructed toroidal compactifications for MH;
see the explanation in [62, Constr. 6.3.3.1]).

(2) For each (ΦH, δH) chosen above, choose a complete set of (mu-
tually inequivalent) representatives σ in ΣΦH/ΓΦH , where ΣΦH

is the ΓΦH-admissible smooth rational polyhedral cone decom-
position chosen in Σord. This gives a complete set of represen-
tatives (ΦH, δH, σ) of equivalence classes [(ΦH, δH, σ)] defined
in Definition 1.2.2.10 such that the cusp label [(ΦH, δH)] is
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ordinary. This is a finite set by the ΓΦH-admissibility (see
Definition 1.2.2.4) of each ΣΦH .

(3) For each representative (ΦH, δH, σ) above that satisfies
moreover σ ⊂ P+

ΦH
, choose finitely many ordinary good

algebraic (ΦH, δH, σ)-models Spec(Ralg) (see Definition
5.1.2.2) such that the corresponding étale morphisms from

the various Spec(Ralg/I)’s to the σ-stratum ~Ξord
ΦH,δH,σ

/ΓΦH,σ of
~Ξord

ΦH,δH
(σ)/ΓΦH,σ, where I denotes the ideal of Ralg defining

the σ-stratum of Spec(Ralg), cover the whole σ-stratum (see
Proposition 5.1.2.3 and Remark 5.1.2.4).

This is possible by the quasi-compactness of
~Ξord

ΦH,δH,σ
/ΓΦH,σ, because ΓΦH,σ is finite (by [62, Rem. 6.2.5.26

and Lem. 6.2.5.27], because the cone decomposition ΣΦH

is chosen such that [62, Cond. 6.2.5.25] is satisfied), and

because ~Ξord
ΦH,δH,σ

is a torus torsor over an abelian scheme

torsor over a finite étale cover of the algebraic stack ~Mord,ZH
H

separated and of finite type over ~S0,rH = Spec(OF0,(p)[ζprH ])
(see Section 4.2 and Theorem 3.4.2.5).

(4) Let us form the scheme

~Uord
H =

 disjoint union of the (finitely many)
ordinary good algebraic (ΦH, δH, σ)-models

Spec(Ralg) chosen above

 ,

(smooth over ~S0,rH = Spec(OF0,(p)[ζprH ])) which comes
equipped with a natural stratification labeled as follows:

On an ordinary good algebraic (ΦH, δH, σ)-model

Spec(Ralg) used in the construction of ~Uord
H above, its

stratification inherited from ~Ξord
ΦH,δH

(σ)/ΓΦH,σ can be relabeled
using equivalence classes [(Φ′H, δ

′
H, τ

′)] (see Definition
1.2.2.10) following the recipe in Definition 5.1.2.9, which are
faces of [(ΦH, δH, σ)] (see Definition 1.2.2.19). Then we define

the stratification on the disjoint union ~Uord
H to be induced by

those on the ordinary good algebraic models.
By the compatibility of the choice of Σord (see Definitions

1.2.2.13 and 5.1.3.1), we know that in each representative
(Φ′H, δ

′
H, τ

′) of each face [(Φ′H, δ
′
H, τ

′)] of [(ΦH, δH, σ)], the cone
τ ′ is in the cone decomposition ΣΦ′H

we have in Σord. Hence,
we may label all the strata by the equivalence classes of triples

we have taken in the construction of ~Uord
H . For simplicity, we
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call the [(0, 0, {0})]-stratum the [0]-stratum of ~Uord
H , which we

denote by ~U
ord,[0]
H .

(This finishes Construction 5.1.3.5.)

The ordinary good algebraic models (G, λ, i, αHp , α
ord
Hp ) over the

various Spec(Ralg)’s define (by taking union) a degenerating family

(G, λ, i, αHp , α
ord
Hp ) of type ~Mord

H over ~Uord
H as in Definition 3.4.2.10, whose

restriction to the [0]-stratum ~U
ord,[0]
H is a tuple (G[0], λ[0], i[0], αHp , α

ord
Hp )

parameterized by ~Mord
H (see Convention 3.4.2.9). This determines a

canonical morphism ~U
ord,[0]
H → ~Mord

H . This morphism is étale because
~U

ord,[0]
H is locally of finite presentation, and the morphism ~U

ord,[0]
H → ~Mord

H
is formally étale at every geometric point of ~U

ord,[0]
H by the calculation

of Kodaira–Spencer morphisms (using (3c) of Definition 5.1.2.2, [62,
Thm. 4.6.3.16], and Proposition 3.4.3.3). As a result, the morphism
~U

ord,[0]
H → ~Mord

H (surjective by definition) defines an étale presentation

of ~Mord
H . This identifies ~Mord

H with the quotient of ~U
ord,[0]
H by the étale

groupoid ~R
ord,[0]
H over ~U

ord,[0]
H defined by the representable functor

~R
ord,[0]
H := Isom~U

ord,[0]
H ×

~S0,rH

~U
ord,[0]
H

( pr∗1(G[0], λ[0], i[0], αHp , α
ord
Hp ),

pr∗2(G[0], λ[0], i[0], αHp , α
ord
Hp )),

(5.1.3.6)

where pr1, pr2 : ~U
ord,[0]
H ×

~S0,rH

~U
ord,[0]
H → ~U

ord,[0]
H denote, respectively, the

two projections.

Proposition 5.1.3.7. (Compare with [62, Prop. 6.3.3.11].)
Suppose R is a noetherian normal complete local domain with
fraction field K and algebraically closed residue field k. Assume that

Spec(R) is flat over ~S0,rH, and that we have a degenerating family

(G‡, λ‡, i‡, α‡Hp , α
ord,‡
Hp ) of type ~Mord

H over Spec(R) as in Definition
3.4.2.10. Then the following conditions are equivalent:

(1) There exists a morphism Spec(R) → ~Uord
H sending the

generic point Spec(K) to the [0]-stratum such that

(G‡, λ‡, i‡, α‡Hp , α
ord,‡
Hp ) → Spec(R) is the pullback of

(G, λ, i, αHp , α
ord
Hp )→ ~Uord

H .

(2) The degenerating family (G‡, λ‡, i‡, α‡Hp , α
ord,‡
Hp ) → Spec(R)

is the pullback of the Mumford family

( ♥G, ♥λ, ♥i, ♥αHp ,
♥αord
Hp ) → ~Xord

ΦH,δH,σ
/ΓΦH,σ via a

morphism Spf(R) → ~Xord
ΦH,δH,σ

/ΓΦH,σ, or equivalently a
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morphism Spec(R) → ~Ξord
ΦH,δH

(σ)/ΓΦH,σ, for some (ΦH, δH, σ)
(which can be assumed to be a triple used in the construction

of ~Uord
H ).

(3) The degenerating family (G‡, λ‡, i‡, α‡Hp , α
ord,‡
Hp ) over Spec(R)

defines an object of the essential image of DEGPEL,Mord
H

(R)→
DEGPEL,

...
M

ord
H

(R), which corresponds to a tuple

(B‡, λB‡ , iB‡ , X
‡, Y ‡, φ‡, c‡, c∨,‡, τ ‡, [α\,ord,‡

H ])

in the essential image of DDPEL,Mord
H

(R) → DDPEL,
...
M

ord
H

(R)

under (4.1.6.4) in Theorem 4.1.6.2. Then we have a fully

symplectic-liftable admissible filtration Z
‡
H determined by

[α\,ord,‡
H ], which is compatible with the filtration D as in

Definition 3.2.3.1. Moreover, the étale sheaves X‡ and Y ‡ are
necessarily constant, because the base scheme R is strict local.
Hence, it makes sense to say that we also have a uniquely
determined torus argument Φ‡H at level H for Z

‡
H.

On the other hand, we have objects ΦH(G‡), SΦH(G‡), and

B(G‡), which define objects Φ‡H, SΦ‡H
, and in particular, B‡ :

SΦ‡H
→ Inv(R) over the special fiber.

If υ : K× → Z is any discrete valuation defined by a height-
one prime of R, then υ◦B‡ : SΦ‡H

→ Z makes sense and defines

an element of S∨
Φ‡H

. Then the condition is that, for some (and

hence every) choice of δ‡H making (Z‡H,Φ
‡
H, δ

‡
H) a representative

of an ordinary cusp label (see Definition 3.2.3.8), there is a
cone σ‡ in the cone decomposition ΣΦ‡H

of PΦ‡H
(given by the

choice of Σord; cf. Definition 5.1.3.1) such that the closure σ‡

of σ‡ in (SΦ‡H
)∨R contains all υ ◦B‡ obtained in this way.

Proof. The implication from (1) to (2) is clear, as the morphism

from Spec(R) to ~Uord
H necessarily factors through the completion of

some strict local ring of ~Uord
H .

The implication from (2) to (3) is analogous to Proposition 5.1.1.3.
For the implication from (3) to (1), suppose there exists a cone σ‡

in the cone decomposition ΣΦ‡H
of PΦ‡H

such that σ‡ contains all the

υ ◦ B‡’s. Up to replacing σ‡ with another cone in ΣΦ‡H
, let us assume

that σ‡ is a minimal one. Then some linear combination with positive
coefficients of the υ ◦ B‡’s lie in σ‡, the interior of σ‡. On the other
hand, by the positivity condition of τ ‡, such a linear combination with
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positive coefficients must be positive definite on Y ‡. Hence, σ‡ ⊂ P+

Φ‡H
.

Then there exists a unique triple (ΦH, δH, σ) chosen in the construction
~Uord
H (see Construction 5.1.3.5) such that (Φ‡H, δ

‡
H, σ

‡) and (ΦH, δH, σ)
are equivalent (see Definition 1.2.2.10).

Since ~Mord,ZH
H is finite étale over the base change ~Mord

Hh,rH of

~Mord
Hh (defined by MHh and

...
M

ord

Hh as in Theorem 3.4.2.5) to ~S0,rH ,

since B‡ is defined over R, and since R is noetherian, normal,

and flat over ~S0,rH , as pointed out in Remark 3.4.2.12, the tuple

(B‡, λB‡ , iB‡ , ϕ
‡
−1,Hp , ϕ

ord,‡
−1,Hp) and the ΓΦ‡H

-orbit of (ϕord,‡
−2,H, ϕ

ord,‡
0,H ) define

a morphism Spec(R) → ~Mord,ZH
H as soon as its restriction to Spec(K)

defines a morphism Spec(K) → ~Mord,ZH
H . By Proposition 4.2.1.46, the

degeneration datum (without the positivity condition) associated

with (G‡, λ‡, i‡, α‡Hp , α
ord,‡
Hp ) → Spec(R) determines (by the universal

properties of ~Ξord
ΦH,δH

and ~Cord
ΦH,δH

) a morphism Spec(K) → ~Ξord
ΦH,δH

,
whose composition with the (relatively affine) structural morphism
~Ξord

ΦH,δH
→ ~Cord

ΦH,δH
extends to a morphism Spec(R) → ~Cord

ΦH,δH
. By

Proposition 4.2.2.8 and the assumption on the υ ◦B‡’s, the morphism
Spec(K) → ~Ξord

ΦH,δH
extends to a morphism Spec(R) → ~Ξord

ΦH,δH
(σ),

which identifies B(G‡) with the pullback of B under an identification
of ΦH(G‡) with the pullback of ΦH. The ambiguity of the
identifications can be removed (or rather intrinsically incorporated) if

we form the quotient ~Ξord
ΦH,δH

(σ)/ΓΦH,σ. Hence, we have a uniquely

determined strata-preserving morphism Spec(R) → ~Ξord
ΦH,δH

(σ)/ΓΦH,σ,

which is independent of the identification of Φ‡H with ΦH we have

chosen. This determines a morphism Spf(R) → ~Xord
ΦH,δH,σ

/ΓΦH,σ as in
(2).

Let us denote the image of the closed point of Spec(R) by x,
which necessarily lies in the σ-stratum (thanks to the minimality
of the choice of σ‡). By construction, there is some ordinary good
algebraic (ΦH, δH, σ)-model (G, λ, i, αHp , αHp) → Spec(Ralg) used

in the construction of ~Uord
H such that the image of the structural

morphism Spec(Ralg) → ~Ξord
ΦH,δH

(σ)/ΓΦH,σ contains x. Let Ralg
∧

be the completion of Ralg with respect to the ideal defining the
σ-stratum of Spec(Ralg), and let I∧ be the induced ideal of definition.

Then the étale morphism Spec(Ralg) → ~Ξord
ΦH,δH

(σ)/ΓΦH,σ induces

a formally étale morphism Spf(Ralg
∧, I∧) → ~Xord

ΦH,δH,σ
/ΓΦH,σ.

By formal étaleness, the morphism Spf(R) → ~Xord
ΦH,δH,σ

/ΓΦH,σ
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can be uniquely lifted to a morphism Spf(R) → Spf(Ralg
∧, I∧).

The underlying morphism Spec(R) → Spec(Ralg
∧) identifies the

degeneration datum associated with (G‡, λ‡, i‡, α‡Hp , α
ord,‡
Hp )→ Spec(R)

with the degeneration datum associated with the pullback
of (G, λ, i, αHp , α

ord
Hp ) ⊗

Ralg

Ralg
∧ → Spec(Ralg

∧). Hence, the

morphism Spec(R) → Spec(Ralg
∧) → Spec(Ralg) identifies

(G‡, λ‡, i‡, α‡Hp , α
ord,‡
Hp ) → Spec(R) with the pullback of

(G, λ, i, αHp , α
ord
Hp )→ Spec(Ralg), as desired. �

The key to the gluing process is the following:

Proposition 5.1.3.8. (Compare with [62, Prop. 6.3.3.13].) The

two projections from ~Rord
H := ~Uord

H ×
~Mord,tor

H,Σord

~Uord
H to ~Uord

H are étale.

Proof. The same argument of the proof of [62, Prop. 6.3.3.13]
works here, with good formal and algebraic models replaced with or-
dinary good formal and algebraic models, with algebraic stacks such
as ΞΦH,δH(σ)/ΓΦH,σ replaced with ~Ξord

ΦH,δH
(σ)/ΓΦH,σ, with the open-

ness of versality provided by Proposition 5.1.2.7 (instead of [62, Prop.
6.3.2.10]), and with the theory of degeneration provided by Theorems
4.1.5.27 and 4.1.6.2 (instead of [62, Thm. 5.3.1.19]). �

Corollary 5.1.3.9. (Compare with [62, Cor. 6.3.3.14].) The

scheme ~Rord
H over ~Uord

H defines an étale groupoid space (see [62, Def.

A.5.1.2]), which extends the étale groupoid space ~R
ord,[0]
H over ~U

ord,[0]
H .

The scheme ~Rord
H is finite over ~Uord

H ×
~S0,rH

~Uord
H , and hence (by [62,

Lem. A.7.2.9]) ~Uord
H /~Rord

H defines an algebraic stack separated over
~S0,rH = Spec(OF0,(p)[ζprH ]).

Proof. The same argument of the proof of [62, Cor. 6.3.3.14]

works here, except that for the finiteness of ~R
ord,[0]
H over ~Uord

H ×
~S0,rH

~Uord
H we

need not only the property of the Isom functor of abelian schemes as in
[62, Sec. 2.3.4, Cond. 2], but also the fact that the abelian schemes are
ordinary (so that the ordinary level structures are defined by isomor-
phisms between finite étale group schemes, or rather their duals). �

Definition 5.1.3.10. (Compare with [62, Def. 6.3.3.15].) The sepa-

rated algebraic stack ~Uord
H /~Rord

H (see [62, Prop. A.7.1.1 and Def. A.7.1.3])

will be denoted by ~Mord,tor
H (or ~Mord,tor

H,Σord, to emphasize its dependence on

the compatible choice Σord = {ΣΦH}[(ΦH,δH)] of cone decompositions).
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Corollary 5.1.3.11. (Compare with [62, Cor. 6.3.3.16].) Both

the degenerating family (G, λ, i, αHp , α
ord
Hp )→ ~Uord

H and the stratification

over ~Uord
H (see Construction 5.1.3.5) descend to ~Mord,tor

H,Σord, which we again

denote by the same notation. This realizes ~Mord
H as the [0]-stratum in

the stratification, and identifies the restriction of (G, λ, i, αHp , α
ord
Hp ) to

~Mord
H with the tautological tuple over ~Mord

H .

Proof. The same argument of the proof of [62, Cor. 6.3.3.16]
works here. �

Remark 5.1.3.12. (Compare with [62, Prop. 6.3.3.17].) Since ~Uord
H

is smooth and of finite type over ~S0,rH = Spec(OF0,(p)[ζprH ]), by Propo-

sition 5.1.3.8 and Corollary 5.1.3.9, the algebraic stack ~Mord,tor
H,Σord is sep-

arated, smooth, and of finite type over ~S0,rH . But ~Mord,tor
H,Σord is almost

never proper over ~S0,rH . (See Proposition 6.3.2.2 below.)

5.2. Partial Toroidal Compactifications of Ordinary Loci

In this section, let H, Hp, Hp, and r be as in beginning of Section
3.3.5, and let rH be as in Definition 3.4.2.1.

5.2.1. Main Statements. The partial toroidal compactifications

of ~Mord
H can be described as follows:

Theorem 5.2.1.1. (Compare with [62, Thm. 6.4.1.1] and Theo-
rem 1.3.1.3.) With settings as above, to each compatible choice Σord =
{ΣΦH}[(ΦH,δH)] of admissible smooth rational polyhedral cone decompo-
sition data as in Definition 5.1.3.1, there is associated an algebraic

stack ~Mord,tor
H = ~Mord,tor

H,Σord separated, smooth, and of finite type over

~S0,rH = Spec(OF0,(p)[ζprH ]) (see Definition 2.2.3.3), which is an alge-
braic space when Hp is neat (see [89, 0.6] or [62, Def. 1.4.1.8]), con-

taining ~Mord
H as an open fiberwise dense subalgebraic stack, together with

a degenerating family (G, λ, i, αHp , α
ord
Hp ) of type ~Mord

H over ~Mord,tor
H (as

in Definition 3.4.2.10) such that we have the following:

(1) The restriction (G~Mord
H
, λ~Mord

H
, i~Mord

H
, αHp , α

ord
Hp ) of the degenerat-

ing family (G, λ, i, αHp , α
ord
Hp ) to ~Mord

H is the tautological tuple

over ~Mord
H (see Convention 3.4.2.9).

(2) ~Mord,tor
H has a stratification by locally closed subalgebraic stacks

~Mord,tor
H =

∐
[(ΦH,δH,σ)]

~Zord
[(ΦH,δH,σ)],
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with [(ΦH, δH, σ)] running through a complete set of equiva-
lence classes of (ΦH, δH, σ) (as in Definition 1.2.2.10) with
[(ΦH, δH)] an ordinary cusp label (as in Definition 3.2.3.8) and
with σ ⊂ P+

ΦH
and σ ∈ ΣΦH ∈ Σord. (Here ZH is suppressed in

the notation by our convention. The notation “
∐

” only means
a set-theoretic disjoint union. The algebro-geometric structure

is still that of ~Mord,tor
H .)

In this stratification, the [(Φ′H, δ
′
H, σ

′)]-stratum ~Zord
[(Φ′H,δ

′
H,σ
′)]

lies in the closure of the [(ΦH, δH, σ)]-stratum ~Zord
[(ΦH,δH,σ)] if and

only if [(ΦH, δH, σ)] is a face of [(Φ′H, δ
′
H, σ

′)] as in Definition
1.2.2.19 (see also Remark 5.1.2.8). The analogous assertion

holds after pulled back to fibers over ~S0,rH.

The [(ΦH, δH, σ)]-stratum ~Zord
[(ΦH,δH,σ)] is smooth over

~S0,rH and isomorphic to the support of the formal algebraic

stack ~Xord
ΦH,δH,σ

/ΓΦH,σ for every representative (ΦH, δH, σ)

of [(ΦH, δH, σ)], where the formal algebraic stack ~Xord
ΦH,δH,σ

(before quotient by ΓΦH,σ, the subgroup of ΓΦH formed by
elements mapping σ to itself; see [62, Def. 6.2.5.23]) admits a
canonical structure as the completion of an affine toroidal
embedding ~Ξord

ΦH,δH
(σ) (along its σ-stratum ~Ξord

ΦH,δH,σ
) of a

torus torsor ~Ξord
ΦH,δH

over an abelian scheme torsor ~Cord
ΦH,δH

over a finite étale cover ~Mord,ΦH
H of the regular algebraic stack

~Mord,ZH
H separated, smooth, and of finite type over ~S0,rH (as

in Propositions 4.2.1.29, 4.2.1.30, and 4.2.1.37). (Note that

ZH and the isomorphism class of ~Mord,ZH
H depend only on the

class [(ΦH, δH, σ)], but not on the choice of the representative
(ΦH, δH, σ).)

In particular, ~Mord
H is an open fiberwise dense stratum in

this stratification.

(3) The complement of ~Mord
H in ~Mord,tor

H (with its reduced structure)

is a relative Cartier divisor ~Dord
∞,H with normal crossings, such

that each irreducible component of a stratum of ~Mord,tor
H − ~Mord

H
is open dense in an intersection of irreducible components of
~Dord
∞,H (including possible self-intersections). When Hp is neat,

the irreducible components of ~Dord
∞,H have no self-intersections

(cf. Condition 1.2.2.9, [62, Rem. 6.2.5.26], and [28, Ch. IV,
Rem. 5.8(a)]).
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(4) The extended Kodaira–Spencer morphism [62, Def. 4.6.3.44]

for G→ ~Mord,tor
H induces an isomorphism

KSG/~Mord,tor
H /~S0,rH

: KS(G,λ,i)/~Mord,tor
H ,free

∼→ Ω1
~Mord,tor
H /~S0,rH

[d log∞],

(see Definition 3.4.3.1). Here the sheaf Ω1
~Mord,tor
H /~S0,rH

[d log∞]

is the sheaf of modules of log 1-differentials on ~Mord,tor
H over

~S0,rH, with respect to the relative Cartier divisor ~Dord
∞,H with

normal crossings.
(5) For every representative (ΦH, δH, σ) of [(ΦH, δH, σ)], the

formal completion (~Mord,tor
H )∧~Zord

[(ΦH,δH,σ)]

of ~Mord,tor
H along the

[(ΦH, δH, σ)]-stratum ~Zord
[(ΦH,δH,σ)] is canonically isomorphic to

the formal algebraic stack ~Xord
ΦH,δH,σ

/ΓΦH,σ.
This isomorphism respects stratifications in the sense that,

given any étale (i.e., formally étale and of finite type; see [35,

I, 10.13.3]) morphism Spf(R, I) → ~Xord
ΦH,δH,σ

/ΓΦH,σ inducing

a morphism Spec(R) → ~Ξord
ΦH,δH

(σ)/ΓΦH,σ, the stratification

of Spec(R) inherited from ~Ξord
ΦH,δH

(σ)/ΓΦH,σ (see Proposition
5.1.1.3 and Definition 5.1.2.9) makes the induced morphism

Spec(R)→ ~Mord,tor
H a strata-preserving morphism.

The pullback of the degenerating family (G, λ, i, αHp , α
ord
Hp )

over ~Mord,tor
H to (~Mord,tor

H )∧~Zord
[(ΦH,δH,σ)]

is the Mumford family

( ♥G, ♥λ, ♥i, ♥αHp ,
♥αord
Hp ) over ~Xord

ΦH,δH,σ
/ΓΦH,σ (see

Definition 4.2.2.21) after we identify the bases using the
isomorphism. (Here both the pullback of (G, λ, i, αHp , α

ord
Hp )

and the Mumford family ( ♥G, ♥λ, ♥i, ♥αHp ,
♥αord
Hp ) are

considered as relative schemes with additional structures; cf.
[37].)

(6) Let S be an irreducible noetherian normal scheme flat

over ~S0,rH, and suppose that we have a degenerating family

(G†, λ†, i†, α†Hp , α
ord,†
Hp ) of type ~Mord

H over S as in Definition

3.4.2.10. Then (G†, λ†, i†, α†Hp , α
ord,†
Hp ) → S is the pullback

of (G, λ, i, αHp , α
ord
Hp ) → ~Mord,tor

H via a (necessarily unique)

morphism S → ~Mord,tor
H (over ~Sord

0 ) if and only if the following
condition is satisfied at each geometric point s̄ of S:
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Consider any dominant morphism Spec(V ) → S centered
at s̄, where V is a complete discrete valuation ring with frac-
tion field K, algebraically closed residue field k, and discrete
valuation υ. Let (G‡, λ‡, i‡, α‡Hp , α

ord,‡
Hp )→ Spec(V ) be the pull-

back of (G†, λ†, i†, α†Hp , α
ord,†
Hp ) → S. This pullback family de-

fines an object in the essential image of DEGPEL,Mord
H

(V ) →
DEGPEL,

...
M

ord
H

(V ), which corresponds to a tuple

(B‡, λB‡ , iB‡ , X
‡, Y ‡, φ‡, c‡, c∨,‡, τ ‡, [α\,ord,‡

H ])

in the essential image of DDPEL,Mord
H

(V ) → DDPEL,
...
M

ord
H

(V )

under (4.1.6.4) in Theorem 4.1.6.2. Then we have a fully

symplectic-liftable admissible filtration Z
‡
H determined

by [α\,ord,‡
H ]. Moreover, the étale sheaves X‡ and Y ‡ are

necessarily constant, because the base ring R is strict local.
Hence, it makes sense to say we also have a uniquely
determined torus argument Φ‡H at level H for Z

‡
H.

On the other hand, we have objects ΦH(G‡), SΦH(G‡), and

B(G‡) (see [62, Constr. 6.3.1.1]), which define objects Φ‡H,
SΦ‡H

, and in particular B‡ : SΦ‡H
→ Inv(V ) over the special

fiber. Then υ ◦ B‡ : SΦ‡H
→ Z defines an element of S∨

Φ‡H
,

where υ : Inv(V ) → Z is the homomorphism induced by the
discrete valuation of V .

Then the condition is that, for each Spec(V )→ S as above

(centered at s̄), and for some (and hence every) choice of δ‡H,
there is a cone σ‡ in the cone decomposition ΣΦ‡H

of PΦ‡H
(given

by the choice of Σord; cf. Definition 5.1.3.1) such that σ‡ con-
tains all υ ◦B‡ obtained in this way.

(7) If Σord extends to a compatible choice Σ of admissible smooth
rational polyhedral cone decomposition data for MH (cf. Propo-
sition 5.1.3.2), then there is a canonical open immersion

(5.2.1.2) ~Mord,tor
H,Σord ⊗

Z
Q ↪→ Mtor

H,Σ,rH

(see Definition 2.2.3.4) over S0,rH extending the canonical
isomorphism Mord

H
∼= MH,rH over S0,rH (see the definition

of Mord
H in Theorem 3.4.2.5), such that the pullback of

(G, λ, i, αHp , α
ord
Hp ) → ~Mord,tor

H is canonically determined by

the pullback of (G, λ, i, αH) → Mtor
H,Σ (see Theorem 1.3.1.3)

in the sense that the triples (G, λ, i) are isomorphic over
S0,rH, and in the sense that the pullback of αH determines
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the pullback of (αHp , α
ord
Hp )⊗

Z
Q as in Proposition 3.3.5.1. The

open immersion (5.2.1.2) induces isomorphisms

(5.2.1.3) ~Zord
[(ΦH,δH,σ)]⊗

Z
Q ∼→ Z[(ΦH,δH,σ)],rH

(see Definition 2.2.3.4) when the cusp label [(ΦH, δH)] is ordi-
nary; otherwise, the pullback of Z[(ΦH,δH,σ)],rH under (5.2.1.2)
is empty.

Remark 5.2.1.4. Although statement (6) resembles a valuative cri-

terion, it does not imply that ~Mord,tor
H is proper as in the proof of [62,

Prop. 6.3.3.17], because the condition of being a degenerating family of

type ~Mord
H requires the condition (5) in Definition 3.4.2.10, which does

not hold in general (cf. Remark 3.4.2.11).

Proof of Theorem 5.2.1.1. The proof is almost identical to that
of [62, Thm. 6.4.1.1]. However, since this is one of the most important
theorems in this work, we repeat the arguments here for the sake of
certainty.

Let ~Uord
H and ~Rord

H be constructed (noncanonically) as in Section

5.1.3, and let us take the separated algebraic stack ~Mord,tor
H = ~Mord,tor

H,Σord

to be the groupoid quotient ~Uord
H /~Rord

H (see [62, Prop. A.7.1.1 and Def.
A.7.1.3]) as in Definition 5.1.3.10.

Statements (1) and (2) follow from Corollaries 5.1.3.9 and 5.1.3.11.
Statements (3) and (4) are étale local in nature, and hence are inherited

from the étale presentation ~Uord
H of ~Mord,tor

H (with descent data over ~Rord
H )

by construction.
Let us prove statement (6) by explaining why it is essentially a

restatement of Proposition 5.1.3.7. Suppose we have a degenerating
family (G†, λ†, i†, α†Hp , α

ord,†
Hp ) → S as in the statement. Then there is

an open dense subscheme S1 of S such that the restriction of the fam-

ily defines an object parameterized by ~Mord
H (cf. Convention 3.4.2.9),

together with a morphism S1 → ~Mord
H . The question is whether this

morphism extends to a morphism S → ~Mord,tor
H . By [92, IX, 1.4],

[28, Ch. I, Prop. 2.7], or [62, Prop. 3.3.1.5], if this is the case, then

(G†, λ†, i†, α†Hp , α
ord,†
Hp ) → S is isomorphic to the pullback of the tau-

tological tuple (G, λ, i, αHp , α
ord
Hp )→ ~Mord,tor

H under this morphism, and
the condition in the statement certainly holds. Conversely, assume
that the condition holds. Since all objects involved are locally of finite
presentation, we can apply [62, Thm. 1.3.1.3] and assume that S is

excellent. Since extendability is a local question (because ~Mord,tor
H is
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separated over ~S0,rH), we can work with ~Uord
H and apply Proposition

5.1.3.7 (to pullbacks of (G†, λ†, i†, α†Hp , α
ord,†
Hp ) → S to the completions

of local rings of S).
Next, let us prove statement (5). By statement (6) we have

just proved, we know that there is a unique morphism from
~Xord

ΦH,δH,σ
/ΓΦH,σ to ~Mord,tor

H . (More precisely, we apply statement

(6) to an étale covering of ~Xord
ΦH,δH,σ

/ΓΦH,σ by affine formal
schemes with descent data.) This induces a canonical morphism
~Xord

ΦH,δH,σ
/ΓΦH,σ → (~Mord,tor

H )∧~Zord
[(ΦH,δH,σ)]

. For an inverse morphism,

note that by construction there is a canonical morphism from

the formal completion of ~Uord
H along its [(ΦH, δH, σ)]-stratum to

~Xord
ΦH,δH,σ

/ΓΦH,σ. Since this canonical morphism is determined by the
degeneration data associated with the pullback of the tautological
tuple (G, λ, i, αHp , α

ord
Hp ) to the completion, and since the two pullbacks

of the tautological tuple to ~Rord
H are tautologically isomorphic by

definition of ~Rord
H , we see that the morphism from the completion of

~Uord
H along its [(ΦH, δH, σ)]-stratum to ~Xord

ΦH,δH,σ
/ΓΦH,σ descends to a

morphism (~Mord,tor
H )∧~Zord

[(ΦH,δH,σ)]

→ ~Xord
ΦH,δH,σ

/ΓΦH,σ. Then it follows from

the constructions that these two canonical morphisms are inverses of
each other.

Now, let us prove statement (7). In every step of our construction

of ~Mord,tor
H , the characteristic zero fiber of the boundary charts we have

used are the pullback from S0 = Spec(F0) to S0,rH = Spec(F0[ζprH ]) of
the corresponding boundary charts of Mtor

H,Σ, and the gluing process for
~Mord,tor
H are also compatible with the corresponding gluing process for

Mtor
H,Σ. (See Sections 4.2 and 5.1.) The only difference is that we only

consider ordinary cusp labels in the construction for ~Mord,tor
H , while we

need to consider all cusp labels in the construction for Mtor
H,Σ. Hence,

we have a canonical open immersion ~Mord,tor
H,Σord ⊗

Z
Q ↪→ Mtor

H,Σ,rH respect-

ing their natural stratifications. (Without matching the stratifications
explicitly, it still follows from (6) of Theorem 1.3.1.3 and statement (6)

of this theorem that ~Mord,tor
H,Σord ⊗

Z
Q is canonically isomorphic to the open

subalgebraic stack of Mtor
H,Σ,rH formed by its strata associated with or-

dinary cusp labels (with cones), because they enjoy the same universal
properties. However, the proofs of these universal properties are also
based on the corresponding boundary chart constructions and gluing
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processes, from which we can directly deduce the full statement we
need.)

Finally, suppose that Hp is neat. Then H = HpHp is neat, and
~Xord

ΦH,δH,σ
is a formal algebraic space by [62, Lem. 6.2.5.27] because we

have assumed in Definition 5.1.3.1 that each cone decomposition ΣΦH in
Σord satisfies Condition 1.2.2.9. By statements (2) and (5), it follows

that points of ~Mord,tor
H have no nontrivial automorphisms. Since the

diagonal 1-morphism ∆~Mord,tor
H

: ~Mord,tor
H → ~Mord,tor

H ×
~S0,rH

~Mord,tor
H is finite

(by Corollary 5.1.3.9), it must be a closed immersion. Hence, ~Mord,tor
H

is an algebraic space when Hp is neat, as desired. �

Remark 5.2.1.5. (Compare with Remarks 1.1.2.1, 1.3.1.4, and
3.4.2.8.) Suppose we have chosen another lattice L′ in L⊗

Z
Q which

nevertheless satisfies L⊗
Z
Z(p) = L′⊗

Z
Z(p), so that ~Mord

H carries the

corresponding abelian scheme A′ (with additional structures) as

in Remark 3.4.2.8, with a Z×(p)-isogeny f : A → A′. Since ~Mord,tor
H,Σord

is noetherian normal, since the tautological semi-abelian scheme

G → ~Mord,tor
H,Σord is ordinary, and since A = G~Mord

H
, by Lemma 3.1.3.2

and by [92, IX, 1.4], [28, Ch. I, Prop. 2.7], or [62, Prop. 3.3.1.5], f
extends to a Z×(p)-isogeny f ext : G → G′, and the additional structures

λ, i, αHp , and αord
Hp of G naturally induce the additional structures

λ′, i′, α′Hp , and αord,′
Hp of G′, which extend those of A′. Hence, the

Z×(p)-isogeny class of G over ~Mord,tor
H,Σord extends that of A over ~Mord

H , and

carries well-defined additional structures. (It can be verified that

(G′, λ′, i′, α′Hp , α
ord,′
Hp ) → ~Mord,tor

H,Σord satisfies the corresponding universal

property defined by L′ and the corresponding collection of cone
decompositions as in (6) of Theorem 5.2.1.1, so that the theory does
not really depend on the choice of L within L⊗

Z
Z(p). Then we can

define a collection {~Mord,tor
H,Σord}H indexed by H as in Remark 3.4.2.8 and

collections Σord for the corresponding ~Mord
H , carrying a Hecke action

as in Proposition 5.2.2.2 below). However, as mentioned in Remark
3.4.2.8, modifying the choice of L⊗

Z
Zp and its filtration D will make

the theory much more complicated.

5.2.2. Hecke Actions.

Definition 5.2.2.1. (Compare with [62, Def. 6.4.3.3].) Suppose
we have an element g = (g0, gp) ∈ G(A∞,p)×Pord

D (Qp) ⊂ G(A∞)
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(see Definition 3.2.2.7), and suppose we have two open compact sub-

groups H and H′ of G(Ẑ) such that H′ ⊂ gHg−1, and such that H
and H′ are of standard form as in Definition 3.2.2.9. Suppose more-
over that gp satisfies the conditions given in Section 3.3.4, so that

~[g]
ord

: ~Mord
H′ → ~Mord

H is defined (see Proposition 3.4.4.1). Let Σord =
{ΣΦH}[(ΦH,δH)] and Σord,′ = {Σ′Φ′H′}[(Φ′H′ ,δ

′
H′ )]

be compatible choices of

admissible smooth rational polyhedral cone decomposition data for ~Mord
H

and ~Mord
H′ , respectively. We say that Σord,′ is a g-refinement of Σord if,

for each g-assignment (fX , fY ) : (ΦH′ , δH′)→g (Φ′H, δ
′
H) of a represen-

tative (Φ′H, δ
′
H) of cusp label at level H to a representative (ΦH′ , δH′) of

cusp label at level H′ as in [62, Def. 5.4.3.9], the first cusp label (and
hence both of them) being ordinary as in Definition 3.2.3.8, the triple
(Φ′H′ , δ

′
H′ ,Σ

′
Φ′H′

) is a g-refinement of (ΦH, δH,ΣΦH) (under the pair of

isomorphisms (fX , fY )) as in [62, Def. 6.4.3.2]; namely, the cone de-
composition Σ′Φ′H′

of PΦ′H′
is a refinement of the cone decomposition

ΣΦH of PΦH under the identification between PΦ′H′
and PΦH defined

by (fX , fY ). We say that Σord,′ is g-induced by Σord if each Σ′Φ′H′
above is induced by ΣΦH under the identification between PΦ′H′

and

PΦH defined by (fX , fY ). (This might not be possible because the run-
ning assumptions on cone decompositions, such as smoothness, might
be incompatibly defined.)

Proposition 5.2.2.2. (Compare with Propositions 1.3.1.15
and 3.4.4.1.) Let g = (g0, gp), H, H′, Σord = {ΣΦH}[(ΦH,δH)], and
Σord,′ = {Σ′Φ′H′}[(Φ′H′ ,δ

′
H′ )]

be as in Definition 5.2.2.1, such that Σord,′ is

a g-refinement of Σord. Then the ordinary Hecke twist of the family

(G, λ, i, αH′,p , α
ord
H′p ) → ~Mord,tor

H′,Σord,′ by g (defined by Proposition 3.3.4.21

and Lemma 3.1.3.2) is the pullback of (G, λ, i, αHp , α
ord
Hp ) → ~Mord,tor

H,Σord

via a (unique) surjection

~[g]
ord,tor

: ~Mord,tor
H′,Σord,′ → ~Mord,tor

H,Σord .

The pullback of ~[g]
ord,tor

to ~Mord
H (on the target) coincides with the sur-

jection
~[g]

ord
: ~Mord
H′ → ~Mord

H

defined in Proposition 3.4.4.1. The morphism ~[g]
ord,tor

is quasi-finite
flat if Σord,′ is g-induced by Σord as in Definition 5.2.2.1. (Here the
flatness follows automatically from the quasi-finiteness, by [35, IV-3,
15.4.2 e′)⇒b)]; cf. [62, Lem. 6.3.1.11].)
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The surjection ~[g]
ord,tor

is proper if the levels Hp and H′p at p are
equally deep as in Definition 3.2.2.9, or if gp is of twisted Up type as
in Definition 3.3.6.1 and depthD(H′p) − depthD(gp) = depthD(Hp) > 0.

(Note that ~[g]
ord,tor

is finite if it is both quasi-finite and proper, by [35,
IV-3, 8.11.1].) If gp ∈ Pord

D (Zp), then the induced morphism

~[g]
ord,tor

rH′
: ~Mord,tor
H′,Σord,′ → ~Mord,tor

H,Σord ×
~S0,rH

~S0,rH′

is log étale, which is (quasi-finite) étale if Σord,′ is g-induced by Σord as
in Definition 5.2.2.1. In particular, when g = 1 and H′ = H, we have
proper log étale surjections

~[1]
ord,tor

: ~Mord,tor
H,Σord,′ → ~Mord,tor

H,Σord

when Σord,′ is a refinement of Σord.

Moreover, the surjection ~[g]
ord,tor

maps the [(Φ′H′ , δ
′
H′ , σ

′)]-stratum
~Zord

[(Φ′H′ ,δ
′
H′ ,σ

′)] of ~Mord,tor
H′,Σord,′ to the [(ΦH, δH, σ)]-stratum ~Zord

[(ΦH,δH,σ)] of

~Mord,tor
H,Σord if and only if there are representatives (ΦH, δH, σ) and

(Φ′H′ , δ
′
H′ , σ

′) of [(ΦH, δH, σ)] and [(Φ′H′ , δ
′
H′ , σ

′)], respectively, such that
(Φ′H′ , δ

′
H′ , σ

′) is a g-refinement of (ΦH, δH, σ) as in [62, Def. 6.4.3.1].
If g = g1g2, where g1 = (g1,0, g1,p) and g2 = (g2,0, g2,p) are elements

of G(A∞,p)×Pord
D (Qp), each having a setup similar to that of g, then

we have ~[g]
ord,tor

= ~[g2]
ord,tor

◦ ~[g1]
ord,tor

, extending the identity ~[g]
ord

=
~[g2]

ord
◦ ~[g1]

ord
in Proposition 3.4.4.1.

Finally, there exists Σ and Σ′ extending Σord and Σord,′, respectively,
as in Proposition 5.1.3.2, such that Σ′ is a g-refinement of Σ, and so
that we have the canonical surjection [g]tor : Mtor

H′,Σ′ → Mtor
H,Σ as in

Proposition 1.3.1.15. Let [g]tor
rH′ ,rH

: Mtor
H′,Σ′,rH′

→ Mtor
H,Σ,rH denote the

canonically induced morphism. Then ~[g]
tor
⊗
Z
Q can be identified with

the pullback of [g]tor
rH′ ,rH

to ~Mord,tor
H,Σord ⊗

Z
Q (on the target) under (5.2.1.2)

in (7) of Theorem 5.2.1.1. In particular, ~[g]
tor
⊗
Z
Q is proper log étale.

Proof. The existence of ~[g]
ord,tor

follows from a combination of
[62, Prop. 5.4.3.8] and (6) of Theorem 5.2.1.1:
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Since ~Mord,tor
H′,Σord,′ is noetherian normal, and since the extensibility

condition (5) in Definition 3.4.2.10 implies that G is an ordinary semi-
abelian scheme as in Definition 3.1.1.2, by Lemma 3.1.3.2, any isoge-
nous quotient of G~Mord

H′
extends uniquely (up to isomorphism) to an

isogenous quotient of G. Hence, the usual ordinary Hecke twist defined

by Proposition 3.3.4.21 over ~Mord
H′ extends to the ordinary Hecke twist

(G′, λ′, i′, α′Hp , α
ord,′
Hp ) → ~Mord,tor

H′,Σord,′ of (G, λ, i, αH′,p , α
ord
H′p ) → ~Mord,tor

H′,Σord,′ by

g = (g0, gp).

By construction, the restriction of (G′, λ′, i′, α′Hp , α
ord,′
Hp )→ Mtor

H′,Σord,′

to ~Mord
H′ determines the canonical surjection ~[g]

ord
: ~Mord

H′ � ~Mord
H de-

fined in Proposition 3.4.4.1. By [62, Prop. 5.4.3.8] and (6) of Theorem

5.2.1.1, the restriction of (G′, λ′, i′, α′Hp , α
ord,′
Hp ) → ~Mord,tor

H′,Σord,′ to étale lo-

cal charts of ~Mord,tor
H′,Σord,′ admit unique morphisms to (G, λ, i, αHp , α

ord
Hp )→

~Mord,tor
H,Σord , by our assumption that Σord,′ is a g-refinement of Σord. (More

precisely, the cones containing pairings of the form υ◦B′ : Y ′×X ′ → Z
are carried to cones containing pairings of the form υ ◦ B : Y ×X →
Z under the identification between PΦ′H′

and PΦH defined by (fX :

X ′⊗
Z
Z(p)

∼→ X ⊗
Z
Z(p), fY : Y ⊗

Z
Z(p)

∼→ Y ′⊗
Z
Z(p)), when we have the ob-

jects as in the context of Definition 5.2.2.1.) These morphisms patch

uniquely, and hence descend to ~Mord,tor
H′,Σord,′ . Therefore, there exists a

unique morphism ~[g]
ord,tor

: ~Mord,tor
H′,Σord,′ → ~Mord,tor

H,Σord extending ~[g]
ord

, which

pulls (G, λ, i, αHp , α
ord
Hp ) → ~Mord,tor

H,Σord back to (G′, λ′, i′, α′Hp , α
ord,′
Hp ) →

~Mord,tor
H′,Σord,′ . Since ~Mord

H is dense in ~Mord,tor
H,Σord , and since the condition in

(6) of Theorem 5.2.1.1 does not involve level structures, starting with
a degeneration over a complete discrete valuation ring V centered at an

arbitrary geometric point s̄ of ~Mord,tor
H,Σord , we can construct degenerations

over a complete discrete valuation ring V ′ finite flat over V centered at

a geometric point of ~Mord,tor
H′,Σord,′ as soon as we can lift the level structures

on the generic points. Therefore, since ~[g]
ord

is surjective (by Propo-
sition 3.4.4.1—in fact, this surjectivity is essentially a consequence of
the liftability conditions in the definitions of level structures), the mor-

phism ~[g]
ord,tor

is also surjective.
Moreover, if the levelsHp andH′p at p are equally deep, in which case

~[g]
ord

is finite by Proposition 3.4.4.1, then the (separated) morphism
~[g]

ord,tor
is proper, because in this case the above argument also verifies
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the valuative criterion. On the other hand, if gp is of twisted Up type as
in Definition 3.3.6.1 and depthD(H′p) − depthD(gp) = depthD(Hp) > 0,
then the desired valuative criterion follows from Lemma 3.3.6.6.

If g = g1g2 as in the last statement of this proposition, then we
can also construct the ordinary Hecke twist (G′, λ′, i′, α′Hp , α

ord,′
Hp ) of

(G, λ, i, αH′,p , α
ord
H′p ) in two steps, as in the last statement of Proposition

3.3.4.21. Hence, the induced morphisms between partial toroidal com-

pactifications satisfy the desired identity ~[g]
ord,tor

= ~[g2]
ord,tor

◦ ~[g1]
ord,tor

,

extending the identity ~[g]
ord

= ~[g2]
ord
◦ ~[g1]

ord
in Proposition 3.4.4.1.

The assertions on the local structures can be verified by comparing
the étale local structures, which then follows from the gluing construc-
tion of the partial toroidal compactifications (cf. Proposition 5.1.3.7).

As for the last paragraph, the existence of Σ and Σ′ follows from
Proposition 5.1.3.2. Since [g]tor is constructed in [62, Prop. 6.4.3.4]
using Hecke twists of the tautological object, and since the tautological
objects over Mtor

H,Σ,rH and Mtor
H′,Σ′,rH′

induce the tautological objects over

~Mord,tor
H,Σord ⊗

Z
Q and ~Mord,tor

H′,Σord,′ ⊗
Z
Q, respectively, we see that ~[g]

tor
⊗
Z
Q can

be identified with the restriction of [g]tor
rH′ ,rH

to ~Mord,tor
H′,Σord,′ ⊗

Z
Q. This

coincides with the pullback of [g]tor
rH′ ,rH

to ~Mord,tor
H,Σord ⊗

Z
Q (on the target)

under (5.2.1.2) because ~Mord,tor
H′,Σord,′ ⊗

Z
Q is the preimage of ~Mord,tor

H,Σord ⊗
Z
Q,

by the statements concerning the strata in (7) of Theorem 5.2.1.1 and
in Proposition 1.3.1.15.

The remaining assertions of the proposition are self-explanatory.
�

Corollary 5.2.2.3. (Compare with Corollary 3.4.4.3.) With the
setting as in Proposition 5.2.2.2, the morphism

~[g]
ord,tor

: ~Mord,tor
H′,Σord,′ → ~Mord,tor

H,Σord

(cf. Definition 3.4.4.2) induced by ~[g]
ord,tor

: ~Mord,tor
H′,Σord,′ → ~Mord,tor

H,Σord is

proper, which is finite flat if Σord,′ is g-induced by Σord as in Definition
5.2.2.1. If gp ∈ Pord

D (Zp), then the induced morphism

~[g]
ord,tor

rH′
: ~Mord,tor

H′,Σord,′ → ~Mord,tor
H,Σord ×

~S0,rH

~S0,rH′

is proper log étale (because it is log étale by Proposition 5.2.2.2). If
moreover Σord,′ is g-induced by Σord as in Definition 5.2.2.1, then
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~[g]
ord,tor

rH′
: ~Mord,tor

H′,Σord,′ → ~Mord,tor
H,Σord ×

~S0,rH

~S0,rH′
is finite étale (because it is

quasi-finite étale by Proposition 5.2.2.2; cf. [35, IV-3, 8.11.5, or IV-4,
8.12.6]).

Proof. These follow from the fact that the induced morphism

~[g]
ord,tor

: ~Mord,tor
H′,Σord,′ ⊗

Z
Fp → ~Mord,tor

H,Σord ⊗
Z
Fp

over Spec(Fp) is proper by Lemma 3.3.6.8. �

Corollary 5.2.2.4. (Compare with Corollary 3.4.4.4 and Example
3.4.4.5.) With the setting as in Proposition 5.2.2.2, if g = (g0, gp) ∈
G(Ẑp)×Pord

D (Zp), if H′,p = g0Hpg−1
0 in G(Ẑp), if H′p

ord = (gpHpg
−1
p )ord

in Mord
D (Zp) (see (3.3.3.5)), and if Σord,′ is g-induced by Σord as in

Definition 5.2.2.1, then (rH′ = rH and) the induced morphism ~[g]
ord,tor

:
~Mord,tor
H′,Σord,′ → ~Mord,tor

H,Σord is an isomorphism. (See the remark at the end of

Corollary 3.4.4.4.)

Proof. By Corollary 5.2.2.3, the induced morphism
~[g]

ord,tor
: ~Mord,tor

H′,Σord,′ → ~Mord,tor
H,Σord is finite étale. By Corollary 3.4.4.4, the

restriction of ~[g]
ord,tor

to ~Mord
H′ is an isomorphism. Since ~Mord,tor

H′,Σord,′ ⊗
Z
Fp

and ~Mord,tor
H,Σord ⊗

Z
Fp are regular (by smoothness of ~Mord,tor

H′,Σord,′ and ~Mord,tor
H,Σord

over ~S0,rH′
and ~S0,rH , respectively; see Theorem 5.2.1.1), by Zariski’s

main theorem (see [35, III-1, 4.4.3, 4.4.11]), the induced finite

morphism ~[g]
ord,tor

: ~Mord,tor
H′,Σord,′ ⊗

Z
Fp → ~Mord,tor

H,Σord ⊗
Z
Fp is necessarily an

isomorphism. Hence, ~[g]
ord,tor

: ~Mord,tor
H′,Σord,′ → ~Mord,tor

H,Σord (being finite

étale and an isomorphism between the fibers over Spec(Fp)) is an
isomorphism. �

Corollary 5.2.2.5 (elements of Up type). (Compare with Corol-
lary 3.4.4.6.) Suppose in Proposition 5.2.2.2 that g0 = 1 and gp is of
Up type as in Definition 3.3.6.1 (so that it is of twisted Up type and
depthD(gp) = 1). Then Σord,′ is also a 1-refinement of Σord, and the
induced morphism

(5.2.2.6) ~[g]
ord,tor

: ~Mord,tor
H′,Σord,′ ⊗

Z
Fp → ~Mord,tor

H,Σord ⊗
Z
Fp



336 5. PARTIAL TOROIDAL COMPACTIFICATIONS

is proper and coincides with the composition of the absolute Frobenius
morphism

F~Mord,tor

H′,Σord,′ ⊗Z
Fp : ~Mord,tor

H′,Σord,′ ⊗
Z
Fp → ~Mord,tor

H′,Σord,′ ⊗
Z
Fp

with the canonical proper morphism

(5.2.2.7) ~[1]
ord,tor

: ~Mord,tor
H′,Σord,′ ⊗

Z
Fp → ~Mord,tor

H,Σord ⊗
Z
Fp.

Suppose moreover that Σord,′ is g-induced by Σord as in Definition
5.2.2.1. Then Σord,′ is also 1-induced by Σord, and the above morphisms
(5.2.2.6) and (5.2.2.7) are both finite flat.

If H′p
ord = Hord

p as open compact subgroups of Mord
D (Zp) (see

(3.3.3.5)), then we can take Σord,′ to be g-induced by Σord as in
Definition 5.2.2.1, so that (rH′ = rH and) the canonical morphism
(5.2.2.7) is an isomorphism by Corollary 5.2.2.4, and so that the
composition

~Mord,tor
H,Σord ⊗

Z
Fp

( ~[1]
ord,tor

)−1

∼→ ~Mord,tor
H′,Σord,′ ⊗

Z
Fp

~[g]
ord,tor

→ ~Mord,tor
H,Σord ⊗

Z
Fp

coincides with the (finite flat) absolute Frobenius morphism

F~Mord,tor

H,Σord ⊗Z
Fp : ~Mord,tor

H,Σord ⊗
Z
Fp → ~Mord,tor

H,Σord ⊗
Z
Fp.

Proof. First note that gp acts by scalars on Gr0
DQp

and Gr−1
DQp

, and

hence g = (1, gp) preserves any filtration Z⊗
Ẑ
A∞ of L⊗

Z
A∞ satisfying

Z−2⊗
Ẑ
Qp ⊂ DQp ⊂ Z0⊗

Ẑ
Qp. Then any identification between PΦ′H′

and

PΦH as in Definition 5.2.2.1 is just some (positive) scalar multiplication,
and hence being a g-refinement and a 1-refinement (or, being g-induced
and 1-induced) are exactly the same notion. This explains all relevant
statements in this corollary. Since the ordinary Hecke twist in Proposi-
tion 5.2.2.2 is realized as the relative Frobenius morphism (with natu-

rally induced additional structures) over the dense subscheme ~Mord
H′ ⊗Z

Fp
as in Corollary 3.4.4.6 (or rather its proof), it must be so over the whole
~Mord,tor
H′,Σord,′ ⊗

Z
Fp. Hence, the first paragraph of the corollary follows. The

second paragraph of the corollary follows from the first paragraph and
from Corollary 5.2.2.3. The third paragraph of the corollary follows
from the second paragraph and from Corollary 5.2.2.4. �
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Remark 5.2.2.8. (Compare with Remark 3.4.4.9.) By Kunz’s the-
orem [54] (cf. [76, Sec. 42, Thm. 107]), the absolute Frobenius mor-
phisms F~Mord,tor

H′,Σord,′ ⊗Z
Fp and F~Mord,tor

H,Σord ⊗Z
Fp in Corollary 5.2.2.5 are flat be-

cause ~Mord,tor
H′,Σord,′ ⊗

Z
Fp and ~Mord,tor

H,Σord ⊗
Z
Fp are regular (by smoothness of

~Mord,tor
H′,Σord,′ and ~Mord,tor

H,Σord over ~S0,rH′
and ~S0,rH , respectively; see Theorem

5.2.1.1).

5.2.3. The Case When p is a Good Prime. As in Section 3.4.5,
suppose that p is a good prime (see Definition 1.1.1.6). Then we can

also construct ~Mord,tor
H,Σord using the toroidal compactifications already con-

structed in [62, Thm. 6.4.1.1] in mixed characteristics, provided that
Σord = {ΣΦH}[(ΦH,δH)] is induced (in a natural sense similar to that
in Definition 2.1.2.25) by a compatible choice Σ′ of admissible smooth
rational polyhedral cone decomposition data for MH′ as in Definition
1.2.2.13, where H′ = HpG(Zp), as in [62, Constr. 7.3.1.6]. If Σ′ is
projective with a collection pol′ of polarization functions as in Defini-
tions 1.2.2.7 and 1.2.2.14, then Σord is also projective with an induced
collection polord of polarization functions as in Definition 5.1.3.3.

However, since we need Σord to be smooth, we shall make the fol-
lowing:

Assumption 5.2.3.1 (for this subsection). The smoothness condi-
tions defined by H on Σord and by H′ on Σ′ are compatible with each
other.

Lemma 5.2.3.2. Assumption 5.2.3.1 is satisfied, for example, when
the group Hp is of the form Up,0(pr), Up,1(pr), Ubal

p,1 (pr), Up,1,0(pr1 , pr0),

or Ubal
p,1,0(pr1 , pr0), for some integers 0 ≤ r and 0 ≤ r1 ≤ r0 as in

Definition 3.2.2.8.

Proof. In all such cases, we can canonically identify SΦH with
1
N

SΦH′
in SΦH′

⊗
Z
Q for some integer N ≥ 1, where ΦH and ΦH′ are

torus arguments for admissible filtrations compatible with the filtration
D as in Definition 3.2.3.1. �

Then it is indeed possible that Σord is induced by a smooth Σ′ for
MH′ . By construction, we also obtain an extension of the compatible

choice Σord (resp. polord, if defined) for ~Mord
H to a compatible choice Σ

(resp. pol) for MH, although we cannot assert that Σ is smooth in this
case. (Thus, we will need the constructions in Propositions 1.3.1.11
and 2.2.2.3.) We also have an induced smooth Σord,′, together with
polord,′ if pol′ is also defined. Suppose that there is a smooth Σp (resp.
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polp) for MHp such that Σ′ (resp. pol′, if defined) is induced by Σp

(resp. polp) in the natural sense (similar to that in Definition 2.1.2.25).
(These assumptions on Σ′ and Σord,′ can be met by refining any given

cone decomposition Σord for ~Mord
H .) We shall assume that such choices

have been made in the remainder of this subsection.

Proposition 5.2.3.3. (Compare with Proposition 3.4.5.7.) With
assumptions as above, let MHp, M

tor
Hp,Σp, and Mmin

Hp be constructed over
~S0 = Spec(OF0,(p)) as in [62]. (This is possible because p is a good
prime as in Definition 1.1.1.6, in which case rD = 0 and rH = rν; see
Definition 3.4.2.1.)

Then we obtain a canonical open immersion

(5.2.3.4) ~Mord,tor
H′,Σord,′ ↪→ Mtor

Hp,Σp

extending the canonical open immersion ~Mord
H′ ↪→ MHp (as in (3.4.5.2)),

a canonical quasi-finite étale surjective morphism

(5.2.3.5) ~Mord,tor
H,Σord � ~Mord,tor

H′,Σord,′ ×
~S0

~S0,rH

extending the canonical quasi-finite étale surjective morphism ~Mord
H �

~Mord
H′ ×

~S0

~S0,rH (as in (3.4.5.6)), and by composing (5.2.3.5) with (5.2.3.4)

a canonical quasi-finite étale morphism

(5.2.3.6) ~Mord,tor
H,Σord → Mtor

Hp,Σp ×
~S0

~S0,rH

extending the canonical quasi-finite étale morphism
~Mord
H → MHp ×

~S0

~S0,rH (as in (3.4.5.8)).

Alternatively, we can construct the morphisms (5.2.3.4), (5.2.3.5),
and (5.2.3.6) as a canonical open and closed subalgebraic stack, given
by taking the schematic closure of Mord

H , in a relatively representable
functor of ordinary level-Hp structures of type (L⊗

Z
Zp, 〈 · , · 〉, D) and

their (unique if existent) extensions over degenerations.
Under the open immersion (5.2.3.4), the pullback of the

degenerating family (G, λ, i, αHp) of type MHp over Mtor
Hp,Σp admits

(up to isomorphism) a unique extension to the degenerating family

(G, λ, i, αH′,p , α
ord
H′p ) of type ~Mord

H′ over ~Mord,tor
H′,Σord,′. (Note that H′,p = Hp.)

Under the quasi-finite morphism (5.2.3.5), the pullback of the

degenerating family (G, λ, i, αH′,p , α
ord
H′p ) of type ~Mord

H′ over ~Mord,tor
H′,Σord,′ is

canonically isomorphic to the degenerating family (G, λ, i, αHp , α
ord
Hp )
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of type ~Mord
H over ~Mord,tor

H,Σord. Consequently, the pullback of

ωMtor
Hp,Σp

:= ∧top Lie∨G/Mtor
Hp,Σp

∼= ∧top e∗GΩ1
G/Mtor

Hp,Σp

under (5.2.3.4) is canonically isomorphism to

ω~Mord,tor

H′,Σord,′
:= ∧top Lie∨

G/~Mord,tor

H′,Σord,′

∼= ∧top e∗GΩ1

G/~Mord,tor

H′,Σord,′
,

and the pullback of ω~Mord,tor

H′,Σord,′
under (5.2.3.5) is canonically isomorphic

to
ω~Mord,tor

H,Σord
:= ∧top Lie∨

G/~Mord,tor

H,Σord

∼= ∧top e∗GΩ1

G/~Mord,tor

H,Σord

.

Proof. Consider the open immersion

(5.2.3.7) Mord,tor
Hp,Σp ↪→ Mtor

Hp,Σp

representing the extensions of the ordinary level structure αord
G(Zp) over

Mord
Hp (extending (3.4.5.3)) as in condition (5) of Definition 3.4.2.10

(which is unique up to isomorphism if it exists). By comparing the

universal property of Mord,tor
Hp,Σp given by (6) of Theorem 5.2.1.1 with the

universal property of Mtor
Hp,Σp given by [62, Thm. 6.4.1.1(6)], we obtain

the desired open and closed immersion (5.2.3.4) extending the open
and closed immersion (3.4.5.5).

The canonical morphism (5.2.3.5) exists by comparing the uni-

versal properties of ~Mord,tor
H,Σord and ~Mord,tor

H′,Σord,′ given by (6) of Theorem

5.2.1.1, which is quasi-finite and étale by comparing the sheaves of log
1-differentials using (4) of Theorem 5.2.1.1 (which is in turn based on
Proposition 4.2.3.5) and by the assumption that both Σord and Σord,′

are induced by a smooth Σ′ for MH′ . Then we obtain (5.2.3.6) by
composing (5.2.3.5) with (5.2.3.4) as in the proposition.

Alternatively, we can construct (5.2.3.5) as a relatively
representable functor parameterizing liftings of ordinary level
structures and their extensions over degenerations (cf. condition (5) of
Definition 3.4.2.10). If we construct the similar relative representable
functor over the whole of Mtor

Hp,Σp , then we can also construct (5.2.3.6)
as an open and closed subalgebraic stack.

The remaining statements about the pullbacks of (G, λ, i, αHp) are
clear because the morphisms (5.2.3.7) and (5.2.3.5) are defined by com-
paring the degenerating families over the various partial toroidal com-
pactifications, or by their interpretations as open and closed subalge-
braic stacks in relative representable functors over Mtor

Hp,Σp . �

Lemma 5.2.3.8. With assumptions as in Proposition 5.2.3.3, the
composition of (5.2.3.4) with the canonical morphism

∮
Hp : Mtor

Hp,Σp →
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Mmin
Hp induces a morphism ~Mord,tor

H′,Σord,′ → Mmin
Hp with open image. Let

~Mord,min
H′ denote this image (with its canonical open subscheme struc-

ture). Then ~Mord,min
H′ is quasi-projective over ~S0,rH′

and
∮ −1

Hp (~Mord,min
H′ )

is (set-theoretically) the image of (5.2.3.4) in Mtor
Hp,Σp, and hence the

induced morphism ~∮ ord

H′ : ~Mord,tor
H′,Σord,′ → ~Mord,min

H′ over ~S0,rH′
is proper and

surjective.
Consequently, since ω~Mord,tor

H′,Σord,′
is isomorphic to the pullback of

ωMtor
Hp,Σp

(see Proposition 5.2.3.3), we have a canonical isomorphism

~Mord,min
H′

∼= Proj
(
⊕
k≥0

Γ(~Mord,tor
H′,Σord,′ , ω

⊗ k
~Mord,tor

H′,Σord,′
)
)
,

and the proper morphism ~∮ ord

H′ : ~Mord,tor
H′,Σord,′ → ~Mord,min

H′ is the Stein fac-

torization (see [35, III-1, 4.3.3]) of itself (and hence has nonempty con-
nected geometric fibers, by [35, III-1, 4.3.1, 4.3.3, 4.3.4] and its natural
generalization to the context of algebraic stacks).

Proof. Suppose x̄ is a geometric point of the
[(ΦHp , δHp , σ)]-stratum Z[(ΦHp ,δHp ,σ)] of Mtor

Hp,Σp . By comparing (6)
of Theorem 5.2.1.1 with [62, Thm. 6.4.1.1(6)], or rather by the
theory of degeneration on which the constructions are based (see
Theorem 4.1.6.2), the condition of being in the image of (5.2.3.4) is a
condition for the induced cusp label [(ΦHp , δHp)] and on the image
of x̄ under the canonical morphism Z[(ΦHp ,δHp ,σ)] → [MZHp

Hp ] → Mmin
Hp ,

which is nothing but
∮
Hp(x̄). Therefore, once

∮
Hp(x̄) ∈ ~Mord,min

H′ ,

all other points in
∮ −1

Hp (
∮
Hp(x̄)) is in the image of (5.2.3.4). This

shows that
∮ −1

Hp (~Mord,min
H′ ) is (set-theoretically) the image of (5.2.3.4)

in Mtor
Hp,Σp . Since the complement of the (open) image of (5.2.3.4)

in Mtor
Hp,Σp is closed, and since

∮
Hp : Mtor

Hp,Σp � Mmin
Hp is proper, we

see that ~Mord,min
H′ is open in Mmin

Hp , and that the induced morphism

~∮ ord

H′ : ~Mord,tor
H′,Σord,′ → ~Mord,min

H′ is also proper.

Since
∮
Hp : Mtor

Hp,Σp → Mmin
Hp
∼= Proj

(
⊕
k≥0

Γ(Mtor
Hp,Σp , ω

⊗ k
Mtor
Hp,Σp

)
)

is de-

fined (as in [62, Sec. 7.2.3]) as the Stein factorization of the morphism
from Mtor

Hp,Σp to a projective space defined by global sections of a suffi-
ciently divisible power of ωMtor

Hp,Σp
, its restriction to an open subscheme

(of the source) containing all fibers of
∮
Hp with which it overlaps (or,

equivalently, its pullback to an open subscheme of the target) is a
proper morphism over its image, which can also be defined by a Stein
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factorization. Hence, we can identify ~
∮ ord

H′ with the canonical morphism

~Mord,tor
H′,Σord,′ → ~Mord,min

H′
∼= Proj

(
⊕
k≥0

Γ(~Mord,tor
H′,Σord,′ , ω

⊗ k
~Mord,tor

H′,Σord,′
)
)
,

which is the Stein factorization of itself, as desired. �

Lemma 5.2.3.9. With assumptions as in Proposition 5.2.3.3, sup-
pose moreover that Hp is neat; that Σp is projective, smooth, and
equipped with a polarization function polp, inducing a polarization func-

tion pol′ for Σ′; and that ~Mtor
H′,d0pol

′ is defined as in Proposition 2.2.2.1

(for some integer d0 ≥ 1). Then there is a canonical open and closed
immersion

(5.2.3.10) ~Mtor
H′,d0pol

′ ↪→ Mtor
Hp,Σp

extending the canonical open and closed immersion ~MH′ ↪→ MHp (as
in (2.2.4.4), now that Hp is neat), which is compatible with (2.2.4.3)

and with the canonical morphisms ~
∮
H′ : ~Mtor

H′,d0pol
′ → ~Mmin

H′ and
∮
Hp :

Mtor
Hp,Σp → Mmin

Hp . Moreover, the canonical finite morphism

(5.2.3.11) ~Mtor
H,d0pol

→ ~Mtor
H′,d0pol

′

(cf. (2.2.2.4), with ~Mtor
H,d0pol

constructed as in Proposition 2.2.2.3) in-
duces by composition with (5.2.3.10) a finite morphism

(5.2.3.12) ~Mtor
H,d0pol

→ Mtor
Hp,Σp .

Consequently, ~Mtor
H′,d0pol

′ is independent of the choices of pol′ and d0, and

~Mtor
H,d0pol

is also independent of the choices of pol and d0, because it is
canonically isomorphic to the normalization of Mtor

Hp,Σp in MH under the
composition of canonical morphisms MH → MH′ ↪→ Mtor

H′,Σ′ → Mtor
Hp,Σp

(cf. Proposition 2.2.2.3).

Proof. By comparing (6) of Theorem 1.3.1.3 with [62, Thm.
6.4.1.1(6)], there is a canonical open and closed immersion

(5.2.3.13) Mtor
H′,Σ′ ↪→ Mtor

Hp,Σp ⊗
Z
Q

(over S0) compatible with the canonical open and closed immersion

(5.2.3.14) Mmin
H′ ↪→ Mmin

Hp ⊗
Z
Q,

which can be identified with the pullback of (2.2.4.3) to S0, and with the
canonical morphisms

∮
H′ : Mtor

H′,Σ′ → Mmin
H′ and

∮
Hp ⊗Z

Q : Mtor
Hp,Σp ⊗

Z
Q→

Mmin
Hp ⊗

Z
Q over S0. For each integer d ≥ 0, we can compatibly construct
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H′,dpol′ , Hp,dpolp , JH′,dpol′ , and JHp,dpolp as in Definition 1.3.1.7 and
[62, Def. 7.3.3.1], so that H′,dpol′ (resp. JH′,dpol′) is isomorphic to the
pullback of Hp,dpolp (resp. JHp,dpolp) under (5.2.3.13) (resp. (5.2.3.14)).

By [62, Thm. 7.3.3.4], there is a canonical isomorphism

(5.2.3.15) NBlJHp,d0polp (
∮
Hp) : Mtor

Hp,Σp
∼→ NBlJHp,d0polp (Mmin

Hp ).

By its very construction, this canonical isomorphism extends the canon-
ical isomorphism

(5.2.3.16) NBlJH′,d0pol′ (
∮
H′) : Mtor

H′,Σ′
∼→ NBlJH′,d0pol′ (M

min
H′ )

(as in Theorem 1.3.1.10, for the same d0).
Since H′,d0pol

′ and Hp,d0pol
p are defined by the vanishing orders

on boundary divisors in a compatible way, we see that ~JH′,d0pol
′ (see

Proposition 2.2.2.1) is isomorphic to the pullback of JHp,d0pol
p under the

canonical isomorphism (2.2.4.3). Thus, we have the desired open and
closed immersion (5.2.3.10) pulling the isomorphism (5.2.3.15) back to

(5.2.3.17) NBl ~JH′,d0pol′
(~
∮
H′) : ~Mtor

H′,d0pol
′
∼→ NBl ~JH′,d0pol′

(~Mmin
H′ )

in a way compatible with (2.2.4.3) and with the canonical morphisms
~∮
H′ and

∮
Hp .

The statements concerning ~Mtor
H,d0pol

are self-explanatory. �

Proposition 5.2.3.18. With the assumptions as in Lemma 5.2.3.9,
there exists a canonical open immersion

(5.2.3.19) ~Mord,tor
H,Σord ↪→ ~Mtor

H,d0pol,rH

(see Definition 2.2.3.5) compatible with (5.2.3.12) and (5.2.3.6) (and

with the canonical morphism ~Mtor
H,d0pol,rH

→ ~Mtor
H,d0pol

), whose composi-

tion with the canonical morphism ~∮
H,rH

: ~Mtor
H,d0pol,rH

→ ~Mmin
H,rH induces

a morphism ~Mord,tor
H,Σord → ~Mmin

H,rH with open image. Let ~Mord,min
H de-

note this image (with its canonical open subscheme structure). Then

~Mord,min
H is quasi-projective and ~

∮ −1

H,rH
(~Mord,min
H ) is (set-theoretically) the

image of (5.2.3.19) in ~Mtor
H,d0pol,rH

, and hence the induced morphism

~∮ ord

H : ~Mord,tor
H,Σord → ~Mord,min

H over ~S0,rH is proper and surjective.

Consequently, since ω~Mord,tor

H,Σord
is canonically isomorphic to the pull-

back of ωMtor
Hp,Σp

under (5.2.3.6) (see Proposition 5.2.3.3), we have a

canonical isomorphism

~Mord,min
H

∼= Proj
(
⊕
k≥0

Γ(~Mord,tor
H,Σord , ω

⊗ k
~Mord,tor

H,Σord

)
)
,



5.2. PARTIAL TOROIDAL COMPACTIFICATIONS OF ORDINARY LOCI 343

and the proper morphism ~∮ ord

H′ : ~Mord,tor
H′,Σord,′ → ~Mord,min

H′ is the Stein fac-

torization of itself (and hence has nonempty connected geometric fibers,
by [35, III-1, 4.3.1, 4.3.3, 4.3.4]).

Proof. The existence of the canonical open immersion (5.2.3.19)

follows from Proposition 5.2.3.3, from the fact that ~Mtor
H,d0pol,rH

is a
normalization (see Lemma 5.2.3.9), and from Zariski’s main theorem
(see [35, III-1, 4.4.3, 4.4.11]).

To prove the remaining statements, as in the proof of Lemma

5.2.3.8, the most crucial step is to show that ~
∮ −1

H,rH
(~Mord,min
H ) is set-

theoretically the image of (5.2.3.19) in ~Mtor
H,d0pol,rH

. It suffices to verify

this statement after pulled back to S0,rH and ~S0,rH ⊗
Zp
Fp (in two cases).

In the former case, we have ~Mtor
H,d0pol,rH

⊗
Z
Q ∼= Mtor

H,Σ,rH (see Definition

2.2.3.4), and the proof is similar to the proof of Lemma 5.2.3.8 using the
theory of degeneration, by comparing (6) of Theorem 5.2.1.1 with (6)
of Theorem 1.3.1.3. In the latter case, the proof follows from Lemma

5.2.3.8; from the density of ~Mord
H ⊗

Zp
Fp in ~Mord,tor

H,Σord ⊗
Zp
Fp (see Theorem

5.2.1.1); and from the fact that the canonical quasi-finite morphism
~Mord,tor
H,Σord ⊗

Zp
Fp → ~Mord,tor

H′,Σord,′ ⊗
Zp
Fp induced by (5.2.3.5) is actually finite,

because it is proper by Lemma 3.3.6.8 (with gp = 1 there; cf. the proof
of Corollary 5.2.2.3, with g = 1 there).

Once we know that ~
∮ −1

H,rH
(~Mord,min
H ) is set-theoretically the (open)

image of (5.2.3.19) in ~Mtor
H,d0pol,rH

, we know that the induced morphism

~∮ ord

H : ~Mord,tor
H,Σord → ~Mord,min

H over ~S0,rH is proper and surjective. By the

same Stein factorization argument as in the proof of Lemma 5.2.3.8,
the last statement of the proposition follows from the assertions on
ω~Mord,tor

H,Σord
, ω~Mord,tor

H′,Σord,′
, and ωMtor

Hp,Σp
in Proposition 5.2.3.3, and from the

finiteness of (5.2.3.12) (or rather (5.2.3.11)) in Lemma 5.2.3.9. �

5.2.4. Boundary of Ordinary Loci. As in Section 1.3.2,
let us describe the building blocks of Mord,tor

H,Σord in more detail. In

particular, we would like to describe and characterize the algebraic

stacks ~Mord,ZH
H , ~Mord,ZH

H , ~Cord
ΦH,δH

, ~Ξord
ΦH,δH

, ~Ξord
ΦH,δH

(σ), ~Ξord
ΦH,δH,σ

,
~Zord

[(ΦH,δH,σ)]
∼= ~Ξord

ΦH,δH,σ
/ΓΦH,σ and the formal algebraic stacks ~Xord

ΦH,δH,σ

and ~Xord
ΦH,δH,σ

/ΓΦH,σ in (2) of Theorem 5.2.1.1, and to describe
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canonical Hecke actions on collections of these geometric objects
(compatible with those in Proposition 5.2.2.2).

Throughout this subsection, let us fix the choice of a fully symplectic
admissible filtration Z of L⊗

Z
Ẑ as in Definitions 1.2.1.2 and 1.2.1.3,

which we assume to be compatible with D as in Definition 3.2.3.1. Let
us also fix a (noncanonical) choice of (LZ, 〈 · , · 〉Z, hZ0) so that GZ can
be defined as in Definition 1.2.1.9. Then we also have a boundary
filtration DZ ∼= D−1 for LZ⊗

Z
Zp ∼= GrZ−1⊗

Ẑ
Zp determined by DZ,0 ∼=

D0
−1 = D0/(Z−2⊗

Ẑ
Zp), which defines subgroups Pord

DZ etc of GZ⊗
Z
Zp as

in Definition 3.2.2.7, and defines quotients of subgroups of Pord
Z,D (R) =

PZ(R)∩Pord
D (R) for each Z-algebra R as in Definition 3.2.3.9, so that

Pord
DZ (R) ∼= Pord

h,Z,D(R).

For each open compact subgroup H of G(Ẑ) of standard form with

respect to D as in Definition 3.2.2.9, we can define ~Mord,ΦH
H and ~Mord,ZH

H
as in the paragraphs containing and preceding (4.2.1.28), which are fi-

nite étale over the base change ~Mord
Hh,rH of ~Mord

Hh (defined by MHh and
...
M

ord

Hh
as in Theorem 3.4.2.5) to ~S0,rH . By Proposition 4.2.1.29, the canonical

morphism ~Mord,ΦH
H → ~Mord,ZH

H is finite étale and induces a canonical iso-

morphism ~Mord,ΦH
H /ΓΦH

∼→ ~Mord,ZH
H . If H = Ubal

1 (n) := Up(n0)Ubal
1 (pr)

for some integer n0 ≥ 1 prime to p and some integer r ≥ 0, then
~Mord,ΦH
H

∼= ~Mord,ZH
H because there is a unique (ϕord

−2,H, ϕ
ord
0,H) inducing the

prescribed (ϕ−2,H, ϕ0,H). We shall set ~Mord,Φn
n := ~Mord,Zn

n := ~Mord,Zn
Ubal

1 (n)
.

Moreover, for general H ⊂ G(Ẑ) (of standard form with respect to D as
in Definition 3.2.2.9), by construction and by Proposition 3.4.4.1, we
have the following two lemmas:

Lemma 5.2.4.1. (Compare with Lemma 1.3.2.1.) Let (Z,Φ, δ) and
HGh,Z,Φ be as in Lemma 1.3.2.1. Then HGh,Z,Φ is of standard form
with respect to DZ, which is a normal subgroup of HGh,Z (as in Defi-

nition 1.2.1.12) of equal depth (by definition—note that Ubal
1 (n)Gh,Z =

Ubal
1 (n)G′h,Z

for all integers n ≥ 1), and there is a canonical isomorphism

(5.2.4.2) ~Mord,ZH
H

∼= ~Mord
HGh,Z,Φ

,rH
,

where ~Mord
HGh,Z,Φ

is defined by (LZ, 〈 · , · 〉Z, hZ0) as in Theorem 3.4.2.5, and

where the subscript “rH” means base change to ~S0,rH. If H′ is an open
compact subgroup of H of standard form (with respect to D), then the
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corresponding morphism

(5.2.4.3) ~M
ord,ZH′
H′ → ~Mord,ZH

H

can be canonically identified with the quasi-finite flat morphism

(5.2.4.4) ~Mord
H′Gh,Z,Φ,rH′

→ ~Mord
HGh,Z,Φ

,rH
.

The collection {~Mord
HGh,Z,Φ

}HGh,Z,Φ
(with H of standard form as above)

naturally carries a Hecke action by elements gh = (gh,0, gh,p) ∈
GZ(A∞,p)×Pord

DZ (Qp) ∼= Gh,Z(A∞,p)×Pord
h,Z,D(Qp) ⊂ Gh,Z(A∞) with gh,p

satisfying the conditions defined by DZ ∼= D−1 on LZ⊗
Z
Zp ∼= GrZ−1⊗

Ẑ
Zp

as in Section 3.3.4, realized by quasi-finite flat surjections pulling
tautological objects back to ordinary Hecke twists. Such a Hecke action
enjoys the properties (under various conditions) concerning étaleness,
finiteness, being isomorphisms between formal completions along fibers
over Spec(Fp), and inducing absolute Frobenius morphisms on fibers
over Spec(Fp) for elements of Up type as in Proposition 5.2.2.2 and
Corollaries 5.2.2.3, 5.2.2.4, and 5.2.2.5. (We omit the details for
simplicity.) If moreover H′ is a normal subgroup of H of standard
form and equal depth as in Definition 3.2.2.9, then the canonical

morphism ~Mord
H′Gh,Z,Φ,rH′

→ ~Mord
HGh,Z,Φ

,rH′
induced by (5.2.4.4) (is finite

étale and) is an HGh,Z,Φ/H′Gh,Z,Φ-torsor.

Lemma 5.2.4.5. (Compare with Lemma 1.3.2.5.) Let HG′h,Z
be as in

Definition 1.2.1.12, which is a normal subgroup of HGh,Z (and hence of

HGh,Z,Φ) of equal depth (by definition—again, note that Ubal
1 (n)Gh,Z =

Ubal
1 (n)G′h,Z

for all integers n ≥ 1). Then there is a canonical isomor-

phism

(5.2.4.6) ~Mord,ΦH
H

∼= ~Mord
HG′

h,Z
,rH
,

which is compatible with (5.2.4.2) and with Hecke actions as in Lemma

5.2.4.1. The canonical morphisms ~Mord,ΦH
H → ~Mord,ZH

H → ~Mord
Hh,rH can

be identified with the canonical finite étale morphisms ~Mord
HG′

h,Z
,rH
→

~Mord
HGh,Z,Φ

,rH
→ ~Mord

HGh,Z
,rH

, on which ΓΦH acts equivariantly (and trivially

on the latter two objects) via the canonical homomorphism ΓΦH →
HG′l,Z

/HGl,Z
∼= HGh,Z/HG′h,Z

with image HGh,Z,Φ/HG′h,Z
. In particular, the

finite étale morphism ~Mord,ΦH
H → ~Mord,ZH

H is an HGh,Z,Φ/HG′h,Z
-torsor.

By Proposition 4.2.1.30 and its proof, we have the following:
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Lemma 5.2.4.7. (Compare with Lemma 1.3.2.7.) The morphism
~Cord

ΦH,δH
→ ~Mord,ΦH

H depends only on HG1,Z, is an abelian scheme when
the splitting of (1.2.1.14) defined by any splitting δ also splits (1.2.1.13)
(and induces an isomorphism HG1,Z

∼= HG′h,Z
nHU1,Z; cf. the condition

in (2) of Lemma 4.2.1.19), and is a torsor under the abelian scheme
~Cord,grp

ΦH,δH
:= ~Cord

ΦH′ ,δH′
defined by any H′ of standard form with H′G1,Z

∼=
HG′h,Z

nHU1,Z, which is Q×-isogenous to HomO(X,B)◦. (This clarifies

the abelian scheme torsor structure of ~Cord
ΦH,δH

→ ~Mord,ΦH
H .) If p - [L# :

L], so that the index of φ : Y ↪→ X and the degree of λB : B → B∨ are
both prime to p, then there is a canonical Z×(p)-isogeny

HomO(X,Bord
pr )◦/Hord

pr,Uess,ord
1,Zpr ,Dpr

→ ~Cord,grp
ΦH,δH

(cf. (4.1.4.31)), where r := depthD(H) (see Definition 3.2.2.9)
and Hord

pr,Uess,ord
1,Zpr ,Dpr

(see Definition 4.1.5.18) can be canonically

embedded in the kernel of the canonical separable isogeny
HomO(X,Bord

pr )◦ → HomO(X,B)◦ (induced by (4.1.4.34)).
If r = depthD(H) and if n0 ≥ 1 is any integer prime to p such

that Up(n0) ⊂ Hp, so that Ubal
1 (n) = Up(n0)Ubal

p,1 (pr) ⊂ H are both of
standard form and equally deep, and if we fix the choice of (Zn and)
Φn, then the canonical morphism

(5.2.4.8) ~Cord
Φn,δn := ~Cord

ΦUbal
1 (n)

,δUbal
1 (n)

→ ~Cord
ΦH,δH,rn

= ~Cord
ΦH,δH

×
~S0,rH

~S0,rn ,

where rn := rUbal
1 (n) = max(rD, r), (is finite étale and) is an

HG1,Z/Ubal
1 (n)G1,Z

∼= Hord
n,Gess

h,Zn
nUess

1,Zn
-torsor (see Definition 4.1.5.18 and

Section 4.2.1 for the definition of Hord
n,Gess

h,Zn
nUess

1,Zn
), where HG1,Z and

Ubal
1 (n)G1,Z are as in Definition 1.2.1.12, and induces an isomorphism

(5.2.4.9) ~Cord
Φn,δn/(HG1,Z/Ubal

1 (n)G1,Z)
∼→ ~Cord

ΦH,δH,rn
.

Proof. The statements are self-explanatory. �

Lemma 5.2.4.10. (Compare with Lemma 1.3.2.11.) Suppose n =
n0p

r for some integer n0 ≥ 1 prime to p and some integer r ≥ 0. Sup-
pose (B, λB, iB, ϕ

ord
−1,n) and (Zn,Φn = (X, Y, φ : Y ↪→ X,ϕ−2,n, ϕ0,n), δn)

are the tautological objects over ~Mord,Φn
n = ~Mord,Zn

n . The abelian scheme

torsor S := ~Cord
Φn,δn

→ ~Mord,Φn
n is universal for the additional struc-

tures (cord
n , c∨,ord

n ) over noetherian normal schemes over ~Mord,Φn
n (induc-

ing dominant morphisms over irreducible components) satisfying cer-
tain symplectic and liftability conditions, which can be re-interpreted as



5.2. PARTIAL TOROIDAL COMPACTIFICATIONS OF ORDINARY LOCI 347

follows: S = ~Cord
Φn,δn

→ ~Mord,Φn
n = ~Mord,Zn

n parameterizes tuples

(G\, λ\ : G\ → G∨,\, i\, β\n0
, β\,ord

pr )

over noetherian normal schemes flat over ~S0,rH, where:

(a) G\ (resp. G∨,\) is an extension of B (resp. B∨) by the split torus T
(resp. T∨) with character group X (resp. Y ), and λ\ : G\ → G∨,\

induces λT = φ∗ : T → T∨ and λB : B → B∨.
(b) i\ = (i\,0, i\,#,0) is a pair of homomorphisms i\,0 : O → EndS(G\)

and i\,#,0 : O → EndS(G∨,\) compatible with each other under λ\ :
G\ → G∨,\, inducing compatible O-structures on B, B∨, T , and
T∨.

(c) β\n0
= (β\,0n0

, β\,#,0n0
, ν\n0

) is a principal level-n0 structure

of (G\, λ\, i\) of type (L⊗
Z
Ẑp, 〈 · , · 〉, Z⊗

Ẑ
Ẑp), where

β\,0n0
: (Z−1,n0)S

∼→ G\[n0] and β\,#,0n0
: (Z#

−1,n0
)S

∼→ G∨,\[n0] are
O-equivariant isomorphisms preserving filtrations on both sides
and inducing on the graded pieces the ϕ−2,n0, ϕ−1,n0, and ϕ0,n0

(by duality), respectively, induced by the given ϕ−2,n, ϕord
−1,n, and

ϕ0,n; and where ν\n0
: ((Z/n0Z)(1))S

∼→ µn0,S is an isomorphism,

which are compatible with λ\ and the canonical morphism
Z−1,n0 → Z

#
−1,n0

induced by 〈 · , · 〉. (Here Z# is the filtration on

L#⊗
Z
Ẑ canonically dual to the filtration on L⊗

Z
Ẑ, equipped with

a canonical morphism Z → Z#, respecting the filtration degrees,
induced by 〈 · , · 〉. Then the splitting δn0 induced by δn corresponds
under β\n0

to splittings of 0 → T [n0] → G\[n0] → B[n0] → 0 and
0 → T∨[n0] → G∨,\[n0] → B∨[n0] → 0.) Moreover, β\n0

satisfies
the liftability condition that, for each integer m0 ≥ 1 such that
n0|m0, there exists a finite étale covering of S over which there
exists an analogous triple β\m0

lifting the pullback of β\n0
.

(d) β\,ord
pr = (β\,ord,0

pr , β\,ord,#,0
pr , ν\,ord

pr ) is a principle ordinary level-pr

structure of (G\, λ\, i\) of type (L⊗
Z
Zp, 〈 · , · 〉, Z⊗

Ẑ
Zp, D), where

β\,ord,0
pr : (Gr0

D,pr)
mult
S → G\[pr]) and β\,ord,#,0

pr : (Gr0
D#,pr)

mult
S →

G∨,\[pr]) are O-equivariant homomorphisms inducing closed im-
mersions, preserving filtrations on both sides, and inducing on the
graded pieces the ϕ−2,pr , ϕ

ord
−1,pr , and ϕ0,pr (by duality), respectively,

induced by the given ϕ−2,n, ϕord
−1,n, and ϕ0,n; and where ν\,ord

pr ∈
(Z/prZ)×S is a section, which are compatible with λ\ and the canon-
ical morphism φ0

D : Gr0
D → Gr0

D# induced by 〈 · , · 〉. (Then the
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splitting δord
pr induced by δn corresponds under β\,ord

pr to splittings

of 0 → T [n] → image(β\,ord,0
pr ) → image(ϕord,0

−1,pr) → 0 and 0 →
image(β\,ord,#,0

pr )→ image(ϕord,#,0
−1,pr )→ 0.) Moreover, β\,ord

pr satisfies
the liftability condition that, for each integer r′ ≥ r, there exists a
quasi-finite étale covering of S over which there exists an analogous
triple β\,ord

pr′
lifting the pullback of β\,ord

pr .

Proof. The statements are self-explanatory. �

Proposition 5.2.4.11. (Compare with Proposition 1.3.2.12.) The

abelian scheme torsor S := ~Cord
ΦH,δH

→ ~Mord,ΦH
H is universal for the ad-

ditional structures (cord
H , c∨,ord

H ) over noetherian normal schemes over
~Mord,ΦH
H (inducing dominant morphisms over irreducible components)

satisfying certain symplectic and liftability conditions, which can be in-
terpreted as parameterizing tuples

(5.2.4.12) (G\, λ\ : G\ → G∨,\, i\, β\Hp , β
\,ord
Hp ),

where:

(1) G\, G∨,\, λ\, and i\ are as in Lemma 5.2.4.10.

(2) β\Hp is a level-Hp structure of (G\, λ\, i\) of type

(L⊗
Z
Ẑp, 〈 · , · 〉, Z⊗

Ẑ
Ẑp), which is a collection {β\Hn0

}n0,

where n0 ≥ 1 runs over integers prime to p such that
Up(n0) ⊂ Hp, such that each β\Hn0

(where Hn0 := Hp/Up(n0))

is a subscheme of∐(
IsomS(Z−1,n0,S, G

\[n0])×
S

IsomS(Z#
−1,n0,S

, G∨,\[n0])

×
S

IsomS

(
((Z/n0Z)(1))S,µn0,S

))
over S, where the disjoint union is over representatives
(Zn0 ,Φn0 , δn0) (with the same (X, Y, φ)) in (ZHp ,ΦHp , δHp)
induced by (ZH,ΦH, δH), that becomes the disjoint union
of all elements in the Hn0-orbit of some principal level-n0

structure β\n0
of (G\, λ\, i\) of type (L⊗

Z
Ẑp, 〈 · , · 〉, Z⊗

Ẑ
Ẑp), as

in Lemma 5.2.4.10, for any Z lifting Zn; and where β\Hm0
is

mapped to β\Hn0
(under the canonical morphism, which we

omit for simplicity) when p - m0 and n0|m0. The Hn0-orbit
of the ϕ−1,n0 determined by such β\n0

as in Lemma 5.2.4.10
then defines the level structure ϕ−1,Hp of (B, λB, iB) (where
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(B, λB, iB, ϕ−1,Hp , ϕ
ord
−1,Hp) is the pullback of the tautological

tuple over ~Mord,ZH
H ).

(3) β\,ord
Hp is an ordinary level-Hp structure of (G\, λ\, i\) of

type (L⊗
Z
Zp, 〈 · , · 〉, Z⊗

Ẑ
Zp, D), which is a subscheme of∐(

HomS

(
(Gr0

D,pr)
mult
S , G\[pr]

)
×
S

HomS

(
(Gr0

D#,pr)
mult
S , G∨,\[pr]

)
×
S

(Z/prZ)×S

)
over S, where the disjoint union is over representatives
(Zpr ,Φpr , δpr) (with the same (X, Y, φ)) in the (ZHp ,ΦHp , δHp)
induced by (ZH,ΦH, δH), that becomes the disjoint union of
all elements in the Hord

pr -orbit (where Hord
pr := Hp/Ubal

p,1 (pr)) of

some principle ordinary level-pr structure β\,ord
pr of (G\, λ\, i\)

of type (L⊗
Z
Zp, 〈 · , · 〉, D), as in Lemma 5.2.4.10. The

Hord
pr -orbit of the ϕord

−1,pr determined by such β\,ord
pr as in

Lemma 5.2.4.10 then defines the ordinary level structure
ϕord
−1,Hp of (B, λB, iB).

Proof. This follows from Lemmas 5.2.4.7 and 5.2.4.10, by realizing
~Cord

ΦH,δH,rn
as a quotient of some ~Cord

Φn,δn
, and by finite flat descent. �

Proposition 5.2.4.13. (Compare with Propositions 1.3.2.14
and 5.2.4.11.) Fix any lifting (Z,Φ = (X, Y, φ, ϕ−2, ϕ0), δ) of a
representative (ZH,ΦH, δH) of [(ZH,ΦH, δH)]. The abelian scheme

torsor ~Cord
ΦH,δH

→ ~Mord,ΦH
H is universal for Z×(p)-isogeny classes of tuples

(5.2.4.14) (G\, λ\ : G\ → G∨,\, i\, j\, j∨,\, [β̂p,\]HpG1,Z
, β\,ord
Hp )

over noetherian normal base schemes S over ~Mord,ΦH
H (inducing domi-

nant morphisms over irreducible components), where:

(1) G\ (resp. G∨,\) is a semi-abelian scheme which is the extension
of an abelian scheme B (resp. B∨) by a split torus T (resp. T∨)
over S, which is equivalent to a homomorphism c : X(T ) →
B∨ (resp. c∨ : X(T∨)→ B).

(2) λ\ : G\ → G∨,\ is Q×-isogeny which is up to Z×(p)-isogenies

an isogeny of semi-abelian schemes over S, inducing a
Q×-isogeny λT : T → T∨ between the torus parts, which
is dual to a Q-isomorphism λ∗T : X(T∨)⊗

Z
Q → X(T )⊗

Z
Q,

and a Q×-polarization λB : B → B∨ between the abelian
parts (cf. [62, Def. 1.3.2.19 and the errata]) which is up to
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Z×(p)-isogenies a polarization, so that c(Nλ∗T ) = (NλB)c∨

when N is any locally constant function over S valued in
positive integers such that (Nλ∗T )(X(T∨)) ⊂ X(T ) and such
that Nλ\ : G\ → G∨,\ is an isogeny.

(3) i\ : O⊗
Z
Z(p) → EndS(G\)⊗

Z
Z(p)S

is a homomorphism

inducing O⊗
Z
Z(p)-actions on G∨,\, T , T∨, B, and B∨

up to Z(p)
×-isogeny, compatible with each other under

the homomorphisms between these objects introduced
thus far. In particular, the induced homomorphism
iB : O⊗

Z
Z(p) → EndS(B)⊗

Z
Z(p)S

satisfies the Rosati

condition defined by λB (cf. [62, Def. 1.3.3.1]).

(4) j\ : X ⊗
Z
Z(p)S

∼→ X(T )⊗
Z
Z(p)S

and

j∨,\ : Y ⊗
Z
Z(p)S

∼→ X(T∨)⊗
Z
Z(p)S

are isomor-

phisms of O⊗
Z
Z(p)-modules, such that there exists a section

r(j\, j∨,\) of (Z×(p),>0)S such that j\ ◦ φ = r(j\, j∨,\)λ∗T ◦ j∨,\.
(5) β\,ord

Hp is an ordinary level-Hp structure of (G\, λ\, i\) of type

(L⊗
Z
Zp, 〈 · , · 〉, Z⊗

Ẑ
Zp, D) as in Proposition 5.2.4.11. (Note

that the definition of β\,ord
Hp is insensitive to Z×(p)-isogenies.)

(6) [β̂p,\]HpG1,Z
is a rational level-Hp structure of

(G\, λ\, i\, j\, j∨,\) of type (L⊗
Z
A∞,p, 〈 · , · 〉, Z⊗

Ẑ
A∞,p,Φ),

which is an assignment to each geometric point s̄ of S
a rational level-Hp structure of (G\, λ\, i\, j\, j∨,\) of type
(L⊗

Z
A∞,p, 〈 · , · 〉, Z⊗

Ẑ
A∞,p,Φ) based at s̄ (cf. [62, Def.

1.3.8.7]), which is a π1(S, s̄)-invariant Hp
G1,Z

-orbit [β̂p,\s̄ ]HpG1,Z

of triples

β̂\s̄ = (β̂p,\,0s̄ , β̂p,\,#,0s̄ , ν̂p,\s̄ ),

such that the assignments at any two geometric points s̄ and
s̄′ of the same connected component of S determine each other
(cf. [62, Lem. 1.3.8.6]), where:

(a) β̂p,\,0s̄ : Z−1⊗
Ẑ
A∞,p ∼→ VpG\

s̄ and β̂p,\,#,0s̄ : Z#
−1⊗

Ẑ
A∞,p ∼→

VpG∨,\s̄ are O⊗
Z
A∞,p-equivariant isomorphisms preserv-

ing filtrations on both sides, which are compatible with λ\
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and the canonical morphism Z−1⊗
Ẑ
A∞ → Z

#
−1⊗

Ẑ
A∞ in-

duced by 〈 · , · 〉.
(b) ν̂p,\s̄ : A∞,p(1)

∼→ Vp Gm,s̄ is an isomorphism of

A∞,p-modules such that r(j\, j∨,\)s̄ ν̂
\
s̄ maps Ẑp(1)

to Tp Gm,s̄, where r(j\, j∨,\)s̄ is the value at s̄ of
the above section r(j\, j∨,\) of (Z×(p),>0)S such that

j\ ◦ φ = r(j\, j∨,\)λ∗T ◦ j∨,\.
(c) The induced morphisms Gr−2(β̂p,\,0s̄ ) : GrZ−2⊗

Ẑ
A∞,p ∼→

Vp Ts̄ and Gr−2(β̂p,\,#,0s̄ ) : GrZ
#

−2⊗
Ẑ
A∞,p ∼→ Vp T∨s̄ coincide

with the compositions

GrZ−2⊗
Ẑ
A∞,p

ϕ−2⊗
Ẑ
A∞,p

∼→ HomA∞,p(X ⊗
Z
A∞,p,A∞,p(1))

((j\)−1 ⊗
Z(p)

A∞,p)∗

∼→ HomA∞,p(X(T )⊗
Z
A∞,p,A∞,p(1))

ν̂p,\s̄
∼→ HomA∞,p(X(T )⊗

Z
A∞,p,Vp Gm,s̄)

∼→ Vp Ts̄

and

GrZ
#

−2⊗
Ẑ
A∞,p

ϕ#
−2⊗

Ẑ
A∞,p

∼→ HomA∞,p(Y ⊗
Z
A∞,p,A∞,p(1))

((j∨,\)−1 ⊗
Z(p)

A∞,p)∗

∼→ HomA∞(X(T∨)⊗
Z
A∞,p,A∞,p(1))

ν̂p,\s̄
∼→ HomA∞(X(T∨)⊗

Z
A∞,p,Vp Gm,s̄)

∼→ Vp T∨s̄ ,

respectively, where ϕ#
−2 : GrZ

#

−2
∼→ HomẐ(Y ⊗

Z
Ẑ, Ẑ(1)) is

induced by ϕ0 by duality.
(d) Together with ν̂p−1,s̄ := ν̂p,\s̄ , the induced morphisms

ϕ̂p−1,s̄ := Gr−1(β̂p,\,0s̄ ) : GrZ−1⊗
Ẑ
A∞,p ∼→ VpBs̄

and

ϕ̂p,#−1,s̄ := Gr−1(β̂p,\,#,0s̄ ) : GrZ
#

−1⊗
Ẑ
A∞,p ∼→ VpB∨s̄
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determine each other by duality. By varying s̄ over geo-
metric points of S, the (π1(S, s̄)-invariant) Hp,′

Gh,Z
-orbits

of

(ϕ̂p−1,s̄, ν̂
p
−1,s̄, ϕ

ord
−1,Hp , ϕ−2, ϕ0)

(where ϕord
−1,Hp is determined by β\,ord

Hp as in Proposition

5.2.4.11) determine a tuple

((B, λB, iB, ϕ−1,Hp , ϕ
ord
−1,Hp), (ϕ

ord
−2,H, ϕ

ord
0,H))

whose Z×(p)-isogeny class is parameterized by ~Mord,ΦH
H (cf.

[62, Prop. 1.4.3.4]).

The Z×(p)-isogenies

(G\, λ\ : G\ → G∨,\, i\, j\, j∨,\, [β̂p,\]HpG1,Z
, β\,ord
Hp )

∼Z×
(p)

-isog. (G\,′, λ\,′ : G\,′ → G∨,\,′, i\,′, j\,′, j∨,\,′, [β̂p,\,′]HpG1,Z
, β\,ord,′
Hp )

between tuples as in (5.2.4.14) are given by pairs of Z×(p)-isogenies

(f \ : G\ → G\,′, f∨,\ : G∨,\,′ → G∨,\)

such that we have the following:

(i) There exists a section r(f \, f∨,\) of (Z×(p),>0)S such that λ\ =

r(f \, f∨,\)f∨,\ ◦ λ\,′ ◦ f \.
(ii) f \ and f∨,\ respect the compatible O⊗

Z
Z(p)-actions on G\, G\,′,

G∨,\, and G∨,\,′ (defined by i\ and i\,′).
(iii) j\ = (f \)∗ ◦ j\,′ and j∨,\,′ = (f∨,\)∗ ◦ j∨,\.
(iv) β\,ord

Hp and β\,ord,′
Hp are canonically identified under the Z×(p)-isogenies

f \ and f∨,\.
(v) For each geometric point s̄, the morphisms Vp(f \) : VpG\

s̄
∼→

VpG\,′
s̄ and Vp(f∨,\) : VpG∨,\,′s̄

∼→ VpG∨,\s̄ satisfy the condition

that, for any representatives β̂p,\s̄ = (β̂p,\,0s̄ , β̂p,\,#,0s̄ , ν̂p,\s̄ ) and β̂p,\,′s̄ =

(β̂p,\,0,′s̄ , β̂p,\,#,0,′s̄ , ν̂p,\,′s̄ ) of [β̂p,\]HpG1,Z
and [β̂p,\,′]HpG1,Z

, respectively,

the Hp
G1,Z

-orbits of

(Vp(f \) ◦ β̂p,\,0s̄ ,Vp(f∨,\)−1 ◦ β̂p,\,#,0s̄ , r(f \, f∨,\)−1
s̄ ν̂p,\s̄ )

and

(β̂p,\,0,′s̄ , β̂p,\,#,0,′s̄ , ν̂p,\,′s̄ )

coincide, where r(f \, f∨,\)s̄ is the value at s̄ of the above section
r(f \, f∨,\) of (Z×(p),>0)S such that λ\ = r(f \, f∨,\)f∨,\ ◦ λ\,′ ◦ f \.
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Proof. As in [62, Sec. 1.4.3] and in the proof of Proposition
1.3.2.14, this can be proved by replacing any tuple as in (5.2.4.14) up to
Z×(p)-isogeny, as in the statement of this proposition, with a tuple such

that j\ : X ⊗
Z
Z(p)

∼→ X(T )⊗
Z
Z(p) (resp. j∨,\ : Y ⊗

Z
Z(p)

∼→ X(T∨)⊗
Z
Z(p))

maps X (resp. Y ) to X(T ) (resp. X(T∨)), and such that, at each geo-

metric point s̄ of S, the assigned β̂p,\s̄ = (β̂p,\,0s̄ , β̂p,\,#,0s̄ , ν̂p,\s̄ ) satisfies

the condition that β̂p,\,0s̄ (resp. β̂p,\,#,0s̄ , resp. ν̂p,\s̄ ) maps Z−1⊗
Ẑ
Ẑp (resp.

Z
#
−1⊗

Ẑ
Ẑp, resp. Ẑp(1)) to TpG\

s̄ (resp. TpG∨,\s̄ , resp. Tp Gm,s̄). Then the

tuple determines and is determined by a tuple as in (5.2.4.12), as de-
sired. (These can be simultaneously achieved because of the existence
of the section r(j\, j∨,\) of (Z×(p),>0)S. The proof is similar to that of

[62, Prop. 1.4.3.4], and hence omitted.) �

Construction 5.2.4.15. (Compare with Construction 1.3.2.16.)
Suppose that H = HpHp is of standard form as in Definition 3.2.2.9,
and that Hp is neat. Consider the degenerating family

(5.2.4.16) (G, λ, i, αHp , α
ord
Hp )→ ~Mord,tor

H,Σord

of type ~Mord
H as in Theorem 5.2.1.1. Let ~Zord = ~Zord

[(ΦH,δH,σ)] be any

stratum of ~Mord,tor
H,Σord such that σ ⊂ P+

ΦH
is a top-dimensional cone in

ΣΦH (in Σord). Let

(5.2.4.17) (G\

~Z
ord , λ

\

~Z
ord , i

\

~Z
ord)→ ~Z

ord

denote the pullback of the (G, λ, i) in (5.2.4.16) to ~Z
ord

, the closure of
~Zord in ~Mord,tor

H,Σord . Since σ is top-dimensional, the canonical morphism

~Zord → ~Cord
ΦH,δH

is an isomorphism. Since αHp is defined only over ~Mord
H ,

its pullback to ~Z
ord

is undefined. On the other hand, by condition
(5) of Definition 3.4.2.10, αord

Hp does extend (necessarily uniquely) to

the whole ~Mord,tor
H,Σord . The goal of this construction is to define a partial

pullback of αHp to ~Zord, which still retains some information of αHp ,
and to give a more precise description of the pullback of (the unique

extension of) αord
Hp to ~Z

ord

. (The argument will be very similar to that
in Construction 1.3.2.16, but we will spell out the details for the sake
of certainty.)

Let n ≥ 1 be any integer such that U(n) ⊂ H, such that n =
n0p

r, where n0 ≥ 1 is an integer such that U(n0) ⊂ Hp, and where
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r = depthD(Hp) ≥ 0 (cf. Definition 3.2.2.9) is the integer such that
Ubal
p,1 (pr) ⊂ Hp ⊂ Up,0(pr), and let us fix any choice of (Zn,Φn, δn).

Consider any top-dimensional cone σ′ contained in σ that is smooth
for the integral structure defined by SΦn , we have a canonical mor-

phism ~Xord
Φn,δn,σ′

→ ~Xord
ΦH,δH,σ

(which might not be finite étale), inducing

a morphism from the σ′-stratum ~Zord
n = ~Zord

[(Φn,δn,σ′)]
of the source to

the σ-stratum ~Zord = ~Zord
[(ΦH,δH,σ)] of the target (although the scheme-

theoretic preimage of latter might not be the former), which can be
identified with the canonical morphism (5.2.4.8). Let us denote the

pullback of (5.2.4.17) to ~Zord
n by

(5.2.4.18) (G\
Zn
, λ\Zn , i

\
Zn

)→ ~Zord
n .

Over each affine open formal subscheme Spf(R, I) of ~Xord
Φn,δn,τ

,
such that S0 = Spec(R/I) is the τ -stratum of S = Spec(R), where
both R and R/I are regular domains, we have a degenerating family

(GS, λS, iS, αn0,η, α
ord
pr,η) → S of type ~Mord

n = ~Mord
Ubal

1 (n)
. A priori, the

level structure αn0,η is defined only over the generic point η of S (and
it only extends to the largest open subscheme of S over which the
pullback of GS is an abelian scheme). But since n0 is prime to the
residue characteristics of S, by the same argument as in Construction
1.3.2.16, it induces a triple β\n0,S

:= (β\,0n0,S
, β\,#,0n0,S

, ν\n0,S
) over S, with

pullback β\n0,S0
:= (β\,0n0,S0

, β\,#,0n0,S0
, ν\n0,S0

) to S0. On the other hand,
since (5.2.4.16) satisfies condition (5) of Definition 3.4.2.10, by
Lemmas 4.1.4.19 and 4.1.4.20,

α\,ord
pr,η = (αord,0

pr,η : (Gr0
Dpr

)mult
η → Gη[p

r],

αord,#,0
pr,η : (Gr0

D
#
pr

)mult
η → G∨η [pr], νord

pr,η ∈ (Z/prZ)×η )

satisfies Condition 4.1.4.1 and extends to a triple

βord
pr,S = (β\,ord,0

pr,S : (Gr0
Dpr

)mult
S → G\

S[pr],

β\,ord,#,0
pr,S : (Gr0

D
#
pr

)mult
S → G∨,\S [pr], ν\,ord

pr,S ∈ (Z/prZ)×S ),

with pullback to S0 denoted by βord
pr,S0

= (β\,ord,0
pr,S0

, β\,ord,#,0
pr,S0

, ν\,ord
pr,S0

). By

the construction of ~Xord
Φn,δn,τ

, the triple βord
pr,S induces, as in Proposition

4.1.4.21, the prescribed pair (ϕ−2,pr , ϕ0,pr) in Φpr (induced by Φn).
As in Construction 1.3.2.16, by analyzing βn0,S as in the case of αn0,η

as in [62, Sec. 5.2.2–5.2.3], we see that βn0,S retains almost all informa-
tion of αn0,η, including the pairing e10,n0 to be compared with d10,n0 , as
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in [62, Lem. 5.2.3.12 and Thm. 5.2.3.14], except that it loses informa-
tion about the pairing e00,n0 to be compared with d00,n0 . On the other
hand, by construction, βord

pr,S retains all information of αord
pr,η. Hence, if

we denote the pullback of (5.2.4.17) to S0 by (G\
S0
, λ\S0

, i\S0
)→ S0, then

(G\
S0
, λ\S0

, i\S0
, α\n0,S0

, α\,ord
pr,S0

)→ S0 determines and is determined by (the
prescribed (Zn,Φn, δn) and) the pullback to S0 of the tautological object

((B, λB, iB, ϕ
ord
−1,n), (cord

n , c∨,ord
n )) over ~Cord

Φn,δn
(up to isomorphisms induc-

ing automorphisms of Φn; i.e., elements of ΓΦn ; see Lemma 1.3.2.11).

By patching over varying S, we obtain (with (G\
~Zord
n

, λ\~Zord
n

, i\~Zord
n

) already

defined as in (5.2.4.18)) a tuple

(5.2.4.19) (G\
~Zord
n

, λ\~Zord
n

, i\~Zord
n

, β\
n0,~Zord

n

, β\,ord

pr,~Zord
n

)→ ~Zord
n
∼= ~Cord

Φn,δn

such that the previous sentence is true with S0 replaced with
~Zord
n . Since HG1,Z/Ubal

1 (n)G1,Z acts compatibly on (β\
n0,~Zord

n

, β\,ord

pr,~Zord
n

)

and (ϕord
−1,n, c

ord
n , c∨,ord

n ), the latter action being compatible with

the HG1,Z/Ubal
1 (n)G1,Z-torsor structure of (5.2.4.8), by forming the

HG1,Z/Ubal
1 (n)G1,Z-orbit (β\

Hp,~Zord
n

, β\,ord

Hp,~Zord
n

) of (β\
n0,~Zord

n

, β\,ord

pr,~Zord
n

), we can

descend (5.2.4.19) to a tuple

(5.2.4.20) (G\
~Zord

, λ\~Zord
, i\~Zord

, β\
Hp,~Zord

, β\,ord

Hp,~Zord
)→ ~Zord ∼= ~Cord

ΦH,δH
,

where the first three entries form the pullback of (5.2.4.17) to ~Zord,
which determines and is determined by (the prescribed (ZH,ΦH, δH)
and) the tautological object

(5.2.4.21)
(
(B, λB, iB, ϕ

ord
−1,H), (ϕord

−2,H, ϕ
ord
0,H), (cord

H , c∨,ord
H )

)
→ ~Cord

ΦH,δH

(up to isomorphisms inducing automorphisms of ΦH; i.e., elements of
ΓΦH). Since the tautological object (5.2.4.21) is independent of the
choice of n0, so is the tuple (5.2.4.20).

By abuse of language, we say that

(5.2.4.22) (G\

~Z
ord , λ

\

~Z
ord , i

\

~Z
ord , β

\

Hp,~Zord
, β\,ord

Hp,~Zord
)→ ~Z

ord

is the pullback of the degenerating family (5.2.4.16) to ~Z
ord

, with the

convention that (as in the case of (G, λ, i, αHp , α
ord
Hp ) itself) β\

Hp,~Zord
is

defined only over ~Zord, while (G\, λ\, i\) (resp. β\,ord

Hp,~Zord
) is defined (resp.

extends) over all of ~Z
ord

as in (5.2.4.17).
As in the proof of (7) of Theorem 5.2.1.1, in every step of our

construction of ~Mord,tor
H,Σord , the characteristic zero fiber of the degenerating
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families over the boundary charts we have used are the pullback from
S0 = Spec(F0) to S0,rH = Spec(F0[ζprH ]) of the corresponding ones
over toroidal boundary charts for MH, the only deference being that
we have only considered ordinary cusp labels in the construction for
~Mord,tor
H,Σord . Therefore, there is a degenerating family

(5.2.4.23) (G, λ, i, αH)→ ~Mord,tor
H,Σord

of type MH, with the same (G, λ, i) as in (5.2.4.16), where αH is defined

only over ~Mord
H ⊗

Z
Q, such that the pair (αHp , α

ord
Hp )⊗

Z
Q is induced by αH

as in Proposition 3.3.5.1. Therefore, by repeating the argument as in
Construction 1.3.2.16 for αH, we obtain a pullback

(5.2.4.24) (G\

~Z
ord , λ

\

~Z
ord , i

\

~Z
ord , β

\

H,~Zord⊗
Z
Q

)→ ~Z
ord

as in (5.2.4.22), where β\
H,~Zord⊗

Z
Q

is defined only over ~Zord⊗
Z
Q, such that

the pair (β\
Hp,~Zord

, β\,ord

Hp,~Zord
)⊗

Z
Q is induced by β\

H,~Zord⊗
Z
Q

by an obvious

analogue of Proposition 3.3.5.1. (This finishes Construction 5.2.4.15.)

Proposition 5.2.4.25. (Compare with Proposition 1.3.2.24.) By
considering compatible Q×-isogenies (f : G\ → G\,′, f∨ : G∨,\,′ → G∨,\)
inducing isomorphisms on the torus parts, we can define ordinary
Hecke twists of the tautological object (G\, λ\, i\, β\Hp , β

\,ord
Hp ) → ~Cord

ΦH,δH

by elements g = (g0, gp) ∈ G1,Z(A∞,p)×Pord
1,Z,D(Qp) ⊂ G1,Z(A∞)

such that the image of gp under the canonical homomorphism
Pord

1,Z,D(Qp) → Pord
h,D(Qp) satisfies the condition defined by the

filtration D−1 on GrZ−1⊗
Ẑ
Zp as in Section 3.3.4, and define the

Hecke action of (such elements of) G1,Z(A∞,p)×Pord
1,Z,D(Qp) on

the collection {~Cord
ΦH,δH

}HG1,Z
with H of standard form, realized

by quasi-finite flat surjections pulling tautological objects back to
ordinary Hecke twists, which is compatible with the Hecke action
of (suitable elements of) Gh,Z(A∞,p)×Pord

h,Z,D(Qp) on the collection

{~Mord,ΦH
H }HG′

h,Z

(with H of standard form) under the canonical

morphisms ~Cord
ΦH,δH

→ ~Mord,ΦH
H (with varying H) and the canonical

homomorphism G1,Z(A∞,p)×Pord
1,Z,D(Qp) → G′h,Z(A∞,p)×Pord,′

h,Z,D(Qp).
Such a Hecke action enjoys the properties (under various conditions)
concerning étaleness, finiteness, being isomorphisms between formal
completions along fibers over Spec(Fp), and inducing absolute
Frobenius morphisms on fibers over Spec(Fp) for elements of Up
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type as in Proposition 5.2.2.2 and Corollaries 5.2.2.3, 5.2.2.4, and
5.2.2.5. (We omit the details for simplicity.) Over the subcollection
indexed by HG1,Z with neat Hp (for H = HpHp of standard form),
the Hecke action of (suitable elements of) G1,Z(A∞,p)×Pord

1,Z,D(Qp) on

{~Cord
ΦH,δH

}HG1,Z
is compatible with the Hecke action of (suitable elements

of) P′Z(A∞,p)×Pord,′
Z,D (Qp) on the collection of strata {~Zord

[(ΦH,δH,σ)]}
above {~Cord

ΦH,δH
}HG1,Z

(cf. Proposition 5.2.2.2) under the canonical

homomorphism P′Z(A∞,p)×Pord,′
Z,D (Qp) → G1,Z(A∞,p)×Pord

1,Z,D(Qp) ∼=
(P′Z(A∞,p)×Pord,′

Z,D (Qp))/U2,Z(A∞).

By also considering Q×-isogenies (f : G\ → G\,′, f∨ : G∨,\,′ → G∨,\)
inducing Q×-isogenies on the torus parts, we can also define ordinary
Hecke twists of the tautological object (G\, λ\, i\, β\Hp , β

\,ord
Hp ) → ~Cord

ΦH,δH

by elements g = (g0, gp) ∈ (PZ(A∞,p)×Pord
Z,D (Qp))/U2,Z(A∞)

such that the image of gp under the canonical homomorphism
Pord
Z,D (Qp)/U2,Z(Qp) → Pord

h,D(Qp) satisfies the condition defined by

the filtration D−1 on GrZ−1⊗
Ẑ
Zp as in Section 3.3.4, and define the

Hecke action of (such elements of) (PZ(A∞,p)×Pord
Z,D (Qp))/U2,Z(A∞)

on the collection {
∐ ~Cord

ΦH,δH
}HPZ

/HU2,Z
(with H of standard

form), where the disjoint unions are over classes [(ZH,ΦH, δH)]
sharing the same ZH compatible with D, realized by quasi-finite
flat surjections pulling tautological objects back to ordinary
Hecke twists, which induces an action of G′l,Z(A∞) =

PZ(A∞)/P′Z(A∞) ∼= (PZ(A∞,p)×Pord
Z,D (Qp))/(P

′
Z(A∞,p)×Pord,′

Z,D (Qp))
on the index sets {[(ZH,ΦH, δH)]}, which is compat-
ible with the Hecke action of (suitable elements of)

(PZ(A∞,p)×Pord
Z,D (Qp))/UZ(A∞) ∼= G′l,Z(A∞)×(G′h,Z(A∞,p)×Pord,′

h,Z,D(Qp))

on the collection {
∐ ~Mord,ΦH

H }HG′
h,Z

(with H of standard form, with the

same index sets and the same induced action of G′l,Z(A∞)) under

the canonical morphisms ~Cord
ΦH,δH

→ ~Mord,ΦH
H (with varying H) and

the canonical homomorphism (PZ(A∞,p)×Pord
Z,D (Qp))/U2,Z(A∞) →

G′l,Z(A∞)×(G′h,Z(A∞,p)×Pord,′
h,Z,D(Qp)). Over the subcollection

indexed by HPZ
/HU2,Z with neat Hp (for H = HpHp of

standard form), the Hecke action of (suitable elements of)

(PZ(A∞,p)×Pord
Z,D (Qp))/U2,Z(A∞) on {

∐ ~Cord
ΦH,δH

}HPZ
/HU2,Z

is compatible

with the Hecke action of (suitable elements of) PZ(A∞,p)×Pord
Z,D (Qp)

on the collection of strata {~Zord
[(ΦH,δH,σ)]} above {

∐ ~Cord
ΦH,δH

}HPZ
/HU2,Z
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(cf. Proposition 5.2.2.2) under the canonical homomorphism
PZ(A∞,p)×Pord

Z,D (Qp)→ (PZ(A∞,p)×Pord
Z,D (Qp))/U2,Z(A∞).

In the Z×(p)-isogeny class language as in Proposition 5.2.4.13, the

morphism

[g] : ~Cord
ΦH′ ,δH′

→ ~Cord
ΦH,δH

,

for g = (g0, gp) ∈ (PZ(A∞,p)×Pord
Z,D (Qp))/U2,Z(A∞) as above such that

H′PZ
/H′U2,Z

⊂ g(HPZ
/HU2,Z)g

−1 and such that [(ΦH, δH)] is g-assigned

to [(ΦH′ , δH′)] with a pair isomorphisms

(fX : X ⊗
Z
Q ∼→ X ′⊗

Z
Q, fY : Y ′⊗

Z
Q ∼→ Y ⊗

Z
Q)

as in [62, Prop. 5.4.3.8], is characterized by

[g]∗(G\, λ\ : G\ → G∨,\, i\, j\, j∨,\, [β̂p,\]HpG1,Z
, β\,ord
Hp )

∼Z×
(p)

-isog. (G\,′′, λ\,′′ : G\,′′ → G∨,\,′′, i\,′′,

fX ◦ j\,′′, f−1
Y ◦ j

∨,\,′′, [β̂p,\,′′ ◦ g0]HpG1,Z
, β\,ord,′′
Hp )

over CΦH′ ,δH′
, where

(G\, λ\ : G\ → G∨,\, i\, j\, j∨,\, [β̂p,\]HpG1,Z
, β\,ord
Hp )

and
(G\,′, λ\,′ : G\,′ → G∨,\,′, i\,′, j\,′, j∨,\,′, [β̂p,\,′]H′,pG1,Z

, β\,ord
H′p )

are representatives of the tautological Z×(p)-isogeny classes over ~Cord
ΦH,δH

and ~Cord
ΦH′ ,δH′

, respectively, where

(G\,′′, λ\,′′ : G\,′′ → G∨,\,′′, i\,′′, j\,′′, j∨,\,′′, [β̂p,\,′′]H′,pG1,Z

, β\,ord,′′
Hp )

is the ordinary Hecke twists of the latter by gp (defined as in Proposition
3.3.4.9, with details omitted for simplicity) realized by some pair

(G\,′ → G\,′′, G∨,\,′′ → G∨,\,′)

of isogenies of p-power degrees (with canonically induced additional
structures), and where the rational level-Hp structure

[β̂p,\,′′ ◦ g0]HpG1,Z

of (G\,′′, λ\,′′, i\,′′, fX ◦ j\,′′, f−1
Y ◦ j∨,\,′′) of type

(L⊗
Z
A∞,p, 〈 · , · 〉, Z⊗

Ẑ
A∞,p,Φ) is determined at each geo-

metric point s̄ of ~Cord
ΦH′ ,δH′

by the Hp
G1,Z

-orbit of β̂p,\,′′s̄ ◦ g0, where β̂p,\,′′s̄

is any representative of the rational level-H′,p structure [β̂p,\,′′s̄ ]H′,pG1,Z

of
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(G\,′′, λ\,′′, i\,′′, j\,′′, j∨,\,′′) of type (L⊗
Z
A∞,p, 〈 · , · 〉, Z⊗

Ẑ
A∞,p,Φ′) based

at s̄ (assigned to s̄ by [β̂\,′′]H′,pG1,Z

).

Proof. As in the proof of Proposition 1.3.2.24, the first assertions
of both of the first two paragraphs, and the whole third paragraph, can

be justified as in the case of ~Mord
H . (We omit the details for simplicity.)

As for the second assertions in both of the first two paragraphs, it suf-
fices to note that the pullback of the ordinary Hecke twist of (5.2.4.16)
is the ordinary Hecke twist of (5.2.4.20), the latter of which can be

identified with the tautological object over ~Cord
ΦH,δH

under the canonical

isomorphism ~Zord
[(ΦH,δH,σ)]

∼→ ~Cord
ΦH,δH

(for any top-dimensional σ, when

Hp and hence H are neat). �

By Proposition 4.2.1.37 and its proof, we have the following:

Lemma 5.2.4.26. (Compare with Lemma 1.3.2.25.) The quotient
~Ξord

ΦH,δH
depends only on HP′Z

, and is a torsor under the torus EΦH with
character group SΦH.

If r = depthD(H) and if n0 ≥ 1 is any integer prime to p such
that Up(n0) ⊂ Hp, so that Ubal

1 (n) = Up(n0)Ubal
p,1 (pr) ⊂ H are both of

standard form and equally deep, and if we fix the choice of (Zn and)
Φn, then the canonical morphism

(5.2.4.27) ~Ξord
Φn,δn → ~Ξord

ΦH,δH,rn
= ~Ξord

ΦH,δH
×

~S0,rH

~S0,rn ,

where rn = rUbal
1 (n) = max(rD, r), (is finite étale and) is an

HP′Z
/Ubal

1 (n)P′Z
∼= Hord

n,Gess
h,Zn

nUess
Zn

-torsor (see page 276 for the definition

of Hord
n,Gess

h,Zn
nUess

Zn
), where HP′Z

and Ubal
1 (n)P′Z

are as in Definition

1.2.1.12, and induces an isomorphism

(5.2.4.28) ~Ξord
Φn,δn/(HP′Z

/Ubal
1 (n)P′Z

)
∼→ ~Ξord

ΦH,δH,rn
.

Proof. The statements are self-explanatory. �

Lemma 5.2.4.29. (Compare with Lemmas 1.3.2.28 and 5.2.4.7.)
Suppose n = n0p

r for some integer n0 ≥ 1 prime to p and some in-
teger r ≥ 0. Suppose (B, λB, iB, ϕ

ord
−1,n), (Zn,Φn = (X, Y, φ : Y ↪→

X,ϕ−2,n, ϕ0,n), δn), and (cord
n , c∨,ord

n ) are the tautological objects over
~Cord

Φn,δn
. The torus torsor S := ~Ξord

Φn,δn
→ ~Cord

Φn,δn
is universal for the

additional structure τ ord
n over noetherian normal schemes over ~Cord

Φn,δn

(inducing dominant morphisms over irreducible components) satisfying
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certain symplectic and liftability conditions, which can be re-interpreted
as follows: S = ~Ξord

Φn,δn
→ ~Cord

Φn,δn
parameterizes tuples

(G\, λ\ : G\ → G∨,\, i\, τ, βn0 , β
ord
pr ),

where:

(a) G\, G∨,\, λ\, and i\ are as in Lemma 5.2.4.10.

(b) τ : 1Y ×X
∼→ (c∨× c)∗P⊗−1

B is a trivialization of biextensions such
that (IdY ×φ)∗τ is symmetric, and such that (iY (b)× IdX)∗τ =
(IdY × iX(b?))∗τ for all b ∈ O. Then τ induces homomorphisms
ι : Y → G\ and ι∨ : X → G∨,\ compatible with the homomorphisms
φ : Y ↪→ X and λ\ : G\ → G∨,\, and induces an O-equivariant
homomorphism λ : G[n]→ G∨[n].

(c) βn0 = (β0
n0
, β#,0

n0
, νn0) is a principal level-n0 structure

of (G\, λ\, i\, τ) of type (L⊗
Z
Ẑp, 〈 · , · 〉, Z⊗

Ẑ
Ẑp), where

β0
n0

: (L/n0L)S
∼→ G[n0] and β#,0

n0
: (L#/n0L

#)S
∼→ G∨[n0] are

O-equivariant isomorphism respecting the canonical filtrations on
both sides, and νn0 : ((Z/n0Z)(1))S

∼→ µn0,S is an isomorphism,
inducing on the graded pieces the ϕ−2,n0, ϕ−1,n0, and ϕ0,n0,
respectively, induced by the given ϕ−2,n, ϕ−1,n, and ϕ0,n, which
are compatible with the canonical morphisms L ↪→ L# and
λ : G[n0]→ G∨[n0]. Moreover, βn0 satisfies the liftability condition
that, for each integer m0 ≥ 1 such that n0|m0, there exists a finite
étale covering of S over which there exists an analogous triple βm0

lifting the pullback of βn0.

(d) βord
pr = β\,ord

pr is, as in Lemma 5.2.4.10, an ordinary level-Hp struc-
ture of type (L⊗

Z
Zp, 〈 · , · 〉, Z⊗

Ẑ
Zp, D), whose definition does not re-

quire τ (and the group schemes G[pr] and G∨[pr]).

Proof. The statements are self-explanatory. �

Proposition 5.2.4.30. (Compare with Propositions 1.3.2.31 and

5.2.4.11.) The torus torsor S := ~Ξord
ΦH,δH

→ ~Cord
ΦH,δH

is universal for the

additional structure τH over noetherian normal schemes over ~Cord
ΦH,δH

(inducing dominant morphisms over irreducible components) satisfying
certain symplectic and liftability conditions, which can be interpreted
as parameterizing tuples

(G\, λ\ : G\ → G∨,\, i\, τ, βHp , β
ord
Hp ),

where G\, G∨,\, λ\, and i\ are as in Lemma 5.2.4.10, where τ is as
in Lemma 5.2.4.29, where βord

Hp = β\,ord
Hp is an ordinary level-Hp
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structure of (G\, λ\, i\) of type (L⊗
Z
Zp, 〈 · , · 〉, Z⊗

Ẑ
Zp, D) as in

Lemma 5.2.4.11, for any Z⊗
Ẑ
Zp lifting Zpr and compatible with D;

and where βHp is a level-Hp structure of (G\, λ\, i\, τ) of type

(L⊗
Z
Ẑp, 〈 · , · 〉, Z⊗

Ẑ
Ẑp), which is a collection {βHn0

}n0, where n0 ≥ 1

runs over integers prime to p such that Up(n0) ⊂ Hp, such that each
βHn0

(where Hn0 := Hp/Up(n0)) is a subscheme of∐(
IsomS

(
(L/n0L)S, G[n0]

)
×
S

IsomS

(
(L#/n0L

#)S, G
∨[n0]

)
×
S

IsomS

(
((Z/n0Z)(1))S,µn0,S

))
over S, where the disjoint union is over representatives (Zn0 ,Φn0 , δn0)
(with the same (X, Y, φ)) in the (ZHp ,ΦHp , δHp) induced by
(ZH,ΦH, δH), that becomes the disjoint union of all elements in the
Hn0-orbit of some principal level-n0 structure βn0 of (G\, λ\, i\, τ) of

type (L⊗
Z
Ẑp, 〈 · , · 〉, Z⊗

Ẑ
Ẑp), as in Lemma 5.2.4.29, for any Z⊗

Ẑ
Ẑp

lifting Zn0; and where βHm0
is mapped to βHn0

(under the canonical
morphism, which we omit for simplicity) when p - m0 and n0|m0.

Let SΦH be the unique lattice in SΦ1 ⊗
Z
Q such that S∨Φ1

/S∨ΦH
∼=

U2,Z(Ẑ)/HU2,Z. Then S = ~Ξord
ΦH,δH

→ ~Cord
ΦH,δH

is torsor under the split
torus EΦH with character group SΦH, equipped a homomorphism

SΦH → Pic(~Cord
ΦH,δH

) : ` 7→ ~Ψord
ΦH,δH

(`)

(by the torus torsor structure; see Proposition 4.2.1.46 and (4.2.1.49)),

assigning to each ` ∈ SΦH an invertible sheaf ~Ψord
ΦH,δH

(`) over ~Cord
ΦH,δH

(up to isomorphism), together with isomorphisms

~∆ord,∗
ΦH,δH,`,`′

: ~Ψord
ΦH,δH

(`) ⊗
O~Cord

ΦH,δH

~Ψord
ΦH,δH

(`′)
∼→ ~Ψord

ΦH,δH
(`+ `′)

for all `, `′ ∈ SΦH, satisfying the necessary compatibilities with each

other making ⊕
`∈SΦH

~Ψord
ΦH,δH

(`) an O ~Cord
ΦH,δH

-algebra, such that

~Ξord
ΦH,δH

∼= Spec
O~Cord

ΦH,δH

(
⊕

`∈SΦH

~Ψord
ΦH,δH

(`)

)
.

When ` = [y⊗χ] for some y ∈ Y and χ ∈ X, we have a canonical
isomorphism

~Ψord
ΦH,δH

(`) ∼= (c∨(y), c(χ))∗PB.
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Proof. This follows from Lemmas 5.2.4.26 and 5.2.4.29, by realiz-
ing ~Ξord

ΦH,δH,rn
as a quotient of some ~Ξord

Φn,δn
, and by finite flat descent. �

For each rational polyhedral cone σ ⊂ (SΦH)∨R as in Definition
1.2.2.2, we have an affine toroidal embedding

(5.2.4.31) ~Ξord
ΦH,δH

↪→ ~Ξord
ΦH,δH

(σ) ∼= Spec
O~Cord

ΦH,δH

(
⊕
`∈σ∨

~Ψord
ΦH,δH

(`)

)
(cf. (1.3.2.32) and (4.2.2.1)), both sides being relative affine over
~Cord

ΦH,δH
, where ~Ξord

ΦH,δH
(σ) → ~Cord

ΦH,δH
is smooth when the cone σ is

smooth, with its σ-stratum ~Ξord
ΦH,δH,σ

= Spec
O~Cord

ΦH,δH

(
⊕

`∈σ⊥
~Ψord

ΦH,δH
(`)

)
as in (4.2.2.2) (cf. (1.3.2.33)), which is by itself a torsor under the
torus EΦH,σ with character group σ⊥. For each ΓΦH-admissible
rational polyhedral cone decomposition ΣΦH as in Definition 1.2.2.4,
we have the toroidal embedding

~Ξord
ΦH,δH

↪→ ~Ξ
ord

ΦH,δH
= ~Ξ

ord

ΦH,δH,ΣΦH

as in (4.2.2.4) (cf. (1.3.2.34)), the right-hand side being only locally of

finite type over ~Cord
ΦH,δH

, with an open covering

(5.2.4.32) ~Ξ
ord

ΦH,δH
= ∪

σ∈ΣΦH

~Ξord
ΦH,δH

(σ),

(cf. (1.3.2.35)) inducing a stratification

(5.2.4.33) ~Ξ
ord

ΦH,δH
=

∐
σ∈ΣΦH

~Ξord
ΦH,δH,σ

(cf. (1.3.2.36)). (The notation “
∐

” only means a set-theoretic disjoint
union. The algebro-geometric structure is still the one inherited from

~Ξ
ord

ΦH,δH
.) Concretely, if σ is a face of ρ, then ρ∨ ⊂ σ∨ and ~Ξord

ΦH,δH
(σ) ⊂

~Ξord
ΦH,δH

(ρ), but ~Ξord
ΦH,δH,ρ

is contained in the closure of ~Ξord
ΦH,δH,σ

. The

closure of ~Ξord
ΦH,δH,σ

in ~Ξord
ΦH,δH

(ρ) is

(5.2.4.34) ~Ξord
ΦH,δH,σ

(ρ) := Spec
O~Cord

ΦH,δH

(
⊕

`∈σ⊥ ∩ ρ∨
~Ψord

ΦH,δH
(`)

)
(cf. (1.3.2.37)). In this case, the open embedding

(5.2.4.35) ~Ξord
ΦH,δH,σ

↪→ ~Ξord
ΦH,δH,σ

(ρ)

(cf. (1.3.2.38)) is an affine toroidal embedding (as in [62, Def. 6.1.2.3])

for the torus torsor ~Ξord
ΦH,δH,σ

→ ~Cord
ΦH,δH

.
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In Section 4.2.2, we have also defined

(5.2.4.36) ~Xord
ΦH,δH,σ

= (~Ξord
ΦH,δH

(σ))∧~Ξord
ΦH,δH,σ

,

(cf. (1.3.2.39)) the formal completion of ~Ξord
ΦH,δH

(σ) along its σ-stratum
~Ξord

ΦH,δH,σ
. When σ ⊂ P+

ΦH
appears in ΣΦH ∈ Σord, the quotient

~Xord
ΦH,δH,σ

/ΓΦH,σ is isomorphic to the formal completion of ~Mord,tor
H,Σord

along its [(ΦH, δH, σ)]-stratum ~Zord
[(ΦH,δH,σ)]

∼= ~Ξord
ΦH,δH,σ

/ΓΦH,σ, as in

Theorem 5.2.1.1. If there is a surjection (Z′H,Φ
′
H, δ

′
H) � (ZH,ΦH, δH)

such that σ is mapped to a face of a cone ρ ⊂ P+
Φ′H

under the canonical

mapping P+
ΦH
→ PΦ′H

, and if ρ ∈ ΣΦ′H
∈ Σord, then ~Zord

[(Φ′H,δ
′
H,ρ)] is

contained in the closure ~Z
ord

[(ΦH,δH,σ)] of ~Zord
[(ΦH,δH,σ)] in ~Mord,tor

H,Σord , and the

completion of ~Z
ord

[(ΦH,δH,σ)] along ~Zord
[(Φ′H,δ

′
H,ρ)] is canonically isomorphic to

(5.2.4.37) ~Xord
ΦH,δH,σ,ρ

:= (~Ξord
ΦH,δH,σ

(ρ))∧~Ξord
ΦH,δH,ρ

(cf. (1.3.2.40)), the formal completion of ~Ξord
ΦH,δH,σ

(ρ) along its ρ-stratum
~Ξord

ΦH,δH,ρ
.

Lemma 5.2.4.38. (Compare with Lemma 1.3.2.41.) Consider

~Xord
ΦH,δH

= ~Xord
ΦH,δH,ΣΦH

, the formal completion of ~Ξ
ord

ΦH,δH
along the

union of the σ-strata ~Ξord
ΦH,δH,σ

for σ ∈ ΣΦH and σ ⊂ P+
ΦH

. Then we
have a canonical morphism

(5.2.4.39) ~Xord
ΦH,δH

→ ~Mord,tor
H,Σord

(cf. (1.3.2.42)) inducing a canonical isomorphism

(5.2.4.40) ~Xord
ΦH,δH

/ΓΦH
∼→ (~Mord,tor

H,Σord)∧∪~Zord
[(ΦH,δH,σ)]

(cf. (1.3.2.43)), where ∪~Zord
[(ΦH,δH,σ)] is the union of all strata ~Zord

[(ΦH,δH,σ)]

with σ ∈ ΣΦH (and σ ⊂ P+
ΦH

), under which the pullback of Lie∨
G/~Mord,tor

H,Σord

(resp. Lie∨
G∨/~Mord,tor

H,Σord

, resp. λ∗ : Lie∨
G∨/~Mord,tor

H,Σord

→ Lie∨
G/~Mord,tor

H,Σord

) can

be canonically identified with the pullback of Lie∨
G\/ ~Cord

ΦH,δH
(resp.

Lie∨
G∨,\/ ~Cord

ΦH,δH
, resp. (λ\)∗ : Lie∨

G∨,\/ ~Cord
ΦH,δH

→ Lie∨
G\/ ~Cord

ΦH,δH
). For each

stratum ~Zord
[(ΦH,δH,σ)], the isomorphism (5.2.4.40) is compatible with the

isomorphism ~Xord
ΦH,δH,σ

/ΓΦH,σ
∼→ (~Mord,tor

H,Σ )∧~Zord
[(ΦH,δH,σ)]

in (5) of Theorem

5.2.1.1 (under the canonical morphisms ~Xord
ΦH,δH,σ

/ΓΦH,σ → ~Xord
ΦH,δH

/ΓΦH
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and (~Mord,tor
H,Σord)∧~Zord

[(ΦH,δH,σ)]

→ (~Mord,tor
H,Σord)∧∪~Zord

[(ΦH,δH,σ)]

). (Such isomorphisms

are induced by strata-preserving isomorphisms from étale
neighborhoods of points of ~Ξord

ΦH,δH,σ
in ~Ξord

ΦH,δH
(σ) to étale neighborhoods

of points of ~Zord
[(ΦH,δH,σ)] in ~Mord,tor

H,Σord.)

Proof. By using the various universal properties, the same argu-
ment in the proof of Lemma 1.3.2.41 also works here. �

Proposition 5.2.4.41. (Compare with Propositions 1.3.1.15,
1.3.2.24, 1.3.2.45, 5.2.2.2, 5.2.4.25.) By considering compatible
Q×-isogenies (f : G\ → G\,′, f∨ : G∨,\,′ → G∨,\) compatible
with the homomorphisms (ι : Y → G\, ι∨ : X → G∨,\)
inducing isomorphisms on the torus parts T and T∨ and on the
domains of ι and ι∨, we can define ordinary Hecke twists of the
tautological object (G\, λ\, i\, τ, βHp , β

ord
Hp ) → ~Ξord

ΦH,δH
by elements

g = (g0, gp) ∈ P′Z(A∞,p)×Pord,′
Z,D (Qp) such that the image of gp under the

canonical homomorphism Pord,′
Z,D (Qp)→ Pord

h,D(Qp) satisfies the condition

defined by the filtration D−1 on GrZ−1⊗
Ẑ
Zp as in Section 3.3.4, and

define the Hecke action of (such elements of) P′Z(A∞,p)×Pord,′
Z,D (Qp)

on the collection {~Ξord
ΦH,δH

}HP′Z
with H of standard form, realized

by quasi-finite flat surjections pulling tautological objects back to
ordinary Hecke twists, which is compatible with the Hecke action
of (suitable elements of) P′Z(A∞,p)×Pord,′

Z,D (Qp) on the collection

{~Cord
ΦH,δH

}HG1,Z
(with H of standard form) under the canonical

morphisms ~Ξord
ΦH,δH

→ ~Cord
ΦH,δH

(with varying H) and the canonical

homomorphism P′Z(A∞,p)×Pord,′
Z,D (Qp) → G1,Z(A∞,p)×Pord

1,Z,D(Qp) ∼=
(P′Z(A∞,p)×Pord,′

Z,D (Qp))/U2,Z(A∞). Such a Hecke action enjoys the
properties (under various conditions) concerning étaleness, finiteness,
being isomorphisms between formal completions along fibers over
Spec(Fp), and inducing absolute Frobenius morphisms on fibers over
Spec(Fp) for elements of Up type as in Proposition 5.2.2.2 and
Corollaries 5.2.2.3, 5.2.2.4, and 5.2.2.5. (We omit the details for
simplicity.)

By also considering Q×-isogenies (f : G\ → G\,′, f∨ : G∨,\,′ → G∨,\)
compatible with the homomorphisms (ι : Y → G\, ι∨ : X → G∨,\)
inducing Q× on the torus parts T and T∨ and on the domains
of ι and ι∨ (possibly varying the isomorphism classes of the
O-lattices X and Y ), we can also define ordinary Hecke twists

of the tautological object (G\, λ\, i\, τ, βHp , β
ord
Hp ) → ~Cord

ΦH,δH
by
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elements g = (g0, gp) ∈ PZ(A∞,p)×Pord
Z,D (Qp) such that the image

of gp under the canonical homomorphism Pord
Z,D (Qp) → Pord

h,D(Qp)

satisfies the condition defined by the filtration D−1 on GrZ−1⊗
Ẑ
Zp

as in Section 3.3.4, and define the Hecke action of (such elements

of) PZ(A∞,p)×Pord
Z,D (Qp) on the collection {

∐ ~Ξord
ΦH,δH

}HPZ
(with

H of standard form), where the disjoint unions are over classes
[(ZH,ΦH, δH)] sharing the same ZH compatible with D, realized
by quasi-finite flat surjections pulling tautological objects back to
ordinary Hecke twists, which induces an action of G′l,Z(A∞) =

PZ(A∞)/P′Z(A∞) ∼= (PZ(A∞,p)×Pord
Z,D (Qp))/(P

′
Z(A∞,p)×Pord,′

Z,D (Qp)) on
the index sets {[(ZH,ΦH, δH)]}, which is compatible with the Hecke
action of (suitable elements of) (PZ(A∞,p)×Pord

Z,D (Qp))/U2,Z(A∞)

on the collection {
∐ ~Cord

ΦH,δH
}HPZ

/HU2,Z
(with H of standard

form, with the same index sets and the same induced action
of G′l,Z(A∞)) under the canonical morphisms ~Ξord

ΦH,δH
→ ~Cord

ΦH,δH
(with varying H) and the canonical homomorphism
PZ(A∞,p)×Pord

Z,D (Qp)→ (PZ(A∞,p)×Pord
Z,D (Qp))/U2,Z(A∞).

Any such Hecke action

~[g]
ord

: ~Ξord
Φ′H′ ,δ

′
H′
→ ~Ξord

ΦH,δH

covering ~[g]
ord

: ~Cord
Φ′H′ ,δ

′
H′
→ ~Cord

ΦH,δH
induces a (finite flat) morphism

~Ξord
Φ′H′ ,δ

′
H′
→ ~Ξord

ΦH,δH
×

~Cord
ΦH,δH

~Cord
Φ′H′ ,δ

′
H′

between torus torsors over ~Cord
Φ′H′ ,δ

′
H′

, which is equivariant with the mor-

phism EΦ′H′
→ EΦH dual to the homomorphism SΦH → SΦ′H′

induced by

the pair of morphisms (fX : X ⊗
Z
Q ∼→ X ′⊗

Z
Q, fY : Y ′⊗

Z
Q ∼→ Y ⊗

Z
Q)

defining the g-assignment (Z′H′ ,Φ
′
H′ , δ

′
H′)→g (ZH,ΦH, δH) of (ordinary)

cusp labels (cf. [62, Def. 5.4.3.9]).
If g ∈ PZ(A∞,p)×Pord

Z,D (Qp) is as above and if (Φ′H′ , δ
′
H′ , ρ) is a

g-refinement of (ΦH, δH, σ) as in [62, Def. 6.4.3.1], then there is a
canonical morphism

(5.2.4.42) ~[g]
ord

: ~Ξord
Φ′H′ ,δ

′
H′

(ρ)→ ~Ξord
ΦH,δH

(σ)

(cf. (1.3.2.46)) covering ~[g]
ord

: ~Cord
Φ′H′ ,δ

′
H′
→ ~Cord

ΦH,δH
, extending ~[g]

ord
:

~Ξord
Φ′H′ ,δ

′
H′
→ ~Ξord

ΦH,δH
, mapping ~Ξord

Φ′H′ ,δ
′
H′ ,ρ

to ~Ξord
ΦH,δH,σ

, and inducing a
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canonical morphism

(5.2.4.43) ~[g]
ord

: ~Xord
Φ′H′ ,δ

′
H′ ,ρ
→ ~Xord

ΦH,δH,σ

(cf. (1.3.2.47)). If g ∈ PZ(A∞,p)×Pord
Z,D (Qp) is as above and if

(Φ′H′ , δ
′
H′ ,Σ

′
Φ′H′

) is a g-refinement of (ΦH, δH,ΣΦH) as in [62, Def.

6.4.3.2], then morphisms like (5.2.4.42) patch together and define a
canonical morphism

(5.2.4.44) ~[g]
ord

: ΞΦ′H′ ,δ
′
H′ ,Σ

′
Φ′
H′
→ ΞΦH,δH,ΣΦH

(cf. (1.3.2.48)) covering ~[g]
ord

: ~Cord
Φ′H′ ,δ

′
H′
→ ~Cord

ΦH,δH
, extending [g] :

~Ξord
Φ′H′ ,δ

′
H′
→ ~Ξord

ΦH,δH
, and inducing a canonical morphism

(5.2.4.45) ~[g]
ord

: ~Xord
Φ′H′ ,δ

′
H′ ,Σ

′
Φ′
H′
→ ~Xord

ΦH,δH,ΣΦH

(cf. (1.3.2.49)) compatible with each (1.3.2.47) as above (under canon-
ical morphisms).

If g ∈ PZ(A∞,p)×PZ(Qp) is as above and if we have a collection

Σord,′ for ~Mord
H′ that is a g-refinement of a collection Σord for ~Mord

H as in
Definition 5.2.2.1, then the canonical morphism

~[g]
ord,tor

: ~Mord,tor
H′,Σord,′ → ~Mord,tor

H,Σord

as in Proposition 5.2.2.2 is compatible with (5.2.4.43) when (Φ′H′ , δ
′
H′ , ρ)

is a g-refinement of (ΦH, δH, σ), under the canonical isomorphisms
as in (5) of Theorem 5.2.1.1; and is compatible with (5.2.4.45) when
(Φ′H′ , δ

′
H′ ,Σ

′
Φ′H′

) is a g-refinement of (ΦH, δH,ΣΦH), under the canonical

isomorphisms as in Lemma 5.2.4.38.

Proof. The assertions in the first two paragraphs can be justified

as in the case of ~Mord
H . (We omit the details for simplicity.) The third

paragraph follows by comparing the torus torsor actions of sufficiently
divisible multiples of elements, for which we have explicit descriptions
in Lemma 5.2.4.29 and Proposition 5.2.4.30. As for the last paragraph,
since the canonical morphisms are defined by universal properties given
in terms of degeneration data, their compatibility follows from the fact
that (by the theory of degeneration as in Theorem 4.1.6.2, based on [62,
Thm. 5.2.3.14] and (4.1.4.50), in particular) the ordinary Hecke twist

of the tautological tuple over ~Mord,tor
H′,Σord,′ by g defined using the ordinary

level structure (αH′,p , α
ord
H′p ) over ~Mord

H′ is compatible with the ordinary
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Hecke twist of the tautological tuple over ~Ξord
Φ′H′ ,δ

′
H′

(ρ) by g defined using

the ordinary level structure (βH′,p , β
ord
H′p ) over ~Ξord

Φ′H′ ,δ
′
H′

. �

We will continue the generalization of Section 1.3.2 in Section 7.1.2
below.

Remark 5.2.4.46. Since all objects and morphisms in this subsec-
tion are defined by normalizations and by the various universal prop-
erties extending their analogues in characteristic zero, they are canon-
ically compatible with the corresponding objects and morphisms in
Section 1.3.2.





CHAPTER 6

Partial Minimal Compactifications

The first goal of this chapter is to construct the partial minimal
compactifications for the ordinary loci defined in Chapter 3, based on
the partial toroidal compactifications constructed in Chapter 5 and on
the total minimal compactifications constructed in Chapter 2 (which
is in turn based on projective minimal compactifications constructed
in [62] in the good reduction case, for the auxiliary models). The
second goal is to show that the partial toroidal compactifications are
quasi-projective when the levels are neat away from p and when the
compatible choices of smooth admissible cone decompositions are pro-
jective. The third goal is to show that the reductions of the partial
minimal compactifications modulo powers of p are affine. These are
all indispensable for the application of our work to the construction of
p-adic modular forms as in, for example, [39].

6.1. Homogeneous Spectra and Their Properties

In this section, we continue to assume the same settings as in Sec-
tion 5.2. (We do not assume as in Section 5.2.3 that p is a good prime
for the integral PEL datum (O, ?, L, 〈 · , · 〉, h0) as in Definition 1.1.1.6.)

6.1.1. Construction of Quasi-Projective Models. Let
~Mord,tor
H,Σord be as in Theorem 5.2.1.1, and let

(6.1.1.1) ω~Mord,tor

H,Σord
:= ∧top Lie∨

G/~Mord,tor

H,Σord

∼= ∧top e∗GΩ1

G/~Mord,tor

H,Σord

be the Hodge invertible sheaf as usual. By [80, IX, 2.1] (cf. [28, Ch.
V, Prop. 2.1] and [62, Prop. 7.2.1.1]), there exists an integer N0 ≥ 1
such that ω⊗N0

~Mord,tor

H,Σord

is generated by its global sections. Then the global

sections of ω⊗N0k
~Mord,tor

H,Σord

, for k ≥ 0, define a morphism

(6.1.1.2) ~Mord,tor
H,Σord → Proj

(
⊕
k≥0

Γ(~Mord,tor
H,Σord , ω

⊗N0k
~Mord,tor

H,Σord

)
)

369
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over ~S0,rH (see [35, II, 3.7.4]). Let

(6.1.1.3) ~Mord,min
H := Proj

(
⊕
k≥0

Γ(~Mord,tor
H,Σord , ω

⊗ k
~Mord,tor

H,Σord

)
)

(as in [35, II, Sec. 2]), which is a scheme over ~S0,rH . By [35, II, 2.4.7],
we have a canonical isomorphism

~Mord,min
H

∼= Proj
(
⊕
k≥0

Γ(~Mord,tor
H,Σord , ω

⊗Nk
~Mord,tor

H,Σord

)
)

for each integer N ≥ 1. Hence, the right-hand side of (6.1.1.2) is inde-
pendent of the integer N0 ≥ 1 above, and (6.1.1.2) induces a canonical
morphism

(6.1.1.4) ~∮ ord

H : ~Mord,tor
H,Σord → ~Mord,min

H

over ~S0,rH . (We have seen special cases of this in Propositions 5.2.3.8
and 5.2.3.18.) Since we do not know the finite generation of the graded

algebra ⊕
k≥0

Γ(~Mord,tor
H,Σord , ω

⊗ k
~Mord,tor

H,Σord

) over OF0,(p)[ζprH ], we cannot assert that

~Mord,min
H is projective over ~S0,rH . (We cannot even assert the quasi-

projectivity of ~Mord,min
H over ~S0,rH at this moment. As we will see soon,

~Mord,min
H is indeed quasi-projective over ~S0,rH , but almost never projec-

tive over ~S0,rH .)

To justify the absence of Σord in the notation of ~Mord,min
H :

Lemma 6.1.1.5. The definition of ~Mord,min
H in (6.1.1.3) is indepen-

dent of the choice of Σord.

Proof. Suppose Σord,′ is a refinement of Σord, and suppose
~[1]

ord,tor
: ~Mord,tor

H,Σord,′ → ~Mord,tor
H,Σord is the proper log étale surjection as in

Proposition 5.2.2.2 such that the family (G, λ, i, αHp , α
ord
Hp )→ ~Mord,tor

H,Σord,′

is the pullback of (G, λ, i, αHp , α
ord
Hp ) → ~Mord,tor

H,Σord . Then we

have ω~Mord,tor

H,Σord,′
∼= ( ~[1]

ord,tor
)∗ω~Mord,tor

H,Σord
, by definition. Moreover,

as in [28, Ch. V, Rem. 1.2(b)] and in the proof of [62, Lem.

7.1.1.4], we have Ri ~[1]
ord,tor

∗ OMtor
H,Σ′

= 0 for all i > 0 and

~[1]
ord,tor

∗ OMtor
H,Σ′

= OMtor
H,Σ

by [50, Ch. I, Sec. 3], which implies by the

projection formula [35, 0I, 5.4.10.1] that the canonical morphism

Γ(~Mord,tor
H,Σord , ω

⊗ k
~Mord,tor

H,Σord

) → Γ(~Mord,tor
H,Σord,′ , ω

⊗ k
~Mord,tor

H,Σord,′
) is an isomorphism for
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each k ≥ 0. Hence, the canonical morphism

Proj
(
⊕
k≥0

Γ(~Mord,tor
H,Σord,′ , ω

⊗ k
~Mord,tor

H,Σord,′
)
)
→ Proj

(
⊕
k≥0

Γ(~Mord,tor
H,Σord , ω

⊗ k
~Mord,tor

H,Σord

)
)

is also an isomorphism, as desired. �

To construct minimal compactifications as in [62, Sec. 7.2.3] us-
ing the technique of Stein factorizations, it is desirable to start with

a proper morphism with target a scheme quasi-projective over ~S0,rH .

However, this is not straightforward for ~Mord,tor
H , because it is not proper

over ~S0,rH in general. We need the help of the auxiliary moduli prob-
lems and their compactifications as in Section 2.2 (see also Section
3.4.6).

Proposition 6.1.1.6. Suppose H = HpHp such that Hp ⊂ G(Ẑp)
and Hp = Ubal

p,1 (pr) for some integer r ≥ 0. Up to replacing Σord with
a refinement, we may assume that it is smooth and projective, and
that there exists a cone decomposition Σord

aux and an analogous partial

toroidal compactification ~Mord,tor
Haux,Σord

aux
over ~S0,aux,r := Spec(OF0,aux,(p)[ζpr ])

such that there is a (necessarily unique) proper morphism

(6.1.1.7) ~Mord,tor
H,Σord → ~Mord,tor

Haux,Σord
aux

(over ~S0,aux,r) extending (3.4.6.2), mapping the [(ΦH, δH, σ)]-strata
~Zord

[(ΦH,δH,σ)] of ~Mord,tor
H,Σord to the [(ΦHaux , δHaux , σaux)]-stratum

~Zord
[(ΦHaux ,δHaux ,σaux)] of ~Mord,tor

Haux,Σord
aux

when (ΦHaux , δHaux , σaux) is assigned

to (ΦH, δH, σ) (see Definition 2.1.2.25). Under (6.1.1.7), the pullback
of ω⊗ a0

~Mord,tor

Haux,Σ
ord
aux

is canonically isomorphic to ω⊗ a~Mord,tor

H,Σord

for the integers

a0 ≥ 1 and a ≥ 1 as in Lemma 2.1.2.35.

Proof. Starting with the degenerating family (G, λ, i, αHp , α
ord
Hp )

of type ~Mord
H over ~Mord,tor

H , we would like to construct a degenerating

family (GOaux, λ
O
aux, i

O
aux, α

O
Hpaux

, αord,O
Haux,p

) of type ~Mord
Haux

over ~Mord,tor
H,Σord , and

show that it is the pullback of the tautological degenerating family

(Gaux, λaux, iaux, αHpaux
, αord
Haux,p

) of type ~Mord
Haux

over ~Mord,tor
H,Σord under some

(necessarily unique) morphism (6.1.1.7) extending (3.4.6.2). For this
purpose, we first construct GOaux, λOaux, and iOaux as in the proof of

Proposition 2.1.2.29. Then we can construct αOHpaux
and αord,O

Haux,p
as

in the proof of Lemma 3.4.1.4, verify as in the proof of Proposition

2.1.2.29 the universal property of ~Mord,tor
Haux,Σord

aux
stated as in (6) of Theorem

5.2.1.1, and obtain the desired morphism (6.1.1.7) mapping ~Zord
[(ΦH,δH,σ)]
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to ~Zord
[(ΦHaux ,δHaux ,σaux)] of ~Mord,tor

Haux,Σord
aux

when (ΦHaux , δHaux , σaux) is assigned

to (ΦH, δH, σ) as in Definition 2.1.2.25.
To show that the morphism (6.1.1.7) is proper, we apply the valu-

ative criterion over the spectrum of a complete discrete valuation ring
with algebraically closed residue field, with generic point mapped to the

open dense subscheme ~Mord
H of ~Mord,tor

H,Σord , and verify the universal prop-

erty of ~Mord,tor
H,Σord stated as in (6) of Theorem 5.2.1.1. As in the proof of

[62, Prop. 6.3.3.17], since the base ring is a complete discrete valuation
ring, the cone decomposition Σord does not impose any condition in
the verification of this universal property. Thus, the only condition to
verify is the extensibility condition (5) in the definition of degenerating
families, which is satisfied in this case because the construction of the
degenerating family (GOaux, λ

O
aux, i

O
aux, α

O
Hpaux

, αord,O
Haux,p

) above is compatible

with (and implicitly used) this extensibility condition. �

Proposition 6.1.1.8. In Proposition 6.1.1.6, we can choose Σord,

Σord
aux, and ~Mord,tor

Haux,Σord
aux

such that the canonical morphism

~∮ ord

Haux
: ~Mord,tor
Haux,Σord

aux
→ ~Mord,min

Haux
:= Proj

(
⊕
k≥0

Γ(~Mord,tor
Haux,Σord

aux
, ω⊗ k~Mord,tor

Haux,Σ
ord
aux

)
)

is proper (and surjective), and is the Stein factorization (see [35, III-1,
4.3.3]) of itself (and hence has nonempty connected geometric fibers,
by [35, III-1, 4.3.1, 4.3.3, 4.3.4] and its natural generalization to the
context of algebraic stacks).

Concretely, up to replacing Hp with an open compact subgroup, we
may assume moreover that Hp

aux is neat, that Σord
aux is projective with

a collection polord
aux of polarization functions, and that Haux, Σord

aux, and
polord

aux fit into the setup of the beginning of Section 5.2.3 (with Assump-
tion 5.2.3.1 automatically satisfied by Lemma 5.2.3.2), so that Σord

aux

(resp. polord
aux) extends to some projective (but possibly nonsmooth) Σaux

(resp. polaux) such that ~Mtor
Haux,d0,auxpolaux

is defined (for some integer

d0,aux ≥ 1; see Proposition 2.2.2.3), and so that there is a canonical
open immersion

~Mord,tor
Haux,Σord

aux
↪→ ~Mtor

Haux,d0,auxpolaux,r

(cf. (5.2.3.19)—here rHaux = rν(Haux) = r by definition, as explained in
Remark 3.4.2.2) inducing by composition with the structural morphism
~Mtor
Haux,d0,auxpolaux,r

→ ~Mmin
Haux,r

a canonical morphism

~Mord,tor
Haux,Σord

aux
→ ~Mmin

Haux,r,
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inducing a commutative diagram

~Mord,tor
H,Σord

//

����

~Mord,tor
Haux,Σord

aux

//

����

~Mtor
Haux,d0,auxpolaux,r

����

~Mord,min
H

// ~Mord,min
Haux

// ~Mmin
Haux,r

in which the vertical and the left top horizontal arrows are all proper,
in which the left bottom horizontal arrow is finite, and in which the
right top and bottom arrows are open immersions making the right-
hand square Cartesian, such that the canonical morphisms

O~Mord,min
H

→ ~∮ ord

H,∗O~Mord,tor

H,Σord

and

O~Mord,min
Haux

→ ~∮ ord

Haux,∗O~Mord,tor

Haux,Σ
ord
aux

are isomorphisms. Consequently, ~Mord,min
H is quasi-projective over ~S0,rH.

Proof. Suppose H′,p is an open compact subgroup of Hp, which
defines an open compact subgroup H′ = H′,pHp of H = HpHp. Sup-
pose Σord,′ is a 1-refinement of Σord as in Definition 5.2.2.1. Then the

canonical surjection ~[1]
ord,tor

: ~Mord,tor
H′,Σord → ~Mord,tor

H,Σord is proper by Proposi-

tion 5.2.2.2. Thus, to prove the first paragraph in the proposition, we
may compatibly replace Hp and Hp

aux with sufficiently small subgroups
as above, and assume that Hp

aux is also neat. We are also allowed to
replace Σord with suitable refinements.

By Proposition 5.2.3.18, by suitably choosing Σord
aux (possibly at

the expense of replacing Σord with a refinement), we can construct
~Mord,tor
Haux,Σord

aux
→ ~Mord,min

Haux
such that it is the (proper and surjective) pull-

back of ~Mtor
Haux,d0,auxpolaux,r

→ ~Mmin
Haux,r

under ~Mord,min
Haux

→ ~Mmin
Haux,r

(on the

target), and such that it satisfies the other statements (concerning
~Mord,tor
Haux,Σord

aux
, ~Mord,min

Haux
, ~Mtor

Haux,d0,auxpolaux,r
, and ~Mmin

Haux,r
) in this proposition.

Then the remaining statements (concerning ~Mord,tor
H,Σord and ~Mord,min

H ) fol-

low from Proposition 6.1.1.6 as formal consequences. �

Lemma 6.1.1.9. (Compare with Lemma 3.4.6.1.) With the set-
ting as at the beginning of this section (but no longer assuming that
Hp = Ubal

p,1 (pr)), suppose H and Haux are as in Lemma 3.4.1.6. Then

there exist compatible choices of smooth and projective Σord and Σord
aux,

which can be achieved by compatibly replacing any given choices with
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refinements, such that ~Mord,tor
H,Σord and ~Mord,tor

Haux,Σord
aux

are defined as in Theo-

rem 5.2.1.1, and such that there is a (necessarily unique, but possibly
nonproper) morphism

(6.1.1.10) ~Mord,tor
H,Σord → ~Mord,tor

Haux,Σord
aux

extending (3.4.6.2), mapping the [(ΦH, δH, σ)]-strata ~Zord
[(ΦH,δH,σ)] of

~Mord,tor
H,Σord to the [(ΦHaux , δHaux , σaux)]-stratum ~Zord

[(ΦHaux ,δHaux ,σaux)] of

~Mord,tor
Haux,Σord

aux
when (ΦHaux , δHaux , σaux) is assigned to (ΦH, δH, σ) (see

Definition 2.1.2.25). Under (6.1.1.10), the pullback of ω⊗ a0

~Mord,tor

Haux,Σ
ord
aux

is

canonically isomorphic to ω⊗ a~Mord,tor

H,Σord

for the integers a0 ≥ 1 and a ≥ 1

as in Lemma 2.1.2.35.
If Haux = Gaux(Ẑ), we may assume that Σord

aux is induced by some
smooth Σp

aux for MGaux(Ẑp), so that Proposition 5.2.3.3 and Lemma

5.2.3.8 apply (with (5.2.3.4) there being ~Mord,tor

Gaux(Ẑ),Σord
aux

↪→ Mtor
Gaux(Ẑp),Σpaux

in our notation here).

Proof. As in the proof of Lemma 3.4.1.6, this is because the mor-
phism (6.1.1.7) at sufficiently higher levels and with sufficiently refined
cone decompositions induces the morphism (6.1.1.10). �

Corollary 6.1.1.11. With the assumptions as in Lemma 6.1.1.9,
there exists a commutative diagram

~Mord
H

//
� _

��

##

~Mord
Haux

%%

� _

��

~MH //

��

~MHaux

��

~Mord,tor
H,Σord

//

##

~Mord,tor
Haux,Σord

aux

$$

~Mmin
H

// ~Mmin
Haux

extending the morphisms (3.4.6.2) and (6.1.1.10), which is compatible
with other canonical morphisms.
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For N1 ≥ 1 as in Proposition 2.2.1.2 and for integers a0 ≥ 1 and

a ≥ 1 as in Lemma 2.1.2.35, the pullback of ω⊗ aN1

~Mmin
H

to ~Mord,tor
H,Σord is canon-

ically isomorphic to ω⊗ aN1

~Mord,tor

H,Σord

.

Proof. The upper-left square and its commutativity follow from

Lemmas 3.4.6.1 and 6.1.1.9. The canonical morphisms ~MH → ~Mmin
H and

~MHaux → ~Mmin
Haux

are as in Proposition 2.2.1.2. The canonical morphisms
~Mord
H → ~MH and ~Mord

Haux
→ ~MHaux are as in Proposition 3.4.6.3. The re-

maining morphisms are compatibly induced by the universal properties

of ~Mord
Haux

, ~Mmin
H , ~Mmin

H , and ~Mmin
Haux

as normalizations.

For the second paragraph, we may assume that Haux = Gaux(Ẑ),
and that Σord

aux is induced by some smooth Σp
aux for MGaux(Ẑp), as in

the last paragraph of Lemma 6.1.1.9. By Proposition 2.2.1.2, ω⊗ aN1

~Mmin
H

is canonically isomorphic to the pullback of ω⊗ a0N1

Mmin
Gaux(Ẑp)

. On the other

hand, by [62, Thm. 7.2.4.1], the pullback of ω⊗ a0N1

Mmin
Gaux(Ẑp)

to Mtor
Gaux(Ẑp),Σpaux

is canonically isomorphic to ω⊗ a0N1

Mtor
Gaux(Ẑp),Σ

p
aux

; by Lemma 5.2.3.8, the

pullback of ω⊗ a0N1

Mtor
Gaux(Ẑp),Σ

p
aux

to ~Mord,tor
Haux,Σord

aux
= ~Mord,tor

Gaux(Ẑ),Σord
aux

is canonically

isomorphic to ω⊗ a0N1

~Mord,tor

Haux,Σ
ord
aux

; and, by Lemma 6.1.1.9, the pullback of

ω⊗ a0N1

~Mord,tor

Haux,Σ
ord
aux

to ~Mord,tor
H,Σord is canonically isomorphic to ω⊗ aN1

~Mord,tor

H,Σord

. Since

~Mmin
H and ~Mmin

Haux
are defined as normalizations of Mmin

Gaux(Ẑp)
, we see

that the pullback of ω⊗ aN1

~Mmin
H

to ~Mord,tor
H,Σord is canonically isomorphic to

ω⊗ aN1

~Mord,tor

H,Σord

, as desired. �

Theorem 6.1.1.12. With the setting as at the beginning of this
section (but no longer assuming that Hp = Ubal

p,1 (pr)), the canonical
morphism (6.1.1.4)

~∮ ord

H : ~Mord,tor
H,Σord → ~Mord,min

H = Proj
(
⊕
k≥0

Γ(~Mord,tor
H,Σord , ω

⊗ k
~Mord,tor

H,Σord

)
)

is proper and is the Stein factorization of itself. Consequently, ~
∮ ord

H
(is surjective and) has nonempty connected geometric fibers (by [35,
III-1, 4.3.1, 4.3.3, 4.3.4] and its natural generalization to the context of
algebraic stacks), and the canonically induced morphism

(6.1.1.13) O~Mord,min
H

→ ~∮ ord

H,∗O~Mord,tor

H,Σord
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is an isomorphism. Moreover, the invertible sheaf ω⊗N0

~Mord,tor

H,Σord

over ~Mord,tor
H,Σord

descends to an ample invertible sheaf O(1) over ~Mord,min
H . By abuse of

notation, we shall denote O(1) by ω⊗N0

~Mord,min
H

, even when ω~Mord,min
H

itself is

not defined.

The canonical morphism ~Mord,tor
H,Σord → ~Mmin

H in Corollary 6.1.1.11 in-

duces a canonical morphism

(6.1.1.14) ~Mord,tor
H,Σord → ~Mmin

H,rH ,

which maps the [(ΦH, δH, σ)]-stratum ~Zord
[(ΦH,δH,σ)] (see (2) of Theorem

5.2.1.1) to the [(ΦH, δH)]-stratum ~Z[(ΦH,δH)],rH (see Definition 2.2.3.5),
and which factors canonically as a composition

(6.1.1.15) ~Mord,tor
H,Σord → ~Mord,min

H → ~Mmin
H,rH

inducing a canonical open immersion

(6.1.1.16) ~Mord,min
H ↪→ ~Mmin

H,rH ,

under which the pullback of ω⊗ k~Mmin
H

to ~Mord,min
H is canonically isomorphic

to ω⊗ k~Mord,min
H

, when both are defined for some integer k (divisible by both

aN1 and N0). In particular, ~Mord,min
H is quasi-projective over ~S0,rH.

Proof. Suppose Ubal
p,1 (pr) ⊂ Hp ⊂ Up,0(pr). Let H′ = HpHp =

Ubal
p,1 (pr), and let Σord,′ be a compatible collection for ~Mord

H′ such that

Σord,′ is a 1-refinement of Σord as in Definition 5.2.2.1. Then the canon-

ical surjection ~[1]
ord,tor

: ~Mord,tor
H′,Σord → ~Mord,tor

H,Σord is proper by Proposition

5.2.2.2. Thus, to show that (6.1.1.4) is proper, it suffices to show that
it is so with H (resp. Σord) replaced with H′ (resp. Σord,′), which follows
from the first paragraph of Proposition 6.1.1.8.

Once the properness of (6.1.1.4) is known, since the canonical mor-
phism (6.1.1.4) (for the original H and Σord) is defined by global sec-
tions of ω⊗N0k

~Mord,tor

H,Σord

, for k ≥ 0, it follows that (6.1.1.4) is the Stein factor-

ization of itself, and that, for each k ≥ 0, the invertible sheaf ω⊗N0k
~Mord,tor

H,Σord

over ~Mord,tor
H,Σord descends to an ample invertible sheaf O(1) over ~Mord,min

H

(by definition of ~Mord,min
H ; see (6.1.1.3)).

The induced morphism (6.1.1.14) maps ~Zord
[(ΦH,δH,σ)] to ~Z[(ΦH,δH)],rH

by the definition of the latter by taking closures and exclusions. The
canonical factorization (6.1.1.15) exists by the last paragraph of Corol-
lary 6.1.1.11. The induced morphism (6.1.1.16) is an open immersion
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by Zariski’s main theorem (see [35, III-1, 4.4.3, 4.4.11]), by the last
paragraph of Corollary 6.1.1.11, and by the fact that it is an open

immersion over [~Mord
H ] (cf. (3.4.6.5), Proposition 2.2.1.2, and Corollary

6.1.1.11). When k is divisible by both aN1 andN0, the pullback of ω⊗ k~Mmin
H

to ~Mord,min
H under (6.1.1.16) is canonically isomorphic to ω⊗ k~Mord,min

H
, be-

cause their pullbacks to ~Mord,tor
H,Σord are isomorphic, and because (6.1.1.13)

is an isomorphism. (See the argument at the end of the proof of [62,
Thm. 7.2.4.1], which is based on the projection formula (see [35, 0I,
5.4.10.1]), used in [62, Lem. 7.2.2.1].) �

6.1.2. Local Structures and Stratifications.

Proposition 6.1.2.1. (Compare with [62, Prop. 7.2.3.3].) ~Mord,min
H

is normal.

Proof. Since ~Mord,tor
H,Σord is normal because it is smooth over the nor-

mal base scheme ~S0,rH = Spec(OF0,(p)[ζprH ]), and since the canonical
morphism (6.1.1.13) is an isomorphism by Theorem 6.1.1.12, the propo-
sition follows from [62, Lem. 7.2.3.1]; or, alternatively, from the second
half of the proof of [10, Sec. 6.7, Lem. 2] (ignoring the statement about
finite generation). �

Corollary 6.1.2.2. (Compare with [62, the paragraph following

Prop. 7.2.3.3].) ~Mord,min
H is flat over ~S0,rH = Spec(OF0,(p)[ζprH ]).

Proof. Since OF0,(p)[ζprH ] is a localization of the ring of integers

of a number field, ~Mord,min
H → ~S0,rH is flat because ~Mord,min

H is normal
and all its maximal points (see [36, 0, 2.1.2]) are of characteristic zero

(as those of ~Mord,tor
H,Σord are). �

By Theorem 6.1.1.12, the canonical morphism (6.1.1.4) has
nonempty connected geometric fibers, and the pullback of ω⊗N0

~Mord,tor

H,Σord

to

each such connected geometric fiber is trivial. By [28, Ch. V, Prop.
2.2] or [62, Prop. 7.2.1.2], this shows that the isomorphism class of the
abelian part of G is constant on each of such fibers. In particular, if a

geometric fiber of ~
∮ ord

H meets ~Mord
H , then it has only one closed point.

Since ~Mord
H is open in ~Mord,tor

H,Σord , and since the formation of coarse

moduli spaces commutes with flat base change, we see that [~Mord
H ] is an

open subalgebraic space of [~Mord,tor
H,Σord ]. The morphism ~∮ ord

H : ~Mord,tor
H,Σord →
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~Mord,min
H factors as

~Mord,tor
H,Σord → [~Mord,tor

H,Σord ]
[
~∮ ord

H
]

→ ~Mord,min
H ,

whose restriction to ~Mord
H is the factorization

~Mord
H → [~Mord

H ]
[
~∮ ord

H
|~Mord
H

]

→ ~Mord,min
H .

Applying Zariski’s main theorem (see [35, III-1, 4.4.3, 4.4.11], and the

formulation in [62, Prop. 7.2.3.4] for algebraic spaces) to [~
∮ ord

H ], and

taking into account the fact that ~Mord,min
H is normal (see Proposition

6.1.2.1), we see that [~
∮ ord

H ] is an isomorphism over an open subscheme

of ~Mord,min
H containing the image of [~Mord

H ]. (We will see below that

the image of [~Mord
H ] is actually open, with complements given by closed

subschemes, and hence [~
∮ ord

H |~Mord
H

] is an open immersion.)

More generally, suppose that a fiber of ~∮ ord

H meets the

[(ΦH, δH, σ)]-stratum ~Zord
[(ΦH,δH,σ)]. Let (ΦH, δH, σ) be any

representative of the class [(ΦH, δH, σ)]. By (5) of Theorem

5.2.1.1, the formal completion (~Mord,tor
H )∧~Zord

[(ΦH,δH,σ)]

of ~Mord,tor
H

along ~Zord
[(ΦH,δH,σ)] is canonically isomorphic to ~Xord

ΦH,δH,σ
/ΓΦH,σ.

Let ♥ω denote the pullback of ω~Mord,tor

H,Σord
to ~Xord

ΦH,δH,σ
/ΓΦH,σ. Let

ω ~B := ω ~B/~Mord,ZH
H

:= ∧top Lie∨~B/~Mord,ZH
H

, where ~B is the tautological

abelian scheme over ~Mord,ZH
H . By abuse of notation, we shall also

denote the pullback of ω ~B by the same notation.

Lemma 6.1.2.3. (Compare with [62, Lem. 7.1.2.1].) There is a
canonical isomorphism ♥ω ∼= (∧top

Z X)⊗
Z
ω ~B over the formal algebraic

stack ~Xord
ΦH,δH,σ

/ΓΦH,σ.

Proof. The proof of [62, Lem. 7.1.2.1] works verbatim here. �

Let us denote the structural morphism ~Cord
ΦH,δH

→ ~Mord,ZH
H by ~pord

ΦH,δH
,

which is proper and smooth because it is an abelian scheme torsor over

the finite étale cover ~Mord,ΦH
H of ~Mord,ZH

H . For simplicity of notation, as
in [62, Def. 7.1.2.2], for each ` ∈ SΦH , let

(6.1.2.4) FJ
ord,(`)
ΦH,δH

:= (~pord
ΦH,δH

)∗(~Ψ
ord
ΦH,δH

(`)).
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Consider the following composition of canonical morphisms (cf. [62,
(7.1.2.3)]):

Γ(~Mord,tor
H , ω⊗ k~Mord,tor

H,Σord

)

→ Γ((~Mord,tor
H )∧~Zord

[(ΦH,δH,σ)]

, ω⊗ k~Mord,tor

H,Σord

) ∼= Γ(~Xord
ΦH,δH,σ

/ΓΦH,σ,
♥ω⊗ k)

→
[∏
`∈σ∨

Γ(~Cord
ΦH,δH

, ~Ψord
ΦH,δH

(`) ⊗
O~Cord

ΦH,δH

((∧top
Z X)⊗

Z
ω ~B)⊗ k)

]ΓΦH,σ

∼=
[∏
`∈σ∨

Γ(~Mord,ZH
H ,FJ

ord,(`)
ΦH,δH

⊗
O
~M

ord,ZH
H

((∧top
Z X)⊗

Z
ω ~B)⊗ k)

]ΓΦH,σ
.

(6.1.2.5)

Definition 6.1.2.6. (Compare with [62, Def. 7.1.2.4].) The above
composition (6.1.2.5) is called the Fourier–Jacobi morphism along
(ΦH, δH, σ), which we denote by FJord

ΦH,δH,σ
. The image of an element

f ∈ Γ(~Mord,tor
H , ω⊗ k~Mord,tor

H,Σord

) has a natural expansion

FJord
ΦH,δH,σ

(f) =
∑
`∈σ∨

FJ
ord,(`)
ΦH,δH,σ

(f)

where the sum can be infinite and where each FJ
ord,(`)
ΦH,δH,σ

(f) lies in

FJC
ord,(`)
ΦH,δH

(k) := Γ(~Mord,ZH
H ,FJ

ord,(`)
ΦH,δH

⊗
O
~M

ord,ZH
H

((∧top
Z X)⊗

Z
ω ~B)⊗ k).

The expansion FJord
ΦH,δH,σ

(f) is called the Fourier–Jacobi expansion
of f along (ΦH, δH, σ), with Fourier–Jacobi coefficients

FJ
ord,(`)
ΦH,δH,σ

(f) of each degree ` ∈ σ∨.

By the same argument as in [62, Sec. 7.1.2], we do not really need
the Fourier–Jacobi coefficients of degrees outside P∨ΦH = ∩

σ∈ΣΦH

σ∨, and

the Fourier–Jacobi expansions are naturally invariant under the action
of ΓΦH . We have an induced morphism

(6.1.2.7) FJord
ΦH,δH

: Γ(~Mord,tor
H , ω⊗ k~Mord,tor

H,Σord

)→
[ ∏
`∈P∨ΦH

FJC
ord,(`)
ΦH,δH

(k)
]ΓΦH

(cf. [62, (7.1.2.6)]).

Definition 6.1.2.8. (Compare with [62, Def. 7.1.2.7].) The above
morphism (6.1.2.7) is called the Fourier–Jacobi morphism along



380 6. PARTIAL MINIMAL COMPACTIFICATIONS

(ΦH, δH), which we denote by FJord
ΦH,δH

as above. The image of an ele-

ment f ∈ Γ(~Mord,tor
H , ω⊗ k~Mord,tor

H,Σord

) has a natural expansion

FJord
ΦH,δH

(f) =
∑
`∈P∨ΦH

FJ
ord,(`)
ΦH,δH

(f),

where each FJ
ord,(`)
ΦH,δH

(f) lies in FJC
ord,(`)
ΦH,δH

(k). The expansion FJord
ΦH,δH

(f)
is called the Fourier–Jacobi expansion of f along (ΦH, δH), with

Fourier–Jacobi coefficients FJ
ord,(`)
ΦH,δH

(f) of each degree ` ∈ P∨ΦH.

Definition 6.1.2.9. (Compare with [62, Def. 7.1.2.10].) The con-
stant term of a Fourier–Jacobi expansion FJord

ΦH,δH
(f) of an element

f ∈ Γ(~Mord,tor
H , ω⊗ k~Mord,tor

H,Σord

) is the Fourier–Jacobi coefficient FJ
ord,(0)
ΦH,δH

(f) ∈

FJC
ord,(0)
ΦH,δH

(k) in degree zero.

The same arguments as in [62, Sec. 7.1.2] gives the following:

Proposition 6.1.2.10. (Compare with [62, Prop. 7.1.2.8, 7.1.2.9,
and 7.1.2.13; see also the errata].) The Fourier–Jacobi morphism
FJΦH,δH satisfies the following properties:

(1) FJΦH,δH can be computed by any FJΦH,δH,σ as in Definition
6.1.2.6. The definition is independent of the σ we use.

(2) FJΦH,δH is independent of the ΓΦH-admissible smooth rational
polyhedral cone decomposition ΣΦH of PΦH we use.

(3) The value of each element f ∈ Γ(~Mord,tor
H , ω⊗ k~Mord,tor

H,Σord

)

along the [(ΦH, δH, σ)]-stratum ~Zord
[(ΦH,δH,σ)] of ~Mord,tor

H,Σord is

determined by its constant term FJ
ord,(0)
ΦH,δH

(f), which is a

ΓΦH-invariant element in FJC
ord,(0)
ΦH,δH

(k). In particular,

since FJ
ord,(0)
ΦH,δH

∼= (~Mord,ΦH
H → ~Mord,ZH

H )∗O~M
ord,ΦH
H

and

~Mord,ΦH
H /ΓΦH

∼= ~Mord,ZH
H (see Proposition 4.2.1.29), the

value of f is constant along the fibers of the structural

morphism ~Zord
[(ΦH,δH,σ)] → ~Mord,ZH

H . We say in this case that it

depends only on the abelian part of (G, λ, i, αHp , α
ord
Hp ) over

~Zord
[(ΦH,δH,σ)].

Proof. The same arguments as in the proofs of [62, Prop. 7.1.2.8,
7.1.2.9, and 7.1.2.13] work verbatim here. (The error in the statement
of [62, Prop. 7.1.2.13] is due to changes necessitated by errors in other
parts of the book, which does not invalidate the argument of the proof
there.) �
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By (3) of Proposition 6.1.2.10, applied to those k ≥ 0 divisible by

N0, we see that ~
∮ ord

H |~Zord
[(ΦH,δH,σ)]

: ~Zord
[(ΦH,δH,σ)] → ~Mord,min

H factors through

~Zord
[(ΦH,δH,σ)] → ~Mord,ZH

H . This induces a morphism

(6.1.2.11) ~Mord,ZH
H → ~Mord,min

H

from an algebraic stack to a scheme, each of whose geometric fibers has
only one single point.

The argument used in proving (1) of Proposition 6.1.2.10 (or rather
[62, Prop. 7.1.2.8]) shows the following:

Lemma 6.1.2.12. (Compare with [62, Lem. 7.2.3.6].)

Two restrictions ~∮ ord

H |~Zord
[(ΦH,δH,σ)]

: ~Zord
[(ΦH,δH,σ)] → ~Mord,min

H and

~∮ ord

H |~Zord
[(Φ′H,δ

′
H,σ
′)]

: ~Zord
[(Φ′H,δ

′
H,σ
′)] → ~Mord,min

H have the same image and

induce the same morphism as in (6.1.2.11) (up to the canonical
identification between the sources) when there exist representatives
(ΦH, δH, σ) and (Φ′H, δ

′
H, σ

′) of [(ΦH, δH, σ)] and [(Φ′H, δ
′
H, σ

′)],
respectively, such that (ΦH, δH) and (Φ′H, δ

′
H) are equivalent and

represent the same cusp label [(ΦH, δH)] = [(Φ′H, δ
′
H)].

Let us denote this common image by ~Zord
[(ΦH,δH)] = ~Zord

[(Φ′H,δ
′
H)]. By

Theorem 6.1.1.12, ~Zord
[(ΦH,δH)] is an open subscheme of ~Z[(ΦH,δH)],rH (see

Definition 2.2.3.5).
We claim that the converse is also true:

Proposition 6.1.2.13. (Compare with [62, Prop. 7.2.3.7].)

If the intersection of ~Zord
[(ΦH,δH)] := image(~

∮ ord

H |~Zord
[(ΦH,δH,σ)]

) and

~Zord
[(Φ′H,δ

′
H)] := image(~

∮ ord

H |~Zord
[(Φ′H,δ

′
H,σ
′)]

) is nonempty, then the two cusp

labels [(ΦH, δH)] and [(Φ′H, δ
′
H)] are the same. (In this case, we saw

above that ~Zord
[(ΦH,δH)] = ~Zord

[(Φ′H,δ
′
H)].)

Proof. The proof of [62, Prop. 7.2.3.7] works almost verbatim
here. But let us spell out the details for the sake of certainty.

Suppose there exists a geometric point x̄ in the intersection of
~Zord

[(ΦH,δH)] and ~Zord
[(Φ′H,δ

′
H)]. Let C be any proper irreducible curve in

the fiber of ~
∮ ord

H : ~Mord,tor
H,Σord → ~Mord,min

H over x̄. By [28, Ch. V, Prop.

2.2] or [62, Prop. 7.2.1.2] as before, the pullback of G → ~Mord,tor
H,Σord

to C is globally an extension of an isotrivial abelian scheme by a
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torus. If we take any geometric point z̄ of C, and take the pullback

of (G, λ, i, αHp , α
ord
Hp ) → ~Mord,tor

H,Σord to the strict local ring of ~Mord,tor
H,Σord at

z̄ completed along the curve C, then we obtain a degenerating family

of type ~Mord
H over a base ring Rz̄ that fits into the setting of Section

4.1.6. Then, by Theorem 4.1.6.2, this pullback defines an object in the
essential image of DEGPEL,Mord

H
(Rz̄) → DEGPEL,

...
M

ord
H

(Rz̄) and hence,

in particular, a cusp label (ΦH, δH). (The key point here is that the

pullback of G → ~Mord,tor
H,Σord to C is globally an extension of an abelian

scheme by a split torus.) Thus, there is a locally constant association
of a cusp label [(ΦH, δH)] over each such proper irreducible curve C.

Since the fiber of ~
∮ ord

H over x̄ is connected, we see that the associated
cusp label [(ΦH, δH)] must be globally constant over the whole fiber.
This forces [(ΦH, δH)] = [(Φ′H, δ

′
H)], as desired. �

Corollary 6.1.2.14. (Compare with [62, Cor. 7.2.3.8].) The sub-

schemes ~Zord
[(ΦH,δH)] form a stratification

(6.1.2.15) ~Mord,min
H =

∐
[(ΦH,δH)]

~Zord
[(ΦH,δH)]

of ~Mord,min
H by locally closed subscheme, with [(ΦH, δH)] running

through a complete set of ordinary cusp labels (see Definition 3.2.3.8),

such that the [(Φ′H, δ
′
H)]-stratum ~Zord

[(Φ′H,δ
′
H)] lies in the closure of the

[(ΦH, δH)]-stratum ~Zord
[(ΦH,δH)] if and only if there is a surjection from

the cusp label [(Φ′H, δ
′
H)] to the cusp label [(ΦH, δH)] as in Definition

1.2.1.18. (The notation “
∐

” only means a set-theoretic disjoint

union. The algebro-geometric structure is still that of ~Mord,min
H .)

Proof. According to (2) of Theorem 5.2.1.1, the closure of

the [(ΦH, δH, σ)]-stratum ~Zord
[(ΦH,δH,σ)] in ~Mord,tor

H,Σord is the union of

the [(Φ′H, δ
′
H, σ

′)]-strata ~Zord
[(Φ′H,δ

′
H,σ
′)] such that [(Φ′H, δ

′
H, σ

′)] is a

face of [(ΦH, δH, σ)] as in Definition 1.2.2.19. Since the morphism
~∮ ord

H : ~Mord,tor
H,Σord → ~Mord,min

H is proper, we see that the closure of

~Zord
[(ΦH,δH,σ)] in ~Mord,tor

H,Σord is mapped to the closure of ~Zord
[(ΦH,δH)] in ~Mord,min

H ,

which is by definition the union of those ~Zord
[(Φ′H,δ

′
H)] such that there is

a surjection from [(ΦH, δH)] to [(Φ′H, δ
′
H)]. By Proposition 6.1.2.13,

this union is disjoint. Hence, we may conclude (by induction on the

incidence relations in the stratification of ~Mord,tor
H,Σord) that (6.1.2.15) is

indeed a stratification of ~Mord,min
H . �
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As a byproduct:

Corollary 6.1.2.16. (Compare with [62, Cor. 7.2.3.11].) If σ is

top-dimensional in P+
ΦH
⊂ (SΦH)∨R, then the morphism ~∮ ord

H |~Zord
[(ΦH,δH,σ)]

:

~Zord
[(ΦH,δH,σ)] → ~Zord

[(ΦH,δH)] (induced by restriction) is proper.

Proof. Since σ is a top-dimensional cone, [(ΦH, δH, σ)] can be
a face of another [(Φ′H, δ

′
H, σ

′)] (see Definition 1.2.2.19) only when
[(ΦH, δH)] 6= [(Φ′H, δ

′
H)]. Then (2) of Theorem 5.2.1.1 and Proposition

6.1.2.13 imply that ~Zord
[(ΦH,δH,σ)] is a closed subalgebraic stack of the

preimage (~
∮ ord

H )−1(~Zord
[(ΦH,δH)]). Since ~Mord,tor

H,Σord is proper over ~S0,rH , the

induced morphism ~∮ ord

H |~Zord
[(ΦH,δH,σ)]

: ~Zord
[(ΦH,δH,σ)] → ~Zord

[(ΦH,δH)] is also

proper, as desired. �

Combining Corollary 6.1.2.16 with Lemma 6.1.2.12 and with
Zariski’s main theorem (see [35, III-1, 4.4.3, 4.4.11], and the
formulation in [62, Prop. 7.2.3.4] for algebraic spaces), we obtain the
following:

Corollary 6.1.2.17. (Compare with [62, Cor. 7.2.3.12; see also

the errata].) The morphism [~Mord,ZH
H ]→ ~Zord

[(ΦH,δH)] induced by (6.1.2.11)
is finite and induces a bijection on geometric points.

Proposition 6.1.2.18. (Compare with [62, Prop. 7.2.3.13].) Let
~Mord,1
H be the open subscheme of ~Mord,min

H formed by the union of the
strata in (6.1.2.15) of codimension at most one. Then the pullback to

~Mord,1
H of the canonical surjection [~

∮ ord

H ] : [~Mord,tor
H,Σord ] � ~Mord,min

H induced

by ~
∮ ord

H is an isomorphism (regardless of the choice of Σord in the con-

struction of ~Mord,min
H ).

Proof. The proof of [62, Prop. 7.2.3.13] also works here. �

Proposition 6.1.2.19. (Compare with [62, Prop. 7.2.3.16; see also
the errata].) Let [(ΦH, δH)] be an ordinary cusp label, and let (ΦH, δH)

be a representative of [(ΦH, δH)]. Let x̄ be a geometric point of ~Mord,min
H

over the [(ΦH, δH)]-stratum ~Zord
[(ΦH,δH)], which by abuse of notation we

also identify as a geometric point of [~Mord,ZH
H ] by Corollary 6.1.2.17.

Let Aut(x̄) be the group of automorphisms of x̄ → ~Mord,ZH
H (cf. [62,

Sec. A.7.5]). Let (~Mord,min
H )∧x̄ denote the completion of the strict local-

ization of ~Mord,min
H at x̄. Let ([~Mord,ZH

H ])∧x̄ denote the completion of the
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strict localization of [~Mord,ZH
H ] at x̄ (as a geometric point of ~Mord,ZH

H ),

and let (FJ
ord,(`)
ΦH,δH

)∧x̄ denote the pullback of FJ
ord,(`)
ΦH,δH

under the canonical

morphism (~Mord,ZH
H )∧x̄ → ~Mord,ZH

H . For convenience, let us also use the
notation of the various sheaves supported on x̄ to denote their under-
lying rings or modules. Then we have a canonical isomorphism

(6.1.2.20) O(~Mord,min
H )∧x̄

∼=
[ ∏
`∈P∨ΦH

(FJ
ord,(`)
ΦH,δH

)∧x̄

]Aut(x̄)×ΓΦH

of rings, which is adic if we interpret the product on the right-hand side
as the completion of the elements that are finite sums with respect to the
ideal generated by the elements without constant terms (i.e., with trivial

projection to (FJ
ord,(0)
ΦH,δH

)∧x̄ ). Let us denote by (~Zord
[(ΦH,δH)])

∧
x̄ the completion

of the strict localization of Z[(ΦH,δH)] at x̄. Then (6.1.2.20) induces a

structural morphism from (~Mord,min
H )∧x̄ to ([~Mord,ZH

H ])∧x̄ , whose pre-

composition with the canonical morphism (~Zord
[(ΦH,δH)])

∧
x̄ → (~Mord,min

H )∧x̄

defines a canonical isomorphism (~Zord
[(ΦH,δH)])

∧
x̄
∼→ ([~Mord,ZH

H ])∧x̄ .

Proof. The proof of [62, Prop. 7.2.3.16] works almost verbatim
here. However, given the importance of this proposition, we shall spell
out the details.

By [35, III-1, 4.1.5 and 4.3.3], with natural generalizations to the
context of algebraic stacks, the ring O(~Mord,min

H )∧x̄
is isomorphic to the

Aut(x̄)-invariants in the ring of regular functions over the completion

of ~Mord,tor
H,Σord along the fiber of ~

∮ ord

H : ~Mord,tor
H,Σord → ~Mord,min

H at x̄. By Proposi-

tion 6.1.2.13, the preimage ~̃Zord
[(ΦH,δH)] := (~

∮ ord

H )−1(~Zord
[(ΦH,δH)]) of ~Zord

[(ΦH,δH)]

under ~
∮ ord

H is the union

~̃Zord
[(ΦH,δH)] = ∪

[(ΦH,δH,σ)]

~Zord
[(ΦH,δH,σ)]

of those strata ~Zord
[(ΦH,δH,σ)] over ~Zord

[(ΦH,δH)]. According to (5) of Theorem

5.2.1.1 and [62, Lem. 6.2.5.27], there is a canonical isomorphism

(~Mord,tor
H,Σord)∧~Zord

[(ΦH,δH,σ)]

∼= ~Xord
ΦH,δH,σ

/ΓΦH,σ for each representative

(ΦH, δH, σ) of [(ΦH, δH, σ)]. Therefore, the ring of regular functions

over the completion of ~Mord,tor
H,Σord along the fiber of ~∮ ord

H at x̄ is

isomorphic to the common intersection of the rings of regular

functions over the various completions of ~Xord
ΦH,δH,σ

/ΓΦH,σ along the

fibers of the structural morphisms ~Xord
ΦH,δH,σ

/ΓΦH,σ → ~Mord,ZH
H . In
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other words, it is isomorphic to the common intersection of the

ΓΦH,σ-invariants in the completions of ⊕̂
`∈σ∨

FJ
ord,(`)
ΦH,δH

along x̄. Note

that the identifications ~Xord
ΦH,δH,σ

∼= ~Xord
Φ′H,δ

′
H,σ
′ for equivalent triples

(ΦH, δH, σ) and (Φ′H, δ
′
H, σ

′) involve the canonical actions of ΓΦH

on the structural sheaves. Hence, the process of taking a common
intersection also involves the process of taking ΓΦH-invariants. This
shows the existence of (6.1.2.20).

The claim that (6.1.2.20) is adic and that the composition

(~Zord
[(ΦH,δH)])

∧
x̄ → (~Mord,min

H )∧x̄ → ([~Mord,ZH
H ])∧x̄ is an isomorphism

follows from the fact that the support ~Zord
[(ΦH,δH,σ)] of each formal

completion (~Mord,tor
H,Σord)∧~Zord

[(ΦH,δH,σ)]

∼= ~Xord
ΦH,δH,σ

/ΓΦH,σ is defined by

the vanishing of the ideal ⊕̂
`∈σ∨0

~Ψord
ΦH,δH

(`) of ⊕̂
`∈σ∨

~Ψord
ΦH,δH

(`), and

that P∨ΦH − {0} = ∩
σ∈ΣΦH ,σ⊂P

+
ΦH

σ∨0 (because P∨ΦH − {0} ⊂ σ∨0

for every σ ⊂ P+
ΦH

and because P∨ΦH = ∩
σ∈ΣΦH

σ∨ as explained

in [62, Sec. 7.1.2]). Then we can conclude the proof by taking

Aut(x̄)×ΓΦH-invariants and by noting that ((FJ
ord,(0)
ΦH,δH

)∧x̄ )Aut(x̄)×ΓΦH ∼=
(O

(~M
ord,ZH
H )∧x̄

)Aut(x̄) ∼= O
[(~M

ord,ZH
H )∧x̄ ]

∼= O
([~M

ord,ZH
H ])∧x̄

. �

Corollary 6.1.2.21. (Compare with [62, Cor. 7.2.3.18].) The

canonical finite surjection [~Mord,ZH
H ] � ~Zord

[(ΦH,δH)] defined by ~∮ ord

H is an
isomorphism.

Proof. The proof of Proposition 6.1.2.19 shows that the

composition of the completion ([~Mord,ZH
H ])∧x̄ → (~Zord

[(ΦH,δH)])
∧
x̄ of the

finite surjection [~Mord,ZH
H ] � ~Zord

[(ΦH,δH)] defined by ~∮ ord

H (described

in Corollary 6.1.2.17) with the canonical structural isomorphism

(~Zord
[(ΦH,δH)])

∧
x̄
∼→ ([~Mord,ZH

H ])∧x̄ is the identity isomorphism. This forces

[~Mord,ZH
H ] � ~Zord

[(ΦH,δH)] to be an isomorphism as the property of being
an isomorphism can be verified over the formal completions of the
target. �

6.2. Partial Minimal Compactifications of Ordinary Loci

In this section, we continue to assume the same settings as in Sec-
tion 5.2.
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6.2.1. Main Statements. The partial minimal compactifications

of ~Mord
H can be described as follows:

Theorem 6.2.1.1. (Compare with [62, Thm. 7.2.4.1] and Theorem

1.3.1.5.) There exists a normal scheme ~Mord,min
H quasi-projective and

flat over ~S0,rH = Spec(OF0,(p)[ζprH ]) (see Definition 2.2.3.3), such that
we have the following:

(1) ~Mord,min
H contains the coarse moduli space [~Mord

H ] of ~Mord
H as

an open fiberwise dense subscheme.
(2) Let (G~Mord

H
, λ~Mord

H
, i~Mord

H
, αHp , α

ord
Hp ) be the tautological tuple over

~Mord
H . Let us define the invertible sheaf

ω~Mord
H

:= ∧top Lie∨
G~Mord
H

/~Mord
H

= ∧top e∗G~Mord
H

Ω1
G~Mord
H

/~Mord
H

over ~Mord
H . Then there is a smallest integer N0 ≥ 1 such that

ω⊗N0

~Mord
H

is the pullback of an ample invertible sheaf O(1) over

~Mord,min
H .

If Hp is neat, then ~Mord
H → [~Mord

H ] is an isomorphism, and

induces an embedding of ~Mord
H as an open fiberwise dense sub-

scheme of ~Mord,min
H . Moreover, we have N0 = 1 with a canonical

choice of O(1), and the restriction of O(1) to ~Mord
H is isomor-

phic to ω~Mord
H

. We shall denote O(1) by ω~Mord,min
H

, and interpret

it as an extension of ω~Mord
H

to ~Mord,min
H .

By abuse of notation, for each integer k divisible by N0, we
shall denote O(1)⊗ k/N0 by ω⊗ k~Mord,min

H
even when ω~Mord,min

H
itself is

not defined.

(3) For each (smooth) partial toroidal compactification ~Mord,tor
H

of ~Mord
H as in Theorem 5.2.1.1, with a degenerating family

(G, λ, i, αHp , α
ord
Hp ) over ~Mord,tor

H extending the tautological

tuple (G~Mord
H
, λ~Mord

H
, i~Mord

H
, αHp , α

ord
Hp ) over ~Mord

H , let

ω~Mord,tor
H

:= ∧top Lie∨
G/~Mord,tor

H
= ∧top e∗GΩ1

G/~Mord,tor
H

be the invertible sheaf over ~Mord,tor
H extending ω~Mord

H
naturally.

Then the graded algebra ⊕
k≥0

Γ(~Mord,tor
H , ω⊗ k~Mord,tor

H
), with its natu-

ral algebra structure induced by tensor products, is independent

of the choice (of the Σord used in the definition) of ~Mord,tor
H .

The normal scheme ~Mord,min
H (quasi-projective

and flat over ~S0,rH) is canonically isomorphic to
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Proj
(
⊕
k≥0

Γ(~Mord,tor
H , ω⊗ k~Mord,tor

H
)
)

, and there is a canonical

proper morphism ~∮ ord

H : ~Mord,tor
H → ~Mord,min

H determined
by ω~Mord,tor

H
and the universal property of Proj, such

that ~∮ ord,∗

H O(1) ∼= ω⊗N0

~Mord,tor
H

over ~Mord,tor
H , and such that

the canonical morphism O~Mord,min
H

→ ~∮ ord

H,∗O~Mord,tor
H

is an

isomorphism. Moreover, when we vary the choices of

~Mord,tor
H ’s, the morphisms ~∮ ord

H ’s are compatible with the

canonical morphisms among the ~Mord,tor
H ’s as in Proposition

5.2.2.2.

When Hp is neat, we have ~∮ ord,∗

H ω⊗ k~Mord,min
H

∼= ω~Mord,tor
H

and

~∮ ord

H,∗ω~Mord,tor
H

∼= ω⊗ k~Mord,min
H

.

(4) ~Mord,min
H has a natural stratification by locally closed

subschemes

~Mord,min
H =

∐
[(ΦH,δH)]

~Zord
[(ΦH,δH)],

with [(ΦH, δH)] running through a complete set of ordinary cusp
labels (see Definition 1.2.1.7, [62, Def. 5.4.2.4], and Definition

3.2.3.8), such that the [(Φ′H, δ
′
H)]-stratum ~Zord

[(Φ′H,δ
′
H)] lies in the

closure of the [(ΦH, δH)]-stratum ~Zord
[(ΦH,δH)] if and only if there

is a surjection from the cusp label [(Φ′H, δ
′
H)] to the cusp label

[(ΦH, δH)] as in Definition 1.2.1.18. (The notation “
∐

” only
means a set-theoretic disjoint union. The algebro-geometric

structure is still that of ~Mord,min
H .) The analogous assertion

holds after pulled back to fibers over ~S0,rH.

Each [(ΦH, δH)]-stratum ~Zord
[(ΦH,δH)] is canonically isomor-

phic to the coarse moduli space [~Mord,ZH
H ] (which is a scheme) of

the corresponding algebraic stack ~Mord,ZH
H (separated, smooth,

and of finite type over ~S0,rH) associated with the cusp label
[(ΦH, δH)] as in (4.2.1.28).

Let us define the O-multi-rank of a stratum ~Zord
[(ΦH,δH)] to be

the O-multi-rank of the cusp label represented by (ΦH, δH) (see
[62, Def. 5.4.2.7]). The only stratum with O-multi-rank zero

is the open stratum ~Zord
[(0,0)]

∼= [~Mord
H ], and those strata ~Zord

[(ΦH,δH)]

with nonzero O-multi-ranks are called ordinary cusps.
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(5) The restriction of ~
∮ ord

H to the stratum ~Zord
[(ΦH,δH,σ)] of ~Mord,tor

H

is a surjection to the stratum ~Zord
[(ΦH,δH)] of Mord,min

H . This sur-
jection is smooth when Hp is neat, and is proper if σ is top-
dimensional in P+

ΦH
⊂ (SΦH)∨R.

Under the above-mentioned identification

[~Mord,ZH
H ]

∼→ ~Zord
[(ΦH,δH)] on the target, this surjection can be

viewed as the quotient by ΓΦH,σ (see [62, Def. 6.2.5.23]) of a
torsor under a torus EΦH,σ over an abelian scheme torsor
~Cord

ΦH,δH
over the finite étale cover ~Mord,ΦH

H of the algebraic

stack ~Mord,ZH
H over the coarse moduli space [~Mord,ZH

H ] (which
is a scheme), where the torus EΦH,σ is as in (5) of Theorem
1.3.1.5.

(6) There is a canonical open immersion

(6.2.1.2) ~Mord,min
H ⊗

Z
Q ↪→ Mmin

H,rH

(see Definition 2.2.3.4) over S0,rH extending the canonical iso-
morphism [Mord

H ] ∼= [MH,rH ] ∼= [MH]×
S0

S0,rH over S0,rH (see the

definition of Mord
H in Theorem 3.4.2.5), which is compatible

with any canonical open immersion (5.2.1.2) in (7) of Theo-

rem 5.2.1.1 and with the canonical morphisms ~
∮ ord

H : ~Mord,tor
H,Σord →

~Mord,min
H and

∮
H : Mtor

H,Σ → Mmin
H . Under (6.2.1.2), the pullback

of ω⊗ k
Mmin
H,rH

is canonically isomorphic to the pullback of ω⊗ k~Mord,min
H

,

when both are defined for some integer k. The open immersion
(6.2.1.2) induces isomorphisms

(6.2.1.3) ~Zord
[(ΦH,δH)]⊗

Z
Q ∼→ Z[(ΦH,δH)],rH

(see Definition 2.2.3.4), compatible with (5.2.1.3), when the
cusp label [(ΦH, δH)] is ordinary; otherwise, the pullback of
Z[(ΦH,δH)],rH under (6.2.1.2) is empty.

The canonical open immersion (6.2.1.2) extends to a
canonical open immersion

(6.2.1.4) ~Mord,min
H ↪→ ~Mmin

H,rH

(see Definition 2.2.3.5) over ~S0,rH. Under (6.2.1.4), the pull-
back of ω⊗ k~Mmin

H,rH

is canonically isomorphic to ω⊗ k~Mord,min
H

, when

both are defined for some integer k; and the [(ΦH, δH)]-stratum
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~Zord
[(ΦH,δH)] of ~Mord,min

H is the pullback of the [(ΦH, δH)]-stratum

~Z[(ΦH,δH)],rH of ~Mmin
H,rH.

Proof. With the ingredients we have provided, the proof is almost
identical to that of [62, Thm. 7.2.4.1]. However, since the construction

of ~Mord,min
H is rather indirect, we shall spell out the details for the sake

of certainty.

Let us take ~Mord,min
H to be the normal scheme (quasi-projective

and flat over ~S0,rH) constructed in Section 6.1.1. The first concern
is whether its properties as described in the theorem depend on the

choice of Σord for the toroidal compactification ~Mord,tor
H = ~Mord,tor

H,Σord in-

volved in the construction. It is clear that statements (1), (4), and (5)
are satisfied regardless of the choice of Σord. Let us verify that this is
also the case for statements (2) and (3).

Suppose Σord,′ is a refinement of Σord as in Definition 1.2.2.16,

suppose the morphism ~[1]
ord,tor

: ~Mord,tor
H,Σord,′ → ~Mord,tor

H,Σord is the proper

log étale surjection as in Proposition 5.2.2.2, and suppose the invert-
ible sheaves ω~Mord,tor

H,Σord
and ω~Mord,tor

H,Σord,′
are defined as in (6.1.1.1). Let

~∮ ord

H,Σ : ~Mord,tor
H,Σord → ~Mord,min

H and ~∮ ord

H,Σ′ : ~Mord,tor
H,Σord,′ → ~Mord,min

H be the

two canonical morphisms. Then ~∮ ord

H,Σord,′ = ~∮ ord

H,Σord ◦ ~[1]
ord,tor

and

~[1]
ord,tor

∗ O~Mord,tor

H,Σord,′
∼= O~Mord,tor

H,Σord
implies that (~

∮ ord

H,Σ)∗O(1) ∼= ω⊗N0

~Mord,tor

H,Σord

if

and only if (~
∮ ord

H,Σord,′)
∗O(1) ∼= ω⊗N0

~Mord,tor

H,Σord,′
(for the same O(1) and N0).

In other words, we can move freely between different choices of Σ by
taking pullbacks or push-forwards, and there is a choice of O(1) with
the smallest value of N0 ≥ 1 that works for all Σ.

From now on, let us fix a choice of Σord and suppress it from the no-
tation. We would like to show that ω~Mord

H
extends to an ample invertible

sheaf over ~Mord,min
H when Hp is neat.

By Proposition 6.1.2.18, the pullback of ~
∮ ord

H : ~Mord,tor
H → ~Mord,min

H
to ~Mord,1

H is an isomorphism because the canonical morphism ~Mord,tor
H →

[~Mord,tor
H ] is an isomorphism when Hp is neat. Therefore, we can view

~Mord,1
H as an open subspace of ~Mord,tor

H and consider the restriction
ω~Mord,tor

H
|M1
H

, where ω~Mord,tor
H

is as in statement (3). Since the comple-

ment of ~Mord,1
H in ~Mord,min

H has codimension at least two (by definition of
~Mord,1
H ) and since ~Mord,min

H is noetherian and normal, it suffices to show
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that the coherent sheaf (see [32, VIII, Prop. 3.2])

ω~Mord,min
H

:= (~Mord,1
H ↪→ ~Mord,min

H )∗(ω~Mord,tor
H
|~Mord,1
H

)

is an invertible sheaf. By fpqc descent (see [33, VIII, 1.11]), it suffices
to verify this statement over the completions of strict localizations of
~Mord,min
H .

Let x̄ be a geometric point over some [(ΦH, δH)]-stratum ~Zord
[(ΦH,δH)]

in ~Mord,min
H , and consider any [(ΦH, δH, σ)]-stratum ~Zord

[(ΦH,δH,σ)] in

~Mord,tor
H that maps surjectively to ~Zord

[(ΦH,δH)]. Let (ΦH, δH, σ) be any

representative of [(ΦH, δH, σ)]. Since Hp is neat, H = HpHp is also
neat, and our choice of Σord (see Definitions 1.2.2.13 and 5.1.3.1) forces

ΓΦH,σ to act trivially on ~Xord
ΦH,δH,σ

(by [62, Lem. 6.2.5.27]). Therefore,

we have (~Mord,tor
H )∧~Zord

[(ΦH,δH,σ)]

∼= ~Xord
ΦH,δH,σ

(by (5) of Theorem 5.2.1.1). Let

(~Mord,min
H )∧~Zord

[(ΦH,δH)]

denote the formal completion of ~Mord,min
H along the

[(ΦH, δH)]-stratum ~Zord
[(ΦH,δH)]. Then we have a composition of canonical

morphisms ~Xord
ΦH,δH,σ

∼= (~Mord,tor
H )∧~Zord

[(ΦH,δH,σ)]

→ (~Mord,min
H )∧~Zord

[(ΦH,δH)]

. By

abuse of notation, let us denote the pullback of this composition

from (~Mord,min
H )∧~Zord

[(ΦH,δH)]

to the completion (~Mord,min
H )∧x̄ of the strict

localization of ~Mord,min
H at x̄ by (~Xord

ΦH,δH,σ
)∧x̄
∼= (~Mord,tor

H )∧x̄ → (~Mord,min
H )∧x̄ .

According to Proposition 6.1.2.19, there is a structural morphism

(~Mord,min
H )∧x̄ → (~Mord,ZH

H )∧x̄ such that the further composition

(~Xord
ΦH,δH,σ

)∧x̄
∼= (~Mord,tor

H )∧x̄ → (~Mord,min
H )∧x̄ → (~Mord,ZH

H )∧x̄ agrees with

the morphism (~Xord
ΦH,δH,σ

)∧x̄ → (~Mord,ZH
H )∧x̄ induced by the structural

morphism ~Xord
ΦH,δH,σ

→ ~Mord,ZH
H of ~Xord

ΦH,δH,σ
. Over (~Xord

ΦH,δH,σ
)∧x̄ , the

pullback ♥ω of ω~Mord,tor
H

from ~Mord,tor
H is isomorphic to (∧top

Z X)⊗
Z
ω ~B

by Lemma 6.1.2.3, which does descend to (~Mord,min
H )∧x̄ , because the

pullback of ω ~B from ~Mord,ZH
H also makes sense there. Since the

complement of ~Mord,1
H in the normal scheme ~Mord,min

H has codimension

at least two, the pullback of ω~Mord,min
H

(from ~Mord,min
H to (~Mord,min

H )∧x̄ )

has to agree with the pullback of (∧top
Z X)⊗

Z
ω ~B to (~Mord,min

H )∧x̄ . In

particular, it is invertible, as desired.

Since ~
∮ ord

H : ~Mord,tor
H → ~Mord,min

H satisfies O~Mord,min
H

∼→ ~∮ ord

H,∗O~Mord,tor
H

by

Theorem 6.1.1.12, we see that two locally free sheaves E and F of finite

rank over ~Mord,min
H are isomorphic if and only if (~

∮ ord

H )∗E ∼= (~
∮ ord

H )∗F .
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Indeed, for the nontrivial implication we just need E ∼= ~∮ ord

H,∗(
~∮ ord

H )∗E ∼=
~∮ ord

H,∗(
~∮ ord

H )∗F ∼= F (by the projection formula (see [35, 0I, 5.4.10.1])).

Since (~
∮ ord

H )∗ω~Mord,min
H

∼= ω~Mord,tor
H

, we have ~
∮ ord

H,∗ω~Mord,tor
H

∼= ω~Mord,min
H

, and

the O(1) above such that (~
∮ ord

H )∗O(1) ∼= ω⊗N0

~Mord,tor
H

has to satisfy O(1) ∼=
ω⊗N0

~Mord,min
H

. This shows that ω~Mord,min
H

is ample and finishes the verification

of statements (2) and (3).
Finally, statement (6) is a consequence of Proposition 2.2.1.2, (7)

of Theorem 5.2.1.1, Theorem 6.1.1.12, Lemma 6.1.2.12, Proposition
6.1.2.13, and Corollary 6.1.2.14. �

Remark 6.2.1.5. When p is a good prime, ~Mord,min
H can be con-

structed as in Section 5.2.3, without any logical dependence on the
construction by normalization in Section 2.2.

Proposition 6.2.1.6 (base change properties). (Compare with

[62, Prop. 7.2.4.3].) We can repeat the construction of Mord,min
H with

~S0,rH = Spec(OF0,(p)[ζprH ]) replaced with each (quasi-separated) locally

noetherian normal scheme S over ~S0,rH, and obtain a normal scheme
~Mord,min
H,S quasi-projective and flat over S, with analogous characterizing

properties described as in Theorem 6.2.1.1 (with Proj( · ) replaced with
Proj

S
( · ), and with Γ( · ) replaced with direct images over S), together

with a canonical finite morphism

(6.2.1.7) ~Mord,min
H,S → ~Mord,min

H ×
~S0,rH

S.

If S ′ → S is a morphism between locally noetherian normal schemes,
then we also have a canonical finite morphism

(6.2.1.8) ~Mord,min
H,S′ → ~Mord,min

H,S ×
S
S ′.

Moreover, these finite morphisms satisfy the following properties:

(1) If S → ~S0,rH (resp. S ′ → S) is flat, then (6.2.1.7) (resp.
(6.2.1.8)) is an isomorphism.

(2) If ~Mord,min
H ×

~S0,rH

S (resp. ~Mord,min
H ×

~S0,rH

S ′) is noetherian and nor-

mal, then (6.2.1.7) (resp. (6.2.1.8)) is an isomorphism (by
Zariski’s main theorem; see [35, III-1, 4.4.3, 4.4.11]).

(3) Suppose s̄ is a geometric point of S. Then (6.2.1.8) (with S ′

replaced with s̄) is an isomorphism if the following condition
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is satisfied:

(6.2.1.9) ∀ geometric points x̄ of ~Mord,min
H ×

~S0,rH

s̄, char(s̄) - # Aut(x̄).

(As in Proposition 6.1.2.19, Aut(x̄) is the group of

automorphisms of x̄ → ~Mord,ZH
H ×

~S0,rH

s̄, or equivalently that

of x̄ → ~Mord,ZH
H ×

~S0,rH

S or x̄ → ~Mord,ZH
H , if x̄ is over the

[(ΦH, δH)]-stratum ~Zord
[(ΦH,δH)] of ~Mord,min

H .) In this case, the

geometric fiber ~Mord,min
H,S ×

S
s̄ is normal because ~Mord,min

H,s̄ is.

(4) Suppose (6.2.1.9) is satisfied by all geometric points s̄ of S.
(This is the case, for example, if Hp is neat. In general,
there is a nonzero constant c depending only on the linear al-

gebraic data defining ~Mord
H such that # Aut(x̄)|c for all geomet-

ric points x̄ of ~Mord,min
H ). Then the scheme ~Mord,min

H ×
~S0,rH

S is

normal, (6.2.1.7) is an isomorphism (by property (2) above),

and the morphism ~Mord,min
H,S → S is normal (i.e., flat with

geometrically normal fibers; see [35, IV-2, 6.8.1 and 6.7.8]).
Moreover, for every locally noetherian normal scheme S ′ over

S, the scheme ~Mord,min
H,S ×

S
S ′ is normal, (6.2.1.8) is an iso-

morphism (again, by property (2) above), and the morphism
~Mord,min
H,S′ → S ′ is normal.

Proof. We may assume that S and S ′ are affine, noetherian nor-
mal, and connected, because property (1) (and the convention that
all schemes are quasi-separated) allows us to patch the construction of
~Mord,min
H,S along intersections of affine open subschemes of S.

Let us take any ~Mord,tor
H = ~Mord,tor

H,Σord as in the construction of ~Mord,min
H ,

so that we have the canonical surjection

~∮ ord

H : ~Mord,tor
H � ~Mord,min

H = Proj
(
⊕
k≥0

Γ(~Mord,tor
H , ω⊗ k~Mord,tor

H
)
)

which is proper and is the Stein factorization of itself, by Theorem

6.1.1.12. If we repeat the construction of ~Mord,min
H over S, then we
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obtain a canonical morphism

~∮ ord

H,S : ~Mord,tor
H ×

~S0,rH

S

� ~Mord,min
H,S := Proj

(
⊕
k≥0

Γ(~Mord,tor
H ×

~S0,rH

S, (ω~Mord,tor
H

⊗
O~S0,rH

OS)⊗ k)
)
.

Since the base change morphism ~∮ ord

H ×
~S0,rH

S : ~Mord,tor
H ×

~S0,rH

S →

~Mord,min
H ×

~S0,rH

S is proper, and since ω⊗N0

~Mord,tor
H

⊗
O~S0,rH

OS is the pullback

of the ample invertible sheaf ω⊗N0

~Mord,min
H

⊗
O~S0,rH

OS for the same integer

N0 ≥ 1 as in (2) of Theorem 6.2.1.1, the Stein factorization of
~∮ ord

H ×
~S0,rH

S can be identified with the composition of ~
∮ ord

H,S with a

canonical finite morphism ~Mord,min
H,S → ~Mord,min

H ×
~S0,rH

S, which is the

desired morphism (6.2.1.7). Consequently, ~Mord,min
H,S is a normal scheme

quasi-projective over S, and ~∮ ord

H,S is also proper and is the Stein

factorization of itself.
The morphism S → ~S0,rH either is flat or factors through a closed

point s of ~S0,rH . In the former case, the morphism ~Mord,min
H,S → S is the

pullback of ~Mord,min
H → ~S0,rH , which is flat by Theorem 6.2.1.1. In the

latter case, the morphism ~Mord,min
H,S → S is the pullback of ~Mord,min

H,s → s,

which is automatically flat. Thus, ~Mord,min
H,S → S is always flat.

The case of (6.2.1.8) is similar, with ~S0,rH (resp. S) replaced with
S (resp. S ′).

Now, property (1) has already been explained. Property (2) is self-

explanatory, because ~Mord,min
H,S and ~Mord,min

H,S′ are noetherian normal by
construction.

Let us prove property (3). Suppose that the condition (6.2.1.9) is
satisfied. Since (6.2.1.7) is an isomorphism if it is so over the comple-
tions of strict local rings at geometric points of the target, and since
the formation of Aut(x̄)-invariants commutes with the base change
from S to s̄ because char(s̄) - # Aut(x̄), by Proposition 6.1.2.19 (see,
in particular, (6.1.2.20)), it suffices to show that, for each `0 ∈ P∨ΦH
with stabilizer ΓΦH,`0 in ΓΦH , the formation of ΓΦH,`0-invariants in

(FJ
ord,(`0)
ΦH,δH

)∧x̄
∼= Γ((~Cord

ΦH,δH
)∧x̄ , (~Ψ

ord
ΦH,δH

(`0))∧x̄ ) also commutes with the
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base change from S to s̄. By Proposition 4.2.1.29, there exists a
finite index normal subgroup Γ′ΦH of ΓΦH such that Γ′ΦH acts triv-

ially on ~Mord,ΦH
H , and such that the induced action of ΓΦH/Γ

′
ΦH

on
~Mord,ΦH
H makes ~Mord,ΦH

H → ~Mord,ZH
H an étale (ΓΦH/Γ

′
ΦH

)-torsor. Hence,

it suffices to show that, for each geometric point ȳ → ~Mord,ΦH
H lift-

ing x̄ → ~Mord,ZH
H , the formation of invariants of Γ′ΦH,`0 = ΓΦH,`0 ∩Γ′ΦH

in Γ((~Cord
ΦH,δH

)∧ȳ , (~Ψ
ord
ΦH,δH

(`0))∧ȳ ), where ( · )∧ȳ denote the pullback to the

completion of the strict localization of ~Mord,ΦH
H at ȳ, commutes with

the base change from S to s̄, for each `0 ∈ P∨ΦH .
Let X ′ and Y ′ be admissible sub-O-lattices of X and Y , respec-

tively, such that φ(Y ′) ⊂ X ′, such that `′ lies in the subgroup S′ΦH
of SΦH defined by the same construction of SΦH using the embedding
φ′ : Y ′ → X ′ induced by φ, and such that `0 is positive in Φ′H in the
sense that, up to choosing a Z-basis y1, . . . , yr of Y ′, and by comple-
tion of squares for quadratic forms, there exists some integer N ≥ 1
such that N · `0 can be represented as a positive definite matrix of the
form ue tu, where e and u are matrices with integer coefficients, and
where e = diag(e1, . . . , er) is diagonal with positive entries. In this

case, Γ′ΦH,`0 acts on Φ′H via a discrete subgroup Γ
′
ΦH,`0

of the compact
orthogonal subgroup of GLR(Y ′⊗

Z
R) preserving the above-mentioned

positive definite matrix by conjugation, which is necessarily finite. Con-

sider the abelian scheme torsor ~Cord,′
ΦH,δH

→ ~Mord,ΦH
H defined by the same

construction of ~Cord
ΦH,δH

, using the embedding φ′ : Y ′ → X ′ instead of

φ : Y → X, with a canonical morphism ~Cord
ΦH,δH

→ ~Cord,′
ΦH,δH

over ~Mord,ΦH
H

which is also an abelian scheme torsor, under which the ~Ψord
ΦH,δH

(`0)

descends to an invertible sheaf ~Ψord,′
ΦH,δH

(`0), which is relatively ample

over ~Mord,ΦH
H because some positive tensor power of ~Ψord,′

ΦH,δH
(`0) is iso-

morphic to the pullback of the line bundle ⊗
1≤i≤r

(pr∗i (IdB, λB)∗PB)⊗ ei

over B under the finite morphism given by the composition ~Cord,′
ΦH,δH

can.→
HomZ(Y,B)

u∗→ HomZ(Y,B) over ~Mord,ΦH
H , because λB is a polariza-

tion (cf. [62, Def. 1.3.2.16]), and because all the ei’s are positive.

Then Γ′ΦH,`0 acts via the finite quotient Γ
′
ΦH,`0

introduced above on

Γ((~Cord
ΦH,δH

)∧ȳ , (~Ψ
ord
ΦH,δH

(`0))∧ȳ ) ∼= Γ((~Cord,′
ΦH,δH

)∧ȳ , (~Ψ
ord,′
ΦH,δH

(`0))∧ȳ ).

If H is neat, then Γ
′
ΦH,`0

is also neat and must be trivial. More

generally, since ~Ψord,′
ΦH,δH

(`0) is relatively ample over ~Mord,ΦH
H , the action

of Γ
′
ΦH,`0

on ⊕
N≥0

Γ((~Cord,′
ΦH,δH

)∧ȳ , (~Ψ
ord,′
ΦH,δH

(N ·`0))∧ȳ ) induces a faithful action
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of Γ
′
ΦH,`0

on (~Cord,′
ΦH,δH

)∧ȳ (cf. [81, Sec. 21, Thm. 5]). By construction,

(~Cord,′
ΦH,δH

)∧ȳ appears (up to some identification) in the partial toroidal

boundary construction of ~M
ord,Z′′H
H , where ~M

ord,Z′′H
H is isomorphic to the

stratum of ~Mord,min
H labeled by the cusp label [(Z′′H,Φ

′′
H, δ

′′
H)] induced by

[(ZH,ΦH, δH)] by the admissible surjections X → X ′′ := X/X ′ and
Y → Y ′′ := Y/Y ′ (see [62, Lem. 5.3.1.14 and 5.4.2.11]). Therefore,
there exists a degeneration (over a complete discrete valuation ring
with fraction field k(z)) of an object parameterized by some functorial

point z → ~M
ord,Z′′H
H such that Γ

′
ΦH,`0

is a subquotient of Aut(z̄) for

any geometric point z̄ → ~M
ord,Z′′H
H above z. Since char(s̄) - # Aut(z̄)

by the assumption that the condition (6.2.1.9) is satisfied, it follows

that char(s̄) - #Γ
′
ΦH,`0

. Therefore, the formation of Γ
′
ΦH,`0

-invariants in

Γ((~Cord,′
ΦH,δH

)∧ȳ , (~Ψ
ord,′
ΦH,δH

(`0))∧ȳ ) commutes with the base change from S to
s̄, for each `0 ∈ P∨ΦH , and property (3) follows.

It remains to prove property (4). Note that the assertions involv-
ing S ′ (in the last sentence) follow from the assertions involving only
S, by [35, IV-2, 6.8.2 and 6.14.1] and property (2). To prove the
assertions involving only S, we may replace S with its localizations,

and assume that it is local. Let S1 be the localization of ~S0,rH at the

image under S → ~S0,rH of the closed point of S. Since S1 is a local-

ization of ~S0,rH , we know by property (1) that the canonical morphism
~Mord,min
H,S1

→ ~Mord,min
H ×

~S0,rH

S1 is an isomorphism, so that ~Mord,min
H,S1

→ S1 is

the pullback of ~Mord,min
H → ~S0,rH . Since the geometric points of S1 are

either of characteristic zero or dominated by those of S, by [35, IV-2,

6.7.7], the normality of fibers of ~Mord,min
H,S1

→ S1 follows from the normal-

ity of the geometric fibers of ~Mord,min
H,S1

×
S1

S ∼= ~Mord,min
H ×

~S0,rH

S → S, the

latter of which follows from property (3) (and from the assumption that
(6.2.1.9) is satisfied by all geometric points s̄ of S). Thus, the (flat)

morphism ~Mord,min
H,S1

→ S1 is normal. By [35, IV-2, 6.8.2], the pullback
~Mord,min
H,S1

×
S1

S → S is also a normal morphism. By [35, IV-2, 6.14.1], the

scheme ~Mord,min
H,S1

×
S1

S ∼= ~Mord,min
H ×

~S0,rH

S is normal. By property (2), this

implies that (6.2.1.7) is an isomorphism, and hence that the morphism
~Mord,min
H,S → S is normal, as desired. �
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6.2.2. Hecke Actions. Let us state the following analogue of
Proposition 5.2.2.2 for partial minimal compactifications.

Proposition 6.2.2.1. (Compare with [62, Prop. 7.2.5.1] and
Propositions 1.3.1.14, 2.2.3.1, 3.4.4.1 and 5.2.2.2.) Suppose we
have an element g = (g0, gp) ∈ G(A∞,p)×Pord

D (Qp) ⊂ G(A∞) (see
Definition 3.2.2.7), and suppose we have two open compact subgroups

H and H′ of G(Ẑ) such that H′ ⊂ gHg−1, and such that H and
H′ are of standard form as in Definition 3.2.2.9. Let rH (resp.
rH′) be defined by H (resp. H′) as in Definition 3.4.2.1. Suppose
moreover that gp satisfies the conditions given in Section 3.3.4, so that

~[g]
ord

: ~Mord
H′ → ~Mord

H is defined (see Proposition 3.4.4.1). Then there is
a canonical quasi-finite surjection

~[g]
ord,min

: ~Mord,min
H′ → ~Mord,min

H

extending the canonical quasi-finite surjection [ ~[g]
ord

] : [~Mord
H′ ] → [~Mord

H ]

induced by the canonical quasi-finite surjection ~[g]
ord

: ~Mord
H′ → ~Mord

H de-
fined in Proposition 3.4.4.1. If the levels Hp and H′p at p are equally
deep as in Definition 3.2.2.9, or if gp is of twisted Up type as in Def-
inition 3.3.6.1 and depthD(H′p) − depthD(gp) = depthD(Hp) > 0, then

the surjection ~[g]
ord,min

is finite.
If L⊗

Z
Zp ⊂ gp(L⊗

Z
Zp), then there is a canonical morphism

(6.2.2.2) ( ~[g]
ord,min

)∗ : ( ~[g]
ord,min

)∗ω⊗ k~Mord,min
H

→ ω⊗ k~Mord,min

H′

whenever ω⊗ k~Mord,min
H

is defined (which is compatible with the canonical iso-

morphism between the pullback of ω⊗ kMH
and ω⊗ kMH′

over Mord
H′
∼= MH′,rH′ ).

If gp ∈ Pord
D (Zp), then the following diagram

(6.2.2.3) ~Mord,min
H′

~[g]
ord,min

��

� � // ~Mmin
H′,rH′

~[g]
min

rH′ ,rH
��

~Mord,min
H

� � // ~Mmin
H,rH

(see Definition 2.2.3.5) is (commutative and) Cartesian, and (6.2.2.2)
is an isomorphism compatible with the corresponding one in Proposition
2.2.3.1.

Moreover, the surjection ~[g]
ord,min

maps the [(Φ′H′ , δ
′
H′)]-stratum

~Zord
[(Φ′H′ ,δ

′
H′ )]

of ~Mord,min
H′ to the [(ΦH, δH)]-stratum ~Zord

[(ΦH,δH)] of ~Mord,min
H
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if and only if there are representatives (ΦH, δH) and (Φ′H′ , δ
′
H′)

of [(ΦH, δH)] and [(Φ′H′ , δ
′
H′)], respectively, such that (ΦH, δH) is

g-assigned to (Φ′H′ , δ
′
H′) as in [62, Def. 5.4.3.9].

If Σord = {ΣΦH}[(ΦH,δH)] and Σord,′ = {Σ′Φ′H′}[(Φ′H′ ,δ
′
H′ )]

are two com-

patible choices of admissible smooth rational polyhedral cone decom-

position data for ~Mord
H and ~Mord

H′ , respectively, such that Σord,′ is a
g-refinement of Σord as in Definition 5.2.2.1, then the canonical sur-

jection ~[g]
ord,min

: ~Mord,min
H′ � ~Mord,min

H is compatible with the surjection

~[g]
ord,tor

: ~Mord,tor
H′,Σord,′ � ~Mord,tor

H,Σord given by Proposition 5.2.2.2.

If g = g1g2, where g1 = (g1,0, g1,p) and g2 = (g2,0, g2,p) are elements
of G(A∞,p)×Pord

D (Qp), each having a setup similar to that of g, then

we have ~[g]
ord,min

= ~[g2]
ord,min

◦ ~[g1]
ord,min

, extending the identity ~[g]
ord

=
~[g2]

ord
◦ ~[g1]

ord
in Proposition 3.4.4.1.

Finally, the finite surjection [g]min : Mmin
H′ → Mmin

H in Proposition

1.3.1.14 canonically induces a finite surjection [g]min
rH′ ,rH

: Mmin
H′,rH′

→

Mmin
H,rH. Then ~[g]

min
⊗
Z
Q can be identified with the pullback of [g]min

rH′ ,rH

to ~Mord,min
H ⊗

Z
Q (on the target) under (6.2.1.2) in (6) of Theorem 6.2.1.1.

In particular, ~[g]
min
⊗
Z
Q is finite.

Proof. Let Σord = {ΣΦH}[(ΦH,δH)] and Σord,′ = {Σ′Φ′H′}[(Φ′H′ ,δ
′
H′ )]

be any two compatible choices of admissible smooth rational polyhe-

dral cone decomposition data for ~Mord
H and ~Mord

H′ , respectively, such
that Σord,′ is a g-refinement of Σord as in Definition 5.2.2.1. (Such
compatible choices of cone decompositions always exist after refine-

ments, by Proposition 5.1.3.2.) Let ~∮ ord

H : ~Mord,tor
H,Σord � ~Mord,min

H and

~∮ ord

H′ : ~Mord,tor
H′,Σ′,ord � ~Mord,min

H′ be the surjections given by (3) of Theorem

6.2.1.1. Let ~[g]
ord,tor

: ~Mord,tor
H′,Σord,′ � ~Mord,tor

H,Σord be the canonical surjec-

tion given by Proposition 5.2.2.2 extending the canonical morphism
~[g]

ord
: ~Mord
H′ → ~Mord

H defined by the Hecke action of g, under which the
ordinary Hecke twist of the tautological family (G, λ, i, αH′,p , α

ord
H′p ) →

~Mord,tor
H′,Σord,′ by g (defined by Proposition 3.3.4.21 and Lemma 3.1.3.2) is

the pullback (G′, λ′, i′, α′Hp , α
ord,′
Hp )→ ~Mord,tor

H′,Σord,′ of the tautological fam-

ily (G, λ, i, αHp , α
ord
Hp )→ ~Mord,tor

H,Σord , equipped with a Q×-isogeny [g−1]ord :
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G→ G′, which is up to Z×(p)-isogeny an isogeny (not just a Q×-isogeny)

when L⊗
Z
Zp ⊂ gp(L⊗

Z
Zp).

Consider the invertible sheaf

ω′~Mord,tor

H′,Σord,′
:= ∧top Lie∨

G′/~Mord,tor

H′,Σord,′
= ∧top e∗GΩ1

G′/~Mord,tor

H′,Σord,′

over ~Mord,tor
H′,Σord,′ , which is the pullback of ω~Mord,tor

H,Σord
under ~[g]

ord,tor
. We

claim that there exists an integer N ′0 > 0 such that, for each k divisible
by N ′0, the k-th tensor power (ω′~Mord,tor

H′,Σord,′
)⊗ k of ω′~Mord,tor

H′,Σord,′
descends to

a (necessarily unique) invertible sheaf over ~Mord,min
H′ (see [62, Lem.

7.2.2.1]), which we abusively denote by (ω′~Mord,min

H′
)⊗ k. By the same

argument as in the proof of Theorem 6.2.1.1, it suffices to show that

there exists an integer N ′0 > 0 such that, for each stratum ~Zord
[(ΦH′ ,δH′ )]

in ~Mord,min
H′ , for each stratum ~Zord

[(ΦH′ ,δH′ ,σ
′)] in ~Mord,tor

H′,Σord,′ that maps

surjectively to ~Zord
[(ΦH′ ,δH′ )]

, and for each representative (ΦH′ , δH′ , σ
′)

of [(ΦH′ , δH′ , σ
′)], the N ′0-th tensor power ( ♥ω′)⊗N

′
0 of the pullback

♥ω′ of ω′~Mord,tor

H′,Σord,′
under the canonical morphism ~Xord

ΦH′ ,δH′ ,σ
′ → ~Mord,tor

H′,Σord,′

(see (5) of Theorem 5.2.1.1) descends to an invertible sheaf under

the canonical morphism ~Xord
ΦH′ ,δH′ ,σ

′ → [~M
ord,ZH′
H ]. By considering the

pullback of the Q×-isogeny [g−1]ord : G → G′ to ~Xord
ΦH′ ,δH′ ,σ

′ , there

exists an O′-lattice X ′ and an abelian scheme B′ over ~M
ord,ZH′
H such

that ♥ω′ ∼= (∧top
Z X ′)⊗

Z
ωB′ , where ωB′ := ∧top Lie∨

B′/~M
ord,ZH′
H

(see

Lemma 6.1.2.3, or rather the proof of [62, Lem. 7.1.2.1]). Hence, it
suffices to take any integer N ′0 > 0 such that ΓH′ acts trivially on

(∧top
Z X ′)⊗N

′
0 , and such that ω

⊗N ′0
B′ descends to [~M

ord,ZH′
H ], for any X ′

and B′ as above, which exists by applying the analogue of (2) of

Theorem 6.2.1.1 to the finitely many strata of ~Mord,min
H′ .

On the other hand, by (2) of Theorem 6.2.1.1, there exists an integer
N0 > 0 such that ω⊗ k~Mord,min

H
is defined for each k divisible by N0, in which

case the k-th tensor power (ω′~Mord,tor

H′,Σord,′
)⊗ k of ω′~Mord,tor

H′,Σord,′
is the pullback

of ω⊗ k~Mord,min
H

under the composition ~
∮ ord

H ◦ ~[g]
ord,tor

: ~Mord,tor
H′,Σord,′ → ~Mord,min

H ,
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and hence ~
∮ ord

H ◦ ~[g]
ord,tor

can be identified with the composition

~Mord,tor
H′,Σord,′ → Proj

(
⊕

k≥0, N0N ′0|k
Γ(~Mord,tor

H′,Σord,′ , (ω
′
~Mord,tor

H′,Σord,′
)⊗ k)

)
→ ~Mord,min

H
∼= Proj

(
⊕

k≥0, N0|k
Γ(~Mord,min

H , ω⊗ k~Mord,min
H

)
)(6.2.2.4)

of canonical morphisms. Since (ω′~Mord,tor

H′,Σord,′
)⊗ k descends to an invert-

ible sheaf (ω′~Mord,min

H′
)⊗ k over ~Mord,min

H′ when N ′0|k, the above morphism

(6.2.2.4) factors through ~∮ ord

H′ : ~Mord,tor
H′,Σord,′ → ~Mord,min

H′ and induces a

(necessarily surjective) morphism ~[g]
ord,min

: ~Mord,min
H′ → ~Mord,min

H , under
which (ω′~Mord,min

H′
)⊗ k is the pullback of ω⊗ k~Mord,min

H
when N0N

′
0|k.

But then (ω′~Mord,tor

H′,Σord,′
)⊗ k descends to a (necessarily unique) invertible

sheaf (ω′~Mord,min

H′
)⊗ k over ~Mord,min

H′ , which is just the pullback of ω⊗ k~Mord,min

H′

under ~[g]
ord,min

, whenever N0|k. Since ω′~Mord,tor

H′,Σord,′

∼= ( ~[g]
ord,tor

)∗ω~Mord,tor

H,Σord
,

any sufficiently large p-power multiple of [g−1]ord, which can be [g−1]ord

itself when L⊗
Z
Zp ⊂ gp(L⊗

Z
Zp), induces a morphism

(6.2.2.5) ( ~[g]
ord,tor

)∗ : ( ~[g]
ord,tor

)∗ω~Mord,tor

H,Σord
→ ω~Mord,tor

H′,Σord,′
,

which in turn induces the desired morphism (6.2.2.2) whenever N0|k.
If the levels Hp and H′p at p are equally deep, or

if gp is of twisted Up type as in Definition 3.3.6.1 and
depthD(H′p) − depthD(gp) = depthD(Hp) > 0, then the surjection

~[g]
ord,tor

is proper by Proposition 5.2.2.2, and hence the induced

surjection ~[g]
ord,min

is finite.
Suppose gp ∈ Pord

D (Zp) (in this paragraph). Then the Q×-isogeny
[g−1]ord : G → G′ is a Z×(p)-isogeny, and hence the morphisms (6.2.2.5)

and (6.2.2.2) induced by [g−1]ord itself (not by nontrivial p-power mul-

tiples) are isomorphisms. Moreover, we know that ~[g]
ord,min

is finite

by the previous paragraph. By the construction of ~[g]
min

rH′ ,rH
by various

universal properties (see Definition 2.2.3.4 and the proof of Proposition
2.2.3.1), we obtain the commutative diagram (6.2.2.3), and the canon-
ical isomorphism (6.2.2.2) is compatible with the corresponding one in

Proposition 2.2.3.1. By the fact that the restriction of ~
∮ ord

H′ to ~Mord
H′ is
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the canonical morphism ~Mord
H′ → [~Mord

H′ ], we see that the restriction of

~[g]
ord,min

to [~Mord
H′ ] is the canonical surjection [ ~[g]

ord
] : [~Mord

H′ ] → [~Mord
H ]

induced by the canonical surjection ~[g]
ord

: ~Mord
H′ � ~Mord

H defined by the

Hecke action of g. Consequently, by noetherian normality of ~Mord,min
H

and ~Mord,min
H′ (and by Zariski’s main theorem; see [35, III-1, 4.4.3,

4.4.11]), ~Mord,min
H′ coincides with the normalization of ~Mord,min

H in ~Mord
H′

under the composition of canonical morphisms ~Mord
H′

~[g]
ord

→ ~Mord
H ↪→

~Mord,min
H , or equivalently (by the construction of ~Mord

H′ and ~Mord
H in The-

orem 3.4.2.5, and by the construction of [g]ord and ~[g]
ord

in Proposition

3.4.4.1) the normalization of ~Mord,min
H in Mord

H′
∼= MH′,rH′ under the com-

position of canonical morphisms Mord
H′

[g]ord

→ Mord
H → ~Mord,min

H . Hence,

the commutative diagram (6.2.2.3) is Cartesian, because ~[g]
min

rH′ ,rH
is

the normalization of ~Mmin
H,rH in Mord

H′ under the canonical morphism

Mord
H′

[g]ord

→ Mord
H → ~Mord,min

H ↪→ ~Mmin
H,rH (by the construction in Defini-

tion 2.2.3.5 and the proof of Proposition 2.2.3.1, and by Proposition
3.4.4.1 again for the comparison between [g]ord and [g]).

The statements about the images of the strata of ~Mord,min
H′ under

~[g]
ord,min

follow from the corresponding statements about the images

of the strata of ~Mord,tor
H′,Σord under ~[g]

ord,tor
. The last two paragraphs of

this proposition follows from the last two paragraphs of Proposition
5.2.2.2 (by choosing compatible choices of cone decompositions, which
is always possible after refinements, by Proposition 5.1.3.2, such that
~[g]

ord,tor
, ~[g1]

ord,tor
, and ~[g2]

ord,tor
are all defined). �

Corollary 6.2.2.6. (Compare with [62, Cor. 7.2.5.2] and Corol-
lary 2.2.3.2.) Suppose we have two open compact subgroups H and

H′ of G(Ẑ) such that H and H′ are of standard form as in Defini-
tion 3.2.2.9, such that H′ is a normal subgroup of H, and such that
depthD(H) = depthD(H′). Then the canonical morphisms defined in
Proposition 6.2.2.1 induces a canonical action of the finite group H/H′

on ~Mord,min
H′ , and the canonical surjection ~[1]

ord,min
: ~Mord,min
H′ � ~Mord,min

H,rH′
,

where ~Mord,min
H,rH′

is the normalization of ~Mord,min
H ×

~S0,rH

~S0,rH′
, can be iden-

tified with the quotient of ~Mord,min
H′ by this action.
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Proof. The existence of such an action is clear. Since ~Mord,min
H′ is

quasi-projective over ~S0,rH′
and normal, the quotient ~Mord,min

H′ /(H/H′)
exists as a scheme over ~S0,rH′

(cf. [25, V, 4.1]). Then it follows from
Zariski’s main theorem (see [35, III-1, 4.4.3, 4.4.11]) that the induced

morphism ~Mord,min
H′ /(H/H′) → ~Mord,min

H,rH′
over ~S0,rH′

(with noetherian

normal target) is an isomorphism, because it is finite by Proposition
6.2.2.1, and because it is generically an isomorphism (over Mord

H , by the
moduli interpretations of Mord

H′ and Mord
H as in Theorem 3.4.2.5, and by

the characterization of coarse moduli spaces as geometric and uniform
categorical quotients in the category of algebraic spaces; see [62, Sec.
A.7.5]). �

Corollary 6.2.2.7. (Compare with Corollaries 3.4.4.3 and
5.2.2.3.) With the setting as in Proposition 6.2.2.1, the morphism

~[g]
ord,min

: ~Mord,min
H′ → ~Mord,min

H

(cf. Definition 3.4.4.2) induced by ~[g]
ord,min

: ~Mord,min
H′ → ~Mord,min

H is
finite.

Proof. As in the proof of Proposition 6.2.2.1, we may assume that
~[g]

ord,min
: ~Mord,min
H′ → ~Mord,min

H is induced by some ~[g]
ord,tor

: ~Mord,tor
H′,Σord,′ →

~Mord,tor
H,Σord . Since the canonical morphisms ~

∮ ord

H′ : ~Mord,tor
H′,Σord,′ → ~Mord,min

H′

and ~∮ ord

H : ~Mord,tor
H,Σord → ~Mord,min

H are proper and surjective, and since the

canonical morphism ~[g]
ord,tor

: ~Mord,tor
H′,Σord,′ ⊗

Z
Fp → ~Mord,tor

H,Σord ⊗
Z
Fp is proper

by Lemma 3.3.6.8 (see the proof of Corollary 5.2.2.3), it follows that
the quasi-finite morphism

~[g]
ord,min

: ~Mord,min
H′ ⊗

Z
Fp → ~Mord,min

H ⊗
Z
Fp

is also proper, which is then finite (cf. [35, IV-3, 8.11.1]). Hence, the

morphism ~[g]
ord,min

: ~Mord,min
H′ → ~Mord,min

H is also finite, as desired. �

Corollary 6.2.2.8. (Compare with Corollaries 3.4.4.4 and
5.2.2.4, and Example 3.4.4.5.) With the setting as in Proposition

6.2.2.1, if g = (g0, gp) ∈ G(Ẑp)×Pord
D (Zp), if H′,p = g0Hpg−1

0 in

G(Ẑp), if H′p
ord = (gpHpg

−1
p )ord in Mord

D (Zp) (see (3.3.3.5)), and
if Hp and hence H′,p are neat, then (rH′ = rH and) the induced

morphism ~[g]
ord,min

: ~Mord,min
H′ → ~Mord,min

H is an isomorphism. (See the
remark at the end of Corollary 3.4.4.4.) Consequently, the morphism
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~[g]
ord,min

: ~Mord,min
H′ → ~Mord,min

H is étale in a (Zariski) neighborhood of
~Mord,min
H′ ⊗

Z
Fp. (Despite the last statement of Proposition 6.2.2.1, the

morphism [g]min : Mmin
H′ → Mmin

H in Proposition 1.3.1.14 might not be
étale along cusps Z[(ΦH′ ,δH′ )]

labeled by cusp labels [(ΦH′ , δH′)] not

compatible with D, which do not meet ~Mord,min
H′ ⊗

Z
Q.)

Proof. By Corollary 6.2.2.7, the induced morphism ~[g]
ord,min

:
~Mord,min
H′ → ~Mord,min

H is finite. By Corollary 3.4.4.4, the restriction

of ~[g]
ord,min

to ~Mord
H′ is an isomorphism. Since Hp and H′,p are neat,

by (4) of Proposition 6.2.1.6, ~Mord,min
H′ ⊗

Z
Fp and ~Mord,min

H ⊗
Z
Fp are nor-

mal. Hence, by Zariski’s main theorem (see [35, III-1, 4.4.3, 4.4.11]),

the induced finite morphism ~[g]
ord,min

: ~Mord,tor
H′ ⊗

Z
Fp → ~Mord,min

H ⊗
Z
Fp

is necessarily an isomorphism. Hence, ~[g]
ord,min

: ~Mord,min
H′ → ~Mord,min

H
(being a finite morphism between formal schemes flat over Zp, which is
an isomorphism between the fibers over Spec(Fp)) is an isomorphism.

As for the last statement, ~[g]
ord,min

: ~Mord,min
H′ → ~Mord,min

H is étale at the

points of ~Mord,tor
H′ ⊗

Z
Fp because it induces isomorphisms between the

formal completions (see [35, IV-4, 17.6.3]), and hence it is étale at a

neighborhood of ~Mord,min
H′ ⊗

Z
Fp because étaleness is an open condition

on the source of a morphism (see [33, I, 4.5]). �

Corollary 6.2.2.9 (elements of Up type). (Compare with Corol-
laries 3.4.4.6 and 5.2.2.5.) Suppose in Proposition 6.2.2.1 that g0 = 1
and gp is of Up type as in Definition 3.3.6.1 (so that it is of twisted
Up type and depthD(gp) = 1). Then the induced morphism

(6.2.2.10) ~[g]
ord,min

: ~Mord,min
H′ ⊗

Z
Fp → ~Mord,min

H ⊗
Z
Fp

is finite and coincides with the composition of the absolute Frobenius
morphism

F~Mord,min

H′ ⊗
Z
Fp : ~Mord,min

H′ ⊗
Z
Fp → ~Mord,min

H′ ⊗
Z
Fp

with the canonical finite morphism

(6.2.2.11) ~[1]
ord,min

: ~Mord,min
H′ ⊗

Z
Fp → ~Mord,min

H ⊗
Z
Fp.

If H′p
ord = Hord

p as open compact subgroups of Mord
D (Zp) (see

(3.3.3.5)), then (rH = rH′ and) the canonical morphism (6.2.2.11) is
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an isomorphism by Corollary 6.2.2.8, and the composition

~Mord,min
H ⊗

Z
Fp

( ~[1]
ord,min

)−1

∼→ ~Mord,min
H′ ⊗

Z
Fp

~[g]
ord,min

→ ~Mord,min
H ⊗

Z
Fp

coincides with the absolute Frobenius morphism

F~Mord,min
H ⊗

Z
Fp : ~Mord,min

H ⊗
Z
Fp → ~Mord,min

H ⊗
Z
Fp.

Proof. The first paragraph of the corollary follows from the cor-

responding first paragraph of Corollary 5.2.2.5, because ~[g]
ord,min

:

~Mord,min
H′ → ~Mord,min

H is induced by some ~[g]
ord,tor

: ~Mord,tor
H′,Σord,′ → ~Mord,tor

H,Σord as

in the proof of Proposition 6.2.2.1. The second paragraph of the corol-
lary follows from the first paragraph and from Corollary 6.2.2.8. �

Remark 6.2.2.12. (Compare with Remarks 3.4.4.9 and 5.2.2.8.)
By Kunz’s theorem [54] (cf. [76, Sec. 42, Thm. 107]), the absolute
Frobenius morphisms F~Mord,min

H′ ⊗
Z
Fp and F~Mord,min

H ⊗
Z
Fp in Corollary 6.2.2.9

are not flat in general, because ~Mord,min
H′ ⊗

Z
Fp and ~Mord,min

H ⊗
Z
Fp are not

regular in general (except in very special cases). Therefore, while fa-
miliar facts in the modular curve case might remain true in general,
some proofs might have to be modified due to the failure of flatness of
such absolute Frobenius morphisms.

6.2.3. Quasi-Projectivity of Partial Toroidal Compactifica-
tions.

Theorem 6.2.3.1. (Compare with [62, Thm. 7.3.3.4] and Theorem
1.3.1.10.) Suppose Hp is neat, and suppose Σord is projective with a
compatible collection polord of polarization functions as in Definition
5.1.3.3. (Such Σord and polord exist by Proposition 5.1.3.4.) For each

integer d ≥ 1, suppose ~H,dpolord is defined over ~Mord,tor
H = ~Mord,tor

H,Σord as in

Definition 1.3.1.7, and suppose ~JH,dpolord is defined over ~Mord,min
H as in

Definition 1.3.1.8. Then there exists an integer d0 ≥ 1 such that the
following are true:

(1) The canonical morphism (~
∮ ord

H )−1 ~JH,d0pol
ord · O~Mord,tor

H
→

~H,d0pol
ord of coherent O~Mord,tor

H
-ideals is an isomorphism, which

induces a canonical morphism

NBl ~JH,d0polord
(~
∮ ord

H ) : ~Mord,tor
H → NBl ~JH,d0polord

(~Mord,min
H )

by the universal property of the normalization of blow-up (see
[62, Def. 7.3.2.2]).
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(2) The canonical morphism NBl ~JH,d0polord
(~
∮ ord

H ) above is an iso-

morphism.

In particular, the morphism ~∮ ord

H : ~Mord,tor
H → ~Mord,min

H is projective, and

hence ~Mord,tor
H is a scheme quasi-projective (and smooth) over ~S0,rH. If

Condition 1.3.1.9 is satisfied, then the above two statements (1) and
(2) are true for all d0 ≥ 3.

Proof. Let us begin with the reduction to the case Condition
1.3.1.9 (cf. [4, Ch. IV, Sec. 2, p. 329], [28, Ch. V, Sec. 5, p. 178],
and [62, Cond. 7.3.3.3]) is satisfied.

By [62, Lem. 7.3.1.7], or rather by the original [28, Ch. V, Lem.
5.3], there exists a normal open compact subgroup H′,p of Hp such
that, for H′ = H′,pHp (while H = HpHp, with the same Hp), Condition

1.3.1.9 is satisfied by the Σord,(H′) = {ΣΦH′
}[(ΦH′ ,δH′ )]

and polord,(H′) =

{polΦH′}[(ΦH′ ,δH′ )]
induced by Σord and polord as in [62, Constr. 7.3.1.6],

and such that Σord,(H′) is smooth.
Suppose that Theorem 6.2.3.1 is true for ~Mord,tor

H′ = ~Mord,tor

H′,Σord,(H′) ,

~ord

H′,d′0pol
(H′) , and ~J ord

H′,d′0pol
(H′) for some integer d′0 ≥ 1. In particular,

~Mord,tor
H′ is quasi-projective and smooth over ~S0,rH .

By construction, the surjections ~Ξord
ΦH′ ,δH′

(σ)� ~Ξord
ΦH,δH

(σ) are finite

flat (with possible ramification along the boundary strata) whenever
(ΦH, δH) is induced by (ΦH′ , δH′) and σ is a cone in the cone decompo-
sition ΣΦH′

= ΣΦH of PΦH′
∼= PΦH . Therefore, the canonical surjection

~[1]
ord,tor

: ~Mord,tor

H′,Σord,(H′) � ~Mord,tor
H,Σord (given by Proposition 5.2.2.2) is finite

flat. It is the unique finite flat extension of the canonical (finite étale)

surjection ~Mord
H′ � ~Mord

H (since H′ = H′,pHp and H = HpHp only differ

away from p). Since ~Mord,tor

H′,Σord,(H′) is quasi-projective and smooth over

~S0,rH , the quotient by H/H′ is also quasi-projective and isomorphic to
~Mord,tor
H,Σord over ~S0,rH (by [25, V, 4.1] and by Zariski’s main theorem [35,

III-1, 4.4.3, 4.4.11] as in the proof of [62, Cor. 7.2.5.2] and Corollary

6.2.2.6). Moreover, we know that ~ord

H′,polord,(H′)
∼= ( ~[1]

ord,tor
)∗~ord
H,polord by

construction. Hence, we have verified all the assumptions of [62, Prop.
7.3.2.3], whose application completes the reduction.

Since the description of ~
∮ ord

H : ~Mord,tor
H → ~Mord,min

H parallels that of∮
H : Mtor

H → Mmin
H (see Proposition 6.1.2.19 and [62, Prop. 7.2.3.16]),

the remainder of the proof, namely the verification of the theorem
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under Condition 1.3.1.9, is analogous to that of [62, Thm. 7.3.3.4; see
also the errata]. �

Corollary 6.2.3.2. Under the assumptions in Theorem 6.1.1.12,
suppose moreover that Hp is neat, that Σord is projective smooth and
extends to a projective (but possibly nonsmooth) Σ for MH, with a col-

lection pol of polarization functions, and that ~Mtor
H,d0pol

is still defined as

in Proposition 2.2.2.3, for some integer d0 ≥ 1. (If we extend Σord to
a projective smooth Σ for MH, which is possible by Proposition 5.1.3.4,
then we only need Proposition 2.2.2.1.) Then we have a commutative
diagram

(6.2.3.3) ~Mord,tor
H,Σord

� � //

����

~Mtor
H,d0pol,rH

����

~Mord,min
H

� � // ~Mmin
H,rH

of canonical morphisms over ~S0,rH, in which the top horizontal arrow

is also an open immersion (over ~S0,rH) extending the open immersion
~Mord,tor
H,Σord ×

~S0,rH

S0,rH ↪→ Mtor
H,Σ,rH (over S0,rH) in (7) of Theorem 5.2.1.1,

and a fortiori the induced canonical morphism

(6.2.3.4) ~Mord,tor
H,Σord → ~Mord,min

H ×
~Mmin
H,rH

~Mtor
H,d0pol,rH

is an isomorphism. (That is, the diagram (6.2.3.3) is Cartesian.)

Proof. The existence of the commutative diagram (6.2.3.3) in
which the top horizontal arrow is an open immersion is implied by
the existence of the isomorphism (6.2.3.4). By assumption, polord is
the restriction of pol, so that

~JH,d0pol
ord
∼= (~Mord,min

H → ~Mmin
H )∗ ~JH,d0pol

because they both define the schematic closure of the closed subscheme

of ~Mord,min
H ⊗

Z
Q defined by (~Mord,min

H ⊗
Z
Q → Mmin

H )∗JH,d0pol. Hence, we

obtain a canonical isomorphism

NBl ~JH,d0polord
(~Mord,min
H )→ NBl(~Mord,min

H →~Mmin
H )∗ ~JH,d0pol

(~Mord,min
H ),

which can be identified with the desired isomorphism (6.2.3.4) by The-
orem 6.2.3.1 and by the construction in Proposition 2.2.2.3 (or Propo-
sition 2.2.2.1, if Σ is projective smooth). �
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6.3. Full Ordinary Loci in p-Adic Completions

6.3.1. Hasse Invariants. Consider any toroidal compactification

Mtor
Gaux(Ẑp)

(over ~S0,aux = Spec(OF0,aux,(p))) carrying a tautological semi-

abelian scheme Gaux as in [62, Thm. 6.4.1.1]. (In this subsection, we
shall suppress the notation for cone decompositions for simplicity.) Let
Fabs : Mtor

Gaux(Ẑp)
⊗
Z
Fp → Mtor

Gaux(Ẑp)
⊗
Z
Fp denote the absolute Frobenius

morphism, and let

Faux : Gaux⊗
Z
Fp → (Gaux⊗

Z
Fp)(p) := F∗abs(Gaux⊗

Z
Fp)

be the relative Frobenius morphism of Gaux⊗
Z
Fp → Mtor

Gaux(Ẑp)
⊗
Z
Fp,

which is an isogeny of semi-abelian schemes over Mtor
Gaux(Ẑp)

⊗
Z
Fp. Since

Gaux⊗
Z
Fp → Mtor

Gaux(Ẑp)
⊗
Z
Fp is flat, by [25, VIIA, 4.3], there is a canon-

ical morphism

Vaux : (Gaux⊗
Z
Fp)(p) → Gaux⊗

Z
Fp,

called the (relative) Verschiebung morphism of
Gaux⊗

Z
Fp → Mtor

Gaux(Ẑp)
⊗
Z
Fp, such that Vaux ◦ Faux = [p],

the multiplication by p on Gaux⊗
Z
Fp. Then Vaux is also an isogeny,

and induces a morphism

Lie∨(Vaux) : Lie∨(Gaux⊗
Z
Fp)/(Mtor

Gaux(Ẑp)
⊗
Z
Fp)

→ Lie∨(Gaux⊗
Z
Fp)(p)/(Mtor

Gaux(Ẑp)
⊗
Z
Fp)
∼= F∗abs(Lie∨(Gaux⊗

Z
Fp)/(Mtor

Gaux(Ẑp)
⊗
Z
Fp)).

By taking top exterior powers (of the same degree), we obtain a mor-
phism

∧top Lie∨(Vaux) : ωMtor
Gaux(Ẑp)

⊗
Z
Fp

→ F∗abs(ωMtor
Gaux(Ẑp)

⊗
Z
Fp) ∼= ω⊗ p

Mtor
Gaux(Ẑp)

⊗
Z
Fp,

or equivalently a section

(6.3.1.1) Hasseaux ∈ Γ(Mtor
Gaux(Ẑp)

⊗
Z
Fp, ω⊗(p−1)

Mtor
Gaux(Ẑp)

⊗
Z
Fp).

The value of Hasseaux at each geometric point s̄ of Mtor
Gaux(Ẑp)

⊗
Z
Fp is the

so-called Hasse invariant of the pullback (Gaux)s̄ of the semi-abelian
scheme Gaux to s̄, which is nonzero exactly when (Gaux)s̄ is an ordinary
semi-abelian variety, or equivalently when the abelian part of (Gaux)s̄ is
an ordinary abelian variety (because the nonvanishing of the Hasse in-
variant is equivalent to the separability of the Verschiebung morphism,
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which is in turn equivalent to the triviality of the local-local part, as in
[81, p. 147], of the p-torsion subgroup scheme of the abelian part of
(Gaux)s̄).

Remark 6.3.1.2. By definition, the formation of Hasse invariants is
compatible with separable isogenies, because they induce isomorphisms
between sheaves of differentials.

Let us also consider any smooth partial toroidal compactification
~Mord,tor
H over ~S0,rH carrying a tautological semi-abelian scheme G as in

Theorem 5.2.1.1. Then, similar to the case of Hasseaux above, we can
define a section

(6.3.1.3) Hasseord
H ∈ Γ(~Mord,tor

H ⊗
Z
Fp, ω⊗(p−1)

~Mord,tor
H

⊗
Z
Fp).

The value of Hasseord
H at each geometric point s̄ of ~Mord,tor

H ⊗
Z
Fp is the

Hasse invariant of the pullback Gs̄ of the semi-abelian scheme G to s̄,
which is always nonzero because the abelian part of Gs̄ is always an
ordinary abelian variety. This is consistent with the following:

Lemma 6.3.1.4. With the setting as in Lemma 6.1.1.9, suppose
(with suitable choices of cone decompositions, up to refinement if nec-

essary) there is a morphism ~Mord,tor
H → Mtor

Gaux(Ẑp)
extending the mor-

phism ~Mord
H → [MGaux(Ẑp)] given by the composition ~Mord

H
can.→ ~MH →

MGaux(Ẑp)

can.→ [MGaux(Ẑp)] (see Propositions 2.2.1.1 and 3.4.6.3). Then

the pullback of Hasseaux to ~Mord,tor
H ⊗

Z
Fp under the canonical morphism

~Mord,tor
H ⊗

Z
Fp → (~Mtor

H,d0pol
×
~S0

~S0,rH)⊗
Z
Fp is nowhere zero.

If a0 ≥ 1 and a ≥ 1 are integers as in Lemma 2.1.2.35, then the

pullback of Hassea0
aux to ~Mord,tor

H ⊗
Z
Fp is the multiple of (Hasseord

H )a by a

global unit.

Proof. The pullback of Gaux (resp. G∨aux) under
~Mord,tor
H → Mtor

Gaux(Ẑp)
must be isomorphic to G× a1 ×

~Mord,tor
H

(G∨)× a2 (resp.

G× a2 ×
~Mord,tor
H

(G∨)× a1), because it is already so over the open dense

subscheme Mord
H by Proposition 2.1.1.15 (and by [92, IX, 1.4], [28, Ch.

I, Prop. 2.7], or [62, Prop. 3.3.1.5]). Then the lemma follows from the
fact that an abelian variety is ordinary if and only if its dual is (cf.
Lemma 3.1.1.5). �
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Remark 6.3.1.5. The definition of Hasseord and Lemma 6.3.1.4 may
seem redundant, but we will indeed need them in Proposition 6.3.2.2
below.

Proposition 6.3.1.6. Suppose that Hp
aux ⊂ Gaux(Ẑp) is a neat

open compact subgroup. Then we can replace MGaux(Ẑp) (resp. Mmin
Gaux(Ẑp)

,

resp. Mtor
Gaux(Ẑp)

) with the scheme MHpaux
(resp. Mmin

Hpaux
, resp. Mtor

Hpaux
with

any choice of cone decompositions) over ~S0,aux in the constructions
above. The invertible sheaf ωMtor

Hpaux

descends to an ample invertible

sheaf ωMmin
Hpaux

on Mmin
Hpaux

(by [62, Thm. 7.2.4.1]), and for each integer

k ≥ 0 the canonical morphism

Γ(Mmin
Hpaux
⊗
Z
Fp, ω⊗ kMmin

Hpaux

⊗
Z
Fp)→ Γ(Mtor

Hpaux
⊗
Z
Fp, ω⊗ kMtor

Hpaux

⊗
Z
Fp)

is an isomorphism, under which we can pullback Hasseaux and its pow-
ers (which are a priori defined on Mtor

Gaux(Ẑp)
⊗
Z
Fp) to Mmin

Hpaux
⊗
Z
Fp.

Proof. This follows from [62, Prop. 7.2.4.3 and Cor. 7.2.4.8]. �

Corollary 6.3.1.7. Let a0 ≥ 1 and a ≥ 1 be integers as in
Lemma 2.1.2.35, and let N1 be as in Proposition 2.2.1.2 (for some
choice of Hp

aux). Then we can pullback Hassea0N1
aux to a section of

Γ(~Mmin
H ⊗

Z
Fp, ω⊗ aN1(p−1)

~Mmin
H

⊗
Z
Fp), which we denote by HasseaN1

H by abuse

of notation.
Suppose moreover that the image of H under the canonical ho-

momorphism G(Ẑ) → G(Ẑp) is neat (which means, a fortiori, that
H is also neat), so that (by Lemma 2.1.1.18) there exists some neat

open compact subgroup Hp
aux ⊂ Gaux(Ẑp) such that H is mapped into

Haux = Hp
auxGaux(Zp) under the homomorphism G(Ẑ)→ Gaux(Ẑ) given

by (2.1.1.10). (This condition is satisfied when H = HpHp is of stan-
dard form as in Definition 3.2.2.9 and Hp is neat.) Then (with this
choice of Hp

aux) we can take N1 = 1 in the above paragraph.

Proof. This follows from Proposition 6.3.1.6, because the canoni-

cal morphism ~Mmin
H → Mmin

Gaux(Ẑp)
factors through ~Mmin

H → Mmin
Hpaux

in this

case. (The second paragraph is self-explanatory.) �

Corollary 6.3.1.8. Suppose we have an element g = (g0, gp) ∈
G(A∞,p)×G(Zp) ⊂ G(A∞), and suppose we have two open compact

subgroups H and H′ of G(Ẑ) such that H′ ⊂ gHg−1, so that we have

a canonical finite surjection ~[g]
min

: ~Mmin
H′ → ~Mmin

H (over ~S0) and a
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canonical isomorphism

(6.3.1.9) ( ~[g]
min

)∗ω
⊗ k(p−1)
~Mmin
H

∼→ ω
⊗ k(p−1)
~Mmin
H′

over ~Mmin
H′ whenever the right-hand side is defined for some k ≥ 1, as

in Proposition 2.2.3.1. Up to replacing k with a more divisible integer,
suppose that both HassekH and HassekH′ are defined as (some powers of
the ones defined) in Corollary 6.3.1.7. Then the canonical morphism

( ~[g]
min

)∗ : Γ(~Mmin
H ⊗

Z
Fp, ω⊗ k(p−1)

~Mmin
H

⊗
Z
Fp)

→ Γ(~Mmin
H′ ⊗

Z
Fp, ω⊗ k(p−1)

~Mmin
H′

⊗
Z
Fp)

(6.3.1.10)

induced by (6.3.1.9) sends HassekH to HassekH′.

Proof. By the construction of ~[g]
min

(see Proposition 2.2.3.1),

it is induced by some [g0]min : Mmin
H′,paux

→ Mmin
Gaux(Ẑp)

, which is in turn

induced by some [g0]tor : Mtor
H′,paux
→ Mtor

Gaux(Ẑp)
(with some suitable cone

decompositions). By definition of HassekH and HassekH′ in Corollary
6.3.1.8, by Proposition 6.3.1.6, and by the density of MH′,paux

⊗
Z
Fp (resp.

MGaux(Ẑp)⊗Z
Fp) in Mtor

H′,paux
⊗
Z
Fp (resp. Mtor

Gaux(Ẑp)
⊗
Z
Fp), the morphism

(6.3.1.10) is induced by the corresponding morphism

[g0]∗ : Γ(MGaux(Ẑp)⊗Z
Fp, ω⊗ kaux(p−1)

MGaux(Ẑp)
⊗
Z
Fp)

→ Γ(MH′,paux
⊗
Z
Fp, ω⊗ kaux(p−1)

MH′,paux

⊗
Z
Fp)

(for some integer kaux ≥ 1 related to k), and it suffices to show that this
morphism sends (the restriction of) Hasseaux to its pullback under the
canonical morphism MH′,paux

⊗
Z
Fp → MGaux(Ẑp)⊗Z

Fp. Since the morphism

[g0]tor is defined by a Hecke twist of the universal object on MH′,paux
(see

[62, Sec. 6.4.3]) using its level structure away from p (see Proposition
3.3.2.1 for how it is realized as an Z×(p)-isogeny), this follows from the

fact that the formation of Hasse invariants is compatible with separable
isogenies (see Remark 6.3.1.2). �

6.3.2. Nonordinary and Full Ordinary Loci.

Definition 6.3.2.1. Let Hasseaux be defined as in (6.3.1.1).

(1) The locus where Hasseaux vanishes on Mtor
Gaux(Ẑp)

⊗
Z
Fp defines

a closed subalgebraic stack with reduced structures, which we
denote by (Mtor

Gaux(Ẑp)
⊗
Z
Fp)non-ord.
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(2) The set-theoretic image of (Mtor
Gaux(Ẑp)

⊗
Z
Fp)non-ord under the

proper canonical morphism Mtor
Gaux(Ẑp)

⊗
Z
Fp → Mmin

Gaux(Ẑp)
⊗
Z
Fp

defines a closed subscheme with reduced structures, which we
denote by (Mmin

Gaux(Ẑp)
⊗
Z
Fp)non-ord.

(3) The set-theoretic preimage of (Mmin
Gaux(Ẑp)

⊗
Z
Fp)non-ord in

~Mmin
H ⊗

Z
Fp under the canonical morphism in Proposition

2.2.1.2 defines a closed subscheme with reduced structures,

which we denote by (~Mmin
H ⊗

Z
Fp)non-ord. We define in

the same way (~MH⊗
Z
Fp)non-ord, ([~MH⊗

Z
Fp])non-ord, and

(~Mtor
H,d0pol

⊗
Z
Fp)non-ord using other canonical morphisms in

Propositions 2.2.1.1, 2.2.1.2, and 2.2.2.1. We use similar
notation for their base changes to other rings.

(4) Consider the notation of formal completions in Fraktur as in
Definition 3.4.4.2, we shall also denote the schemes defined

in (3) by ~Mmin,non-ord
H , ~Mnon-ord

H , [ ~MH]non-ord, and ~Mtor,non-ord
H,d0pol

,
which we now view as closed subschemes with reduced struc-
tures in their obvious ambient formal schemes or formal alge-
braic stacks, respectively.

We call these closed subschemes the nonordinary loci of the various
schemes. We call the open complements of these closed subschemes
the full ordinary loci of the various schemes of formal schemes, and
denote them with the superscripts “full-ord” (replacing “non-ord”).

Proposition 6.3.2.2. The open immersion (6.1.1.16) induces an
open immersion

~Mord,min
H ↪→ ~Mmin

H,rH ,

whose image factors through an open immersion

(6.3.2.3) ~Mord,min
H ↪→ ~Mmin,full-ord

H,rH

that is also closed.
Suppose that Hp is neat, that Σord extends to a (projective smooth)

cone decomposition Σ for MH, with a collection pol of polarization func-

tions (which is possible by Proposition 5.1.3.4), so that ~Mtor
H,d0pol

is de-
fined, for some integer d0 ≥ 1, as in Proposition 2.2.2.1. Then the
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commutative diagram (6.2.3.3) induces a commutative diagram

~Mord,tor
H,Σord

� � //

����

~Mtor,full-ord
H,d0pol,rH

� � //

����

~Mtor
H,d0pol,rH

����

~Mord,min
H

� � // ~Mmin,full-ord
H,rH

� � // ~Mmin
H,rH

of formal schemes, in which the vertical arrows are all proper and sur-
jective, in which all horizontal arrows are open immersions, and in
which the two horizontal arrows at the left-hand side are also closed
immersions.

Proof. There are two kinds of statements to be proved. The
first kind is to show that the open image of the canonical morphism
~Mord,min
H ↪→ ~Mmin

H,rH does not meet ~Mmin,non-ord
H,rH , and that in the setup

of the second paragraph the open image of the canonical morphism
~Mord,tor
H,Σord ↪→ ~Mtor

H,d0pol,rH
does not meet ~Mtor,non-ord

H,d0pol,rH
. (The latter state-

ment implies the former statement.) The second kind is to show that

the induced open immersion ~Mord,min
H ↪→ ~Mmin,full-ord

H,rH is closed, and
that in the setup of the second paragraph the induced open immer-

sion ~Mord,tor
H,Σord ↪→ ~Mtor,full-ord

H,d0pol,rH
is also closed. (Again, the latter statement

implies the former statement.)
For statements of both kinds, we are allowed to replace H = HpHp

with some H′ = H′,pH′p, where H′,p is a neat open compact subgroup

of Hp, and where H′p = Ubal
p,1 (pr) if Ubal

p,1 (pr) ⊂ Hp ⊂ Up,0(pr) for some

integer r ≥ 0 (and replace Σord and Σ with suitable cone decomposi-
tions), because then the morphisms from the new setup to the current
setup will consist of proper morphisms compatible with each other (cf.

Propositions 5.2.2.2 and 6.2.2.1 for the case of ~Mord,tor
H,Σord and ~Mord,min

H —

the case of ~Mtor
H,d0pol,rH

and ~Mmin
H,rH are obvious because they are proper

by themselves), such that the nonordinary loci in the new setup is the
precise pullback from the current setup. Then we may assume that we
are in the setup of the second paragraph, so that both Lemma 6.3.1.4
and Corollary 6.2.3.2 are applicable.

Hence, the statements of the first kind follow immediately from
Lemma 6.3.1.4, because the pullback of every positive power of Hasseaux

is nowhere zero on ~Mord,tor
H,Σord .

As for statements of the second kind, since the vertical arrows
are proper, it suffices to show that the canonical open immersion
~Mord,tor
H,Σord ⊗

Z
Fp ↪→ ~Mtor,full-ord

H,d0pol,rH
⊗
Z
Fp is closed. Note that this statement

can be verified by replacing d0 with a sufficiently large multiple
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d0,aux. By Proposition 6.1.1.6, it suffices to show that the canonical

open immersion ~Mord,tor
Haux,Σord

aux
⊗
Z
Fp ↪→ ~Mtor,full-ord

Haux,d0,auxpolaux,r
⊗
Z
Fp is closed

(for sufficiently large d0,aux ≥ 1 such that ~Mtor,full-ord
Haux,d0,auxpolaux,r

can

be compatibly defined). Then we may assume that there is a
semi-abelian scheme Aaux with additional structures λaux and
iaux over ~Mtor,full-ord

H,d0pol,rH
⊗
Z
Fp. After pulled back to any strict local

base scheme S, the quasi-finite flat group scheme Gaux,S[pr] (resp.
G∨aux,S[pr]) admits a canonical subgroup scheme Gaux,S[pr]mult (resp.

G∨aux,S[pr]mult) of multiplicative type, which is finite flat and of the

same rank as (Gr0
Daux,pr)

mult
S (resp. (Gr0

D
#
aux,pr

)mult
S ), such that the

quotient Gaux,S[pr]/Gaux,S[pr]mult (resp. G∨aux,S[pr]/G∨aux,S[pr]mult) is a
quasi-finite étale group scheme. (This is possible because S is in
characteristic p > 0, and because the abelian part of every fiber of
Gaux is ordinary. Then we can construct such a subgroup scheme by
putting together the torus part and the multiplicative part of the
abelian part of the torsion points; see [62, Sec. 3.4.1] for a review of
the definition of the torus part and the abelian parts.) Thus, the
existence of principal ordinary level-pr structures is an open and
closed condition, as desired. �

Proposition 6.3.2.4. For any given integers i ≥ 0 and j ≥ 1, the

scheme ~Mmin,full-ord
H,i ⊗

Z
(Z/pjZ) ∼= (~Mmin

H,i ⊗
Z

(Z/pjZ))full-ord is affine.

Proof. By Corollary 6.3.1.7 and Definition 6.3.2.1, with N1

as in Proposition 2.2.1.2 (for some choice of Hp
aux), the section

HasseaN1 ∈ Γ(~Mmin
H ⊗

Z
Fp, ω⊗ aN1(p−1)

~Mmin
H

⊗
Z
Fp) defines the subscheme

(~Mmin
H ⊗

Z
Fp)non-ord of ~Mmin

H ⊗
Z
Fp (as its vanishing locus), and its

pullback to ~Mmin
H,i ⊗

Z
Fp defines the subscheme (~Mmin

H,i ⊗
Z
Fp)non-ord of

~Mmin
H,i ⊗

Z
Fp. Since ω⊗ aN1

~Mmin
H

is ample over ~Mmin
H (see Proposition 2.2.1.2),

and since the canonical morphism ~Mmin
H,i → ~Mmin

H is finite (for each

i ≥ 0), this shows that (~Mmin
H,i ⊗

Z
Fp)full-ord is affine. Since x ≡ y

(mod p) implies xp
j−1 ≡ yp

j−1
(mod pj) (in any ring), by patching

over affine open subschemes of ~Mmin
H ⊗

Z
(Z/pjZ), we can uniquely lift

Hassep
j−1aN1 to Γ(~Mmin

H ⊗
Z

(Z/pjZ), ω
⊗ pj−1aN1(p−1)
~Mmin
H

⊗
Z

(Z/pjZ)). Then
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the same argument as above shows that (~Mmin
H,i ⊗

Z
(Z/pjZ))full-ord is

affine (for each i ≥ 0), as desired. �

Corollary 6.3.2.5. Suppose that Hp is neat (so that H = HpHp

satisfies the condition in Corollary 6.3.1.7). Then, for each

integer j ≥ 1, both ~Mord,min
H ⊗

Z
(Z/pjZ) ∼= ~Mord,min

H ⊗
Z

(Z/pjZ) and

~Mmin,full-ord
H,rH ⊗

Z
(Z/pjZ) ∼= (~Mmin

H,rH ⊗Z
(Z/pjZ))full-ord are affine.

Proof. This follows from Propositions 6.3.2.2 and 6.3.2.4. �

For the sake of completeness, let us include a condition which en-
sures that the open and closed immersion (6.3.2.3) is actually an iso-
morphism when Hp = G(Zp).

Condition 6.3.2.6. The group G(Zp) acts transitively on the set
of maximal totally isotropic O⊗

Z
Zp-modules D′ of L⊗

Z
Zp satisfying

the same conditions as D does as in Lemma 3.2.2.1 and Assumption
3.2.2.10.

Lemma 6.3.2.7. Suppose that Condition 6.3.2.6 holds, and that H =
HpHp with Hp = G(Zp). Then the canonical morphism

(6.3.2.8) ~Mord
H ⊗

Z
Fp → (~MH,rH ⊗

Z
Fp)full-ord

(induced by (3.4.6.4)) is a bijection on geometric points, and hence
(by Zariski density of the image) the open and closed immersion
(6.3.2.3) is an isomorphism. When Hp is neat, by Zariski’s main
theorem (see [35, III-1, 4.4.3, 4.4.11]), the canonical morphism
~Mord
H → ~MH,rH − (~MH,rH ⊗

Z
Fp)non-ord between noetherian normal

schemes over Spec(Z(p)), lifting the morphism (6.3.2.8) over Spec(Fp),
is also an isomorphism.

Proof. Given a geometric point s = Spec(k) →
(~MH,rH ⊗

Z
Fp)full-ord, by the construction of ~MH,rH as a normalization,

we may assume that there exists an abelian scheme A over
S = Spec(R), where R is a complete discrete valuation ring with
fraction field K of characteristic zero and algebraically closed
residue field k of characteristic p > 0, and assume that there

exist a morphism ξ : S → ~MH,rH (see Proposition 2.2.1.1) lifting

Spec(k)→ (~MH,rH ⊗
Z
Fp)non-ord, as in Section 3.2.1. Then, by extending

the pullback of the tautological object over MH to the noetherian
normal S (by [92, IX, 1.4], [28, Ch. I, Prop. 2.7], or [62, Prop.
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3.3.1.5], and by extending isomorphisms between finite étale group
schemes), A also carries a polarization λ and an O-endomorphism
structure i, and a level Hp-structure αHp (see [62, Def. 1.3.7.6] and
Definition 3.3.1.4). Moreover, since Hp = G(Zp), by Proposition

3.2.1.1, (A, λ, i) also carries an ordinary level-Hp structure αord,′
Hp of

(A, λ, i) of type (L⊗
Z
Zp, 〈 · , · 〉, D′) (as in Definition 3.3.3.4), for some

filtration D′ of L⊗
Z
Zp satisfying the same conditions as D does as

in Lemma 3.2.2.1 and Assumption 3.2.2.10. In general, D′ can be
different from D.

Since Hp = G(Zp) acts transitively on the set of such D′,
there exists gp ∈ G(Zp) which defines an isomorphism matching
(L⊗

Z
Zp, 〈 · , · 〉, D, D#, φD) with (L⊗

Z
Zp, 〈 · , · 〉, D′, D′,#, φ′D), and hence

(without modifying (A, λ, i, αHp)) the tuple (A, λ, i, αHp , α
ord,′
Hp ) → S

(with αord,′
Hp defined by D′) can be canonically identified with a tuple

(A, λ, i, αHp , α
ord
Hp ) → S parameterized by ~Mord

H (with αord
Hp defined by

D), with (αHp , α
ord
Hp )⊗

Z
Q induced by αH as in Proposition 3.3.5.1. Thus,

ξ : S → ~MH must factor through S → ~Mord
H → ~MH,rH (see (3.4.6.4)).

Since the geometric point s = Spec(k) → (~MH,rH ⊗
Z
Fp)non-ord is

arbitrary, the lemma follows, as desired. �

Lemma 6.3.2.9. Condition 6.3.2.6 is true when either p is a good
prime as in Definition 1.1.1.6, or when the Iwasawa decomposition
G(Qp) = Pord

D (Qp)G(Zp) holds. By [12, Prop. 4.4.3] (see also [14, (18)
on p. 392] for a more explicit statement), the latter is true when, for
example, G⊗

Z
Qp is connected (which is the case when O⊗

Z
Q involves

no simple factor of type D as in [62, Def. 1.2.1.15]; cf. [53, Sec. 7, p.
393]) and when G(Zp) is maximal open compact in G(Qp).

Proof. When p is a good prime, this follows from the Gram–
Schmidt process as in [62, Prop. 1.2.4.5] (with R = Zp and k = Fp).
Otherwise, by the same [62, Prop. 1.2.4.5] (but with R = k = Qp

there), we know that there exists some element gp ∈ G(Qp) such
that D′,0⊗

Zp
Qp = gp(D

0⊗
Zp
Qp). By the Iwasawa decomposition G(Qp) =

Pord
D (Qp)G(Zp), since Pord

D (Qp) stabilizes D⊗
Zp
Qp, we may assume that

gp ∈ G(Zp), as desired. (We note that the underlying O⊗
Z
Zp-modules

GrD and GrD′ are isomorphic for more basic reasons: As in the proof
of Lemma 3.2.2.6, we may assume that they are O′⊗

Z
Zp-modules, for
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some maximal O′ as in Condition 1.2.1.1. Then it follows from [93,
Thm. 18.10] that they are isomorphic because their Qp-spans are.) �

Remark 6.3.2.10. Although Lemma 6.3.2.9 can be improved, we
omit the further discussions for the sake of simplicity.

6.3.3. Nonemptiness of Ordinary Loci. So far we have not

touched upon the question of whether ~Mord
H ⊗

Z
Fp is even nonempty.

When p is good (as in Definition 1.1.1.6), one can show that it follows

from [102] (and the surjectivity of (3.4.5.6)) that ~Mord
H ⊗

Z
Fp is nonempty

if and only if Assumption 3.2.2.10 holds. (It suffices to verify this
when H = HpG(Zp). By [102], the full ordinary locus of MHp ⊗

Z
Fp is

open and dense when the first half of Assumption 3.2.2.10 holds. Such
a full ordinary locus contains a nonempty ordinary locus when the
second half of Assumption 3.2.2.10 also holds—note that, by Lemmas
6.3.2.7 and 6.3.2.9, this is automatic except when O⊗

Z
Q involves some

factor of type D, or when G(Zp) fails to be a maximal open compact in
G(Qp)—by [12, Cor. 3.3.2], up to modifying the choice of the integral
PEL datum, the latter can always be avoided.) This simple criterion,
however, does not necessarily apply when p is not good. We shall
record in this subsection some simple-minded (but rather restrictive)
implication of the construction of partial toroidal compactifications.

Proposition 6.3.3.1. In the construction of ~Mord,tor
H,Σord in Theorem

5.2.1.1, if ~Mord,ZH
H ⊗

Z
Fp is nonempty for some ZH (forming part of the

representative of some cusp label [(ZH,ΦH, δH)]), then ~Mord
H ⊗

Z
Fp and

~Mord,tor
H,Σord ⊗

Z
Fp are nonempty.

Proof. By (5) of Theorem 5.2.1.1, the formal completion

(~Mord,tor
H )∧~Zord

[(ΦH,δH,σ)]

of ~Mord,tor
H along the [(ΦH, δH, σ)]-stratum

~Zord
[(ΦH,δH,σ)] is canonically isomorphic to the formal algebraic stack

~Xord
ΦH,δH,σ

/ΓΦH,σ. Since ~Ξord
ΦH,δH

and ~Ξord
ΦH,δH,σ

are both torus torsors

over the abelian scheme torsor ~Cord
ΦH,δH

over the nontrivial finite étale

cover ~Mord,ΦH
H of ~Mord,ZH

H , and since ~Ξord
ΦH,δH

↪→ ~Ξord
ΦH,δH

(σ) is an affine

toroidal embedding over ~Cord
ΦH,δH

, if ~Mord,ZH
H ⊗

Z
Fp is nonempty, then

~Ξord
ΦH,δH,σ

⊗
Z
Fp is nonempty, and ~Ξord

ΦH,δH
⊗
Z
Fp is nonempty and open

dense in ~Ξord
ΦH,δH

(σ)⊗
Z
Fp. Since ~Xord

ΦH,δH,σ
is the formal completion of
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~Ξord
ΦH,δH

(σ) (which contains ~Ξord
ΦH,δH

as an open subalgebraic stack)

along ~Ξord
ΦH,δH,σ

, this shows that ~Xord
ΦH,δH,σ

⊗
Z
Fp is nonempty, which

implies that ~Mord,tor
H,Σord ⊗

Z
Fp is nonempty. Moreover, the nonemptiness

and open density of ~Ξord
ΦH,δH

⊗
Z
Fp in ~Ξord

ΦH,δH
(σ)⊗

Z
Fp implies that

~Mord
H ⊗

Z
Fp is also nonempty. �

Corollary 6.3.3.2. If there exists a fully symplectic admissible
filtration Z on L⊗

Z
Ẑ with respect to (L, 〈 · , · 〉) as in Definition 1.2.1.3

that is compatible with D as in Definition 3.2.3.1 such that GrZ−1 =

Z−1/Z−2 = {0}, then ~Mord
H ⊗

Z
Fp and ~Mord,tor

H,Σord ⊗
Z
Fp are nonempty.

Proof. This follows from Proposition 6.3.3.1 because, in this case,
we can extend theH-orbit ZH of Z to a representative (ZH,ΦH, δH) of an
ordinary cusp label (as in Definition 3.2.3.8), and the zero-dimensional
~Mord,ZH
H ⊗

Z
Fp is trivially nonempty. �

Remark 6.3.3.3. In practice, in the setup of Corollary 6.3.3.2, we
may choose D after finding a Z such that GrZ−1 is trivial. Although
this seems very restrictive, it is applicable whenever G admits a ra-
tional parabolic subgroup with abelian unipotent radical. This is thus
applicable, for example, to the construction of Galois representations
for cohomological automorphic representations of general linear groups
over CM or totally real fields (without any polarizability condition) in
[39].



CHAPTER 7

Ordinary Kuga Families

In this chapter, we continue to assume the same settings as in Sec-
tion 5.2. Our main goal is to generalize the results in Section 1.3.3 to
the context of ordinary loci. We will first introduce some analogues of
the definitions and results in Section 1.3.3, and explain how the proofs
in [61] can be translated into this context.

7.1. Partial Toroidal Compactifications

7.1.1. Parameters for Ordinary Kuga Families. Let Q, O′,
Q−2, Q0, (L̃, 〈 · , · 〉̃ , h̃0), (Z̃, Φ̃, δ̃), etc be chosen as in Section 1.2.4.
(To make sure Theorems 1.3.3.15 and 7.1.4.1 below are compatible, we
need to make identical choices.) The filtration D of L⊗

Z
Zp defines a

filtration D̃ of L̃⊗
Z
Zp by setting

(7.1.1.1) D̃1 = 0 ⊂ D̃0 = (Z̃−2⊗
Ẑ
Zp)⊕ D0 ⊂ D̃−1 = L̃⊗

Z
Zp.

Then (Z̃, Φ̃, δ̃) is compatible with D̃ (as in Definition 3.2.3.1).

Consider any open compact subgroup H̃ ⊂ G̃(Ẑ) of standard form

with respect to D̃ as in Definition 3.2.2.9, so that H̃ = H̃pH̃p and

Ũbal
p,1 (pr) ⊂ H̃p ⊂ Ũp,0(pr) for r = depthD̃(H̃); and ν̃(H̃p) = ker(Z×p →

(Z/prν̃Z)×) (where rν̃ ≤ r). (Here Ũbal
p,1 (pr) and Ũp,0(pr) are subgroups

of G̃(Zp) as in Definition 3.2.2.8.) Let rH̃ be as in Definition 3.4.2.1.

Note that Ĥ = H̃Ĝ (see Definition 1.2.4.4) is of standard form of
depth r in the following sense:

Definition 7.1.1.2. (Compare with Definition 3.2.2.9.) For any

integer r ≥ 0, let us write Ûbal
p,1 (pr) := Ũbal

p,1 (pr)Ĝ and Ûp,0(pr) :=

Ũp,0(pr)Ĝ (cf. Definition 1.2.4.4).

We say that an open compact subgroup Ĥp ⊂ Ĝ(Zp) is of standard
form with respect to D if there exists an integer r ≥ 0 such that

Ûbal
p,1 (pr) ⊂ Ĥp ⊂ Ûp,0(pr).

417
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In this case, we say that r is the depth of Ĥp, and write

r = depthD(Ĥp). (The notation makes sense because D̃ is uniquely
determined by D.)

We say that an open compact subgroup Ĥ ⊂ Ĝ(Ẑ) is of standard

form with respect to D if it is of the form Ĥ = ĤpĤp, where Ĥp ⊂
Ĝ(Ẑp) and Ĥp ⊂ Ĝ(Zp), such that Ĥp is of standard form with respect

to D. In this case, we set depthD(Ĥ) := depthD(Ĥp).

We say that two open compact subgroups Ĥp and Ĥ′p of Ĝ(Zp) (resp.

Ĥ and Ĥ′ of Ĝ(Ẑ)) of standard form with respect to D are equally deep

if depthD(Ĥp) = depthD(Ĥ′p) (resp. depthD(Ĥ) = depthD(Ĥ′)).
We shall suppress the term “with respect to D” when the choice of

D is clear from the context.

Remark 7.1.1.3. By definition, if Ĥp (resp. Ĥ) is of standard form,

then so is (Ĥp)G (resp. ĤG; see Definition 1.2.4.4), and depthD(Ĥp) =

depthD((Ĥp)G) (resp. depthD(Ĥ) = depthD(ĤG)).

Let H ⊂ G(Ẑ) be of standard form (with respect to D) as in Defi-
nition 3.2.2.9, and let rH be as in Definition 3.4.2.1 (so that Theorem

5.2.1.1 and its consequences hold). Let H̃, H̃p, and rH̃ be as in the

previous paragraph, such that H̃p is neat and such that H̃ satisfies

Condition 1.2.4.7 (which involves H). Then Ĥ = H̃Ĝ (as we have seen
above) satisfies the following:

Condition 7.1.1.4. Ĥ is of standard form with respect to D as in

Definition 7.1.1.2, Ĥp is neat, and ĤG (see Remark 7.1.1.3) is also of
standard form with respect to D as in Definition 3.2.2.9, so that rĤG

is
defined as in Definition 3.4.2.1.

(This is a condition when we consider Ĥ alone, without referring to

H̃.) We shall assume that H̃ (or Ĥ) satisfies moreover the following:

Condition 7.1.1.5. rH̃ = rĤG
(≥ rH).

Remark 7.1.1.6. (Compare with Remark 1.2.4.10.) For each H as

above, there exists H̃ satisfying these conditions, which we may also
require to satisfy Conditions 1.2.4.8 and 1.2.4.9, because the pairing
〈 · , · 〉̃ is the direct sum of the pairings on Q−2⊕Q0 and on L.

Since (Z̃, Φ̃, δ̃) is compatible with D̃ (as in Definition 3.2.3.1), it in-

duces a representative (Z̃H̃, Φ̃H̃ = (X̃, Ỹ , φ̃, ϕ̃−2,H̃, ϕ̃0,H̃), δ̃H̃) of an ordi-

nary cusp label [(Z̃H̃, Φ̃H̃, δ̃H̃)] at level H̃ (as in Definition 3.2.3.8). Let
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Σ̃ord be any compatible choice of admissible smooth rational polyhe-

dral cone decomposition data for
~̃
M

ord

H̃ that is projective (see Definitions
5.1.3.1 and 5.1.3.3). Let σ̃ ⊂ P+

Φ̃H̃
be any top-dimensional nondegen-

erate rational polyhedral cone in the cone decomposition Σ̃Φ̃H̃
in Σ̃ord.

Definition 7.1.1.7. (Compare with Definition 1.2.4.11.)

(1) K̃ord,++
Q,H is the set of all triples κ̃ = (H̃, Σ̃ord, σ̃) as above (such

that H̃ satisfies Conditions 1.2.4.7 and 7.1.1.5).

(2) K̃ord,+
Q,H is the subset of K̃ord,++

Q,H consisting of elements κ̃ =

(H̃, Σ̃ord, σ̃) such that H̃ satisfies Condition 1.2.4.8.

(3) K̃ord
Q,H is the subset of K̃ord,+

Q,H consisting of elements

κ̃ = (H̃, Σ̃ord, σ̃) such that H̃ also satisfies Condition 1.2.4.9.

The equivalence classes [(Φ̆H̃, δ̆H̃, τ̆)] having [(Φ̃H̃, δ̃H̃, σ̃)] as a face
has been described in Section 1.2.4 (following Definition 1.2.4.11), and

the ordinary cusp labels [(Z̆H̃, Φ̆H̃, δ̆H̃)] (see Definition 3.2.3.8) having

[(Z̃H̃, Φ̃H̃, δ̃H̃)] as a face have representatives (Z̆H̃, Φ̆H̃, δ̆H̃) which are

H̃-orbits of triples (Z̆, Φ̆, δ̆) such that Z̆ (as in (1.2.4.12)) satisfies the ad-
ditional property that it is compatible with D̃ (as in Definition 3.2.3.1).
In this case, the filtration Z induced by Z̃ as in Section 1.2.4 (following
Definition 1.2.4.11) is compatible with D (cf. (1.2.4.13)). Hence, we
have:

Lemma 7.1.1.8. Under the canonical surjective assignment (given

the splitting δ̃; see (3) following Definition 1.2.4.11) from the set of cusp

labels [(Z̆H̃, Φ̆H̃, δ̆H̃)] at level H̃ admitting a surjection to [(Z̃H̃, Φ̃H̃, δ̃H̃)],
to the set of cusp labels [(ZH,ΦH, δH)] at level H, the ordinary ones
are mapped to ordinary ones, and the preimage of the set of ordinary
ones is the set of ordinary ones. The induced assignment from ordinary
ones to ordinary ones is bijective if we assume Condition 1.2.4.8, and

is still surjective if we only assume GrZ̃−1(H̃P̃Z̃
) ⊂ H.

Then we have the diagram (1.2.4.14) and the morphisms (1.2.4.18),
(1.2.4.19), and (1.2.4.20); we define σ̆ to be the image of σ̃ ⊂ P+

Φ̃H̃
under the first morphism in (1.2.4.20); we consider as in Definition

1.2.4.21 the subsets Σ̃Φ̆H̃,σ̆
and Σ̃+

Φ̆H̃,σ̆
of Σ̃Φ̆H̃

and the subgroups ΓΦ̆H̃,ΦH
,

ΓΦ̆H̃,ΦH,σ̆
, ΓΦ̆Ĥ

, and ΓΦ̆Ĥ,ΦH
of ΓΦ̆H̃

; and, most importantly, we de-

fine ŜΦ̆Ĥ
, (ŜΦ̆Ĥ

)∨R, pr(ŜΦ̆Ĥ
)∨R

: (SΦ̆H̃
)∨R → (ŜΦ̆Ĥ

)∨R, P̂Φ̆Ĥ
, and P̂+

Φ̆Ĥ
as
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in Definition 1.2.4.29, (1.2.4.32), (1.2.4.33), and (1.2.4.34), and de-

fine the ΓΦ̆Ĥ
-admissible rational polyhedral cone decomposition Σ̂Φ̆Ĥ

=

{pr(ŜΦ̆Ĥ
)∨R

(τ̆)}τ̆∈Σ̃Φ̆H̃,σ̆
of P̂Φ̆Ĥ

as in Corollary 1.2.4.40. (All of these are

verbatim as in Section 1.2.4.) Then we have:

Lemma 7.1.1.9. (Compare with Lemma 1.2.4.42.) The collection

Σ̂ord = {Σ̂Φ̆Ĥ
}[(Φ̆Ĥ,δ̆Ĥ)], where [(Φ̆Ĥ, δ̆Ĥ)] runs through equivalence

classes of Ĥ-orbits of representatives (Φ̆, δ̆) compatible with (Φ̃, δ̃) as
in Definition 1.2.4.17 (with Z̆ and Z̃ suppressed in the notation), such
that Z̆ is compatible with D̃ (as in Definition 3.2.3.1) (so that the cusp

label [(Z̆H̃, Φ̆H̃, δ̆H̃)] is ordinary), defines a compatible choice of
admissible smooth rational polyhedral cone decomposition
data analogous to the notion for MH in Definition 1.2.2.13. There is
an obvious notion of refinements for such collections, analogous to
that in [62, Def. 6.4.2.8].

Moreover, each such Σ̂ord extends to some Σ̂ as in Lemma 1.2.4.42.

Conversely, each Σ̂ as in Lemma 1.2.4.42 induces (by restriction to

ordinary cusp labels) a valid Σ̂ord for this lemma.

Proof. This follows from the corresponding facts for

Σ̃ord = {Σ̃Φ̆H̃
}[(Φ̆H̃,δ̆H̃)] (with indices running through all ordinary cusp

labels). (The statements concerning extensibility and restrictions
follow from the corresponding ones in Propositions 5.1.3.2 and
5.1.3.4.) �

Remark 7.1.1.10. (Compare with Remark 1.2.4.43.) Here we omit
the precise definition of a compatible choice of admissible smooth ratio-
nal polyhedral cone decomposition data because we can only construct

partial toroidal compactifications of Kuga families for those Σ̂ord de-

fined by some Σ̃ord and σ̃.

Definition 7.1.1.11. (Compare with Definition 1.2.4.44.) We say

that two κ̃1 and κ̃2 in K̃ord,++
Q,H (see Definition 7.1.1.7) are equivalent if

they determine the same κ = (Ĥ, Σ̂ord). In this case, we shall abusively

write κ = [κ̃1] = [κ̃2]. Then we take Kord,++
Q,H to be the set of all such

κ = (Ĥ, Σ̂ord), with a partial order κ′ = (Ĥ′, Σ̂ord,′) � κ = (Ĥ, Σ̂ord)

when Ĥ′ ⊂ Ĥ′ and when Σ̂ord,′ is a refinement of Σ̂ord (see Definition

7.1.1.9). We also take the subset Kord,+
Q,H (resp. Kord

Q,H) of Kord,++
Q,H to

be the image of the subset K̃ord,+
Q,H (resp. K̃ord

Q,H) of K̃ord,++
Q,H under the
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canonical surjection K̃ord,++
Q,H � Kord,++

Q,H , with an induced partial order
denoted by the same symbol �.

Lemma 7.1.1.12. (Compare with Lemma 1.2.4.45.) In Lemma

1.2.4.45, if ĤG ⊂ G(Ẑ) satisfies Condition 7.1.1.4, then we may

assume that H̃ = H̃pH̃p is of standard form with neat H̃p, and
satisfies both Conditions 1.2.4.7 and 7.1.1.5.

Proof. This follows from the proof of Lemma 1.2.4.45, because

the restriction of ν̃ : G̃→ Gm to P̃′
Z̃

factors as P̃′
Z̃
→ G

ν→ Gm. �

Lemma 7.1.1.13. (Compare with Lemma 1.2.4.46.) For each neat

open compact subgroup Ĥ of G(Ẑ) satisfying Condition 7.1.1.4, there

exists some element κ = (Ĥ, Σ̂ord) ∈ Kord,++
Q,H , which lies in Kord,+

Q,H

(resp. Kord
Q,H) if Ĥ also satisfies Condition 1.2.4.8 (resp. both Conditions

1.2.4.8 and 1.2.4.9).

Proof. By Lemmas 1.2.4.45 and 7.1.1.12, Ĥ is induced by some

H̃ = H̃pH̃p with neat H̃p as in Definition 1.2.4.4, which we assume
to also satisfy Conditions 1.2.4.7 and 7.1.1.5. By Propositions 5.1.3.2

and 5.1.3.4, there exists some Σ̃ord for
~̃
M

ord

H̃ . Let us take Σ̂ord to be

induced by Σ̃ord as in Lemma 7.1.1.9, and take κ = (Ĥ, Σ̂ord). Then,

by definition, we have κ ∈ Kord,++
Q,H . The remaining statements of the

lemma also follow by definition. �

Lemma 7.1.1.14. (Compare with Lemma 1.2.4.47.) The partial or-

der � among elements in Kord,++
Q,H (resp. Kord,+

Q,H , resp. Kord
Q,H) is di-

rected; that is, if we are given two κ = (Ĥ, Σ̂ord) and κ′ = (Ĥ′, Σ̂ord,′),

then there exists some κ′′ = (Ĥ′′, Σ̂ord,′′) such that κ′′ � κ and κ′′ � κ′.

Moreover, we can take Ĥ′′ to be any open compact subgroup of Ĥ ∩ Ĥ′
(which can be Ĥ ∩ Ĥ′ itself) satisfying Condition 7.1.1.4 (with Ĥ there

replaced with Ĥ′′ here).

Proof. The same argument of the proof of Lemma 1.2.4.47 works
here. �

Now we consider some compatibility conditions between a collection

Σord for ~Mord
H and elements of K̃ord,++

Q,H or Kord,++
Q,H .

First consider the following condition on an element

κ̃ = (H̃, Σ̃ord, σ̃) in K̃ord,++
Q,H :

Condition 7.1.1.15. (Compare with [61, Cond. 3.8] and Condi-

tion 1.2.4.48.) For each (Φ̆H̃, δ̆H̃, τ̆) (with Z̆H̃ suppressed in the nota-

tion) such that (Z̆H̃, Φ̆H̃, δ̆H̃) is a representative of an ordinary cusp label
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which admits a surjection (sX̆ : X̆ � X̃, sY̆ : Y̆ � Ỹ ) to (Z̃H̃, Φ̃H̃, δ̃H̃),

and such that τ̆ ⊂ P+

Φ̆H̃
is a cone in the cone decomposition Σ̃Φ̆H̃

(in

Σ̃ord) having a face σ̆ that is a ΓΦ̆H̃
-translation (see Definition 1.2.2.3)

of the image of σ̃ ⊂ P+

Φ̃H̃
under the first morphism in (1.2.4.20) (in-

duced by (sX̆ , sY̆ )), the image of τ̆ in PΦH under the (canonical) second
morphism in (1.2.4.20) is contained in some cone τ ⊂ P+

ΦH
in the cone

decomposition ΣΦH (in Σord).

Remark 7.1.1.16. The only difference between Conditions 1.2.4.48
and 7.1.1.15 is that we only consider ordinary cusp labels in the latter.

By Lemma 1.2.4.35 (and Remark 7.1.1.16), if κ = [κ̃] ∈ Kord,++
Q,H is

the element determined by κ̃, then Condition 7.1.1.15 for κ̃ is equivalent
to the following condition for κ:

Condition 7.1.1.17. (Compare with [28, Ch. VI, Def. 1.3] and

Condition 1.2.4.49.) For each τ̂ ∈ Σ̂Φ̆Ĥ
(where τ̂ = pr(ŜΦ̆Ĥ

)∨R
(τ̆) for

some (Φ̆H̃, δ̆H̃, τ̆) is in the cone decomposition Σ̂Φ̆Ĥ
in Σ̂ord), the image

of τ̂ in P+
ΦH

under (1.2.4.37) is contained in some cone τ ⊂ P+
ΦH

in

the cone decomposition ΣΦH (in Σord).

Remark 7.1.1.18. The only difference between Conditions 1.2.4.49
and 7.1.1.17 is that we only consider ordinary cusp labels in the latter.

Definition 7.1.1.19. (Compare with Definition 1.2.4.50.) For ? =

++, +, or ∅, let us take Kord,?
Q,H,Σord to be the subset of Kord,?

Q,H consisting

of elements κ satisfying Condition 7.1.1.17.

Since Condition 7.1.1.17 can be achieved by replacing any given

Σ̂ord with a refinement (in the same set), we see that each Kord,?
Q,H,Σ is

nonempty and has an induced directed partial order.

Thus, we have defined analogues of all the sets K̃Q,H ⊂ K̃+
Q,H ⊂

K̃++
Q,H, KQ,H ⊂ K+

Q,H ⊂ K++
Q,H, and KQ,H,Σ ⊂ K+

Q,H,Σ ⊂ K++
Q,H,Σ in

Definitions 1.2.4.11, 1.2.4.44, and 1.2.4.50. We would like to analyze
the relation between the sets we defined there and here.

Definition 7.1.1.20. (Compare with Definitions 1.2.4.11, 1.2.4.44,
and 1.2.4.50.) For each ?1 = ++, +, or ∅, and for each ?2 = Σ or ∅:

(1) K̃std,?1

Q,H is the (nonempty) set of all κ̃ = (H̃, Σ̃, σ̃) ∈ K̃?1
Q,H such

that H̃ is of standard from with respect to D̃ as in Definition
3.2.2.9.
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(2) Kstd,?1

Q,H,?2
is the (nonempty) set of all κ = (Ĥ, Σ̂) ∈ K?1

Q,H,?2
such

that Ĥ is of standard from with respect to D as in Definition
7.1.1.2.

Proposition 7.1.1.21. (Compare with Proposition 1.2.4.52.) Sup-
pose H is of standard form with respect to D as above. For each

?1 = ++, +, or ∅, and for each ?2 = Σ or ∅, the sets K̃ord,?1

Q,H and

Kord,?1

Q,H,?2
are nonempty, and the natural canonical morphisms

ord : K̃std,?1

Q,H → K̃ord,?1

Q,H

and
ord : Kstd,?1

Q,H,?2
→ Kord,?1

Q,H,?2

are surjective and compatible with each other under the various
canonical maps. Common refinements for finite subsets exist in
any sets of the form Kstd,?1

Q,H,?2
or Kord,?1

Q,H,?2
. When doing so, we may

allow varying levels or twists by Hecke actions, and we may vary ?1

and ?2 as well (in any order). For any such refinement κ = (Ĥ, Σ̂)

or (Ĥ, Σ̂ord), we may prescribe Ĥ to be any allowed open compact

subgroup of Ĝ(Ẑ) in the context, we may require Σ̂ to be finer than any

cone decomposition Σ̂′, and we may require Σ̂ or Σ̂ord to be invariant

under any choice of an open compact subgroup of Ĝ(A∞) normalizing

Ĥ. If κ = (Ĥ, Σ̂ord) ∈ Kord,?1

Q,H,?2
, if Ĥ′ ⊂ Ĥ is an open compact subgroup

such that the integral structures on (ŜΦ̆Ĥ′
)∨R defined by ŜΦ̆Ĥ′

and ŜΦ̆Ĥ

are identical for each ordinary cusp label [(Φ̆Ĥ′ , δ̆Ĥ′)] at level Ĥ′

inducing an ordinary cusp label [(Φ̆Ĥ, δ̆Ĥ)] at level Ĥ, and if Σ̂ord,′

is the collection induced by Σ̂ord at level Ĥ′, then κ′ := (Ĥ′, Σ̂ord,′)

belongs to the same set Kord,?1

Q,H,?2
(without the need to refine Σ̂ord,′).

If κ = (Ĥ, Σ̂ord) ∈ Kord,?1

Q,H,?2
and κ′ = (Ĥ′, Σ̂′) ∈ Kstd,?1

Q,H,?2
such that

κ � ord(κ′), then there exists an element κ′′ = (Ĥ′′, Σ̂′′) ∈ Kstd,?1

Q,H,?2

such that ord(κ′′) = κ and κ′′ � κ′, and we may assume that κ′′ � κ′′′

for any κ′′′ ∈ Kstd,?1

Q,H,?2
such that ord(κ′′′) = κ.

Proof. These follow from the corresponding existence,
refinement, and extensibility statements in Propositions 1.2.2.17,

5.1.3.2, and 5.1.3.4 for collections Σ̃ and p̃ol for M̃H̃ and for collections

Σ̃ord and p̃ol
ord

for
~̃
M

ord

H̃ . The second last statement is obvious. As
for the last statement, note that ordinary cusp labels (by their
very definition, see Definition 3.2.3.8) can only admit surjections to
ordinary cusp labels, and hence refinements of cone decompositions
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over non-ordinary cusp labels do not necessitate further refinements
over the ordinary cusp labels. �

For later references, let us also define the following:

Definition 7.1.1.22. For each Zp-algebra R, we also define the

following quotients of subgroups of P̃Z̃(R) and P̃ord
D̃

(R) (see Definitions
1.2.1.10, 1.2.1.11, 1.2.4.3, 3.2.2.7, and 3.2.3.9):

(1) P̃ord
Z̃,D̃

(R) := P̃Z̃(R)∩ P̃ord
D̃

(R).

(2) P̃ord,′
Z̃,D̃

(R) := P̃′
Z̃
(R)∩ P̃ord

D̃
(R).

(3) P̂ord
D (R) := P̃ord

1,Z̃,D̃
(R) = P̃ord,′

Z̃,D̃
(R)/Ũ2,Z̃(R).

(4) Ûord
D (R) := ŨZ̃(R)/(ŨZ̃(R)∩ Ũord

D̃
(R)), which can be canoni-

cally identified with the image of ŨZ̃(R) under the canonical

homomorphism P̃ord
D̃

(R)→ M̃ord
D̃

(R).

(5) M̂ord
D (R) := P̃ord,′

Z̃,D̃
(R)/Ũord

D̃
(R), which can be canonically iden-

tified with the image of P̃ord,′
Z̃,D̃

(R) under the canonical homo-

morphism P̃ord
D̃

(R)→ M̃ord
D̃

(R), which is (under the splitting δ̃

above) isomorphic to (Mord
D n Ûord

D )(R) := Mord
D (R) n Ûord

D (R).

Definition 7.1.1.23. For each open compact subgroup H̃p of G̃(Zp)
of standard form as in Definition 3.2.2.9, with r = depthD̃(H̃p), we

define Ĥp = (H̃p)Ĝ as in Definition 1.2.4.4, so that (by definition)

r = depthD(Ĥp) = depthD̃(H̃p). Then

Ĥpr := Ĥp/Ûbal
p,1 (pr)

is a subgroup of

Ûp,0(pr)/Ûbal
p,1 (pr) ∼= M̂ord

D (Z/prZ),

and we set
(7.1.1.24)

Ĥord
p :=

(
M̂ord

D (Zp)
can.→ M̂ord

D (Z/prZ)
can.
∼→
(
Ûp,0(pr)/Ûbal

p,1 (pr)
))−1

(Ĥpr)

(cf. (3.3.3.5)),

Ĥord
p,Ûord

D

:= Ĥord
p ∩ Ûord

D (Zp),
and

Ĥord
p,Mord

D
:= Ĥord

p /Ĥord
p,Ûord

D

.

Then (by definition)

Ĥord
p,Mord

D
= ((Ĥp)G)ord
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(where the right-hand side is defined using Definition 1.2.4.4 and
(3.3.3.5)) as subgroups of Mord

D (Zp), and we have an exact sequence

(7.1.1.25) 1→ Ĥord
p,Ûord

D

→ Ĥord
p → Ĥord

p,Mord
D
→ 1

compatible with the canonical exact sequence

(7.1.1.26) 1→ Ûord
D (Zp)→ M̂ord

D (Zp)→ Mord
D (Zp)→ 1.

Definition 7.1.1.27. (Compare with Definitions 1.2.4.53, 1.2.4.54,
and 3.2.3.9.) Suppose Z̆ is compatible with D̃ as in (3.2.3.2). For each

Zp-algebra R, we define the following quotients of subgroups of P̂Z̆(R)
(see Definition 1.2.4.53):

(1) P̂ord
Z̆,D

(R) := (P̃ord
Z̆,D̃

(R)∩ P̃′
Z̃
(R))/Ũ2,Z̃(R). (Because of the com-

patibility between Z̆ and D̃, we do not define new groups for

ẐZ̆(R), ÛZ̆(R), Û2,Z̆(R), Û1,Z̆(R) , Ĝl,Z̆(R), and Ĝ′
l,Z̆

(R) here.)

(2) P̂ord
h,Z̆,D

(R) := P̃ord
Z̆,D̃

(R)/Z̃Z̆(R) ∼= P̂ord
Z̆,D̃

(R)/ẐZ̆(R) is the subgroup

of elements of Ĝh,Z̆(R) ∼= Gh,Z(R) preserving the filtration

D−1 induced by D̃ on GrZ̆−1⊗
Ẑ
Zp ∼= GrZ−1⊗

Ẑ
Zp as in Definition

3.2.3.1.
(3) P̂ord,′

Z̆,D
(R) := P̃ord,′

Z̆,D̃
(R)/Ũ2,Z̃(R) is the kernel of the canonical

homomorphism (ν̃−1 GrZ̆−2,GrZ̆0) : P̂ord
Z̆,D

(R)→ Ĝ′
l,Z̆

(R).

(4) P̂ord
1,Z̆,D

(R) := P̃ord,′
Z̆,D̃

(R) ∼= P̂ord,′
Z̆,D

(R)/Û2,Z̆(R).

(5) P̂ord,′
h,Z̆,D

(R) := P̃ord
1,Z̆,D̃

(R)/Ũ1,Z̆(R) ∼= P̂ord
1,Z̆,D

(R)/Û1,Z̆(R) ∼=
P̃ord,′
Z̆,D̃

(R)/ŨZ̆(R) ∼= P̂ord,′
1,Z̆,D

(R)/ÛZ̆(R) ∼= P̃ord
Z̆,D̃

(R)/Z̃ord
Z̆,D̃

(R) ∼=
P̂ord
Z̆,D

(R)/ẐZ̆(R) ∼= P̂ord
h,Z̆,D

(R).

Then the canonical homomorphism Ĝ(R) → G(R) induces the follow-
ing canonical homomorphisms:

(1) P̂ord
Z̆,D

(R)→ Pord
Z,D (R).

(2) P̂ord
h,Z̆,D

(R)→ Pord
h,Z,D(R).

(3) P̂ord,′
Z̆,D

(R)→ Pord,′
Z,D (R).

(4) P̂ord
1,Z̆,D

(R)→ Pord
1,Z,D(R).

(5) P̂ord,′
h,Z̆,D

(R)→ Pord,′
h,Z,D(R).

We also consider (see Definition 1.2.4.54)

P̃ord
Z̆,Z̃,D̃

(R) := P̃Z̆(R)∩ P̃Z̃(R)∩ P̃ord
D̃

(R).



426 7. ORDINARY KUGA FAMILIES

Then we have the canonical isomorphism

P̃ord
Z̆,Z̃,D̃

(R)/P̃ord,′
Z̆,D̃

(R)
∼→ P̃Z̆,Z̃(R)/P̃′

Z̆
(R) = G̃l,Z̆,Z̃(R),

and the canonical homomorphism

P̃ord
Z̆,Z̃,D̃

(R)/Ũ2,Z̆(R)→ Pord
Z,D (R)/U2,Z(R).

7.1.2. Boundary of Ordinary Loci, Continued. Let us con-
tinue the study in Section 5.2.4, which generalized part of Section 1.3.2.

Let us continue with the setup of Section 7.1.1, with the same

choices of (L̃, 〈 · , · 〉̃ , h̃0), (Z̃, Φ̃, δ̃), etc as in Section 1.2.4. Let κ̃ =

(H̃, Σ̃ord, σ̃) be any element in the set K̃ord,++
Q,H as in Definition 7.1.1.7.

The data of O, (L̃, 〈 · , · 〉̃ , h̃0), D̃, and H̃ ⊂ G̃(Ẑ) (of standard form

with respect to D̃) then define
~̃
M

ord

H̃ as in Theorem 3.4.2.5. Since H̃p

is neat and Σ̃ord is projective (and smooth), by Theorems 5.2.1.1 and

6.2.3.1, we have a partial toroidal compactification
~̃
M

ord,tor

H̃ =
~̃
M

ord,tor

H̃,Σ̃ord

of
~̃
M

ord

H̃ which is quasi-projective and smooth over ~S0,rH̃
. We are mainly

interested in comparing the boundary structures of
~̃
M

ord,tor

H̃,Σ̃ord and ~Mord,tor
H,Σord

under suitable conditions.
In the remainder of this subsection, let us fix the choice of a Z̆

satisfying (1.2.4.12), so that we have the groups and homomorphisms
defined in Definitions 1.2.4.53, 1.2.4.54, and 7.1.1.27.

Suppose that an ordinary cusp label [(ZH,ΦH, δH)] at level
H is canonically assigned (as in Lemma 1.2.4.15) to a cusp label

[(Z̆H̃, Φ̆H̃, δ̆H̃)] at level H̃ (necessarily also ordinary) admitting a

surjection to [(Z̃H̃, Φ̃H̃, δ̃H̃)], so that we have (1.2.4.18), (1.2.4.19), and
(1.2.4.20), and the definitions following them.

Lemma 7.1.2.1. (Compare with Lemma 1.3.2.50.) By comparing
the universal properties, we obtain a canonical morphism

(7.1.2.2)
~̃
C

ord

Φ̆H̃,δ̆H̃
→ ~Cord

ΦH,δH
,

by sending (c̆ord
H̃ , c̆∨,ord

H̃
), which is an orbit of étale-locally-defined pairs

(c̆ord
n : 1

n
X̆ → B∨,ord

pr , c̆∨,ord
n : 1

n
Y̆ → Bord

pr )

for some integer n = n0p
r where n0 ≥ 1 is an integer prime to p such

that Ũp(n0) ⊂ H̃p and where r = depthD̃(H̃p), to the orbit (cord
H , c∨,ord

H )
of étale-locally-defined pairs

(cord
n : 1

n
X → B∨,ord

pr , c∨,ord
n : 1

n
Y → Bord

pr ),
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with (cord
n , c∨,ord

n ) induced by (c̆ord
n , c̆∨,ord

n ) by restrictions to 1
n
X and 1

n
Y ,

where X and Y are the kernels of the admissible surjections sX̆ : X̆ �
X̃ and sY̆ : Y̆ � Ỹ , respectively. (This definition canonically extends to
a compatible definition in the Z×(p)-isogeny class language in Proposition

5.2.4.13, which we omit for simplicity.)

If ĤG = H, then
~̃
M

ord,Φ̆H̃

H̃
∼= ~Mord,ΦH

H and there is a canonical homo-
morphism

(7.1.2.3)
~̃
C

ord,grp

Φ̆H̃,δ̆H̃
→ ~Cord,grp

ΦH,δH

(cf. (1.3.2.52)) of abelian schemes over ~Mord,ΦH
H , which can be identified

with the canonical homomorphism

(7.1.2.4) HomO(X̆, B)◦ → HomO(X,B)◦

(cf. (1.3.2.53)) up to canonical Q×-isogenies over ~Mord,ΦH
H , and the

~̃
C

ord,grp

Φ̆H̃,δ̆H̃
- and ~Cord,grp

ΦH,δH
-torsor structures of

~̃
C

ord

Φ̆H̃,δ̆H̃
→ ~Mord,ΦH

H and

~Cord
ΦH,δH

→ ~Mord,ΦH
H , respectively, are compatible with each other under

(7.1.2.2) and (7.1.2.3). Moreover, the kernel of (7.1.2.3) is an abelian

scheme over ~Mord,ΦH
H , which is canonically Q×-isogenous to the kernel

HomO(X̃, B)◦ of (7.1.2.4), and (7.1.2.2) is a torsor under the pullback

to ~Cord
ΦH,δH

of this abelian scheme.

The abelian scheme torsor
~̃
C

ord

Φ̆H̃,δ̆H̃
→ ~̃

M
ord,Φ̆H̃

H̃ and the finite étale

covering
~̃
M

ord,Φ̆H̃

H̃ → ~̃
M

ord,Z̆H̃

H̃ depend (up to canonical isomorphism) only

on Ĥ = H̃Ĝ and (Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ) (see Definition 1.2.4.17). We shall denote

them as
~̂
C

ord

Φ̆Ĥ,δ̆Ĥ
→ ~̂

M
ord,Φ̆Ĥ

Ĥ and
~̂
M

ord,Φ̆Ĥ

Ĥ → ~̂
M

ord,Z̆Ĥ

Ĥ when we want to

emphasize this (in)dependence.

Proof. The first paragraph is self-explanatory. As for the second
paragraph, by Lemma 5.2.4.7, it suffices to verify the statements in

the case H = Ubal
1 (n) and H̃ = Ũbal

1 (n) for some integer n = n0p
r.

(Then the third paragraph also follows by Lemma 5.2.4.7.) In this

case,
~̃
C

ord

Φ̆H̃,δ̆H̃
=
~̃
C

ord

Φ̆n,δ̆n and ~Cord
ΦH,δH

= ~Cord
Φn,δn

are abelian schemes over

~̃
M

ord,Φ̆H̃

H̃ =
~̃
M

ord,Z̆n

n
∼= ~Mord,ΦH

H = ~Mord,Zn
n . For simplicity, let us denote

the kernel of (7.1.2.2) by C, viewed as a scheme over ~Mord,Zn
n .

By Proposition 4.2.1.30 and its proof, C is necessarily the extension

of a finite flat group scheme π0(C/~Mord,Zn
n ) of étale-multiplicative type
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by an abelian scheme over ~Mord,Zn
n . By Lemma 7.1.2.1, we know that

C ⊗
Z
Q is an abelian scheme Q×-isogenous to the pullback of the ordi-

nary abelian scheme HomO(X̃, B)◦ → ~Mord,ΦH
H . Hence, π0(C/~Mord,Zn

n )
must be trivial, and C is necessarily an abelian scheme, which is

Q×-isogenous to HomO(X̃, B)◦ → ~Mord,ΦH
H over all of ~Mord,Zn

n (by noe-

therian normality of ~Mord,Zn
n and by [92, IX, 1.4], [28, Ch. I, Prop. 2.7],

or [62, Prop. 3.3.1.5]). Hence, h is a torsor under the pullback of C to
~Cord

Φn,δn
, as explained at the end of the proof of Lemma 1.3.2.50. �

Proposition 7.1.2.5. (Compare with Proposition 1.3.2.55.) Un-
der the canonical morphisms as in (7.1.2.2), and under the canonical
homomorphisms

Ĝ1,Z̆(A∞,p)× P̂ord
1,Z̆,D(Qp)→ G1,Z(A∞,p)×Pord

1,Z,D(Qp)

and

(P̃Z̆,Z̃(A
∞,p)× P̃ord

Z̆,Z̃,D̃
(Qp))/Ũ2,Z̆(A∞)→ (PZ(A∞,p)×Pord

Z,D (Qp))/U2,Z(A∞),

the Hecke action of (suitable elements of) Ĝ1,Z̆(A∞,p)× P̂ord
1,Z̆,D

(Qp)

on the collection {~̂C
ord

Φ̆Ĥ,δ̆Ĥ
}Ĥ

Ĝ
1,Z̆

(with Ĥ of standard form)

is compatible with the Hecke action of (suitable elements of)

G1,Z(A∞,p)×Pord
1,Z,D(Qp) on the collection {~Cord

ΦH,δH
}HG1,Z

(with H of

standard form; see Proposition 5.2.4.25); the Hecke action of (suitable

elements of) (P̃Z̆,Z̃(A∞,p)× P̃ord
Z̆,Z̃,D̃

(Qp))/Ũ2,Z̆(A∞) on the collection

{
∐ ~̃
C

ord

Φ̆H̃,δ̆H̃
}H̃

P̃
Z̆,̃Z
/H̃

Ũ
2,Z̆

(with H̃ of standard form) is compatible with the

Hecke action of (suitable elements of) (PZ(A∞,p)×Pord
Z,D (Qp))/U2,Z(A∞)

on the collection {
∐ ~Cord

ΦH,δH
}HPZ

/HU2,Z
(with H of standard form); and

the induced action of G̃l,Z̆,Z̃(A∞) on the index sets {[(Z̃H̃, Φ̃H̃, δ̃H̃)]}
is compatible with the induced action of G′l,Z(A∞) on the index sets
{[(ZH,ΦH, δH)]} (again see Proposition 5.2.4.25) under the canonical

homomorphism G̃l,Z̆,Z̃(A∞)→ G′l,Z(A∞).
These Hecke actions induce a Hecke action of (suitable

elements of) the subgroup (P̂Z̆(A∞,p)× P̂ord
Z̆,D

(Qp))/Û2,Z̆(A∞)

of (P̃Z̆,Z̃(A∞,p)× P̃ord
Z̆,Z̃,D̃

(Qp))/Ũ2,Z̆(A∞) on the collection

{
∐ ~̂
C

ord

Φ̆Ĥ,δ̆Ĥ
}Ĥ

P̂
Z̆
/Ĥ

Û
2,Z̆

(with Ĥ of standard form), which

is compatible with the Hecke action of (suitable elements
of) (PZ(A∞,p)×Pord

Z,D (Qp))/U2,Z(A∞) on the collection
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{
∐ ~Cord

ΦH,δH
}HPZ

/HU2,Z
(with H of standard form) un-

der the canonical morphisms
~̂
C

ord

Φ̆Ĥ,δ̆Ĥ
→ ~Cord

ΦH,δH
(with

varying Ĥ and H) and the canonical homomorphism

(P̂Z̆(A∞,p)× P̂ord
Z̆,D

(Qp))/Û2,Z̆(A∞) → (PZ(A∞,p)×Pord
Z,D (Qp))/U2,Z(A∞);

and the induced action of the subgroup Ĝ′
l,Z̆

(A∞) of G̃l,Z̆,Z̃(A∞) on

the index sets {[(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)]} is compatible with the induced action
of G′l,Z(A∞) on the index sets {[(ZH,ΦH, δH)]} under the canonical

homomorphism Ĝ′
l,Z̆

(A∞)→ G′l,Z(A∞).

Proof. As in the case of (1.3.2.51), the canonical morphisms as

in (7.1.2.2) correspond to pushouts of extensions of B (resp. B∨) by T̆

(resp. T̆∨) under the canonical homomorphism T̆ → T (resp. T̆∨ → T∨)

induced by the restriction from X̆ (resp. Y̆ ) to X (resp. Y ). Hence,
the realizations of the Hecke twists are compatible in the desired ways.
(We omit the details for simplicity.) �

Suppose σ̃ ⊂ P+

Φ̃H̃
is a top-dimensional nondegenerate rational

polyhedral cone in the cone decomposition Σ̃Φ̃H̃
in Σ̃ord, and suppose σ̆

is the image of σ̃ ⊂ P+

Φ̃H̃
under the first morphism in (1.2.4.20). Then

we have σ̆⊥ = ŜΦ̆Ĥ
(see Definition 1.2.4.29) for any such σ̆∨, where

Ĥ = H̃Ĝ, and we have the following:

Proposition 7.1.2.6. (Compare with Proposition 1.3.2.56, Lemma
5.2.4.29 and Proposition 5.2.4.30.) The scheme

~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
∼= Spec

O
~̃
C

ord
Φ̆H̃,δ̆H̃

(
⊕

˘̀∈σ̆⊥

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)

)

over
~̃
C

ord

Φ̆H̃,δ̆H̃
is a torsor under the split torus ẼΦ̆H̃,σ̆

with character group

σ̆⊥, which is canonically isomorphic to the split torus ÊΦ̆Ĥ
with charac-

ter group ŜΦ̆Ĥ
, which depends only on ĤP̂Z̆′

= H̃P̃′
Z̆

/H̃Ũ2,̃Z
(see Definition

1.2.4.53). We have Ŝ∨
Φ̆1
/Ŝ∨

Φ̆Ĥ

∼= Û2,Z̆(Ẑ)/ĤÛ2,Z̆
, where ŜΦ̆1

:= ŜΦ̆
Ĝ(Ẑ)

is

the kernel of the canonical homomorphism SΦ̆1
� SΦ̃1

(see Definition
1.2.4.29).

The torus torsor S :=
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
→ ~̃

C
ord

Φ̆H̃,δ̆H̃
is universal for the

additional structures (τ̂ ord
Ĥ , τ̂∨,ord

Ĥ
), which are ĤP̂Z̆

/Ûbal
1 (n)P̂Z̆

-orbits of

étale-locally-defined pairs (τ̂n, τ̂
∨
n ) (for some integer n = n0p

r where
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n0 ≥ 1 is an integer prime to p such that Ûp(n0) ⊂ Ĥp and where

r = depthD(Ĥp), in which case we set Ûbal
1 (n) := Ûp(n0)Ûbal

p,1 (pr)),
where:

(1) τ̂ ord
n = τ̂n0 : 1 1

n0
Y × X̆,S

∼→ (c̆∨n0
| 1
n
YS
× c̆)∗P⊗−1

B is a trivialization

of biextensions.
(2) τ̂∨,ord

n = τ̂∨n0
: 1 1

n0
Y̆ ×X,S

∼→ (c̆∨n0
× c̆|XS)∗P⊗−1

B is a trivializa-

tion of biextensions.
(3) τ̂n0 and τ̂∨n0

satisfy the analogues of the usual O-compatibility
condition.

(4) τ̂n0 and τ̂∨n0
satisfy the symmetry condition that τ̂n0|1Y × Y̆ ,S and

τ̂∨n0
|1Y̆ ×Y,S coincide under the canonical isomorphism induced

by the swapping isomorphism 1Y × Y̆ ,S
∼→ 1Y̆ ×Y,S and the sym-

metry automorphism of PB.
(5) τ̂n0|1 1

n0
Y ×X,S

= τ̂∨n0
|1 1
n0

Y ×X,S
.

We shall denote
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
by

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
when we want to emphasize that

(by Lemma 5.2.4.26) it depends only on Ĥ = H̃Ĝ and (Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ) (see
Definition 1.2.4.17), but does not depend on the choice of σ̆.

The ÊΦ̆Ĥ
-torsor structure of

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
→ ~̂

C
ord

Φ̆Ĥ,δ̆Ĥ
defines a homomor-

phism

ŜΦ̆Ĥ
→ Pic(

~̂
C

ord

Φ̆Ĥ,δ̆Ĥ
) : ˘̀ 7→ ~̂

Ψ
ord

Φ̆Ĥ,δ̆Ĥ
(˘̀),

assigning to each ˘̀ ∈ ŜΦ̆Ĥ
an invertible sheaf

~̂
Ψ

ord

Φ̆Ĥ,δ̆Ĥ
(˘̀) over

~̂
C

ord

Φ̆Ĥ,δ̆Ĥ

(up to isomorphism), together with isomorphisms

~̂
∆

ord,∗

Φ̆Ĥ,δ̆Ĥ,
˘̀,˘̀′ :

~̂
Ψ

ord

Φ̆Ĥ,δ̆Ĥ
(˘̀) ⊗

O
~̂
C

ord
Φ̆Ĥ,δ̆Ĥ

~̂
Ψ

ord

Φ̆Ĥ,δ̆Ĥ
(˘̀′)

∼→ ~̂
Ψ

ord

Φ̆Ĥ,δ̆Ĥ
(˘̀+ ˘̀′)

for all ˘̀, ˘̀′ ∈ ŜΦ̆Ĥ
, satisfying the necessary compatibilities with each

other making ⊕
˘̀∈ŜΦ̆Ĥ

~̂
Ψ

ord

Φ̆Ĥ,δ̆Ĥ
(˘̀) an O~̂

C
ord

Φ̆Ĥ,δ̆Ĥ

-algebra, such that

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
∼= Spec

O
~̂
C

ord
Φ̆Ĥ,δ̆Ĥ

(
⊕

˘̀∈ŜΦ̆Ĥ

~̂
Ψ

ord

Φ̆Ĥ,δ̆Ĥ
(˘̀)

)
.
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When ˘̀ = [y⊗χ] for some y ∈ Y̆ and χ ∈ X̆ such that either y ∈ Y
or χ ∈ X, we have a canonical isomorphism

~̂
Ψ

ord

Φ̆Ĥ,δ̆Ĥ
(˘̀) ∼= (c̆∨(y), c̆(χ))∗PB.

If we fix the choice of (Z̆n and) Φ̆n, then the canonical morphism

(7.1.2.7)
~̂
Ξ

ord

Φ̆n,δ̆n →
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,rn
=
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
×

~S0,rH̃

~S0,rn

(cf. (1.3.2.57)), where rn = rÛbal
1 (n) = rUbal

1 (n) = max(rD, r), is an

ĤP̂′
Z̆

/Ûbal
1 (n)P̂′

Z̆

-torsor, and induces an isomorphism

(7.1.2.8)
~̂
Ξ

ord

Φ̆n,δ̆n/(ĤP̂′
Z̆

/Ûbal
1 (n)P̂′

Z̆

)
∼→ ~̂

Ξ
ord

Φ̆Ĥ,δ̆Ĥ,rn

(cf. Lemma 5.2.4.26; cf. also (1.3.2.58)).

Proof. These follow from the corresponding properties of
~̃
Ξ

ord

Φ̆H̃,δ̆H̃
as in Lemmas 5.2.4.26 and 5.2.4.29, and Proposition

5.2.4.30, because the restriction from SΦ̆H̃
to the subgroup ŜΦ̆Ĥ

(see

Definition 1.2.4.29) corresponds to taking orbits of restrictions of

τ̆n0 : 1 1
n0
Y̆ × X̆,S

∼→ (c̆∨× c̆)∗P⊗−1
B to 1 1

n0
Y × X̆,S and 1 1

n0
Y̆ ×X,S, which

form the pairs (τ̂ ord
n , τ̂∨,ord

n ) = (τ̂n0 , τ̂
∨
n0

) as above. �

For each rational polyhedral cone ρ̆ ⊂ (SΦ̆H̃
)∨R having σ̆ as a face,

we have an affine toroidal embedding
(7.1.2.9)

~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
↪→ ~̃

Ξ
ord

Φ̆H̃,δ̆H̃,σ̆
(ρ̆) := Spec

O
C̃

Φ̆H̃,δ̆H̃

(
⊕

`∈σ̆⊥ ∩ ρ̆∨

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)

)
(cf. (1.3.2.59)) as in (5.2.4.31).

In general, for each rational polyhedral cone ρ̂ ⊂ (ŜΦ̆Ĥ
)∨R, we have

an affine toroidal embedding

(7.1.2.10)
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
↪→ ~̂

Ξ
ord

Φ̆Ĥ,δ̆Ĥ
(ρ̂) := Spec

O
~̂
C

ord
Φ̆Ĥ,δ̆Ĥ

(
⊕

˘̀∈ρ̂∨

~̂
Ψ

ord

Φ̆Ĥ,δ̆Ĥ
(˘̀)

)
(cf. (1.3.2.60)).

By Proposition 7.1.2.6, (7.1.2.9) and (7.1.2.10) can be canonically

identified when Ĥ = H̃Ĝ, when (Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ) is determined by

(Z̆H̃, Φ̆H̃, δ̆H̃) as in Definition 1.2.4.17, and when ρ̂ = pr(ŜΦ̆Ĥ
)∨R

(ρ̆).

(Hence, (7.1.2.9) depends only on these induced parameters.)
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Both sides of (7.1.2.10) are relative affine over
~̂
C

ord

Φ̆Ĥ,δ̆Ĥ
, where

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
(ρ̂) → ~̂

C
ord

Φ̆Ĥ,δ̆Ĥ
is smooth when the cone ρ̂ is smooth. The

ρ̂-stratum of
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
(ρ̂) is

(7.1.2.11)
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,ρ̂
:= Spec

O
~̂
C

ord
Φ̆Ĥ,δ̆Ĥ

(
⊕

˘̀∈ρ̆⊥

~̂
Ψ

ord

Φ̆Ĥ,δ̆Ĥ
(˘̀)

)

(cf. (1.3.2.61)), which is canonically isomorphic to
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,ρ̆
. The affine

morphism
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,ρ̂
→ ~̂

C
ord

Φ̆Ĥ,δ̆Ĥ
is a torsor under the torus ÊΦ̆Ĥ,ρ̂

∼= EΦ̆H̃,ρ̆

with character group ρ̂⊥ ∼= ρ̆⊥. (Note that these two instance of ⊥ are
taken in different ambient spaces.) For each ΓΦ̆Ĥ

-admissible rational

polyhedral cone decomposition Σ̂Φ̆Ĥ
of P̂Φ̆Ĥ

as in Definition 1.2.4.40,

we have (as in (4.2.2.4)) a toroidal embedding

(7.1.2.12)
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
↪→ ~̂

Ξ
ord

Φ̆Ĥ,δ̆Ĥ
=
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

(cf. (1.3.2.62)), the right-hand side being only locally of finite type over
~̂
C

ord

Φ̆Ĥ,δ̆Ĥ
, with an open covering

(7.1.2.13)
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
= ∪

ρ̂∈Σ̂Φ̆Ĥ

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
(ρ̂)

(cf. (1.3.2.63)) inducing a stratification

(7.1.2.14)
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
=

∐
ρ̂∈Σ̂Φ̆Ĥ

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,ρ̂

(cf. (1.3.2.64)). (The notation “
∐

” only means a set-theoretic disjoint
union. The algebro-geometric structure is still the one inherited from

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
.) Let

(7.1.2.15)
~̂
X

ord

Φ̆Ĥ,δ̆Ĥ,ρ̂
:= (

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
(ρ̂))∧

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,ρ̂
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(cf. (1.3.2.65)), the formal completion of
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
(ρ̂) along its ρ̂-stratum

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,ρ̂
, which is canonically isomorphic to

~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,ρ̆
, the formal com-

pletion of
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(ρ̆), the closure of

~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
in
~̃
Ξ

ord

Φ̆H̃,δ̆H̃
(ρ̆), along its

ρ̆-stratum
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,ρ̆
(cf. (1.3.2.40)). Also, let us define

(7.1.2.16)
~̂
X

ord

Φ̆Ĥ,δ̆Ĥ
=
~̂
X

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

(cf. (1.3.2.66) and Lemma 5.2.4.38) to be the formal completion of

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
along the union of the σ̂-strata

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,ρ̂
for ρ̂ ∈ Σ̂Φ̆Ĥ

and

ρ̂ ⊂ P̂+

Φ̆Ĥ
.

Proposition 7.1.2.17. (Compare with Propositions 1.3.2.67,
5.2.2.2, 5.2.4.25, 5.2.4.41, and 7.1.2.5.) There is a Hecke action

of (suitable elements of) P̂′
Z̆
(A∞,p)× P̂ord,′

Z̆,D
(Qp) on the collection

{~̂Ξ
ord

Φ̆Ĥ,δ̆Ĥ
}Ĥ

P̂′
Z̆

(with Ĥ of standard form), realized by quasi-finite flat

surjections pulling tautological objects back to ordinary Hecke twists,
which is compatible with the Hecke action of (suitable elements of)

Ĝ1,Z̆(A∞,p)× P̂ord
1,Z̆,D

(Qp) on the collection {~̂C
ord

Φ̆Ĥ,δ̆Ĥ
}Ĥ

Ĝ
1,Z̆

(with Ĥ of

standard form) under the canonical morphisms
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
→ ~̂

C
ord

Φ̆Ĥ,δ̆Ĥ
(with

varying Ĥ) and the canonical homomorphism P̂′
Z̆
(A∞,p)× P̂ord,′

Z̆,D
(Qp)→

Ĝ1,Z̆(A∞,p)× Ĝord
1,Z̆

(Qp) = (P̂′
Z̆
(A∞)× P̂ord,′

Z̆,D
)/Û2,Z̆(A∞). Such a Hecke

action enjoys the properties (under various conditions) concerning
étaleness, finiteness, being isomorphisms between formal completions
along fibers over Spec(Fp), and inducing absolute Frobenius morphisms
on fibers over Spec(Fp) for elements of Up type as in Proposition
5.2.2.2 and Corollaries 5.2.2.3, 5.2.2.4, and 5.2.2.5. (We omit the
details for simplicity.)

There is also a Hecke action of (suitable elements of)

P̂Z̆(A∞,p)× P̂ord
Z̆,D

(Qp) on the collection {
∐ ~̂

Ξ
ord

Φ̆Ĥ,δ̆Ĥ
}Ĥ

P̂
Z̆

(with Ĥ
of standard form), where the disjoint unions are over classes

[(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)] sharing the same Z̆Ĥ compatible with D, realized
by quasi-finite flat surjections pulling tautological objects
back to ordinary Hecke twists, which induces an action of
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Ĝ′
l,Z̆

(A∞) = P̂Z̆(A∞)/P̂′
Z̆
(A∞) on the index sets {[(Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ)]},

which is compatible with the Hecke action of (suitable elements of)

(P̂Z̆(A∞,p)× P̂ord
Z̆,D

(Qp))/Û2,Z̆(A∞) on the collection {
∐ ~̂
C

ord

Φ̆Ĥ,δ̆Ĥ
}Ĥ

P̂
Z̆
/Ĥ

Û
2,Z̆

(with Ĥ of standard form, with the same index sets and the

same induced action of Ĝ′
l,Z̆

(A∞)) under the canonical morphisms

Ξ̂Φ̆Ĥ,δ̆Ĥ
→ ĈΦ̆Ĥ,δ̆Ĥ

(with varying Ĥ) and the canonical homomorphism

P̂Z̆(A∞,p)× P̂Z̆(Qp)→ (P̂Z̆(A∞,p)× P̂ord
Z̆,D

(Qp))/Û2,Z̆(A∞).

Any such Hecke action

~[ĝ]
ord

:
~̂
Ξ

ord

Φ̆′
Ĥ′
,δ̆′
Ĥ′
→ ~̂

Ξ
ord

Φ̆Ĥ,δ̆Ĥ

covering ~[ĝ]
ord

:
~̂
C

ord

Φ̆′
Ĥ′
,δ̆′
Ĥ′
→ ~̂

C
ord

Φ̆Ĥ,δ̆Ĥ
induces a morphism

~̂
Ξ

ord

Φ̆′
Ĥ′
,δ̆′
Ĥ′
→ ~̂

Ξ
ord

Φ̆Ĥ,δ̆Ĥ
×

~̂
C

ord

Φ̆Ĥ,δ̆Ĥ

~̂
C

ord

Φ̆′
Ĥ′
,δ̆′
Ĥ′

between torus torsors over
~̂
C

ord

Φ̆′
Ĥ′
,δ̆′
Ĥ′

, which is equivariant with the mor-

phism ÊΦ̆′
Ĥ′
→ ÊΦ̆Ĥ

dual to the homomorphism ŜΦ̆Ĥ
→ ŜΦ̆′

Ĥ′
induced by

the pair of morphisms (fX̆ : X̆ ⊗
Z
Q ∼→ X̆ ′⊗

Z
Q, fY̆ : Y̆ ′⊗

Z
Q ∼→ Y̆ ⊗

Z
Q)

defining the ĝ-assignment (Z̆′Ĥ′ , Φ̆
′
Ĥ′ , δ̆

′
Ĥ′) →ĝ (Z̆Ĥ, Φ̆Ĥ, δ̆Ĥ) of cusp la-

bels (which is the g̃-assignment for any element g̃ ∈ P̃Z̆(A∞)∩ P̃′
Z̃
(A∞)

lifting ĝ ∈ P̂Z̆(A∞) = (P̃Z̆(A∞)∩ P̃′
Z̃
(A∞))/Ũ2,Z̆(A∞), which is never-

theless independent of the choice of g̃; cf. Lemma 1.2.4.42 and [62,
Def. 5.4.3.9]).

If ĝ ∈ P̂Z̆(A∞,p)× P̂ord
Z̆,D

(Qp) is as above and if (Φ̆′Ĥ′ , δ̆
′
Ĥ′ , ρ̂

′) is a

ĝ-refinement of (Φ̆Ĥ, δ̆Ĥ, ρ̂) (cf. Lemma 1.2.4.42 and [62, Def. 6.4.3.1]),
then there is a canonical morphism

(7.1.2.18) ~[ĝ]
ord

:
~̂
Ξ

ord

Φ̆′
Ĥ′
,δ̆′
Ĥ′

(ρ̂′)→ ~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
(ρ̂)

(cf. (1.3.2.68) and (5.2.4.42)) covering ~[ĝ]
ord

:
~̂
C

ord

Φ̆′
Ĥ′
,δ̆′
Ĥ′
→ ~̂

C
ord

Φ̆Ĥ,δ̆Ĥ
, ex-

tending ~[ĝ]
ord

:
~̂
Ξ

ord

Φ̆′
Ĥ′
,δ̆′
Ĥ′
→ ~̂

Ξ
ord

Φ̆Ĥ,δ̆Ĥ
, mapping

~̂
Ξ

ord

Φ̆′
Ĥ′
,δ̆′
Ĥ′
,ρ̂′ to

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,ρ̂
, and

inducing a canonical morphism

(7.1.2.19) ~[ĝ]
ord

:
~̂
X

ord

Φ̆′
Ĥ′
,δ̆′
Ĥ′
,ρ̂′ →

~̂
X

ord

Φ̆Ĥ,δ̆Ĥ,ρ̂
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(cf. (1.3.2.69) and (5.2.4.43)). If ĝ ∈ P̂Z̆(A∞,p)× P̂ord
Z̆

(Qp) is as above

and if (Φ̆′Ĥ′ , δ̆
′
Ĥ′ , Σ̂

′
Φ̆′
Ĥ′

) is a ĝ-refinement of (Φ̆Ĥ, δ̆Ĥ, Σ̂Φ̆Ĥ
) (cf. Lemma

1.2.4.42 and [62, Def. 6.4.3.2]), then morphisms like (7.1.2.18) patch
together and define a canonical morphism

(7.1.2.20) ~[ĝ]
ord

:
~̂
Ξ

ord

Φ̆′
Ĥ′
,δ̆′
Ĥ′
,Σ̂′

Φ̆′
Ĥ′

→ ~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

(cf. (1.3.2.70) and (5.2.4.44)) covering ~[ĝ]
ord

:
~̂
C

ord

Φ̆′
Ĥ′
,δ̆′
Ĥ′
→ ~̂

C
ord

Φ̆Ĥ,δ̆Ĥ
, ex-

tending ~[ĝ]
ord

:
~̂
Ξ

ord

Φ̆′
Ĥ′
,δ̆′
Ĥ′
→ ~̂

Ξ
ord

Φ̆Ĥ,δ̆Ĥ
, and inducing a canonical morphism

(7.1.2.21) ~[ĝ]
ord

:
~̂
X

ord

Φ̆′
Ĥ′
,δ̆′
Ĥ′
,Σ̂′

Φ̆′
Ĥ′

→ ~̂
X

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

(cf. (1.3.2.71) and (5.2.4.45)) compatible with each (7.1.2.19) as above
(under canonical morphisms).

Proof. By Proposition 7.1.2.6 (see in particular (7.1.2.8)), and by
finite flat descent, the assertions in the first three paragraphs are re-
duced to the ones for the principal levels, which then follow from the

corresponding assertions for the collection {
∐ ~̃

Ξ
ord

Φ̆H̃,δ̆H̃
}H̃

P̃′
Z̆

(by restrict-

ing the action of suitable elements of P̃Z̆(A∞,p)× P̃ord
Z̆,D̃

(Qp) to suitable

elements of (P̃Z̆(A∞,p)∩ P̃′
Z̃
(A∞,p))×(P̃Z̆(Qp)∩ P̃′

Z̃
(Qp)∩ P̃ord

D̃
(Qp))), be-

cause the tautological objects over
~̂
Ξ

ord

Φ̆n,δ̆n =
~̂
Ξ

ord

Φ̆Ûbal
1 (n)

,δ̆Ûbal
1 (n)

are canoni-

cally induced by those over
~̃
Ξ

ord

Φ̆n,δ̆n =
~̃
Ξ

ord

Φ̆Ũbal
1 (n)

,δ̆Ũbal
1 (n)

. The assertions in

the last paragraph then follow from the universal properties of toroidal
embeddings (cf. [62, Prop. 6.2.5.11]). �

Lemma 7.1.2.22. (Compare with Lemmas 1.3.2.72 and 7.1.2.1.) By
comparing the universal properties, we obtain a canonical morphism

(7.1.2.23)
~̃
Ξ

ord

Φ̆H̃,δ̆H̃
→ ~Ξord

ΦH,δH

covering (7.1.2.2), by sending τ̆ ord
H̃ , which is an orbit of étale-locally-

defined trivializations τ̆ ord
n = τ̆n0 : 1 1

n0
Y̆ × X̆,S

∼→ (c̆∨n0
× c̆)∗P⊗−1

B (for

some integer n = n0p
r where n0 ≥ 1 is an integer prime to p such

that Ũp(n0) ⊂ H̃p and where r = depthD̃(H̃p)), to the orbit τ ord
H of

étale-locally-defined trivializations τ ord
n = τn0 = τ̆n0|1 1

n0
Y ×X,S

.
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The morphisms (7.1.2.23) and (7.1.2.2) induce a canonical mor-
phism

(7.1.2.24)
~̃
Ξ

ord

Φ̆H̃,δ̆H̃
→ ~Ξord

ΦH,δH
×

~Cord
ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃

between torus torsors over
~̃
C

ord

Φ̆H̃,δ̆H̃
, equivariant with the homomorphism

EΦ̆H̃
→ EΦH dual to the canonical homomorphism SΦH → SΦ̆H̃

(see

(1.2.4.18)).
Suppose the image of a rational polyhedral cone ρ̆ ⊂ (SΦ̆H̃

)∨R under

the (canonical) second morphism in (1.2.4.20) is contained in some ra-
tional polyhedral cone ρ ⊂ (SΦH)∨R. Then there is a canonical morphism

(7.1.2.25)
~̃
Ξ

ord

Φ̆H̃,δ̆H̃
(ρ̆)→ ~Ξord

ΦH,δH
(ρ)

(cf. (1.3.2.75)) covering (7.1.2.2) and extending (7.1.2.23), mapping
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,ρ̆
to ~Ξord

ΦH,δH,ρ
and inducing a canonical morphism

(7.1.2.26)
~̃
X

ord

Φ̆H̃,δ̆H̃,ρ̆
→ ~Xord

ΦH,δH,ρ

(cf. (1.3.2.76)). If Σ̃Φ̆H̃
and ΣΦH are cone decompositions of PΦ̆H̃

and PΦH, respectively, such that the image of each ρ̆ in Σ̃Φ̆H̃
under

the (canonical) second morphism in (1.2.4.20) is contained in some
ρ ∈ ΣΦH, then morphisms like (7.1.2.25) patch together and define a
canonical morphism

(7.1.2.27)
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,Σ̃Φ̆H̃
→ ~Ξ

ord

ΦH,δH,ΣΦH

(cf. (1.3.2.77)) covering (7.1.2.2), extending (7.1.2.23), and inducing a
canonical morphism

(7.1.2.28)
~̃
X

ord

Φ̆H̃,δ̆H̃,Σ̃Φ̆H̃
→ ~Xord

ΦH,δH,ΣΦH

(cf. (1.3.2.78)) compatible with each (7.1.2.26) as above (under canon-
ical morphisms).

Proof. The statements are self-explanatory. �

Lemma 7.1.2.29. (Compare with Lemmas 1.3.2.79, 7.1.2.1, and
7.1.2.22.) By comparing the universal properties (cf. Proposition
7.1.2.6), we obtain a canonical morphism

(7.1.2.30)
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
→ ~Ξord

ΦH,δH
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covering (7.1.2.2), by sending the pair (τ̂ ord
Ĥ , τ̂∨,ord

Ĥ
), which is an orbit

of étale-locally-defined pairs (τ̂ ord
n , τ̂∨,ord

n ) = (τ̂n0 , τ̂
∨
n0

) (for some integer

n = n0p
r where n0 ≥ 1 is an integer prime to p such that Ûp(n0) ⊂ Ĥp

and where r = depthD(Ĥp)), to the orbit τ ord
H of étale-locally-defined

τ ord
n = τn0 = τ̂n0|1 1

n0
Y ×X,S

= τ̂∨n0
|1 1
n0

Y ×X,S
, as in Proposition 7.1.2.6.

The morphisms (7.1.2.30) and (7.1.2.2) induce a canonical mor-
phism

(7.1.2.31)
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
→ ~Ξord

ΦH,δH
×

~Cord
ΦH,δH

~̂
C

ord

Φ̆Ĥ,δ̆Ĥ

(cf. (1.3.2.81)) between torus torsors over
~̂
C

ord

Φ̆Ĥ,δ̆Ĥ
, equivariant with the

surjective homomorphism ÊΦ̆Ĥ
→ EΦH (see Proposition 7.1.2.6) dual

to the canonical injective homomorphism SΦH ↪→ ŜΦ̆Ĥ
(see Definition

1.2.4.29).

Suppose the image of a rational polyhedral cone ρ̂ ⊂ (ŜΦ̆H̃
)∨R under

(1.2.4.37) is contained in some rational polyhedral cone ρ ⊂ (SΦH)∨R.
Then there is a canonical morphism

(7.1.2.32)
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
(ρ̂)→ ~Ξord

ΦH,δH
(ρ)

(cf. (1.3.2.82) and (7.1.2.25)) covering (7.1.2.2) and extending

(7.1.2.30), mapping
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,ρ̂
to ~Ξord

ΦH,δH,ρ
and inducing a canonical

morphism

(7.1.2.33)
~̂
X

ord

Φ̆Ĥ,δ̆Ĥ,ρ̂
→ ~Xord

ΦH,δH,ρ

(cf. (1.3.2.83) and (7.1.2.26)). If Σ̂Φ̆Ĥ
and ΣΦH are cone decompositions

of P̂Φ̆Ĥ
and PΦH, respectively, such that the image of each ρ̂ in Σ̂Φ̆Ĥ

under (1.2.4.37) is contained in some ρ ∈ ΣΦH, then morphisms like
(7.1.2.32) patch together and define a canonical morphism

(7.1.2.34)
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
→ ~Ξ

ord

ΦH,δH,ΣΦH

(cf. (1.3.2.84) and (7.1.2.27)) covering (7.1.2.2), extending (7.1.2.30),
and inducing a canonical morphism

(7.1.2.35)
~̂
X

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
→ ~Xord

ΦH,δH,ΣΦH
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(cf. (1.3.2.85) and (7.1.2.28)) compatible with each (7.1.2.33) as above
(under canonical morphisms). (See Lemma 7.2.5.34 below for state-
ments concerning the relative log 1-differentials of (7.1.2.34).)

Proof. The statements are self-explanatory. �

Proposition 7.1.2.36. (Compare with Propositions
1.3.2.90 and 7.1.2.5.) Under the canonical morphisms as in

(7.1.2.23) (with varying H̃ and H), and under the canonical

homomorphisms P̃′
Z̆
(A∞,p)× P̃ord,′

Z̆,D̃
(Qp) → P′Z(A∞,p)×Pord,′

Z,D (Qp) and

P̃Z̆,Z̃(A∞,p)× P̃ord
Z̆,Z̃,D̃

(Qp) → PZ(A∞,p)×Pord
Z,D (Qp), the Hecke action

of (suitable elements of) P̃′
Z̆
(A∞,p)× P̃ord,′

Z̆,D̃
(Qp) on the collection

{~̃Ξ
ord

Φ̆H̃,δ̆H̃
}H̃

P̃′
Z̆

(with H̃ of standard form) is compatible with the Hecke

action of (suitable elements of) P′Z(A∞,p)×Pord,′
Z,D (Qp) on the collection

{~Ξord
ΦH,δH

}HP′Z
(with H of standard form); and the Hecke action

of (suitable elements of) P̃Z̆,Z̃(A∞,p)× P̃ord
Z̆,Z̃,D̃

(Qp) on the collection

{
∐ ~̃

Ξ
ord

Φ̆H̃,δ̆H̃
}H̃

P̃
Z̆,̃Z

(with H̃ of standard form) is compatible with the

Hecke action of (suitable elements of) PZ(A∞,p)×Pord
Z,D (Qp) on the

collection {
∐ ~Ξord

ΦH,δH
}HPZ

(with H of standard form), where the index
sets are as in Proposition 5.2.4.41. These Hecke actions are all
compatible with those in Proposition 7.1.2.5. They are also compatible
with extensions to toroidal embeddings and their formal completions.

Proof. As in the case of Proposition 7.1.2.5, the canonical mor-
phisms as in (7.1.2.30) correspond to pushouts of extensions of B (resp.

B∨) by T̆ (resp. T̆∨) under the canonical homomorphism T̆ → T (resp.

T̆∨ → T∨) induced by the restriction from X̆ (resp. Y̆ ) to X (resp.
Y ). Hence, the realizations of the Hecke twists are compatible in the
desired ways. (We omit the details for simplicity.) �

Proposition 7.1.2.37. (Compare with Propositions 1.3.2.91,
7.1.2.5 and 7.1.2.36.) Under the canonical morphisms as in

(7.1.2.30) (with varying Ĥ and H), and under the canonical

homomorphisms P̂′
Z̆
(A∞,p)× P̂ord,′

Z̆,D
(Qp) → P′Z(A∞,p)×Pord,′

Z,D (Qp)

and P̂Z̆(A∞,p)× P̂ord
Z̆,D

(Qp) → PZ(A∞,p)×Pord
Z,D (Qp), the Hecke action

of (suitable elements of) P̂′
Z̆
(A∞,p)× P̂ord,′

Z̆,D
(Qp) on the collection

{~̂Ξ
ord

Φ̆Ĥ,δ̆Ĥ
}Ĥ

P̂′
Z̆

(with Ĥ of standard form) is compatible with the
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Hecke action of (suitable elements of) P′Z(A∞,p)×Pord,′
Z,D (Qp) on the

collection {~Ξord
ΦH,δH

}HP′Z
(with H of standard form); and the Hecke

action of (suitable elements of) P̂Z̆(A∞,p)× P̂ord
Z̆,D

(Qp) on the collection

{
∐ ~̂

Ξ
ord

Φ̆Ĥ,δ̆Ĥ
}Ĥ

P̂
Z̆

(with Ĥ of standard form) is compatible with the

Hecke action of (suitable elements of) PZ(A∞,p)×Pord
Z,D (Qp) on the

collection {
∐ ~Ξord

ΦH,δH
}HPZ

(with H of standard form), where the index
sets are as in Proposition 5.2.4.41. These Hecke actions are all
compatible with those in Proposition 7.1.2.5. They are also compatible
with extensions to toroidal embeddings and their formal completions.

Proof. As in the proofs of Propositions 1.3.2.91 and 7.1.2.17, the

Hecke action of (suitable elements of) P̂Z̆(A∞,p)× P̂ord
Z̆,D

(Qp) on the col-

lection {
∐ ~̂

Ξ
ord

Φ̆Ĥ,δ̆Ĥ
}Ĥ

P̂
Z̆

(with Ĥ of standard form) is induced by the

Hecke action of (suitable elements of) P̃′
Z̆
(A∞,p)× P̃ord,′

Z̆,D̃
(Qp) on the

collection {
∐ ~̃

Ξ
ord

Φ̆H̃,δ̆H̃
}H̃

P̃′
Z̆

(with H̃ of standard form). Hence, these

statements follow from the corresponding statements of Proposition
7.1.2.36. �

Remark 7.1.2.38. (Compare with Remark 5.2.4.46.) As in Remark
5.2.4.46, since all objects and morphisms in this subsection are defined
by normalizations and by the various universal properties extending
their analogues in characteristic zero, they are canonically compatible
with the corresponding objects and morphisms in Section 1.3.2.

7.1.3. Ordinary Kuga Families and Their Generalizations.

Consider the abelian scheme G~Mord
H

over ~Mord
H and its semi-abelian

extension G over ~Mord,tor
H = ~Mord,tor

H,Σord as in Theorem 5.2.1.1. Let Q

be any O-lattice. By (4) of Proposition 3.1.2.4, the abelian scheme

HomO(Q,G~Mord
H

)◦ → ~Mord
H is defined and is ordinary.

Definition 7.1.3.1. (Compare with Definition 1.3.3.3.) An ordi-

nary Kuga family over ~Mord
H is an (ordinary) abelian scheme Ngrp →

~Mord
H that is Q×-isogenous to HomO(Q,G~Mord

H
)◦ for some O-lattice Q.

Definition 7.1.3.2. (Compare with Definition 1.3.3.4.) An gener-

alized ordinary Kuga family over ~Mord
H is a torsor N→ ~Mord

H under

some ordinary Kuga family Ngrp → ~Mord
H as in Definition 7.1.3.1.
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Then the following four lemmas and proposition can be proved by
the same arguments as before:

Lemma 7.1.3.3. (Compare with [61, Lem. 2.6] and Lemma 1.3.3.5.)
The abelian scheme HomZ(Q∨, G∨~Mord

H
) is isomorphic to the dual abelian

scheme of HomZ(Q,G~Mord
H

).

Lemma 7.1.3.4. (Compare with [61, Lem. 2.9] and Lemma 1.3.3.6.)
Let jQ : Q∨ ↪→ Q be as in Lemma 1.2.4.1. Then the isogeny

λ~Mord
H ,jQ,Z : HomZ(Q,G~Mord

H
)→ HomZ(Q∨, G∨~Mord

H
)

induced canonically by jQ and λ~Mord
H

: G~Mord
H
→ G∨~Mord

H
is a polarization.

Proposition 7.1.3.5. (Compare with [61, Prop. 2.10 and Cor. 2.12]
and Proposition 1.3.3.7.) The abelian scheme HomO(Q∨, G∨~Mord

H
)◦ is

Q×-isogenous to the dual abelian scheme of HomO(Q,G~Mord
H

)◦. More-

over, given any jQ : Q∨ ↪→ Q as in Lemma 1.2.4.1, the composition

λ~Mord
H ,jQ

: HomO(Q,G~Mord
H

)◦ ↪→ HomZ(Q,G~Mord
H

)

λ~Mord
H ,jQ,Z→ HomZ(Q∨, G∨~Mord

H
)� (HomO(Q,G~Mord

H
)◦)∨

(7.1.3.6)

induced canonically by jQ and the polarization λ~Mord
H

: G~Mord
H
→ G∨~Mord

H
is a polarization.

Definition 7.1.3.7. (Compare with Definition 1.3.3.9.) Let N →
~Mord
H be as in Definition 7.1.3.2. Then we define the dual N∨ → ~Mord

H
to be the dual abelian scheme Ngrp,∨ → ~Mord

H of Ngrp → ~Mord
H .

Remark 7.1.3.8. (Compare with Remark 1.3.3.10.) By [92,

XIII, Prop. 1.1], N∨ = Ngrp,∨ → ~Mord
H is canonically isomorphic to

Pic0(N/~Mord
H ) → ~Mord

H (which can be defined as in the case of abelian
schemes; cf. [62, Def. 1.3.2.1]). Note that this is always a group

scheme, with its identity section, even when N → ~Mord
H is a nontrivial

torsor of Ngrp → ~Mord
H .

Definition 7.1.3.9. (Compare with Definition 1.3.3.11.) By abuse
of notation, we denote by LieN/~Mord

H
(resp. Lie∨

N/~Mord
H

, resp. LieN∨/~Mord
H

,

resp. Lie∨
N∨/~Mord

H
) the locally free sheaf LieNgrp/~Mord

H
(resp. Lie∨

Ngrp/~Mord
H

,

resp. LieNgrp,∨/~Mord
H

, resp. Lie∨
Ngrp,∨/~Mord

H
) over ~Mord

H , although N → ~Mord
H

might have no section.
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Lemma 7.1.3.10. (Compare with Lemma 1.3.3.12.) We have:

Lie∨
N/~Mord

H

∼= HomO~Mord
H

(LieN/~Mord
H
,O~Mord

H
),

Lie∨
N∨/~Mord

H

∼= HomO~Mord
H

(LieN∨/~Mord
H
,O~Mord

H
),

Ω1
N/~Mord

H

∼= (N→ ~Mord
H )∗Lie∨

N/~Mord
H
,

Ω1
N∨/~Mord

H

∼= (N∨ → ~Mord
H )∗Lie∨

N∨/~Mord
H
,

(N→ ~Mord
H )∗Ω

1
N/~Mord

H

∼= Lie∨
N/~Mord

H
,

(N∨ → ~Mord
H )∗Ω

1
N∨/~Mord

H

∼= Lie∨
N∨/~Mord

H
,

R1(N→ ~Mord
H )∗ON

∼= LieN∨/~Mord
H
,

R1(N∨ → ~Mord
H )∗ON∨

∼= LieN/~Mord
H
.

The relative de Rham cohomology

H i
dR(N/~Mord

H ) := Ri(N→ ~Mord
H )∗(Ω

•
N/~Mord

H
)

and its Hodge filtration and Gauss–Manin connection ∇ are canonically

isomorphic to those of H i
dR(Ngrp/~Mord

H ).

In Theorem 1.3.3.15, we used the isomorphisms in
Corollary 1.3.3.13 and denoted, for example, the extension of
HomO(Q,LieGMH/MH

) to Mtor
H as HomO(Q,LieG/Mtor

H
). However,

such isomorphisms involve Q×-isogenies which might not induce
isomorphisms between Lie algebras (or their duals) in mixed
characteristics, and this is indeed a concern because we allow
the residue characteristics to ramify in the integral PEL datum.
Therefore, we need to be more precise in the sheaves of modules
we use. Indeed, it is now better to have not only the semi-abelian

extension G → ~Mord,tor
H of G~Mord

H
→ ~Mord

H , but also the semi-abelian

extensions of the Kuga families Ngrp → ~Mord
H as in Definition 7.1.3.1,

their torsors N → ~Mord
H as in Definition 7.1.3.2, and the duals of all

these, to ~Mord,tor
H .

By Proposition 3.1.3.4, the abelian subscheme HomO(Q,G~Mord
H

)◦ of

the abelian scheme HomZ(Q,G~Mord
H

) ∼= G
× rkZ(Q)
~Mord
H

over ~Mord
H extends to

the semi-abelian subscheme HomO(Q,G)◦ of the semi-abelian scheme

HomZ(Q,G) ∼= G× rkZ(Q) over ~Mord,tor
H .

Let N→ ~Mord
H be a generalized ordinary Kuga family as in Definition

7.1.3.2, which is a torsor under some ordinary Kuga family Ngrp →
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~Mord
H as in Definition 7.1.3.1, together with a Q×-isogeny h : Z :=

HomO(Q,G~Mord
H

)◦ → Ngrp over ~Mord
H . Let Ztor := HomO(Q,G)◦ be as in

Proposition 3.1.3.4. By definition, there exist an integer N ≥ 1 such

that Nh is an isogeny. Since ~Mord
H is noetherian normal, by Lemma

3.1.3.2, Nh extends to an isogeny Ztor → Next over ~Mord,tor
H , and we

formally define the Q×-isogeny htor to be N−1 times this extended

isogeny. (Since ~Mord
H is noetherian normal, this is well defined by [92,

IX, 1.4], [28, Ch. I, Prop. 2.7], or [62, Prop. 3.3.1.5].)

Definition 7.1.3.11. We can say that the semi-abelian scheme

Next → ~Mord,tor
H is the extended ordinary Kuga family over ~Mord,tor

H .

It is determined (up to isomorphism) by its restriction Ngrp → ~Mord
H to

~Mord
H . (It does not depend on the structure of N→ ~Mord

H as a torsor of

Ngrp → ~Mord
H .)

By [80, IV, 7.1] (see also [62, Thm. 3.4.3.2]), there is also a dual

semi-abelian scheme Next,∨ → ~Mord,tor
H extending the dual abelian

scheme Ngrp,∨ → ~Mord
H .

7.1.4. Main Statements. The partial toroidal compactifications
of Kuga families and their generalizations can be described as follows:

Theorem 7.1.4.1. (Compare with [61, Thm. 2.15] and Theorem
1.3.3.15.) Let Q be as in Theorem 1.3.3.15. Let H = HpHp be as at
the beginning of Section 3.3.5, and let rH be as in Definition 3.4.2.1.
Suppose that Hp is neat, and that Σord is as in Definition 5.1.3.1, so

that (by Theorem 5.2.1.1) ~Mord,tor
H = ~Mord,tor

H,Σord is an algebraic space sep-

arated, smooth, and of finite type over ~S0,rH. (By Theorem 6.2.3.1,

if Σord is projective as in Definition 5.1.3.3, then ~Mord,tor
H,Σord is quasi-

projective over ~S0,rH.) Consider the abelian scheme G~Mord
H

over ~Mord
H

in (1) of Theorem 5.2.1.1. Consider the sets Kord
Q,H ⊂ Kord,+

Q,H ⊂ Kord,++
Q,H

and Kord
Q,H,Σord ⊂ Kord,+

Q,H,Σord ⊂ Kord,++
Q,H,Σord as in Definitions 7.1.1.11 and

7.1.1.19, with compatible directed partial orders. These sets parameter-
ize the following data:

(1) For each κ = (Ĥ, Σ̂ord) ∈ Kord,++
Q,H , let Hκ := ĤG (which sat-

isfies Condition 7.1.1.4 and is contained in H; see Definition

1.2.4.4) and rκ := rHκ, so that ~Mord
Hκ is a quasi-finite étale

cover of ~Mord
H,rκ := ~Mord

H ×
~S0,rH

~S0,rκ, inducing a quasi-finite flat

morphism ~Mord
Hκ → ~Mord

H , which is finite when Hκ and H are
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equally deep as in Definition 3.2.2.9. (This is the case, for

example, when κ = (Ĥ, Σ̂ord) ∈ Kord,+
Q,H and hence Hκ = H.)

Then there is an generalized ordinary Kuga family ~Nord
κ →

~Mord
Hκ (see Definition 7.1.3.2), which is a torsor under an ordi-

nary Kuga family ~Nord,grp
κ → ~Mord

Hκ (see Definition 7.1.3.1) with
a Q×-isogeny

κisog : HomO(Q,G~Mord
Hκ

)◦ → ~Nord,grp
κ

of abelian schemes over ~Mord
Hκ , together with an open fiberwise

dense immersion

κtor : ~Nord
κ ↪→ ~Nord,tor

κ

of schemes over ~S0,rκ, such that the scheme ~Nord,tor
κ is quasi-

projective and smooth over ~S0,rκ, and such that the comple-

ment of ~Nord
κ in ~Nord,tor

κ (with its reduced structure) is a relative

Cartier divisor ~Eord
∞,κ with simple normal crossings.

The scheme ~Nord,tor
κ has a stratification by locally closed

subschemes

~Nord,tor
κ =

∐
[(Φ̆Ĥ,δ̆Ĥ,τ̂)]

~̂
Z

ord

[(Φ̆Ĥ,δ̆Ĥ,τ̂)],

with [(Φ̆Ĥ, δ̆Ĥ, τ̂)] running through a complete set of equiva-

lence classes of (Φ̆Ĥ, δ̆Ĥ, τ̂) (as in Lemma 1.2.4.42) with the

underlying Z̆Ĥ (suppressed in the notation by our convention)

compatible with D, and with τ̂ ⊂ P̂+

Φ̆Ĥ
and τ̂ ∈ Σ̂Φ̆Ĥ

∈ Σ̂.

(The notation “
∐

” only means a set-theoretic disjoint union.

The algebro-geometric structure is still that of ~Nord,tor
κ .) In this

stratification, the [(Φ̆′Ĥ, δ̆
′
Ĥ, τ̂

′)]-stratum
~̂
Z

ord

[(Φ̆′
Ĥ
,δ̆′
Ĥ
,τ̂ ′)] lies in the

closure of the [(Φ̆Ĥ, δ̆Ĥ, τ̂)]-stratum
~̂
Z

ord

[(Φ̆Ĥ,δ̆Ĥ,τ̂)] if and only if

[(Φ̆Ĥ, δ̆Ĥ, τ̂)] is a face of [(Φ̆′Ĥ, δ̆
′
Ĥ, τ̂

′)] as in Lemma 1.2.4.42.
The analogous assertion holds after pulled back to fibers over

~S0,rκ. In particular, ~Nord
κ =

~̂
Z

ord

[(0,0,{0})] is an open fiberwise dense
stratum in this stratification.

The [(Φ̆Ĥ, δ̆Ĥ, τ̂)]-stratum
~̂
Z

ord

[(Φ̆Ĥ,δ̆Ĥ,τ̂)] is smooth over

~S0,rκ and isomorphic to the support of the formal scheme
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~̂
X

ord

Φ̆Ĥ,δ̆Ĥ,τ̂
(see (7.1.2.15)) for every representative (Φ̆Ĥ, δ̆Ĥ, τ̂)

of [(Φ̆Ĥ, δ̆Ĥ, τ̂)], which is the completion of an affine toroidal

embedding
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
(τ̂) (along its τ̂ -stratum

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,τ̂
) of a

torus torsor
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
over an abelian scheme torsor

~̂
C

ord

Φ̆Ĥ,δ̆Ĥ

over a finite étale cover
~̂
M

ord,Φ̆Ĥ

Ĥ of the scheme
~̂
M

ord,Z̆Ĥ

Ĥ
(quasi-projective over ~S0,rκ) in Lemma 7.1.2.1 and Proposition
7.1.2.6.

The formal completion (~Nord,tor
κ )∧

~̂
Z

ord

[(Φ̆Ĥ,δ̆Ĥ,τ̂)]

of ~Nord,tor
κ along

~̂
Z

ord

[(Φ̆Ĥ,δ̆Ĥ,τ̂)] is canonically isomorphic to
~̂
X

ord

Φ̆Ĥ,δ̆Ĥ,τ̂
; and the

formal completion (~Nord,tor
κ )∧

∪ ~̂Z
ord

[(Φ̆Ĥ,δ̆Ĥ,τ̂)]

, where ∪ ~̂Z
ord

[(Φ̆Ĥ,δ̆Ĥ,τ̂)] is

the union of all strata
~̂
Z

ord

[(Φ̆Ĥ,δ̆Ĥ,τ̂)] with τ̂ ∈ Σ̂Φ̆Ĥ
, is canonically

isomorphic to
~̂
X

ord

Φ̆Ĥ,δ̆Ĥ
/ΓΦ̆Ĥ

(cf. (5) of Theorem 5.2.1.1 and

Lemma 5.2.4.38). (Such isomorphisms can be induced by
strata-preserving isomorphisms between étale neighborhoods

of points of
~̂
Z

ord

[(Φ̆Ĥ,δ̆Ĥ,τ̂)] in ~Nord,tor
κ and étale neighborhoods of

points of
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,τ̂
in
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
(τ̂).)

Each ~Nord,tor
κ admits a canonical surjection

~Nord,tor
κ → ~Mord,min

H extending the canonical surjection
~Nord
κ → ~Mord

H , and the latter is the pullback of the former

under the canonical morphism ~Mord
H ↪→ ~Mord,min

H on the

target (see Theorem 6.2.1.1). Both ~Nord,tor
κ → ~Mord,min

H and
~Nord
κ → ~Mord

H are proper when Hκ and Hκ′ are equally
deep as in Definition 3.2.2.9. Such a morphism maps

the [(Φ̆Ĥ, δ̆Ĥ, τ̂)]-stratum
~̂
Z

ord

[(Φ̆Ĥ,δ̆Ĥ,τ̂)] of ~Nord,tor
κ to the

[(ΦH, δH)]-stratum ~Zord
[(ΦH,δH)] of ~Mord,min

H if and only if the cusp

label [(ΦH, δH)] is assigned to the cusp label [(Φ̆Ĥ, δ̆Ĥ)] as in
Lemma 1.2.4.15.

If κ ∈ Kord,+
Q,H , then Hκ = H, and hence rκ = rH and

~Mord
Hκ = ~Mord

H . If κ ∈ Kord
Q,H, then ~Nord

κ = ~Nord,grp
κ → ~Mord

Hκ = ~Mord
H

is an ordinary Kuga family.
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For each relation κ′ = (Ĥ′, Σ̂ord,′) � κ = (Ĥ, Σ̂) in Kord,++
Q,H ,

we have Hκ′ = Ĥ′G ⊂ Hκ = ĤG and hence rκ′ ≥ rκ; and there
is a surjection

f tor
κ′,κ : ~Nord,tor

κ′ → ~Nord,tor
κ

extending a canonical quasi-finite flat surjection

fκ′,κ : ~Nord
κ′ → ~Nord

κ ,

inducing a canonical log étale surjection
~Nord,tor
κ′ → ~Nord,tor

κ ×
~S0,rκ

~S0,rκ′
extending a canonical

finite étale surjection ~Nord
κ′ → ~Nord

κ ×
~Mord
Hκ

~Mord
Hκ′ equivariant with

the canonical Q×-isogeny

f grp
κ′,κ := κisog ◦ ((κ′)isog)−1 : ~Nord,grp

κ′ → ~Nord,grp
κ ×

~Mord
Hκ

~Mord
Hκ′ ,

such that Ri(f tor
κ′,κ)∗ONtor

κ′
= 0 for i > 0. These surjections

are compatible with the canonical morphisms to ~Mord,min
H . The

morphism f tor
κ′,κ is proper log étale, and the morphism fκ′,κ :

~Nord
κ′ → ~Nord

κ is finite étale, if Hκ and Hκ′ are equally deep
as in Definition 3.2.2.9.

(2) For each κ ∈ Kord,++
Q,H,Σord, the structural morphism

fκ : ~Nord
κ → ~Mord

H,rκ = ~Mord
H ×

~S0,rH

~S0,rκ

(the composition of the structural morphism ~Nord
κ → ~Mord

Hκ in

(1) with the canonical morphism ~Mord
Hκ → ~Mord

H,rκ) extends (nec-
essarily uniquely) to a surjection

f tor
κ : ~Nord,tor

κ → ~Mord,tor
H,rκ = ~Mord,tor

H,Σord,rκ
= ~Mord,tor

H,Σord ×
~S0,rH

~S0,rκ ,

which is log smooth (as in [45, 3.3] and [43, 1.6]) if we

equip ~Nord,tor
κ and Mtor

H,rκ with the canonical (fine) log structures
given respectively by the relative Cartier divisors with (simple)

normal crossings ~Eord
∞,κ and ~Dord

∞,H,rκ := ~Dord
∞,H ×

~S0,rH

~S0,rκ (see (1)

above and (3) of Theorem 5.2.1.1). Then we have the following
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commutative diagram:

~Nord
κ

fκ
smooth

surjective
��

� � +NCD
// ~Nord,tor

κ

f tor
κ

log smooth
surjective

��

quasi-projective
smooth

''
~Mord
H,rκ
� �

+NCD
// ~Mord,tor
H,rκ separated

smooth
of finite type

// ~S0,rκ

The morphism f tor
κ maps the [(Φ̆Ĥ, δ̆Ĥ, τ̂)]-stratum

~̂
Z

ord

[(Φ̆Ĥ,δ̆Ĥ,τ̂)] of ~Nord,tor
κ to the [(ΦH, δH, τ)]-stratum ~Zord

[(ΦH,δH,τ)] of

~Mord,tor
H if and only if (the cusp label [(ΦH, δH)] is assigned to

the cusp label [(Φ̆Ĥ, δ̆Ĥ)] as in Lemma 1.2.4.15 and) the image

of τ̂ ∈ Σ̂Φ̆Ĥ
under (1.2.4.37) is contained in τ ∈ ΣΦH as in

Condition 1.2.4.49. In this case, the compatible morphisms
~̂
X

ord

Φ̆Ĥ,δ̆Ĥ,τ̂
→ ~Xord

ΦH,δH,τ
and

~̂
X

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
→ ~Xord

ΦH,δH,ΣΦH
induced

by f tor
κ (and the canonical isomorphisms in (1) above and

in (5) of Theorem 5.2.1.1) coincide with the canonical
morphisms as in (7.1.2.33) and (7.1.2.35). (These morphisms
can be induced by compatible morphisms between étale
neighborhoods of points of the supports of formal schemes in
relevant ambient schemes as in (1) above, compatible with all
stratifications.)

The morphisms fκ : ~Nord
κ → ~Mord

Hκ and f tor
κ : ~Nord,tor

κ →
~Mord,tor
H,rκ are proper when Hκ and H are equally deep as in

Definition 3.2.2.9 (e.g., when κ ∈ Kord,+
Q,H,Σord; cf. (1) above).

If κ′ � κ, then we have the compatibility f tor
κ′ = f tor

κ,rκ′
◦f tor

κ′,κ,

where f tor
κ,rκ′

:= f tor
κ ×

~S0,rκ

~S0,rκ′
.

(3) Suppose κ ∈ Kord,+
Q,H,Σord (not just in Kord,++

Q,H,Σord, so that Hκ = H
and rκ = rH, and so that the base change from ~S0,rH to ~S0,rκ

in (2) is unnecessary).
In this case, we also consider as in Definition 7.1.3.11

the extended ordinary Kuga family ~Nord,ext
κ → ~Mord,tor

H ,
a semi-abelian scheme extending the ordinary Kuga

family ~Nord,grp
κ → ~Mord

H , together with the semi-abelian

scheme ~Nord,ext,∨
κ → ~Mord,tor

H extending the dual abelian

scheme ~Nord,grp,∨
κ → ~Mord

H , so that the locally free sheaves
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Lie~Nord,ext
κ /~Mord,tor

H
, Lie∨~Nord,ext

κ /~Mord,tor
H

, Lie~Nord,ext,∨
κ /~Mord,tor

H
, and

Lie∨~Nord,ext,∨
κ /~Mord,tor

H
over ~Mord,tor

H extend the locally free sheaves

Lie~Nord
κ /~Mord

H
, Lie∨~Nord

κ /~Mord
H

, Lie~Nord,∨
κ /~Mord

H
, and Lie∨~Nord,∨

κ /~Mord
H

over

~Mord
H , respectively. (See Definition 7.1.3.9.)

For simplicity, let us suppress the subscripts “κ” from the
notation. (All canonical isomorphisms will be required to be
compatible with the canonical isomorphisms defined by pulling
back under f tor

κ′,κ for each relation κ′ � κ in Kord,+
Q,H,Σ.)

Then the following are true:
(a) Let Ω1

~Nord,tor/~S0,rH
[d log∞] and Ω1

~Mord,tor
H /~S0,rH

[d log∞] de-

note the sheaves of modules of log 1-differentials over ~S0,rH

given by the (respective) canonical log structures defined
in (2). Let

Ω
1
~Nord,tor/~Mord,tor

H

:= (Ω1
~Nord,tor/~S0,rH

[d log∞])/((f tor)∗(Ω1
~Mord,tor
H /~S0,rH

[d log∞])).

Then there is a canonical isomorphism

(7.1.4.2) (f tor)∗Lie∨~Nord,ext/~Mord,tor
H

∼= Ω
1
~Nord,tor/~Mord,tor

H

between locally free sheaves over ~Nord,tor, extending the
canonical isomorphism

(7.1.4.3) f ∗Lie∨~Nord/~Mord
H

∼= Ω1
~Nord/~Mord

H

over ~Nord (see Lemma 7.1.3.10).
(b) For each integer b ≥ 0, there exist canonical isomorphisms

Rbf tor
∗ (Ω

a
~Nord,tor/~Mord,tor

H
)

∼= (∧bLie~Nord,ext,∨/~Mord,tor
H

) ⊗
O
~M

ord,tor
H

(∧aLie∨~Nord,ext/~Mord,tor
H

).(7.1.4.4)

and

Rbf tor
∗ (Ω

a
~Nord,tor/~Mord,tor

H
⊗

O~Nord,tor

I~Eord
∞

)

∼= Rbf tor
∗ (Ω

a
~Nord,tor/~Mord,tor

H
) ⊗

O
~M

ord,tor
H

I~Dord
∞,H

(7.1.4.5)

of locally free sheaves over ~Mord,tor
H , where I~Eord

∞
(resp.

I~Dord
∞,H

) is the O~Nord,tor-ideal (resp. O~Mord,tor
H

-ideal) defining

the relative Cartier divisor ~Eord
∞ = ~Eord

∞,κ (resp. ~Dord
∞,H) (with
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its reduced structure), compatible with cup products and
exterior products, extending the canonical isomorphism

over ~Mord
H induced by the canonical isomorphism

(7.1.4.6) Rbf∗(O~Nord) ∼= ∧bLie~Nord,∨/~Mord
H
.

(c) Let Ω
•
~Nord,tor/~Mord,tor

H
:= ∧•Ω1

~Nord,tor/~Mord,tor
H

be the log de Rham

complex associated with f tor : ~Nord,tor → ~Mord,tor
H (with

differentials inherited from Ω•~Nord/~Mord
H

). Let the (relative)

log de Rham cohomology be defined by

H i
log-dR(~Nord,tor/~Mord,tor

H ) := Rif tor
∗ (Ω

•
~Nord,tor/~Mord,tor

H
).

Then the (relative) Hodge spectral sequence

(7.1.4.7) Ea,b
1 := Rbf tor

∗ (Ω
a
~Nord,tor/~Mord,tor

H
)⇒ Ha+b

log-dR(~Nord,tor/~Mord,tor
H )

degenerates at E1 terms, and defines a Hodge filtration

on H i
log-dR(~Nord,tor/~Mord,tor

H ) with locally free graded pieces

given by Rbf tor
∗ (Ω

a
~Nord,tor/~Mord,tor

H
) for integers a+ b = i, ex-

tending the canonical Hodge filtration on H i
dR(~Nord/~Mord

H ).
As a result, for each integer i ≥ 0, there is a canonical
isomorphism

∧iH1
log-dR(~Nord,tor/~Mord,tor

H )
∼→ H i

log-dR(~Nord,tor/~Mord,tor
H ),

compatible with the Hodge filtrations defined by (7.1.4.7),
extending the canonical isomorphism

∧iH1
dR(~Nord/~Mord

H )
∼→ H i

dR(~Nord/~Mord
H )

over ~Mord
H (defined by cup product).

(d) For each jQ : Q∨ ↪→ Q as in Lemma 1.2.4.1, the
Q×-polarization λMH,jQ in Proposition 1.3.3.7 extends
canonically to a Q×-polarization

λ~Mord
H ,jQ

: HomO(Q,G~Mord
H

)◦ → (HomO(Q,G~Mord
H

)◦)∨,

which induces a Q×-polarization

λ~Nord,jQ
: ~Nord,grp → ~Nord,grp,∨

and defines canonically (as in [23, 1.5]) a perfect pairing

〈 · , · 〉λ~Mord
H ,jQ

⊗
Z
Q : (H1

dR(~Nord/~Mord
H )⊗

Z
Q)

×(H1
dR(~Nord/~Mord

H )⊗
Z
Q)→ O~Mord

H
(1)⊗

Z
Q.
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(This is an abuse of notation because 〈 · , · 〉λ~Mord
H ,jQ

is not

yet defined.)

Then H1
log-dR(~Nord,tor/~Mord,tor

H ) is (under the restriction
morphism) canonically isomorphic to the unique subsheaf
of

(~Mord
H ↪→ ~Mord,tor

H )∗(H
1
dR(~Nord/~Mord

H ))

satisfying the following conditions:

(i) H1
log-dR(~Nord,tor/~Mord,tor

H ) is locally free of finite rank
over O~Mord,tor

H
.

(ii) The sheaf f tor
∗ (Ω

1
~Nord,tor/~Mord,tor

H
) can be identified with

the subsheaf of (~Mord
H ↪→ ~Mord,tor

H )∗(f∗(Ω
1
~Nord/~Mord

H
))

formed (locally) by sections that are also

sections of H1
log-dR(~Nord,tor/~Mord,tor

H ). (Here we
view all sheaves canonically as subsheaves of

(~Mord
H ↪→ ~Mord,tor

H )∗(H
1
dR(~Nord/~Mord

H )).)

(iii) H1
log-dR(~Nord,tor/~Mord,tor

H )⊗
Z
Q is self-dual under the

push-forward (~Mord
H ↪→ ~Mord,tor

H )∗〈 · , · 〉λ~Mord
H ,jQ

⊗
Z
Q.

(e) The Gauss–Manin connection

(7.1.4.8) ∇ : H•dR(~Nord/~Mord
H )→ H•dR(~Nord/~Mord

H ) ⊗
O~Mord
H

Ω1
~Mord
H /~S0,rH

extends to an integrable connection

∇ : H•log-dR(~Nord,tor/~Mord,tor
H )

→ H•log-dR(~Nord,tor/~Mord,tor
H ) ⊗

O
~M

ord,tor
H

Ω
1
~Mord,tor
H /~S0,rH

(7.1.4.9)

with log poles along ~Dord
∞,H, called the extended

Gauss–Manin connection, satisfying the usual
Griffiths transversality with the Hodge filtration defined
by (7.1.4.7).

(4) (Hecke actions; cf. Propositions 3.4.4.1 and 5.2.2.2) Suppose

we have an element ĝ = (ĝ0, ĝp) ∈ Ĝ(A∞,p) = × P̂ord
D (Qp)

with image gh = (gh,0, gh,p) ∈ G(A∞,p)×Pord
D (Qp) (see

Definition 3.2.2.7) under the canonical homomorphism

Ĝ(A∞,p)× P̂ord
D (Qp) → G(A∞,p)×Pord

D (Qp), and suppose we

have two open compact subgroups H and H′ of G(Ẑ) such that
H′ ⊂ ghHg−1

h , and such that H and H′ are of standard form
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as in Definition 3.2.2.9. Suppose moreover that gh,p satisfies
the conditions given in Section 3.3.4 (with gp there replaced

with gh,p here), so that ~[gh]
ord

: ~Mord
H′ → ~Mord

H is defined
(see Proposition 3.4.4.1). Suppose Σord,′ = {Σ′Φ′H′}[(Φ′H′ ,δ

′
H′ )]

is a compatible choice of admissible smooth rational

polyhedral cone decomposition data for ~Mord
H′ , which is a

gh-refinement of Σord = {ΣΦH}[(ΦH,δH)] as in Definition

5.2.2.1. Consider the sets Kord
Q,H′ ⊂ Kord,+

Q,H′ ⊂ Kord,++
Q,H′ and

Kord
Q,H′,Σord,′ ⊂ Kord,+

Q,H′,Σord,′ ⊂ Kord,++
Q,H′,Σord,′ as in Definitions

7.1.1.11 and 7.1.1.19 (for H′ and Σord,′), with compatible
directed partial orders, parameterizing generalized ordinary
Kuga families and their compactifications with properties
as in (1), (2), and (3) above. The sets Kord,++

Q,H etc and

Kord,++
Q,H′ etc (and the objects they parameterize) satisfy the

compatibility with ĝ (and gh) in the sense that the following
are true:
(a) For each κ = (Ĥ, Σ̂ord) ∈ Kord,++

Q,H (resp. Kord,+
Q,H , resp.

Kord
Q,H), and for each open compact subgroup Ĥ′ ⊂ Ĝ(Ẑ)

such that Ĥ′ ⊂ ĝĤĝ−1 (so that Hκ = ĤG and Hκ′ = Ĥ′G
satisfy Hκ′ ⊂ ghHκg

−1
h ), there exists an element κ′ =

(Ĥ′, Σ̂ord,′) ∈ Kord,++
Q,H′ (resp. Kord,+

Q,H′ , resp. Kord
Q,H′) such that

there exists a (necessarily unique) quasi-finite flat surjec-
tion

(7.1.4.10) ~[ĝ]
ord

: ~Nord
κ′ → ~Nord

κ

covering the compatible surjections ~[gh]
ord

: ~Mord
H′ → ~Mord

H ,

~[gh]
ord

rκ′ ,rκ
: ~Mord

H′,rκ′
→ ~Mord

H,rκ, and ~[gh]
ord

: ~Mord
Hκ′ →

~Mord
Hκ

given by Proposition 3.4.4.1, inducing a finite flat sur-

jection ~Nord
κ′ → ~Nord

κ ×
~Mord
Hκ

~Mord
Hκ′ of abelian scheme torsors

equivariant with the isogeny (not just a Q×-isogeny)

~Nord,grp
κ′ → ~Nord,grp

κ ×
~Mord
Hκ

~Mord
Hκ′

induced by (κ′)isog, κisog, and the Q×-isogeny

G~Mord
Hκ′

→ G~Mord
Hκ
×
~Mord
Hκ

~Mord
Hκ′ realizing G~Mord

Hκ
×
~Mord
Hκ

~Mord
Hκ′ as

an ordinary Hecke twist of G~Mord
Hκ′

by gh (which is the
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pullback of the Q×-isogeny G~Mord
H′
→ G~Mord

H
×
~Mord
H

~Mord
H′

realizing G~Mord
H
×
~Mord
H

~Mord
H′ as an ordinary Hecke twist of

G~Mord
H′

by gh). (Here all the base changes from ~Mord
H to

~Mord
H′ and from ~Mord

Hκ to ~Mord
Hκ′ use the surjections denoted

by ~[gh]
ord

.) The characteristic zero pullback ~[ĝ]
ord
⊗
Z
Q is

étale.
(b) For each κ = (Ĥ, Σ̂ord) and Ĥ′ as in (4a) such that

κ ∈ Kord,++
Q,H (resp. Kord,+

Q,H , resp. Kord
Q,H), there is an

element κ′ = (Ĥ′, Σ̂ord,′) ∈ Kord,++
Q,H′ (resp. Kord,+

Q,H′ ,

resp. Kord
Q,H′) such that ~[ĝ]

ord
is defined as in (4a) (see

(7.1.4.10)), and such that Σ̂ord,′ is a ĝ-refinement of

Σ̂ord (cf. Lemma 1.2.4.42 and Definition 5.2.2.1), which
extends to a (necessarily unique) surjection

(7.1.4.11) ~[ĝ]
ord,tor

: ~Nord,tor
κ′ → ~Nord,tor

κ

such that

(7.1.4.12) Ri ~[ĝ]
ord,tor

∗ O~Nord,tor

κ′
= 0

for all i > 0. If Σ̂ord,′ is ĝ-induced by Σ̂ord (cf. Lemma

1.2.4.42 and Definition 5.2.2.1), then ~[ĝ]
ord,tor

is quasi-

finite. The characteristic zero pullback ~[ĝ]
ord,tor

⊗
Z
Q is log

étale.

Under (7.1.4.11), the [(Φ̆′Ĥ′ , δ̆
′
Ĥ′ , τ̂

′)]-stratum
~̂
Z

ord

[(Φ̆′
Ĥ′
,δ̆′
Ĥ′
,τ̂ ′)]

of ~Nord,tor
κ′ is mapped to the [(Φ̆Ĥ, δ̆Ĥ, τ̂)]-stratum

~̂
Z

ord

[(Φ̆Ĥ,δ̆Ĥ,τ̂)] of ~Nord,tor
κ if and only if there are

representatives (Φ̆Ĥ, δ̆Ĥ, τ̂) and (Φ̆′Ĥ′ , δ̆
′
Ĥ′ , τ̂

′) of

[(Φ̆Ĥ, δ̆Ĥ, τ̂)] and [(Φ̆′Ĥ′ , δ̆
′
Ĥ′ , τ̂

′)], respectively, such

that (Φ̆′Ĥ′ , δ̆
′
Ĥ′ , τ̂

′) is a ĝ-refinement of (Φ̆Ĥ, δ̆Ĥ, τ̂) (cf.

Lemma 1.2.4.42 and [62, Def. 6.4.3.1]). In this case,

the compatible morphisms
~̂
X

ord

Φ̆′
Ĥ′
,δ̆′
Ĥ′
,τ̂ ′ →

~̂
X

ord

Φ̆Ĥ,δ̆Ĥ,τ̂
and

~̂
X

ord

Φ̆′
Ĥ′
,δ̆′
Ĥ′
,Σ̂′

Φ̆′
Ĥ′

→ ~̂
X

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
induced by (7.1.4.11) (and
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the canonical isomorphisms in (1) above) coincide with
the canonical morphisms as in (7.1.2.19) and (7.1.2.21).

If κ ∈ Kord,++
Q,H,Σord (resp. Kord,+

Q,H,Σord, resp. Kord
Q,H,Σord), we

may assume in the above that κ′ ∈ Kord,++
Q,H′,Σord,′ (resp.

Kord,+
Q,H′,Σord,′, resp. Kord

Q,H′,Σord,′), so that (7.1.4.11) covers

the surjection

~[gh]
ord,tor

rκ′ ,rκ
: ~Mord,tor
H′,Σord,′,rκ′

→ ~Mord,tor
H,Σord,rκ

induced by the surjection ~[gh]
ord,tor

: ~Mord,tor
H′,Σord,′ → ~Mord,tor

H,Σord

given by Proposition 5.2.2.2.

(c) Suppose ~[ĝ]
ord,tor

is defined as in (4b) for some

κ ∈ Kord,+
Q,H,Σord and κ′ ∈ Kord,+

Q,H′,Σord,′ (not just in Kord,++
Q,H,Σord

and Kord,++
Q,H′,Σord,′). Then there is a canonical morphism

( ~[ĝ]
ord,tor

)∗ : ( ~[ĝ]
ord,tor

)∗Ha+b
log-dR(~Nord,tor

κ /~Mord,tor
H,Σord)

→ Ha+b
log-dR(~Nord,tor

κ′ /~Mord,tor
H′,Σord,′)

respecting the Hodge filtrations and compatible with the
canonical morphisms

( ~[ĝ]
ord,tor

)∗ : ( ~[ĝ]
ord,tor

)∗Ω
1
~Nord,tor
κ /~Mord,tor

H,Σord
→ Ω

1
~Nord,tor

κ′ /~Mord,tor

H′,Σord,′
,

( ~[gh]
ord,tor

rκ′ ,rκ
)∗ : ( ~[gh]

ord,tor
)∗Lie~Nord,ext,∨

κ /~Mord,tor

H,Σord
→ Lie~Nord,ext,∨

κ′ /~Mord,tor

H′,Σord,′

( ~[gh]
ord,tor

rκ′ ,rκ
)∗ : ( ~[gh]

ord,tor
)∗Lie∨~Nord,ext

κ /~Mord,tor

H,Σord

→ Lie∨~Nord,ext

κ′ /~Mord,tor

H′,Σord,′

( ~[gh]
ord,tor

rκ′ ,rκ
)∗ : ( ~[gh]

ord,tor
)∗LieG∨/~Mord,tor

H,Σord
→ LieG∨/~Mord,tor

H′,Σord,′
,

( ~[gh]
ord,tor

rκ′ ,rκ
)∗ : ( ~[gh]

ord,tor
)∗Lie∨

G/~Mord,tor

H,Σord

→ Lie∨
G/~Mord,tor

H′,Σord,′
,

and the canonical isomorphisms in (3) for ~Nord,tor
κ and

~Nord,tor
κ′ . The characteristic zero pullbacks of these canon-

ical morphisms are isomorphisms.
(d) If the levels Hκ,p and Hκ′,p at p are equally deep as

in Definition 3.2.2.9 (by Remark 7.1.1.3, this is equiva-

lent to the condition that Ĥ and Ĥ′ are equally deep as
in Definition 7.1.1.2), or if gh,p is of twisted Up type as
in Definition 3.3.6.1 and depthD(Hκ′,p) − depthD(gh,p) =
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depthD(Hκ,p) > 0, then the surjection (7.1.4.10) is finite,
and the surjection (7.1.4.11) is proper.

(e) If gh,p ∈ Pord
D (Zp), then the morphism

~[ĝ]
ord

rκ′
: ~Nord

κ′ → ~Nord
κ ×

~S0,rκ

~S0,rκ′

canonically induced by ~[ĝ]
ord

: ~Nord
κ′ → ~Nord

κ is étale, and
the surjection

~[ĝ]
ord,tor

rκ′
: ~Nord,tor

κ′ → ~Nord,tor
κ ×

~S0,rκ

~S0,rκ′

canonically induced by ~[ĝ]
ord,tor

: ~Nord,tor
κ′ → ~Nord,tor

κ is log
étale, and the canonical morphisms in (4c) are all isomor-

phisms. If Σ̂′ is ĝ-induced by Σ̂, then ~[ĝ]
ord,tor

rκ′
is quasi-

finite étale (not just log étale).

(f) If we have an element ĝ′ ∈ Ĝ(A∞,p)× P̂ord
D (Qp) with

image g′h ∈ G(A∞,p)×Pord
D (Qp) under the canonical ho-

momorphism Ĝ(A∞,p)× P̂ord
D (Qp)→ G(A∞,p)×Pord

D (Qp),

with a similar setup such that ~[ĝ′]
ord

: ~Nord
κ′′ → ~Nord

κ′ and

~[ĝ′]
ord,tor

: ~Nord,tor
κ′′ → ~Nord,tor

κ′ are compatibly defined

for some κ′′ ∈ Kord,++
Q,H′′ , then ~[ĝ′ĝ]

ord
: ~Nord

κ′′ → ~Nord
κ

and ~[ĝ′ĝ]
ord,tor

: ~Nord,tor
κ′′ → ~Nord,tor

κ are also compatibly

defined and satisfy the identities ~[ĝ′ĝ]
ord

= ~[ĝ]
ord
◦ ~[ĝ′]

ord

and ~[ĝ′ĝ]
ord,tor

= ~[ĝ]
ord,tor

◦ ~[ĝ′]
ord,tor

. If

κ ∈ Kord,+
Q,H , κ′ ∈ Kord,+

Q,H′ , and κ′′ ∈ Kord,+
Q,H′′, we

also have ( ~[ĝ′ĝ]
ord

)∗ = ( ~[ĝ′]
ord

)∗ ◦ ( ~[ĝ]
ord

)∗ and

( ~[ĝ′ĝ]
ord,tor

)∗ = ( ~[ĝ′]
ord,tor

)∗ ◦ ( ~[ĝ]
ord,tor

)∗ (in both applicable
senses above).

(g) The morphism

(7.1.4.13) ~[ĝ]
ord

: ~Nord
κ′ → ~Nord

κ

(cf. Definition 3.4.4.2) induced by (7.1.4.10) is finite. The
morphism

(7.1.4.14) ~[ĝ]
ord,tor

: ~Nord,tor
κ′ → ~Nord,tor

κ
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induced by (7.1.4.11) is proper, and is finite flat if Σ̂′ is

ĝ-induced by Σ̂. If ĝp ∈ P̂ord
D (Zp), then the morphism

(7.1.4.15) ~[ĝ]
ord,tor

rκ′
: ~Nord,tor

κ′ → ~Nord,tor
κ ×

~S0,rκ

~S0,rκ′

induced by (7.1.4.14) is proper log étale (because it is log

étale by (4e)). If moreover Σ̂′ is ĝ-induced by Σ̂, then
(7.1.4.15) is finite étale (because it is quasi-finite étale by
(4e); cf. [35, IV-3, 8.11.1]).

(h) If ĝ = (ĝ0, ĝp) ∈ Ĝ(Ẑp)× P̂ord
D (Zp), if Ĥ′,p = ĝ0Ĥpĝ−1

0 ,

if (Ĥ′p)ord = (ĝpĤpĝ
−1
p )ord (cf. (7.1.1.24)), and if Σ̂′

is ĝ-induced by Σ̂, then (rκ′ = rκ and) the induced
morphisms (7.1.4.13) and (7.1.4.14) are isomorphisms.
(These conditions are true, in particular, when ĝ = 1

and when Ĥ = ĤpĤp and Ĥ′ = Ĥ′,pĤ′p satisfy Ĥ′,p = Ĥp

and (Ĥ′p)ord = Ĥord
p ; cf. see the remark at the end of

Corollary 3.4.4.4.)
(i) (elements of Up type.) Suppose ĝ0 = 1 and ĝp is the im-

age of an element g̃p of Up type in P̃ord,′
Z̃,D̃

(Qp) under the

canonical morphism P̃ord,′
Z̃,D̃

(Qp)→ P̂ord
D (Qp) (cf. Definition

7.1.1.22). Then gh,0 = 1, gh,p is an element of Up type,

and Σ̂ord,′ is also a 1-refinement of Σ̂ord. The morphism

(7.1.4.16) ~[ĝ]
ord

: ~Nord
κ′ ⊗

Z
Fp → ~Nord

κ ⊗
Z
Fp

induced by (7.1.4.10) is finite flat and coincides with the
composition of the (finite flat) absolute Frobenius mor-
phism

F~Nord
κ′ ⊗Z

Fp : ~Nord
κ′ ⊗

Z
Fp → ~Nord

κ′ ⊗
Z
Fp

with the canonical finite flat morphism

(7.1.4.17) ~[1]
ord

: ~Nord
κ′ ⊗

Z
Fp → ~Nord

κ ⊗
Z
Fp.

On the other hand, the morphism

(7.1.4.18) ~[ĝ]
ord,tor

: ~Nord,tor
κ′ ⊗

Z
Fp → ~Nord,tor

κ ⊗
Z
Fp
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induced by (7.1.4.11) is proper and coincides with the com-
position of the (finite flat) absolute Frobenius morphism

F~Nord,tor

κ′ ⊗
Z
Fp : ~Nord,tor

κ′ ⊗
Z
Fp → ~Nord,tor

κ′ ⊗
Z
Fp

with the canonical proper morphism

(7.1.4.19) ~[1]
ord,tor

: ~Nord,tor
κ′ ⊗

Z
Fp → ~Nord,tor

κ ⊗
Z
Fp.

Suppose moreover that Σ̂ord,′ is ĝ-induced by Σ̂ord. Then

Σ̂ord,′ is also 1-induced by Σ̂ord, and the above morphisms
(7.1.4.18) and (7.1.4.19) are finite flat.

If (Ĥ′p)ord = Ĥord
p as open compact subgroups of M̂ord

D (Zp)
(see (7.1.1.24)), then we can take Σ̂ord,′ to be g-induced

by Σ̂ord, so that (rκ′ = rκ and) the canonical morphism
(7.1.4.19) is an isomorphism by (4h), and so that the com-
position

~Nord,tor
κ ⊗

Z
Fp

( ~[1]
ord,tor

)−1

∼→ ~Nord,tor
κ′ ⊗

Z
Fp

~[ĝ]
ord,tor

→ ~Nord,tor
κ ⊗

Z
Fp

coincides with the (finite flat) absolute Frobenius mor-
phism

F~Nord,tor
κ ⊗

Z
Fp : ~Nord,tor

κ ⊗
Z
Fp → ~Nord,tor

κ ⊗
Z
Fp.

(j) Suppose ĝ0 = 1 and ĝp is the image of an element g̃p
of Up type in P̃ord,′

Z̃,D̃
(Qp) under the canonical morphism

P̃ord,′
Z̃,D̃

(Qp) → P̂ord
D (Qp) (cf. Definition 7.1.1.22), so that

gh,0 = 1 and gh,p is an element of PD(Qp) of Up type (cf.
Definition 3.3.6.1).

Suppose that κ = (Ĥ, Σ̂ord) ∈ Kord,+
Q,H,Σord

and κ′ = (Ĥ′, Σ̂ord,′) ∈ Kord,+
Q,H′,Σord,′, that

depthD(Ĥ′)− 1 = depthD(Ĥ) > 0 (see Definition 7.1.1.2),

that (Ĥ′p)ord = Ĥord
p as open compact subgroups of

M̂ord
D (Zp) (see (7.1.1.24)), that Σ̂ord,′ is ĝ-induced by Σ̂,

that depthD(H′) − 1 = depthD(H) > 0 (see Definition
3.2.2.9), that (Hκ′,p)

ord = (Hκ,p)
ord as open compact

subgroups of Mord
D (Zp) (see (3.3.3.5)), and that Σord,′ is

gh-induced by Σord as in Definition 5.2.2.1.
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Then (rκ′ = rκ = rH′ = rH and) the canonical morphism

~[gh]
ord,tor

: ~Mord,tor
H′,Σord,′ → ~Mord,tor

H,Σord

and (7.1.4.11) are finite flat surjections, which induce
(as in Corollary 5.2.2.5 and statement (4i) above,
by composition with inverses of canonical forgetful
isomorphisms) the absolute Frobenius morphisms
F~Mord,tor

H,Σord ⊗Z
Fp and F~Nord,tor

κ ⊗
Z
Fp, respectively; and (7.1.4.11)

induces a finite surjection

(7.1.4.20) ~Nord,tor
κ′ → ( ~[gh]

ord,tor
)∗~Nord,tor

κ := ~Nord,tor
κ ×

~Mord,tor

H,Σord

~Mord,tor
H′,Σord,′ ,

which induces the relative Frobenius morphism

F(~Nord,tor
κ ⊗

Z
Fp)/(~Mord,tor

H,Σord ⊗Z
Fp) :

~Nord,tor
κ ⊗

Z
Fp → F∗~Mord,tor

H,Σord ⊗Z
Fp

(
~Nord,tor
κ ⊗

Z
Fp
)
.

(5) (Q×-isogenies.) Let gl = (gl,0, gl,p) be an element of

GLO⊗
Z
A∞,p(Q⊗

Z
A∞,p)×GLO⊗

Z
Zp(Q⊗

Z
Qp) = GLO⊗

Z
A∞(Q⊗

Z
A∞).

Then the submodule gl(Q⊗
Z
Ẑ) in Q⊗

Z
A∞ determines a

unique O-lattice Q′ (up to isomorphism), together with a
unique choice of an isomorphism

[gl]Q : Q⊗
Z
Q ∼→ Q′⊗

Z
Q,

inducing an isomorphism Q⊗
Z
A∞ ∼→ Q′⊗

Z
A∞ matching

gl(Q⊗
Z
Ẑ) with Q′⊗

Z
Ẑ (and in particular gl(Q⊗

Z
Zp) = Q⊗

Z
Zp

with Q′⊗
Z
Zp if gl,p ∈ GLO⊗

Z
Zp(Q⊗

Z
Zp)), and inducing a

canonical Q×-isogeny

[gl]
∗
Q : HomO(Q′, G~Mord

H
)◦ → HomO(Q,G~Mord

H
)◦

defined by [gl]Q. Consider the sets Kord
Q′,H ⊂ Kord,+

Q′,H ⊂ Kord,++
Q′,H

and Kord
Q′,H,Σord ⊂ Kord,+

Q′,H,Σord ⊂ Kord,++
Q′,H,Σord as in Definitions

7.1.1.11 and 7.1.1.19 (with Q replaced with Q′), with compati-
ble directed partial orders, parameterizing generalized ordinary
Kuga families and their compactifications with properties as
in (1), (2), and (3) above. The sets Kord,++

Q,H etc and Kord,++
Q′,H
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etc (and the objects they parameterize) satisfy the compatibility
with gl in the sense that the following are true:

(a) For each κ = (Ĥ, Σ̂ord) ∈ Kord,++
Q,H (resp. Kord,+

Q,H , resp.

Kord
Q,H), there is an element κ′ = (Ĥ′, Σ̂ord,′) ∈ Kord,++

Q′,H,Σord

(resp. Kord,+
Q′,H,Σord, resp. Kord

Q′,H,Σord) such that Hκ′ = Ĥ′G ⊂
Hκ = ĤG, such that the Q×-isogeny

~[gl]
∗,ord,grp

κ′,κ := κisog ◦ [gl]
∗
Q ◦ ((κ′)isog)−1 : ~Nord,grp

κ′ → ~Nord,grp
κ ×

~Mord
Hκ

~Mord
Hκ′

is an isogeny (not just a quasi-isogeny), and such that
there is a (necessarily unique) quasi-finite flat surjection

(7.1.4.21) ~[gl]
∗,ord

κ′,κ : ~Nord
κ′ → ~Nord

κ

inducing a finite flat surjection ~Nord
κ′ → ~Nord

κ ×
~Mord
Hκ

~Mord
Hκ′

of abelian scheme torsors equivariant with the isogeny
~[gl]
∗,ord,grp

κ′,κ . The characteristic zero pullback ~[gl]
∗,ord

κ′,κ ⊗Z
Q

is finite étale.

(b) For each κ = (Ĥ, Σ̂ord) as in (5a), there is an element

κ′ = (Ĥ′, Σ̂ord,′) ∈ Kord,++
Q′,H (resp. Kord,+

Q′,H , resp. Kord
Q′,H)

such that ~[gl]
∗,ord

κ′,κ is defined as in (5a) (see (7.1.4.21)) and

extends to a (necessarily unique) surjection

(7.1.4.22) ~[gl]
∗,ord,tor

κ′,κ : ~Nord,tor
κ′ → ~Nord,tor

κ ,

such that

(7.1.4.23) Ri( ~[gl]
∗,ord,tor

κ′,κ )∗O~Nord,tor

κ′
= 0

for all i > 0. The characteristic zero pullback
~[gl]
∗,ord,tor

κ′,κ ⊗
Z
Q is proper log étale.

If κ ∈ Kord,++
Q,H,Σord (resp. Kord,+

Q,H,Σord, resp. Kord
Q,H,Σord), then

we may assume in the above that κ′ ∈ Kord,++
Q′,H,Σord (resp.

Kord,+
Q′,H,Σord, resp. Kord

Q′,H,Σord). Then (7.1.4.22) is compatible

with the canonical morphisms f tor
κ : ~Nord,tor

κ → ~Mord,tor
H,rκ ,

f tor
κ′ : ~Nord,tor

κ′ → ~Mord,tor
H,rκ′

, and ~Mord,tor
H,rκ′

→ ~Mord,tor
H,rκ .

(c) Suppose ~[gl]
∗,ord,tor

κ′,κ is defined as in (5b) for some κ ∈
Kord,+
Q,H,Σord and κ′ ∈ Kord,+

Q′,H,Σord (not just in Kord,++
Q,H,Σord and



458 7. ORDINARY KUGA FAMILIES

Kord,++
Q′,H,Σord). Then, for each integer i ≥ 0, there is a canon-

ical morphism

( ~[gl]
∗,ord,tor

κ′,κ )∗ : H i
log-dR(~Nord,tor

κ /~Mord,tor
H,Σord)

→ H i
log-dR(~Nord,tor

κ′ /~Mord,tor
H,Σord)

extending the canonical morphism

([gl]
∗
κ′,κ)

∗ : H i
dR(~Nord

κ /~Mord
H )→ H i

dR(~Nord
κ′ /

~Mord
H )

induced by [gl]Q, respecting the Hodge filtrations and in-
ducing canonical morphisms

( ~[gl]
∗,ord,tor

κ′,κ )∗ : Rb ~f ord,tor
∗ (Ω

a
~Nord,tor
κ /~Mord,tor

H
)

→ Rb ~f ord,tor
∗ (Ω

a
~Nord,tor

κ′ /~Mord,tor
H

)

(for integers a + b = i) compatible (under the canoni-

cal isomorphisms in (3) for ~Nord,tor
κ and ~Nord,tor

κ′ ) with the
canonical morphisms

( ~[gl]
∗,ord,ext

κ′,κ )∗ : Lie∨~Nord,ext
κ /~Mord,tor

H,Σord

→ Lie∨~Nord,ext

κ′ /~Mord,tor

H,Σord

and

d ~[gl]
∗,ord,ext,∨
κ′,κ : Lie~Nord,ext,∨

κ /~Mord,tor

H,Σord
→ Lie~Nord,ext,∨

κ′ /~Mord,tor

H,Σord

induced by the morphisms

~[gl]
∗,ord,ext

κ′,κ : ~Nord,ext
κ′ → ~Nord,ext

κ

and

~[gl]
∗,ord,ext,∨
κ′,κ : ~Nord,ext,∨

κ → ~Nord,ext,∨
κ′

respectively, induced by ~[gl]
∗,ord,grp

κ′,κ : ~Nord,grp
κ′ → ~Nord,grp

κ and

its dual ~[gl]
∗,ord,grp,∨
κ′,κ : ~Nord,grp,∨

κ′ → ~Nord,grp,∨
κ over ~Mord,tor

H,Σord.

(In fact, all these morphisms are induced by [gl]
∗
Q.) The

characteristic zero pullbacks of these canonical morphisms
are isomorphisms.

(d) If the levels Hκ,p and Hκ′,p at p are equally deep as in
Definition 3.2.2.9, then the surjection (7.1.4.21) is finite,
and the surjection (7.1.4.22) is proper.
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(e) If gl,p ∈ GLO⊗
Z
Zp(Q⊗

Z
Zp), then ~[gl]

∗,ord,grp

κ′,κ is a

Z×(p)-isogeny, the surjection (7.1.4.21) is quasi-finite

étale, the surjection (7.1.4.22) is log étale, and the
canonical morphisms in (5c) are all isomorphisms.

(f) If we have an element g′l of GLO⊗
Z
A∞(Q⊗

Z
A∞) with

a similar setup such that ~[g′l]
∗,ord

κ′′,κ′ and ~[g′l]
∗,ord,tor

κ′′,κ′ are

compatibly defined for some κ′′ ∈ Kord,++
Q′′,H,Σord, then

~[glg′l]
∗,ord

κ′′,κ and ~[glg′l]
∗,ord,tor

κ′′,κ are also compatibly defined and

satisfy the identities ~[glg′l]
∗,ord

κ′′,κ = ~[gl]
∗,ord

κ′,κ ◦ ~[g′l]
∗,ord

κ′′,κ′ and

~[glg′l]
∗,ord,tor

κ′′,κ = ~[gl]
∗,ord,tor

κ′,κ ◦ ~[g′l]
∗,ord,tor

κ′′,κ′ . If κ ∈ Kord,+
Q,H,Σord,

κ′ ∈ Kord,+
Q′,H,Σord, and κ′′ ∈ Kord,+

Q′′,H,Σord, we also

have ( ~[glg′l]
∗,ord

κ′′,κ )∗ = ( ~[g′l]
∗,ord

κ′′,κ′)
∗ ◦ ( ~[gl]

∗,ord

κ′,κ )∗ and

( ~[glg′l]
∗,ord,tor

κ′′,κ )∗ = ( ~[g′l]
∗,ord,tor

κ′′,κ′ )∗ ◦ ( ~[gl]
∗,ord,tor

κ′,κ )∗.

(g) The morphism

(7.1.4.24) ~[gl]
∗,ord

κ′,κ : ~Nord
κ′ → ~Nord

κ

(cf. Definition 3.4.4.2) induced by (7.1.4.21) is finite. The
morphism

(7.1.4.25) ~[gl]
∗,ord,tor

κ′,κ : ~Nord,tor
κ′ → ~Nord,tor

κ ,

induced by (7.1.4.22) is proper, and there exist choices
of κ′, which can be assumed to satisfy κ′ � κ′′ for
any given κ′′, such that (7.1.4.25) is finite flat. If
gl,p ∈ GLO⊗

Z
Zp(Q⊗

Z
Zp), then the morphism

(7.1.4.26) ~[gl]
∗,ord,tor

κ′,κ,rκ′
: ~Nord,tor

κ′ → ~Nord,tor
κ ×

~S0,rκ

~S0,rκ′

induced by (7.1.4.25) is proper log étale (because it is log
étale by (5e)), and there exists choices of κ′, which can
be assumed to satisfy κ′ � κ′′ for any given κ′′, such that
(7.1.4.15) is finite étale (by (5e); cf. [35, IV-3, 8.11.1]).

(h) If gl ∈ GLO⊗
Z
Ẑ(Q⊗

Z
Ẑ), if Ĥ′,p = Ĥp, and if (Ĥ′p)ord =

Ĥord
p (cf. (7.1.1.24)), then there exist choices of κ′, which

can be assumed to satisfy κ′ � κ′′ for any given κ′′, such
that (rκ′ = rκ and) the induced morphisms (7.1.4.24) and
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(7.1.4.25) are isomorphisms. (These conditions are true,

in particular, when gl = 1 and when Ĥ = ĤpĤp and

Ĥ′ = Ĥ′,pĤ′p satisfy Ĥ′,p = Ĥp and (Ĥ′p)ord = Ĥord
p ; cf.

see the remark at the end of Corollary 3.4.4.4.)
(6) After pulled back to the characteristic zero fibers, the objects

and morphisms in this theorem are canonically compatible with
those in Theorem 1.3.3.15 (cf. Proposition 7.1.1.21). (In par-

ticular, f tor
κ′,κ⊗Z

Q, ~[ĝ]
ord,tor

⊗
Z
Q, and ~[gl]

∗,ord,tor

κ′,κ ⊗
Z
Q, where f tor

κ′,κ

is as in (1), ~[ĝ]
ord,tor

is as in (7.1.4.11), and ~[gl]
∗,ord,tor

κ′,κ is as in

(7.1.4.22), are always proper, without the additional conditions
on depths of levels at p.)

With the ingredients we have already provided, the proof is similar
to that of [61, Thm. 2.15; see also the errata]. Nevertheless, for the sake
of certainly, we will spell out the details in the next few sections. The
proof will clarify that, when κ ∈ Kord,+

Q,H , the locally free sheaves such as

Lie~Nord
κ /~Mord

H
, Lie∨~Nord

κ /~Mord
H

, Lie~Nord,∨
κ /~Mord

H
, and Lie∨~Nord,∨

κ /~Mord
H

over ~Mord
H , and

their extensions Lie~Nord,ext
κ /~Mord,tor

H
, Lie∨~Nord,ext

κ /~Mord,tor
H

, Lie~Nord,ext,∨
κ /~Mord,tor

H
,

and Lie∨~Nord,ext,∨
κ /~Mord,tor

H
over ~Mord,tor

H , respectively, are the correct ones

to use in the statements.

Remark 7.1.4.27. (Compare with Remarks 1.1.2.1, 1.3.1.4,
1.3.3.33, 3.4.2.8, and 5.2.1.5.) By varying the choices of L and Q
inducing the same L⊗

Z
Z(p) and Q⊗

Z
Z(p), respectively, and hence

varying the choices of L̃ inducing the same L̃⊗
Z
Z(p), we can (in

practice) allow the Ĥ in the parameter κ = (Ĥ, Σ̂) to be any

open compact subgroup of Ĝ(A∞) of the form Ĥ = ĤpĤp, where

Ĥp ⊂ Ĝ(A∞,p) and Ĥp is of standard form as in Definition 7.1.1.2.
Nevertheless, this can be achieved by varying the lattice Q alone, and
hence is already incorporated in (5) of Theorem 7.1.4.1.

7.2. Main Constructions of Compactifications and
Morphisms

7.2.1. Partial Toroidal Boundary Strata. Let (L̃, 〈 · , · 〉̃ , h̃0),

(Z̃, Φ̃, δ̃), etc be chosen as in Section 1.2.4, and let D̃ be defined by D as

in Section 7.1.1. (The choice of D is implicit in the construction of ~Mord
H

and hence a prerequisite of Theorem 5.2.1.1 and its consequences.) Let
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κ̃ = (H̃, Σ̃ord, σ̃) be any element in the set K̃ord,++
Q,H as in Definition

1.2.4.11, and let κ = [κ̃] ∈ Kord,++
Q,H be as in Definition 1.2.4.44.

By Theorem 3.4.2.5 and Proposition 3.4.6.3, the data of O,

(L̃, 〈 · , · 〉̃ , h̃0), D̃, and H̃ = H̃pH̃p (where H̃p is neat by assumption)

define a scheme
~̃
M

ord

H̃ quasi-projective over ~S0,rH̃
= ~S0,rκ (see Definition

2.2.3.3 and Condition 7.1.1.5). Since H̃p is neat and Σ̃ord is projective
(and smooth), by Theorems 5.2.1.1 and 6.2.3.1, we have a partial

toroidal compactification
~̃
M

ord,tor

H̃ =
~̃
M

ord,tor

H̃,Σ̃ord which is quasi-projective

and smooth over S0,rH̃
. Since H̃ satisfies Conditions 1.2.4.7 and

7.1.1.5, by construction (see Propositions 4.2.1.29 and 4.2.1.30), we
have

(7.2.1.1)
~̃
M

ord,Φ̃H̃

H̃
∼= ~̃

M
ord,Z̃H̃

H̃
∼= ~Mord

Hκ ,

where Hκ = ĤG = GrZ̃−1(H̃P̃′
Z̃

) = GrZ̃−1(H̃P̃Z̃
), and

~̃
C

ord

Φ̃H̃,δ̃H̃
→ ~̃

M
ord,Φ̃H̃

H̃

is an abelian scheme torsor under an abelian scheme
~̃
C

ord,grp

Φ̃H̃,δ̃H̃
canoni-

cally Q×-isogenous to HomO(Q,G~Mord
Hκ

)◦ (which is the C in the proof

of Proposition 4.2.1.30). If Ĥ satisfies Condition 1.2.4.8, then we have

Hκ = H and hence ~Mord
Hκ = ~Mord

H . If Ĥ also satisfies Condition 1.2.4.9,

then
~̃
C

ord

Φ̃H̃,δ̃H̃
=
~̃
C

ord,grp

Φ̃H̃,δ̃H̃
→ ~Mord

Hκ = ~Mord
H is an abelian scheme, not just a

torsor.

Remark 7.2.1.2. (Compare with Remark 1.3.4.1 and Proposition
4.1.6.1.) The isomorphism (7.2.1.1) means we do not need to con-
sider nontrivial twisted objects (ϕ̃∼−2,H̃, ϕ̃

∼
0,H̃) (resp. (ϕ̃ord

−2,H̃, ϕ̃
ord
0,H̃)) above

(ϕ̃−2,H̃, ϕ̃0,H̃) and ϕ̃−1,H̃ = αHκ (resp. ϕ̃ord
−1,H̃ = (αHpκ , α

ord
Hκ,p)).

Since σ̃ is a top-dimensional nondegenerate rational polyhedral cone

in the cone decomposition Σ̃Φ̃H̃
in Σ̃ord, by (2) of Theorem 5.2.1.1, the

locally closed stratum
~̃
Z

ord

[(Φ̃H̃,δ̃H̃,σ̃)] (not its closure) is a zero-dimensional

torus bundle over the abelian scheme torsor
~̃
C

ord

Φ̃H̃,δ̃H̃
over ~Mord

Hκ . In other

words,
~̃
Z

ord

[(Φ̃H̃,δ̃H̃,σ̃)] is canonically isomorphic to
~̃
C

ord

Φ̃H̃,δ̃H̃
. Let us define

~Nord
κ̃ to be this stratum

~̃
Z

ord

[(Φ̃H̃,δ̃H̃,σ̃)], and denote the canonical morphism

~Nord
κ̃ → ~Mord

H,rκ = ~Mord
H ×

~S0,rH

~S0,rκ by fκ̃ (which is the composition of the
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canonical morphisms ~Nord
κ̃ → ~Mord

Hκ and ~Mord
Hκ → ~Mord

H,rκ). Let us denote

the canonical Q×-isogeny HomO(Q,G~Mord
Hκ

)◦ → ~Nord,grp
κ̃ :=

~̃
C

ord,grp

Φ̃H̃,δ̃H̃
by

κ̃isog. Note that ~Nord
κ̃ =

~̃
Z

ord

[(Φ̃H̃,δ̃H̃,σ̃)] is canonically isomorphic to
~̃
C

ord

Φ̃H̃,δ̃H̃

for every Σ̃ord and every top-dimensional cone σ̃ in Σ̃Φ̃H̃
.

Lemma 7.2.1.3. (Compare with Lemma 1.3.4.2.) The abelian

scheme torsor
~̃
C

ord

Φ̃H̃,δ̃H̃
(see (5) of Theorem 6.2.1.1 and Definition

1.2.1.15) and the canonical isogeny HomO(Q,GMH)◦ → ~̃
C

ord,grp

Φ̃H̃,δ̃H̃

of abelian schemes over
~̃
M

ord,Φ̃H̃

H̃
∼= ~Mord

Hκ depend (up to canonical

isomorphism) only on the open compact subgroup Ĥ = H̃Ĝ of Ĝ(Ẑ)

(see Definitions 1.2.4.3 and 1.2.4.4) determined by H̃. Moreover, if

H̃′ is any open compact subgroup of G̃(Ẑ) still satisfying Conditions

1.2.4.7 and 7.1.1.4 such that H̃′
Ĝ

= ĤG n ĤÛ under the isomorphism

Ĝ(Ẑ) ∼= G(Ẑ)n Û(Ẑ) induced by the splitting δ̃ (cf. Condition 1.2.4.9),

then we have
~̃
C

ord

Φ̃H̃′ ,δ̃H̃′
=
~̃
C

ord,grp

Φ̃H̃′ ,δ̃H̃′
∼= ~̃
C

ord,grp

Φ̃H̃,δ̃H̃
.

Proof. This follows from the very construction of
~̃
C

ord

Φ̃H̃,δ̃H̃
(see the

proof of Proposition 4.2.1.30), which is (up to canonical isomorphism)

insensitive to replacing H̃ with an open compact subgroup still satisfy-

ing Conditions 1.2.4.7 and 7.1.1.4 that defines the same Ĥ = H̃Ĝ. �

Consequently, ~Nord
κ̃ and κ̃isog depend (up to canonical isomorphism)

only on the open compact subgroup Ĥ of Ĝ(Ẑ) determined by H̃ (see
Definitions 1.2.4.3 and 1.2.4.4).

Let us take ~Nord,tor
κ̃ to be the closure of

~̃
Z

ord

[(Φ̃H̃,δ̃H̃,σ̃)] in
~̃
M

ord,tor

H̃,Σ̃ord . Then

we obtain the canonical open fiberwise dense immersion κ̃tor : ~Nord
κ̃ ↪→

~Nord,tor
κ̃ . Certainly, ~Nord,tor

κ̃ depends not only on Ĥ but also on the

choices of Σ̃Φ̃H̃
and σ̃.

Lemma 7.2.1.4. (Compare with Lemma 1.3.4.3.) Under the as-

sumption that H̃p is neat (and hence H̃ = H̃pH̃p is neat), the closure

of every stratum in
~̃
M

ord,tor

H̃,Σ̃ord has no self-intersection.

Proof. The same argument of the proof of Lemma 1.3.4.3 (or
rather of [61, Lem. 3.1]) works here. �
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Corollary 7.2.1.5. (Compare with Corollary 1.3.4.4.) For each

κ̃ = (H̃, Σ̃ord, σ̃) ∈ K̃++
Q,H, the closure ~Nord,tor

κ̃ of ~Nord
κ̃ =

~̃
Z

ord

[(Φ̃H̃,δ̃H̃,σ̃)] in

~̃
M

ord,tor

H̃,Σ̃ord is quasi-projective and smooth over ~S0,rκ, and the complement

of ~Nord
κ̃ in ~Nord,tor

κ̃ (with its reduced structure) is a relative Cartier divisor
with simple normal crossings.

Proof. Combine Lemma 7.2.1.4, (3) of Theorem 5.2.1.1, and The-
orem 6.2.3.1. �

The stratification of
~̃
M

ord,tor

H̃,Σ̃ord induces a stratification of ~Nord,tor
κ . By

(2) of Theorem 5.2.1.1, the strata of ~Nord,tor
κ are parameterized by equiv-

alence classes [(Φ̆H̃, δ̆H̃, τ̆)] having [(Φ̃H̃, δ̃H̃, σ̃)] as a face (as in Defini-
tion 1.2.2.19), which have been described in Sections 1.2.4 (following
Definition 1.2.4.11) and 7.1.1 (following Definition 7.1.1.7), such that

[(Z̆H̃, Φ̆H̃, δ̆H̃)] is an ordinary cusp label (as in Definition 3.2.3.8). With

(Z̆, Φ̆, δ̆) etc chosen as in Section 1.2.4, and with σ̆ being the image of
σ̃ ⊂ P+

Φ̃H̃
under the first morphism in (1.2.4.20), by Corollary 1.2.4.26,

we may take τ̆ ∈ Σ̃+

Φ̆Ĥ,σ̆
(see Definition 1.2.4.21) having σ̆ as a face,

whose ΓΦ̆Ĥ
-orbit is well defined, such that (Φ̆H̃, δ̆H̃, τ̆) is a representa-

tive of some [(Φ̆H̃, δ̆H̃, τ̆)] having [(Φ̃H̃, δ̃H̃, σ̃)] as a face.
By construction (see Propositions 4.2.1.37 and 4.2.1.46, (4.2.2.1),

(4.2.2.2), and (4.2.2.3)), the scheme

(7.2.1.6)
~̃
Ξ

ord

Φ̆H̃,δ̆H̃
∼= Spec

O
~̃
C

ord
Φ̆H̃,δ̆H̃

(
⊕

˘̀∈SΦ̆H̃

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)
)

is a torsor over
~̃
C

ord

Φ̆H̃,δ̆H̃
under (the pullback of) the split torus EΦ̆H̃

=

HomZ(SΦ̆H̃
,Gm), where

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀) is the subsheaf of O~̃

Ξ
ord

Φ̆H̃,δ̆H̃

(consid-

ered as an O~̃
C

ord

Φ̆H̃,δ̆H̃

-algebra, by abuse of language) on which EΦ̆H̃
acts

by the character ˘̀, with its τ̆ -stratum

(7.2.1.7)
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,τ̆
∼= Spec

O
~̃
C

ord
Φ̆H̃,δ̆H̃

(
⊕

˘̀∈τ̆⊥

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)
)
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defined by the sheaf of ideals Ĩ ord
τ̆ = ⊕

˘̀∈τ̆∨0

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀), together with the

affine toroidal embedding

(7.2.1.8)
~̃
Ξ

ord

Φ̆H̃,δ̆H̃
↪→ ~̃

Ξ
ord

Φ̆H̃,δ̆H̃
(τ̆) ∼= Spec

O
~̃
C

ord
Φ̆H̃,δ̆H̃

(
⊕

˘̀∈τ̆∨

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)
)

along τ̆ . (All the schemes are relatively affine over
~̃
C

ord

Φ̆H̃,δ̆H̃
, and all

the morphisms are the canonical ones dual to the obvious morphisms

between O~̃
C

ord

Φ̆H̃,δ̆H̃

-algebras.) The closure
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(τ̆) of the σ̆-stratum

on
~̃
Ξ

ord

Φ̆H̃,δ̆H̃
(τ̆) is defined by the sheaf of ideals ⊕

˘̀∈σ̆∨0 ∩ τ̆∨

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀), and

hence we have a canonical isomorphism

(7.2.1.9)
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(τ̆) ∼= Spec

O
~̃
C

ord
Φ̆H̃,δ̆H̃

(
⊕

˘̀∈σ̆⊥ ∩ τ̆∨

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)
)
,

whose τ̆ -stratum is canonically isomorphic to the scheme
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,τ̆

above, which (as a closed subscheme of
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(τ̆)) is defined by the

sheaf of ideals

(7.2.1.10) Ĩ ord
σ̆,τ̆ := ⊕

˘̀∈σ̆⊥ ∩ τ̆∨0

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀).

Let
~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ̆
denote the formal completion of

~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(τ̆) along

~̃
Ξ

ord

Φ̆H̃,δ̆H̃,τ̆
, which can be canonically identified as a closed formal

subscheme of
~̃
X

ord

Φ̆H̃,δ̆H̃,τ̆
, the formal completion of

~̃
Ξ

ord

Φ̆H̃,δ̆H̃
(τ̆) along its

τ̆ -stratum
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,τ̆
, inducing the closures of the [(Φ̃H̃, δ̃H̃, σ̃)]-strata on

every ordinary good formal (Φ̆H̃, δ̆H̃, τ̆)-model. (See Section 5.1.1.7
for the definition of good formal models, and see Definition 5.1.2.9
for the labeling of the strata by equivalence classes of triples of the

form [(Φ̃H̃, δ̃H̃, σ̃)].) By (5) of Theorem 5.2.1.1, the strata-preserving
canonical isomorphism

(
~̃
M

ord,tor

H̃,Σ̃ord)∧
~̃
Z

ord

[(Φ̆H̃,δ̆H̃,τ̆)]

∼= ~̃
X

ord

Φ̆H̃,δ̆H̃,τ̆
=
~̃
X

ord

Φ̆H̃,δ̆H̃,τ̆
/ΓΦ̆H̃,τ̆
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(where ΓΦ̆H̃,τ̆
is trivial by [62, Lem. 6.2.5.27]) induces a canonical iso-

morphism

(~Nord,tor
κ̃ )∧

~̃
Z

ord

[(Φ̆H̃,δ̆H̃,τ̆)]

∼= ~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ̆
.

(Alternatively, one may refer directly to the gluing construction of
~̃
M

ord,tor

H̃ in Section 5.1.3, based on the crucial Proposition 5.1.2.7; cf.
[62, Sec. 6.3.3].)

7.2.2. Justification for the Parameters. So far we have pa-

rameterized the objects we constructed by κ̃ ∈ K̃++
Q,H. The goal of this

subsection is to show that the equivalence classes κ = [κ̃] ∈ Kord,++
Q,H ,

with the natural directed partial � order among them (see Definitions
7.1.1.11 and 7.2.2.20), form a more natural parameter set for the ob-
jects we have constructed. (See Proposition 7.2.2.19 below.)

Construction 7.2.2.1. (Compare with Construction 1.3.4.6.) For

each κ̃ = (H̃, Σ̃ord, σ̃) in K̃ord,++
Q,H , consider the degenerating family

(7.2.2.2) (G̃, λ̃, ĩ, α̃H̃p , α̃
ord
H̃p

)→ ~Mord,tor

H̃,Σ̃ord

of type
~̃
M

ord

H̃ as in Theorem 5.2.1.1. As in Construction 5.2.4.15, let

(7.2.2.3) (Ĝ, λ̂, î)→ ~Nord,tor
κ̃

denote the pullback of (7.2.2.2) to ~Nord,tor
κ̃ , the closure of

~Nord
κ̃ =

~̃
Z

ord

[(Φ̃H̃,δ̃H̃,σ̃)] in ~Mord,tor

H̃,Σ̃ord
. Note that ~Nord

κ̃ is canonically isomorphic

to
~̃
C

ord

Φ̃H̃,δ̃H̃
because σ̃ is top-dimensional. Although α̃H̃p is defined only

over
~̃
M

ord

H̃ , by proceeding as in Construction 5.2.4.15, we can define a
(partial) pullback

(7.2.2.4) (Ĝ, λ̂, î, α̂Ĥp , α̂
ord
Ĥp

) := (G̃\, λ̃\, ĩ\, β̃\
H̃p
, β̃\,ord

H̃p
)→ ~Nord,tor

κ̃

of the degenerating family (7.2.2.2) to ~Nord,tor
κ̃ , with the convention that

(as in the case of (G̃, λ̃, ĩ, α̃H̃p , α̃
ord
H̃p

) itself) α̂Ĥp is defined only over Nκ̃,

while (G̃, λ̃, ĩ) (resp. α̃ord
H̃p

) is defined (resp. extends) over all of ~Nord,tor
κ̃

as in (7.2.2.3). By construction, the pullback

(7.2.2.5) (Ĝ~Nord
κ̃
, λ̂~Nord

κ̃
, î~Nord

κ̃
, α̂Ĥp , α̂

ord
Ĥp

)→ ~Nord
κ̃
∼= ~̃
C

ord

Φ̃H̃,δ̃H̃
,
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of (7.2.2.4) to ~Nord
κ̃ determines and is determined by (the prescribed

(Z̃H̃, Φ̃H̃, δ̃H̃) and) the tautological object

(7.2.2.6)
(
(A, λ, i, αHpκ , α

ord
Hκ,p), (c̃

ord
H̃ , c̃∨,ord

H̃
)
)
→ ~̃

C
ord

Φ̃H̃,δ̃H̃

(up to isomorphisms inducing automorphisms of Φ̃H̃; i.e., elements of

ΓΦ̃H̃
). Here (A, λ, i, αHpκ , α

ord
Hκ,p) is the tautological object over

~̃
M

ord,Z̃H̃

H̃
∼=

~Mord
Hκ . As explained in the proof of Proposition 4.2.1.29, and also in

Remark 1.3.4.1, we do not need to consider nontrivial twisted objects
(ϕ̃ord
−2,H̃, ϕ̃

ord
0,H̃) above (ϕ̃−2,H̃, ϕ̃0,H̃) and ϕ̃ord

−1,H̃ = (αHpκ , α
ord
Hκ,p). With the

fixed choice of (Z̃, Φ̃, δ̃), the tautological object (7.2.2.6) depends only

on Ĥ, and hence so is the tuple (7.2.2.5). Thus, the notation (α̂Ĥp , α̂
ord
Ĥp

)

is justified. As at the end of Construction 5.2.4.15, by considering the
degenerating family

(7.2.2.7) (G̃, λ̃, ĩ, α̃H̃)→ ~̃
M

ord,tor

H̃,Σ̃ord

of type M̃H̃, with the same (G̃, λ̃, ĩ) as in (7.2.2.2), where α̃H̃ is defined

only over
~̃
M

ord

H̃ ⊗
Z
Q, such that the pair (α̃H̃p , α̃

ord
H̃p

)⊗
Z
Q is induced by

α̃H̃ as in Proposition 3.3.5.1, we obtain a (partial) pullback

(7.2.2.8) (Ĝ, λ̂, î, α̂Ĥ)→ ~Nord,tor
κ̃

as in (1.3.4.9), where α̂Ĥ is defined only over ~Nord
κ̃ ⊗Z

Q, such that the

pair (α̂Ĥp , α̂
ord
Ĥp

)⊗
Z
Q is induced by α̂Ĥ in an obvious analogue of Propo-

sition 3.3.5.1.

Construction 7.2.2.9. (Compare with Construction 1.3.4.12.)

Let (Ĝ, λ̂, î, α̂Ĥp , α̂
ord
Ĥp

) → ~Nord,tor
κ̃ be as in (7.2.2.4), and let

(Ĝ, λ̂, î, α̂Ĥ) → ~Nord,tor
κ̃ be as in (7.2.2.8) in Construction 7.2.2.1.

Consider any morphism ξ : Spec(V )→ ~Nord,tor
κ̃ centered at a geometric

point s̄ of ~Nord,tor
κ̃ such that V is a complete discrete valuation ring

with fraction field K, and such that η := Spec(K) is mapped to the
generic point of the irreducible component containing the image of s̄.

Suppose the image of s̄ lies on the [(Φ̆H̃, δ̆H̃, ρ̆)]-stratum
~̃
Z

ord

[(Φ̆H̃,δ̆H̃,ρ̆)]

of
~̃
M

ord,tor

H̃,Σ̃ord , where [(Φ̆H̃, δ̆H̃, ρ̆)] is represented by some (Φ̆H̃, δ̆H̃, ρ̆)

with (Z̆H̃, Φ̆H̃ = (X̆, Y̆ , φ̆, ϕ̆−2,H̃, ϕ̆0,H̃), δ̆H̃) representing some ordinary

cusp label as in Section 7.1.1. (As in Construction 1.3.4.12, we avoid
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using the more familiar notation (Φ̆H̃, δ̆H̃, τ̆) because the symbol τ
will be used for another purpose below.) For simplicity, let us fix

compatible choices of representatives (Z̃, Φ̃ = (X̃, Ỹ , φ̃, ϕ̃−2, ϕ̃0), δ̃) and

(Z̆, Φ̆ = (X̆, Y̆ , φ̆, ϕ̆−2, ϕ̆0), δ̆), as in Sections 1.2.4 and 7.1.1, in their

H̃-orbits.

Since
~̃
X

ord

Φ̆H̃,δ̆H̃,ρ̆
is formally smooth over ~S0,rκ , there exists a complete

regular local ring Ṽ and an ideal Ĩ ⊂ Ṽ such that Ṽ /Ĩ ∼= V and

such that the morphism Spec(V ) → ~Nord,tor
κ̃ extends to a morphism

ξ̃ : Spf(Ṽ , Ĩ) → ~̃
X

ord

Φ̆H̃,δ̆H̃,ρ̆
, which induces a dominant morphism from

Spec(Ṽ ) to Spec(R̃), where R̃ is the local ring of
~̃
X

ord

Φ̆H̃,δ̆H̃,ρ̆
at the image

of s̄. Let

(7.2.2.10) (G̃‡, λ̃‡, ĩ‡, α̃‡
H̃p
, α̃ord,‡
H̃p

)→ Spec(Ṽ )

denote the pullback of (7.2.2.2) under the composition of ξ̃ with the

canonical morphism
~̃
X

ord

Φ̆H̃,δ̆H̃,ρ̆
→ ~̃

M
ord,tor

H̃,Σ̃ , and let

(7.2.2.11) (Ĝ‡, λ̂‡, î‡, α̂‡
Ĥp
, α̂ord,‡
Ĥp

)→ Spec(V )

denote the pullback of (7.2.2.4) under ξ. Similarly, let

(7.2.2.12) (G̃‡, λ̃‡, ĩ‡, α̃‡
H̃

)→ Spec(Ṽ )

denote the pullback of (7.2.2.7) under the composition of ξ̃ with the

canonical morphism
~̃
X

ord

Φ̆H̃,δ̆H̃,ρ̆
→ ~̃

M
ord,tor

H̃,Σ̃ , and let

(7.2.2.13) (Ĝ‡, λ̂‡, î‡, α̂‡
Ĥ

)→ Spec(V )

denote the pullback of (7.2.2.4) under ξ. Then α̃‡
H̃

induces (α̃‡
H̃p
, α̃ord,‡
H̃p

)

over η as in Proposition 3.3.5.1, and α̂‡
Ĥ

induces (α̂‡
Ĥp
, α̂ord,‡
Ĥp

) over η in

an analogous way. (We omit the details for simplicity.)
As in (6) of Theorem 5.2.1.1, (7.2.2.10) defines an object in the

essential image of DEGPEL,M̃ord
H̃

(Ṽ ) → DEG
PEL,

...
M̃

ord

H̃
(Ṽ ), which corre-

sponds to a tuple

(B̃‡, λB̃‡ , iB̃‡ , X̃
‡, Ỹ ‡, φ̃‡, c̃‡, c̃∨,‡, τ̃ ‡, [α̃\,ord,‡

H̃
])
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in the essential image of DDPEL,M̃ord
H̃

(Ṽ ) → DD
PEL,

...
M̃

ord

H̃
(Ṽ ) under

(4.1.6.4) in Theorem 4.1.6.2, where [α̃\,ord,‡
H̃

] is represented by some

α̃\,ord,‡
H̃

= (Z̃‡
H̃
, ϕ̃ord,‡
−2,H̃

, ϕ̃ord,‡
−1,H̃

=(ϕ̃‡
−1,H̃p

, ϕ̃ord,‡
−1,H̃p

),

ϕ̃ord,‡
0,H̃

, δ̃ord,‡
H̃

, c̃ord,‡
H̃

, c̃∨,ord,‡
H̃

, τ̃ ord,‡
H̃

)

induced by some

α̃\,‡
H̃

= (Z̃‡
H̃
, ϕ̃‡,∼
−2,H̃

, ϕ̃‡
−1,H̃

, ϕ̃‡,∼
0,H̃
, δ̃‡
H̃
, c̃‡
H̃
, c̃∨,‡
H̃
, τ̃ ‡
H̃

)

over η as in Section 4.1.6. Note that (X̃‡, Ỹ ‡, φ̃‡, [α̃\,‡
H̃

]) determines some

cusp label [(Z̃‡
H̃
, Φ̃‡
H̃
, δ̃‡
H̃

)] equivalent to the cusp label [(Z̆H̃, Φ̆H̃, δ̆H̃)]

represented by the H̃-orbit of the (Z̆, Φ̆, δ̆) introduced above (where

the (ϕ̃‡
−2,H̃

, ϕ̃‡
0,H̃

) in Φ̆H̃ is induced by (ϕ̃‡,∼
−2,H̃

, ϕ̃‡,∼
0,H̃

) as in the corrected

[62, Def. 5.4.2.8] in the errata). For simplicity, we shall use entries in
this last representative to replace their isomorphic (or equivalent) ob-

jects, and say in this case that (ϕ̃‡,∼
−2,H̃

, ϕ̃‡,∼
0,H̃

) and (ϕ̃ord,‡
−2,H̃

, ϕ̃ord,‡
0,H̃

) induce

(ϕ̆−2,H̃, ϕ̆0,H̃).

By definition, the pullback of (B̃‡, λB̃‡ , iB̃‡ , X̆, Y̆ , φ̆, c̃
‡, c̃∨,‡) to the

subscheme Spec(V ) of Spec(Ṽ ) depends only on (Ĝ‡, λ̂‡, î‡)→ Spec(V ).
Let us denote it by

(B̂‡, λB̂‡ , iB̂‡ , X̆, Y̆ , φ̆, ĉ
‡, ĉ∨,‡).

Note that the H̃-orbit (Z̃H̃, Φ̃H̃ = (X̃, Ỹ , φ̃, ϕ̃−2,H̃, ϕ̃0,H̃), δ̃H̃)
is part of the data of κ̃. By Lemma 1.2.4.16, it makes sense

to consider Z̆Ĥ, (ϕ̆−2,Ĥ, ϕ̆0,Ĥ), and δ̆Ĥ, which are the Ĥ-orbits

of Z̆, (ϕ̆−2 : GrZ̆−2
∼→ HomẐ(X̆ ⊗

Z
Ẑ, Ẑ(1)), ϕ̆0 : GrZ̆0

∼→ Y̆ ⊗
Z
Ẑ),

and δ̆, respectively. Then we have the orbit Ĥ-orbit δ̆Ĥ of δ̆,

which induces the Ĥ-orbit δ̂ord
Ĥ of δ̆ord. Moreover, by extending

restrictions to subgroups of L̃/nL̃ (with Z̃−1,n replaced with its

subgroup Z̆−1,n) as in Constructions 1.3.4.6 and 7.2.2.1, (α̃‡
H̃p
, α̃ord,‡
H̃p

)

induces an ordinary level-Hκ structure ϕ̃‡
−1,H̃

= (ϕ̃‡
−1,H̃p

, ϕ̃ord,‡
−1,H̃p

)

of (B̂‡, λB̂‡ , iB̂‡) depending only on (α̂‡
Ĥp
, α̂ord,‡
Ĥp

), which we denote

by ϕ̂ord,‡
−1,Ĥ

= (ϕ̂‡
−1,Ĥp

, ϕ̂ord,‡
−1,Ĥp

), which is compatible with the

level-Hκ structure ϕ̂‡
−1,Ĥ

of (B̂‡, λB̂‡ , iB̂‡)⊗Z
Q induced by α̃‡

H̃
as

in Proposition 3.3.5.1. Then it also makes sense to consider the
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Ĥ-orbit (ϕ̃ord,‡
−2,Ĥ

, ϕ̃ord,‡
0,Ĥ

), which we denote by (ϕ̂ord,‡
−2,Ĥ

, ϕ̂ord,‡
0,Ĥ

), which is

a subscheme of (ϕ̆−2,Ĥ, ϕ̆0,Ĥ) ×
Z̆Ĥ

ϕ̂ord,‡
−1,Ĥ

which can be identified with

a system of Ĥ/Û(n)-orbits, where n ≥ 1 are integers such that

Û(n) := Ũ(n)Ĝ ⊂ Ĥ, which surjects under the two projections to the

orbits defining (ϕ̆−2,Ĥ, ϕ̆0,Ĥ) and ϕ̂ord,‡
−1,Ĥ

and is compatible with the

Ĥ-orbit (ϕ̂‡,∼
−2,Ĥ

, ϕ̂‡,∼
0,Ĥ

) defined as a subscheme of (ϕ̆−2,Ĥ, ϕ̆0,Ĥ) ×
Z̆Ĥ

ϕ̂‡
−1,Ĥ

.

In this case, we say that (ϕ̂‡,∼
−2,Ĥ

, ϕ̂‡,∼
0,Ĥ

) and (ϕ̂ord,‡
−2,Ĥ

, ϕ̂ord,‡
0,Ĥ

) induce the

Ĥ-orbit (ϕ̆−2,Ĥ, ϕ̆0,Ĥ).
By proceeding as in Construction 1.3.4.12, we can define

(ι̂‡ : Y → Ĝ\,‡
η , ι̂

∨,‡ : X → Ĝ∨,\,‡η )

and

(τ̂ ‡ : 1Y × X̆,η
∼→ (ĉ∨,‡|Y × ĉ‡)∗P⊗−1

B̂‡,η
,

τ̂∨,‡ : 1Y̆ ×X,η
∼→ (ĉ∨,‡× ĉ‡|X)∗P⊗−1

B̂‡,η
)

(satisfying certain familiar compatibility conditions, which we omit for

simplicity), and define the Ĥp-orbits (ι̂‡
Ĥp
, ι̂∨,‡
Ĥp

) and (ĉ‡
Ĥp
, ĉ∨,‡
Ĥp
, τ̂ ‡
Ĥp
, τ̂∨,‡
Ĥp

)

determined by α̂‡
Ĥp

, which is induced by the Ĥ-orbits (ι̂‡
Ĥ
, ι̂∨,‡
Ĥ

) and

(ĉ‡
Ĥ
, ĉ∨,‡
Ĥ
, τ̂ ‡
Ĥ
, τ̂∨,‡
Ĥ

) determined by α̂‡
Ĥ

. On the other hand, ι̃ord,‡
H̃p

carries

no more information than (c̃ord,‡
H̃p

, c̃∨,ord,‡
H̃p

) (see Proposition 4.1.5.20 and

Definitions 4.1.5.22 and 4.1.5.23), and (c̃ord,‡
H̃

, c̃∨,ord,‡
H̃

) is the pullback of

the tautological object (c̃ord
H̃ , c̃∨,ord

H̃
) over

~̃
C

ord

Φ̆H̃,δ̆H̃
, which depends only

on Ĥ. Hence, it makes sense to define

(ι̂ord,‡
Ĥ

, ι̂∨,ord,‡
Ĥ

) := (ι̂‡
Ĥp
, ι̂∨,‡
Ĥp

),

(τ̂ ord,‡
Ĥ

, τ̂∨,ord,‡
Ĥ

) := (τ̂ ‡
Ĥp
, τ̂∨,‡
Ĥp

),

(ĉord,‡
Ĥ

, ĉ∨,ord,‡
Ĥ

) := (c̃ord,‡
H̃

, c̃∨,ord,‡
H̃

).

In summary, given the family (1.3.4.9) in Construction 1.3.4.6, each
morphism ξ : Spec(V )→ Ntor

κ̃ as above determines a tuple

(7.2.2.14) (B̂‡, λB̂‡ , iB̂‡ , X̆, Y̆ , φ̆, ĉ
‡, ĉ∨,‡, τ̂ ‡, τ̂∨,‡, [α̂\,ord,‡

Ĥ
]),

where [α̂\,ord,‡
Ĥ

] is an equivalence class of

(7.2.2.15)

α̂\,ord,‡
Ĥ

= (Z̆Ĥ, ϕ̂
ord,‡
−2,Ĥ

, ϕ̂ord,‡
−1,Ĥ

, ϕ̂ord,‡
0,Ĥ

, δ̂ord
Ĥ , ĉord,‡

Ĥ
, ĉ∨,ord,‡
Ĥ

, τ̂ ord,‡
Ĥ

, τ̂∨,ord,‡
Ĥ

)
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(whose precise definitions we omit for simplicity), induced by some

(7.2.2.16) α̂\,‡
Ĥ

= (Z̆Ĥ, ϕ̂
‡,∼
−2,Ĥ

, ϕ̂‡
−1,Ĥ

, ϕ̂‡,∼
0,Ĥ
, δ̆Ĥ, ĉ

‡
Ĥ
, ĉ∨,‡
Ĥ
, τ̂ ‡
Ĥ
, τ̂∨,‡
Ĥ

)

(cf. (1.3.4.16)) over η, in a way analogous to that in Section 4.1.6.
Given a tuple as in (7.2.2.14), if we set

(B‡, λB‡ , iB‡ , ϕ
ord
−1,Hκ) := (B̂‡, λB̂‡ , iB̂‡ , ϕ̂

ord
−1,Ĥ)

and

(c‡, c∨,‡, τ ‡) := (ĉ‡|X , ĉ∨,‡|Y , τ̂ ‡|1Y×X,η),

and define [α\,ord,‡
Hκ ] using similar restrictions, then the tuple

(7.2.2.17) (B‡, λB‡ , iB‡ , X, Y, φ, c
‡, c∨,‡, τ ‡, [α\,ord,‡

Hκ ])

defines an object in the essential image of DDPEL,Mord
Hκ

(V ) →
DDPEL,

...
M

ord
Hκ

(V ) (because we can define [α\,‡Hκ ] as in (1.3.4.17)

in Construction 1.3.4.12). On the other hand, the pullback

(Ĝ‡, λ̂‡, î‡, α̂‡
Ĥp
, α̂ord,‡
Ĥp

) → Spec(V ) is determined up to isomorphism

by its generic fiber (Ĝ‡η, λ̂
‡
η, î
‡
η, α̂

‡
Ĥp,η

, α̂ord,‡
Ĥp,η

) → Spec(K), which

(up to isomorphism) determines and is determined by a tuple

((G‡η, λ
‡
η, i
‡
η, α

‡
Hpκ,η

, αord,‡
Hκ,p,η), (c̃

ord,‡
H̃,η

, c̃∨,ord,‡
H̃,η

)) → Spec(K) parameterized

by
~̃
C

ord

Φ̃H̃,δ̃H̃
. The abelian part (G‡η, λ

‡
η, i
‡
η, α

‡
Hpκ,η

, αord,‡
Hκ,p,η) extends to a

degenerating family

(7.2.2.18) (G‡, λ‡, i‡, α‡Hpκ , α
ord,‡
Hκ,p)

of type ~Mord
Hκ over Spec(V ) (with α‡Hpκ still defined only over

η = Spec(K)) which defines an object in the essential image of

DEGPEL,Mord
Hκ

(V ) → DEGPEL,
...
M

ord
Hκ

(V ) (because we can defined α‡Hκ as

in (1.3.4.18) in Construction 1.3.4.12). By the theory of two-step
degenerations (see [28, Ch. III, Thm. 10.2] and [62, Sec. 4.5.6]), and
by analyzing endomorphism structures and level structures as in [62,
Sec. 5.1–5.3] and Section 4.1, under (4.1.6.4) in Theorem 4.1.6.2, this
last object (7.2.2.18) corresponds to the above object (7.2.2.17) in the
essential image of DDPEL,Mord

Hκ
(V )→ DDPEL,

...
M

ord
Hκ

(V ).

As in Construction 1.3.4.12, by checking the values of their entries
on K̄-points, where K̄ is any fixed algebraic closure of K, the tuple
over Spec(V ) as in (7.2.2.14) determines and is determined by the tuple
(7.2.2.11) (up to isomorphism, over Spec(K)).
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As in (4.2.2.7), the pair (τ̂ ‡, τ̂∨,‡) defines compatible morphisms

υτ̂‡ : Y × X̆ → Z and υτ̂∨,‡ : Y̆ ×X → Z (using the discrete valuation
υ : Inv(V )→ Z of V ), which define the same element

υτ̂‡ = υτ̂∨,‡ ∈ (ŜΦ̆Ĥ
)∨R

(see (1.2.4.29)). On the other hand, as in (6) of Theorem 5.2.1.1, τ̃ ‡

defines a morphism υτ̃‡ : Y̆ × X̆ → Z, which defines an element

υτ̃‡ ∈ ρ̆ ⊂ P+

Φ̆H̃
,

where ρ̆ is as above. Since (τ̂ ‡, τ̂∨,‡) is defined by extending restrictions
of υτ̃‡ , we see that

υτ̂‡ = υτ̂∨,‡ ∈ ρ̂ = pr(ŜΦ̆Ĥ
)∨R

(ρ̆) ⊂ P̂Φ̆Ĥ

(see (1.2.4.41)). If ρ̆ is replaced with another representative, then ρ̂
is replaced with a translation under the action of ΓΦ̆Ĥ

. (This finishes

Construction 7.2.2.9.)

Proposition 7.2.2.19. (Compare with Proposition 1.3.4.19.)

Suppose κ̃ = (H̃, Σ̃, σ̃) and κ̃′ = (H̃′, Σ̃′, σ̃′) are elements

in K̃ord,++
Q,H such that κ′ = [κ̃′] � κ = [κ̃] in Kord,++

Q,H (see

Definition 7.1.1.11). Let (Ĝ, λ̂, î, α̂Ĥp , α̂
ord
Ĥp

) → ~Nord,tor
κ̃ (resp.

(Ĝ′, λ̂′, î′, α̂′Ĥ′,p , α̂
ord,′
Ĥ′p

) → ~Nord,tor
κ̃′ ) denote the pullback of the

degenerating family (G̃, λ̃, ĩ, α̃H̃p , α̃
ord
H̃p

) → ~̃
M

ord,tor

H̃,Σ̃ord (resp.

(G̃′, λ̃′, ĩ′, α̃′H̃′,p , α̃
ord,′
H̃p

) → ~̃
M

ord,tor

H̃′,Σ̃ord,′), and let (Ĝ, λ̂, î, α̂Ĥ) → ~Nord,tor
κ̃

(resp. (Ĝ′, λ̂′, î′, α̂′Ĥ′)→
~Nord,tor
κ̃′ ) denote the pullback of the degenerating

family (G̃, λ̃, ĩ, α̃H̃) → ~̃
M

ord,tor

H̃,Σ̃ord (resp. (G̃′, λ̃′, ĩ′, α̃′H̃′) →
~̃
M

ord,tor

H̃′,Σ̃ord,′),
as in Construction 7.2.2.1. Then there is a canonical surjection

f tor
κ̃′,κ̃ : Ntor

κ̃′ → ~Nord,tor
κ̃ under which (Ĝ′, λ̂′, î′, α̂′Ĥ′,p , α̂

ord,′
Ĥ′p

) → ~Nord,tor
κ̃′ is

canonically isomorphic to the pullback of (Ĝ, λ̂, î, α̂Ĥp , α̂
ord
Ĥp

)→ ~Nord,tor
κ̃ ,

and under which (Ĝ′, λ̂′, î′, α̂′Ĥ′)→
~Nord,tor
κ̃′ is canonically isomorphic to

the pullback of (Ĝ, λ̂, î, α̂Ĥ)→ Ntor
κ̃ .

In particular, for each κ̃ = (H̃, Σ̃, σ̃) ∈ K̃ord,++
Q,H , the closure ~Nord,tor

κ̃

of ~Nord
κ̃ =

~̃
Z

ord

[(Φ̃H̃,δ̃H̃,σ̃)] in
~̃
M

ord,tor

H̃,Σ̃ord and the open (fiberwise dense) embed-

ding κ̃tor : ~Nord
κ̃ ↪→ ~Nord,tor

κ̃ depend (up to canonical isomorphism) only
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on the pair κ = [κ̃] = (Ĥ, Σ̂ord) in Kord,++
Q,H . It satisfies the descrip-

tions of stratifications and completions in the third, fourth, and fifth
paragraphs of (1) of Theorem 1.3.3.15.

The morphism f tor
κ̃′,κ̃ : ~Nord,tor

κ̃′ → ~Nord,tor
κ̃ induces a morphism

~Nord,tor
κ̃′ → ~Nord,tor

κ̃ ×
~S0,rκ

~S0,rκ′
which is étale locally given by equivariant

morphisms between toric schemes mapping strata to strata, and hence
(this induced morphism) is log étale essentially by definition (see [45,
Thm. 3.5]). Moreover, as in [28, Ch. V, Rem. 1.2(b)] and in the proof
of [62, Lem. 7.1.1.4], we have Ri(f tor

κ̃′,κ̃)∗O~Nord,tor

κ̃′
= 0 for i > 0 by [50,

Ch. I, Sec. 3].

Proof. Suppose Ĥ (resp. Ĥ′) is determined by some

H̃ (resp. H̃′) satisfying Conditions 1.2.4.7 and 7.1.1.5. By

Lemma 7.2.1.3, we may replace Ĥ′ (resp. H̃′) with Ĥ′ ∩ Ĥ
(resp. H̃′ ∩ H̃), in which case we have a canonical (forgetful)

morphism fκ̃′,κ̃ : ~Nord,tor
κ̃′

∼= ~̃
C

ord

Φ̃H̃′ ,δ̃H̃′
→ ~̃

C
ord

Φ̃H̃,δ̃H̃
∼= ~Nord,tor

κ̃ (by

construction). Suppose ((G′, λ′, i′, α′Hp
κ′
, αord,′
Hκ′,p

), (c̃ord,′
H̃′

, c̃∨,ord,′
H̃′

)) (resp.

((G, λ, i, αHpκ , α
ord
Hκ,p), (c̃

ord
H̃ , c̃∨,ord

H̃
))) is the tautological object over

~̃
C

ord

Φ̃H̃′ ,δ̃H̃′
(resp.

~̃
C

ord

Φ̃H̃,δ̃H̃
), as in Construction 7.2.2.1, which determines

and is determined by (Ĝ′~Nord
κ̃′
, λ̂′~Nord

κ̃′
, î′~Nord

κ̃′
, α̂′Ĥ′,p , α̂

ord,′
Ĥ′p

) → ~Nord
κ̃′

(resp. (ĜNκ̃ , λ̂Nκ̃ , îNκ̃ , α̂Ĥp , α̂
ord,p

Ĥp
) → ~Nord

κ̃ ), the pullback of

(Ĝ′, λ̂′, î′, α̂′Ĥ′,p , α̂
ord,′
Ĥ′p

) → ~Nord,tor
κ̃′ (resp. (Ĝ, λ̂, î, α̂Ĥp , α̂

ord
Ĥp

) → ~Nord,tor
κ̃ )

to ~Nord
κ̃′ (resp. ~Nord

κ̃ ). Then fκ̃′,κ̃ is also the canonical morphism

determined by the universal property of
~̃
C

ord

Φ̃H̃,δ̃H̃
, under which

the pullback of ((G, λ, i, αHpκ , α
ord
Hκ,p), (c̃

ord
H̃ , c̃∨,ord

H̃
)) is canonically

isomorphic to the Ĥ-orbit ((G′, λ′, i′, α′Hpκ , α
ord,′
Hκ,p), (c̃

ord,′
H̃

, c̃∨,ord,′
H̃

)) of

((G′, λ′, i′, α′Hp
κ′
, αord,′
Hκ′,p

), (c̃ord,′
H̃′

, c̃∨,ord,′
H̃′

)); or, rather, such that the pull-

back of (Ĝ~Nord
κ̃
, λ̂~Nord

κ̃
, î~Nord

κ̃
, α̂Ĥp , α̂

ord
Ĥp

) → ~Nord
κ̃ under fκ̃′,κ̃ is canonically

isomorphic to the Ĥ-orbit (Ĝ′~Nord
κ̃′
, λ̂′~Nord

κ̃′
, î′~Nord

κ̃′
, α̂′Ĥp , α̂

ord,′
Ĥp

) → ~Nord
κ̃′ of

(Ĝ′~Nord
κ̃′
, λ̂′~Nord

κ̃′
, î′~Nord

κ̃′
, α̂′Ĥ′,p , α̂

ord,′
Ĥ′p

)→ ~Nord
κ̃′ .

Since ~Nord,tor
κ̃′ is noetherian normal, by [92, IX, 1.4], [28,

Ch. I, Prop. 2.7], or [62, Prop. 3.3.1.5], since the family
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(Ĝ′~Nord
κ̃′
, λ̂′~Nord

κ̃′
, î′~Nord

κ̃′
, α̂′Ĥ′,p , α̂

ord,′
Ĥ′p

)→ ~Nord
κ̃′ is canonically isomorphic to the

pullback of (Ĝ~Nord
κ̃
, λ̂~Nord

κ̃
, î~Nord

κ̃
, α̂Ĥp , α̂

ord
Ĥp

)→ ~Nord
κ̃ under fκ̃′,κ̃, as soon as

fκ̃′,κ̃ : ~Nord
κ̃′ → ~Nord

κ̃ extends to a morphism f tor
κ̃′,κ̃ : ~Nord,tor

κ̃′ → ~Nord,tor
κ̃ , we

know that (Ĝ′, λ̂′, î′, α̂′Ĥ′,p , α̂
ord,′
Ĥ′p

) → ~Nord,tor
κ̃′ is canonically isomorphic

to the pullback of (Ĝ, λ̂, î, α̂Ĥp , α̂
ord
Ĥp

) → ~Nord,tor
κ̃ under f tor

κ̃′,κ̃. Such

an extension f tor
κ̃′,κ̃ is necessarily unique, because ~Nord

κ̃ (resp. ~Nord
κ̃′ )

is dense in ~Nord,tor
κ̃ (resp. ~Nord,tor

κ̃′ ). Hence, it suffices to show that

fκ̃′,κ̃ : ~Nord
κ̃′ → ~Nord

κ̃ extends locally.

Let s̄ be any geometric point of ~Nord,tor
κ̃′ on the

~̃
Z

ord

[(Φ̆H̃′ ,δ̆H̃′ ,ρ̆
′)]-stratum

of
~̃
M

ord,tor

H̃′,Σ̃ord,′ , where [(Φ̆H̃′ , δ̆H̃′ , ρ̆
′)] is represented by some (Φ̆H̃′ , δ̆H̃′ , ρ̆

′)

with (Z̆H̃′ , Φ̆H̃′ = (X̆, Y̆ , φ̆, ϕ̆−2,H̃′ , ϕ̆0,H̃′), δ̆H̃′) representing some
cusp label as in Section 1.2.4. For simplicity, let us fix compatible

choices of representatives (Z̃, Φ̃ = (X̃, Ỹ , φ̃, ϕ̃−2, ϕ̃0), δ̃) and

(Z̆, Φ̆ = (X̆, Y̆ , φ̆, ϕ̆−2, ϕ̆0), δ̆), as in Sections 1.2.4 and 7.1.1,

in their H̃′-orbits. As in Construction 7.2.2.9, each morphism

ξ′ : Spec(V ) → ~Nord,tor
κ̃′ centered at a geometric point s̄ of ~Nord,tor

κ̃′ ,
where V is a complete discrete valuation ring with fraction field
K, and where η := Spec(K) is mapped to the generic point of the
irreducible component containing the image of s̄, determines a tuple

(B̂‡, λB̂‡ , iB̂‡ , X̆, Y̆ , φ̆, ĉ
‡, ĉ∨,‡, τ̂ ‡, τ̂∨,‡, [α̂\,ord,‡

Ĥ′
])

as in (7.2.2.14), where [α̂\,ord,‡
Ĥ′

] is an equivalence class of

α̂\,ord,‡
Ĥ′

= (Z̆Ĥ′ , ϕ̂
ord,‡
−2,Ĥ′

, ϕ̂ord,‡
−1,Ĥ′

, ϕ̂ord,‡
0,Ĥ′

, δ̂ord
Ĥ′ , ĉ

ord,‡
Ĥ′

, ĉ∨,ord,‡
Ĥ′

, τ̂ ord,‡
Ĥ′

, τ̂∨,ord,‡
Ĥ′

)

as in (7.2.2.15), induced by some

α̂\,‡
Ĥ′

= (Z̆Ĥ′ , ϕ̂
‡,∼
−2,Ĥ′

, ϕ̂‡
−1,Ĥ′

, ϕ̂‡,∼
0,Ĥ′

, δ̆Ĥ′ , ĉ
‡
Ĥ′
, ĉ∨,‡
Ĥ′
, τ̂ ‡
Ĥ′
, τ̂∨,‡
Ĥ′

)

as in (7.2.2.16) over η, in a way analogous to that in Section 4.1.6,
and the pair (τ̂ ‡, τ̂∨,‡) defines an element υτ̂‡ = υτ̂∨,‡ in ρ̂′ for some

ρ̂′ ⊂ P̂+

Φ̆Ĥ′
in Σ̂Φ̆Ĥ′

. (We should have denoted all these entries with

some extra ′ in their superscripts, because they are determined by the

pullback of (Ĝ′, λ̂′, î′, α̂′Ĥ′,p , α̂
ord,′
Ĥ′p

)→ ~Nord,tor
κ̃′ . But we omit them for the

sake of simplicity.) By forming Ĥ-orbits, we obtain a tuple

(B̂‡, λB̂‡ , iB̂‡ , X̆, Y̆ , φ̆, ĉ
‡, ĉ∨,‡, τ̂ ‡, τ̂∨,‡, [α̂\,ord,‡

Ĥ
]),
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where [α̂\,ord,‡
Ĥ

] is an equivalence class of

α̂\,ord,‡
Ĥ

= (Z̆Ĥ, ϕ̂
ord,‡
−2,Ĥ

, ϕ̂ord,‡
−1,Ĥ

, ϕ̂ord,‡
0,Ĥ

, δ̂ord
Ĥ , ĉord,‡

Ĥ
, ĉ∨,ord,‡
Ĥ

, τ̂ ord,‡
Ĥ

, τ̂∨,ord,‡
Ĥ

)

induced by some

α̂\,‡
Ĥ

= (Z̆Ĥ, ϕ̂
‡,∼
−2,Ĥ

, ϕ̂‡
−1,Ĥ

, ϕ̂‡,∼
0,Ĥ
, δ̆Ĥ, ĉ

‡
Ĥ
, ĉ∨,‡
Ĥ
, τ̂ ‡
Ĥ
, τ̂∨,‡
Ĥ

)

over η, and the pair (τ̂ ‡, τ̂∨,‡) defines the same element υτ̂‡ = υτ̂∨,‡ in

ρ̂′. By assumption, Σ̂′ is a refinement of Σ̂. Hence, under the canonical

isomorphism P̂Φ̆Ĥ′
∼= P̂Φ̆Ĥ

, we have ρ̂′ ⊂ ρ̂ for some cone ρ̂ ⊂ P̂+

Φ̆Ĥ
in

Σ̂Φ̆Ĥ
, so that υτ̂‡ = υτ̂∨,‡ lies in ρ̂.

By the universal property of
~̃
M

ord,Φ̆H̃

H̃ (as the normalization

of
...
M̃

ord,Φ̆H̃

H̃ in M̃
ord,Φ̆H̃
H̃

, which depends only on Ĥ; see Definition

1.2.1.15, (4.2.1.27), the definition preceding (4.2.1.28), and

Proposition 4.2.1.29), the data (Z̆Ĥ, Φ̆Ĥ = (X̆, Y̆ , φ̆, ϕ̆−2,Ĥ, ϕ̆0,Ĥ), δ̆Ĥ),

(ϕ̂ord,‡
−2,Ĥ

, ϕ̂ord,‡
0,Ĥ

) and (B̂‡, λB̂‡ , iB̂‡ , ϕ̂
ord,‡
−1,Ĥ

) on the torus and abelian

parts, which are induced by the corresponding data (ϕ̂‡,∼
−2,Ĥ

, ϕ̂‡,∼
0,Ĥ

)

and (B̂‡, λB̂‡ , iB̂‡ , ϕ̂
‡
−1,Ĥ

) over η, define a canonical morphism

ξ1 : Spec(V )→ ~̃
M

ord,Φ̆H̃

H̃ . By the universal property of
~̃
C

ord

Φ̆H̃,δ̆H̃
→ ~̃

M
Φ̆H̃

ord,H̃

(as the normalization of
...
C̃

ord

Φ̆H̃,n
in Cord

ΦH,δH
for some n; see (4.2.1.26),

the definition preceding (4.2.1.28), and Proposition 4.2.1.30), the

additional data (ĉord,‡
Ĥ

, ĉ∨,ord,‡
Ĥ

) lifting (ĉord,‡, ĉ∨,ord,‡), induced by

(ĉ‡
Ĥ
, ĉ∨,‡
Ĥ

) over η, define a canonical morphism ξ0 : Spec(V ) → ~̃
C

ord

Φ̆H̃,δ̆H̃
lifting ξ1. By the construction of

~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
∼= Spec

O
~̃
C

ord
Φ̆H̃,δ̆H̃

(
⊕

˘̀∈σ̆⊥

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)

)

over
~̃
C

ord

Φ̆H̃,δ̆H̃
, which we can canonically identify as

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
∼= Spec

O
~̂
C

ord
Φ̆Ĥ,δ̆Ĥ

(
⊕

˘̀∈ŜΦ̆Ĥ

~̂
Ψ

ord

Φ̆Ĥ,δ̆Ĥ
(˘̀)

)
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over
~̂
C

ord

Φ̆Ĥ,δ̆Ĥ
(see Proposition 7.1.2.6), it enjoys the universal property

(similar to that of
~̃
Ξ

ord

Φ̆H̃,δ̆H̃
→ ~̃

C
ord

Φ̆H̃,δ̆H̃
; see (4.2.1.25), the definition pre-

ceding (4.2.1.28), and Propositions 4.2.1.30 and 4.2.1.46) such that

the final part of the data (τ̂ ord,‡
Ĥ

, τ̂∨,ord,‡
Ĥ

) lifting (τ̂ ‡, τ̂∨,‡), induced by

(τ̂ ‡
Ĥ
, τ̂∨,‡
Ĥ

) over η, determines a canonical morphism ξ̃K : Spec(K) →
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
lifting ξ0 under the canonical morphism

~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
→ ~̃

C
ord

Φ̆H̃,δ̆H̃
.

Since the element υτ̂‡ = υτ̂∨,‡ defined by (τ̂ ‡, τ̂∨,‡) lies in ρ̂′ ⊂ ρ̂, by the
construction of

~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(ρ̆) ∼= Spec

O
~̃
C

ord
Φ̆H̃,δ̆H̃

(
⊕

˘̀∈σ̆⊥ ∩ ρ̆∨

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)

)

(see (7.2.1.9)), which we can canonically identify as

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ
(ρ̂) = Spec

O
~̂
C

ord
Φ̆Ĥ,δ̆Ĥ

(
⊕

˘̀∈ρ̂∨

~̂
Ψ

ord

Φ̆Ĥ,δ̆Ĥ
(˘̀)

)

(see (7.1.2.10)), which depends only on Ĥ and on ρ̂∨ ∼= σ̆⊥ ∩ ρ̆∨, and
by the same argument as in the proof of Proposition 4.2.2.8, the mor-

phism ξ̃K extends to a morphism ξ̃ : Spec(V ) → ~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(ρ̆) lifting

ξ0 under the canonical morphism
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(ρ̆) → ~̃

C
ord

Φ̆H̃,δ̆H̃
, which maps

the special point of Spec(V ) to the ρ̆-stratum
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,ρ̆
of
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(ρ̆).

(Alternatively, we can noncanonically lift υτ̂‡ = υτ̂∨,‡ to elements of

ρ̆ ⊂ P+

Φ̆H̃
, work with

~̃
Ξ

ord

Φ̆H̃,δ̆H̃
and

~̃
Ξ

ord

Φ̆H̃,δ̆H̃
(ρ̆) directly, and invoke the

original Proposition 4.2.2.8.) Since V is complete, ξ̃ induces a mor-

phism ξ̂ from Spf(V ) to
~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,ρ̆
, the formal completion of

~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(ρ̆)

along its ρ̆-stratum
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,ρ̆
. Then the composition of ξ̂ with the

canonical morphism
~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,ρ̆
→ ~Nord,tor

κ̃ gives a canonical morphism

ξ : Spec(V )→ ~Nord,tor
κ̃ .

As explained in Construction 7.2.2.9, ξη := ξ|η : η = Spec(K) →
~Nord
κ̃ is determined by the pullback (Ĝ′η, λ̂

′
η, î
′
η, α̂

′
Ĥ′,p,η, α̂

ord,′
Ĥp,η

)→ Spec(K)

of (Ĝ′, λ̂′, î′, α̂′Ĥ′,p , α̂
ord,′
Ĥ′p

) → ~Nord,tor
κ̃′ under ξ′η := ξ′|η : Spec(K) →
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~Nord,tor
κ̃′ , whose Ĥ-orbit (Ĝ′η, λ̂

′
η, î
′
η, α̂

′
Ĥp,η, α̂

ord,′
Ĥp,η

) → Spec(K) is (as ex-

plained in the first paragraph of this proof) isomorphic to the pull-

back of (Ĝ, λ̂, î, α̂Ĥp , α̂
ord
Ĥp

) → ~Nord,tor
κ̃ under the composition of ξ′η :

Spec(K)→ ~Nord
κ̃′ with fκ̃′,κ̃ : ~Nord,tor

κ̃′ → ~Nord,tor
κ̃ . Hence, ξη = fκ̃′,κ̃ ◦ ξ′η by

the universal property of ~Nord
κ̃ , and ξ : Spec(V )→ ~Nord,tor

κ̃ can be inter-

preted as a (necessarily unique) extension of fκ̃′,κ̃◦ξ′η : Spec(K)→ ~Nord
κ̃ .

Since ξ′ : Spec(V ) → ~Nord,tor
κ̃′ and s̄ (the prescribed center

of ξ′) are arbitrary, and since ~Nord,tor
κ̃′ is noetherian normal, this

shows that fκ̃′,κ̃ extends to f tor
κ̃′,κ̃, as desired. The argument also

shows that the restriction of f tor
κ̃′,κ̃ to the [(Φ̆H̃′ , δ̆H̃′ , ρ̆

′)]-stratum

~̃
Z

ord

[(Φ̆H̃′ ,δ̆H̃′ ,ρ̆
′)]
∼= (

~̃
Ξ

ord

Φ̆H̃′ ,δ̆H̃′
)ρ̆′ of

~̃
M

ord,tor

H̃′,Σ̃ord,′ coincides with the canonical

morphism (
~̃
Ξ

ord

Φ̆H̃′ ,δ̆H̃′
)ρ̆′ →

~̃
Ξ

ord

Φ̆H̃,δ̆H̃,ρ̆
on geometric points. Since the

images of such morphisms cover
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,ρ̆
, because ρ̂ = pr(ŜΦ̆Ĥ

)∨R
(ρ̆)

is covered by the cones ρ̂′ = pr(ŜΦ̆Ĥ
)∨R

(ρ̆′), the morphism f tor
κ̃′,κ̃ is

surjective.
By considering ordinary good algebraic models in Section 5.1.2

and by arguing as in the paragraph preceding [61, Lem. 5.10],

the morphism f tor
κ̃′,κ̃ : ~Nord,tor

κ̃′ → ~Nord,tor
κ̃ is étale locally given by

the canonical morphism
~̃
Ξ

ord

Φ̆H̃′ ,δ̆H̃′ ,σ̆
′(ρ̆′) → ~̃

Ξ
ord

Φ̆H̃,δ̆H̃,σ̆
(ρ̆), because the

tautological data (as in (7.2.2.14)) over
~̃
Ξ

ord

Φ̆H̃′ ,δ̆H̃′ ,σ̆
′(ρ̆′) is the pullback

of the one over
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(ρ̆). By construction, the induced morphism

~̃
Ξ

ord

Φ̆H̃′ ,δ̆H̃′ ,σ̆
′(ρ̆′)→ ~̃

Ξ
ord

Φ̆H̃,δ̆H̃,σ̆
(ρ̆) ×

~S0,rκ

~S0,rκ′
is log étale and equivariant with

respect to the canonical homomorphism ẼΦ̆H̃′ ,σ̆
′ → ẼΦ̆H̃,σ̆

between tori,

which (by Proposition 1.3.2.56 again) can be canonically identified

with the canonical log étale morphism
~̂
Ξ

ord

Φ̆Ĥ′ ,δ̆Ĥ′
(ρ̂′) → ~̂

Ξ
ord

Φ̆Ĥ,δ̆Ĥ
(ρ̂),

equivariant with respect to the canonical homomorphism ÊΦ̆Ĥ′
→ ÊΦ̆Ĥ

between tori (dual to the canonical homomorphism ŜΦ̆Ĥ
→ ŜΦ̆Ĥ′

up

to canonical identifications; see Definition 1.2.4.29).

We note that the above argument shows that ~Nord,tor
κ̃ satisfies the

descriptions of stratification and formal completions as in the third,
fourth, and fifth paragraphs of (1) of Theorem 7.1.4.1, because they
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follow from (2) and (5) of Theorem 5.2.1.1 (for M̃tor
H̃,Σ̃ord

), from Lemma

5.2.4.38, and from the justifications provided in Section 5.2.4.
The remainder of the proposition then follows. �

Thanks to Lemma 7.2.1.3 and Proposition 7.2.2.19, we can make
the following:

Definition 7.2.2.20. (Compare with Definition 1.3.4.20.) For κ̃ ∈
K̃ord,++
Q,H which defines κ = [κ̃] ∈ Kord,++

Q,H (see Definition 7.1.1.11),

we shall denote κ̃isog : HomO(Q,G~Mord
Hκ

)◦ → ~Nord,grp
κ̃ and κ̃tor : ~Nord

κ̃ ↪→
~Nord,tor
κ̃ by κisog : HomO(Q,G~Mord

Hκ
)◦ → ~Nord,grp

κ and κtor : ~Nord
κ ↪→ ~Nord,tor

κ ,

respectively. For κ̃ and κ̃′ in K̃ord,++
Q,H such that κ′ = [κ̃′] � κ = [κ̃] in

Kord,++
Q,H , we shall denote the canonical morphisms fκ̃′,κ̃ : ~Nord

κ̃′ → ~Nord
κ̃ ,

f grp
κ̃′,κ̃ := κ̃isog ◦ ((κ̃′)isog)−1 : ~Nord,grp

κ̃ → ~Nord,grp
κ̃ ×

~Mord
Hκ

~Mord
Hκ′ , and f tor

κ̃′,κ̃ :

~Nord,tor
κ̃′ → ~Nord,tor

κ̃ by fκ′,κ : ~Nord
κ′ → ~Nord

κ , f grp
κ′,κ := κisog ◦ ((κ′)isog)−1 :

~Nord,grp
κ′ → ~Nord,grp

κ ×
~Mord
Hκ

~Mord
Hκ′ , and f tor

κ′,κ : ~Nord,tor
κ′ → ~Nord,tor

κ , respec-

tively. (That is, we drop the tildes in all such notations.) We shall

denote by
~̂
Z

ord

[(Φ̆Ĥ,δ̆Ĥ,τ̂)] the [(Φ̆Ĥ, δ̆Ĥ, τ̂)]-stratum of ~Nord,tor
κ , which is the

[(Φ̆H̃, δ̆H̃, τ̆)]-stratum
~̃
Z

ord

[(Φ̆H̃,δ̆H̃,τ̆)]
∼= ~̃

Ξ
ord

Φ̆H̃,δ̆H̃,τ̆
∼= ~̂

Ξ
ord

Φ̆Ĥ,δ̆Ĥ,τ̂
of ~Nord,tor

κ̃ under

the canonical identification between ~Nord,tor
κ and ~Nord,tor

κ̃ (up to canoni-

cal isomorphism) (when (Φ̆Ĥ, δ̆Ĥ, τ̂) is determined by (Φ̆H̃, δ̆H̃, τ̆) as in
Section 1.2.4).

Corollary 7.2.2.21. Suppose that κ = (Ĥ, Σ̂) and κ′ = (Ĥ′, Σ̂′)
are elements of Kord,++

Q,H satisfying κ′ � κ, and that Hκ and Hκ′ are
equally deep as in Definition 3.2.2.9. Then the canonical morphism

f tor
κ′,κ : ~Nord,tor

κ′ → ~Nord,tor
κ (see Proposition 7.2.2.19) is proper.

Proof. Suppose κ = [κ̃] for some κ̃ = (H̃, Σ̃, σ̃) ∈ K̃ord,++
Q,H . Take

a third element κ′′ = (Ĥ′′, Σ̂′′) ∈ Kord,++
Q,H such that Ĥ′′ = Ĥ′ (and so

that Hκ′′ = Hκ′), such that κ′′ � κ′, and such that κ′′ = [κ̃′′] for some

κ̃′′ = (H̃′′, Σ̃′′, σ̃′′) ∈ K̃ord,++
Q,H such that H̃′′ ⊂ H̃ are equally deep as in

Definition 3.2.2.9, such that Σ̃′′ is a refinement of Σ̃, and such that σ̃′′

is contained in σ̃. Then we have canonical surjections f tor
κ′′,κ′ : ~Nord,tor

κ′′ →
~Nord,tor
κ′ and f tor

κ′′,κ : ~Nord,tor
κ′′ → ~Nord,tor

κ such that f tor
κ′′,κ = f tor

κ′,κ ◦ f tor
κ′′,κ′ (see

Proposition 7.2.2.19), and f tor
κ′′,κ is proper because it is the restriction (to
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a closed subscheme) of the canonical surjection ~Mord,tor

H̃′′,Σ̃′′
→ ~Mord,tor

H̃,Σ̃
, the

latter being proper because H̃ and H̃′′ are equally deep (see Proposition
5.2.2.2). Consequently, f tor

κ′,κ is also proper, because f tor
κ′′,κ′ is surjective.

�

7.2.3. Extensibility of fκ. The goal of this subsection is to show
that, when κ ∈ Kord,++

Q,H,Σord (see Definitions 7.1.1.11 and 7.1.1.19), the

structural morphism fκ : ~Nord
κ → ~Mord

H,rκ (see Section 7.2.1) extends (nec-

essarily uniquely) to a morphism f tor
κ : ~Nord,tor

κ → ~Mord,tor
H,rκ = ~Mord,tor

H,Σord,rκ
between the compactifications. Recall that fκ is the composition of

the structural morphism ~Nord
κ → ~Mord

Hκ with the canonical morphism
~Mord
Hκ → ~Mord

H,rκ .

Let us begin with an arbitrary element κ ∈ Kord,++
Q,H (not necessarily

in Kord,++
Q,H,Σord), which is of the form κ = [κ̃] for some κ̃ = (H̃, Σ̃ord, σ̃) ∈

K̃ord,++
Q,H (not necessarily in K̃ord,++

Q,H,Σord).

By Construction 7.2.2.1, we have the pullback (7.2.2.4)

(Ĝ, λ̂ : Ĝ→ Ĝ∨, î, α̂Ĥp , α̂
ord
Ĥp

)→ ~Nord,tor
κ

of (7.2.2.2) to ~Nord,tor
κ = ~Nord,tor

κ̃ (see Definition 7.2.2.20), such that the

semi-abelian scheme Ĝ~Nord
κ

= G̃~Nord
κ

(resp. Ĝ∨~Nord
κ

= G̃∨~Nord
κ

) (cf. (7.2.2.5))

is the extension of G~Nord
κ

(resp. G∨~Nord
κ

), the pullback under fκ : ~Nord
κ →

~Mord
H,rκ of the abelian scheme G~Mord

H,rκ
(resp. G∨~Mord

H,rκ
) over ~Mord

H,rκ , by the

split torus T̃~Nord
κ

(resp. T̃∨~Nord
κ

) over ~Nord
κ with character group X̃ (resp.

Ỹ ), parameterized by the tautological object c̃ : X̃ → G∨~Nord
κ

(resp.

c̃∨ : Ỹ → G~Nord
κ

) over ~Nord
κ
∼= ~̃
C

ord

Φ̃H̃,δ̃H̃
. By taking the abelian parts of

λ̂, î, and (α̂Ĥp , α̂
ord
Ĥp

), we obtain a polarization, an O-endomorphism

structure, and the ordinary level structure (αHp , α
ord
Hp ) on the abelian

part of Ĝ~Nord
κ

, which agree with the pullbacks of the data λ, i, and

(αHp , α
ord
Hp ) over ~Mord

H,rκ to ~Nord
κ by fκ : ~Nord

κ → ~Mord
H,rκ . By noetherian

normality of (the closure) ~Nord,tor
κ (of ~Nord

κ in
~̃
M

ord,tor

H̃ ), and by [92, IX,
2.4], [28, Ch. I, Prop. 2.9], or [62, Prop. 3.3.1.7], the embedding

T̃~Nord
κ
↪→ Ĝ~Nord

κ
= G̃~Nord

κ
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of group schemes over ~Nord
κ extends (uniquely) to an embedding

T̃~Nord,tor
κ

↪→ Ĝ = G̃~Nord,tor
κ

of group schemes over ~Nord,tor
κ , and the quotient

(7.2.3.1) G := Ĝ/T̃~Nord,tor
κ

= G̃~Nord,tor
κ

/T̃~Nord,tor
κ

is a semi-abelian scheme over ~Nord,tor
κ whose restriction G~Nord

κ
to ~Nord

κ

can be identified with G~Nord
κ

, the abelian part of Ĝ~Nord
κ

. Similarly, we

obtain

(7.2.3.2) G
∨

:= Ĝ∨/T̃∨~Nord,tor
κ

= G̃∨~Nord,tor
κ

/T̃∨~Nord,tor
κ

,

a semi-abelian scheme over ~Nord,tor
κ whose restriction G

∨
~Nord
κ

to ~Nord
κ can

be identified with G∨~Nord
κ

, the abelian part of Ĝ∨~Nord
κ

. By [92, IX, 1.4],

[28, Ch. I, Prop. 2.7], or [62, Prop. 3.3.1.5], the semi-abelian G car-

ries (unique) additional structures λ : G → G
∨

and i, such that the

restriction of (G, λ, i) to ~Nord
κ is the pullback of the tautological tuple

(G~Mord
H,rκ

, λ~Mord
H,rκ

, i~Mord
H,rκ

) over ~Mord
H,rκ by fκ : ~Nord

κ → ~Mord
H,rκ . Together with

the ordinary level structure (αHp , α
ord
Hp ) already defined on the abelian

part G~Nord
κ

of Ĝ~Nord , we obtain a degenerating family

(7.2.3.3) (G, λ, i, αHp , α
ord
Hp )→ ~Nord,tor

κ

of type ~Mord
H . By applying the same construction to (7.2.2.8), we obtain

a degenerating family

(7.2.3.4) (G, λ, i, αH)→ ~Nord,tor
κ

of type MH, with the same (G, λ, i), where αH is defined only on
~Nord
κ ⊗

Z
Q, such that the pair (αHp , α

ord
Hp )⊗

Z
Q is determined by αH as

in Proposition 3.3.5.1.

Proposition 7.2.3.5. Suppose κ ∈ Kord,++
Q,H,Σord; i.e., κ is an ele-

ment of Kord,++
Q,H satisfying Condition 7.1.1.17 (for the same Σord in

the definition of ~Mord,tor
H,rκ = ~Mord,tor

H,Σord,rκ
). (In this case, κ = [κ̃] for some

κ̃ ∈ K̃ord,++
Q,H,Σord; i.e., κ̃ is an element of K̃ord,++

Q,H satisfying Condition

7.1.1.15.) Then the structural morphism fκ : ~Nord
κ → ~Mord

H,rκ extends

(necessarily uniquely) to a morphism f tor
κ : ~Nord,tor

κ → ~Mord,tor
H,Σord,rκ

be-

tween the compactifications, which satisfies the descriptions concerning
stratifications and formal completions in the second paragraph of (2) of
Theorem 7.1.4.1.
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Proof. Let ξ : Spec(V ) → ~Nord,tor
κ = ~Nord,tor

κ̃ be as in Construc-

tion 7.2.2.9. As explained there, the pullback (G‡, λ‡, i‡, α‡Hpκ , α
ord,‡
Hκ,p)→

Spec(V ) of (7.2.3.3) under ξ is a degenerating family as in (7.2.2.18)
in the essential image of DEGPEL,Mord

Hκ
(V ) → DEGPEL,

...
M

ord
Hκ

(V ), which

corresponds to an object (B‡, λB‡ , iB‡ , X, Y, φ, c
‡, c∨,‡, τ ‡, [α\,ord,‡

Hκ ]) as in
(7.2.2.17) in the essential image of DDPEL,Mord

Hκ
(V ) → DDPEL,

...
M

ord
Hκ

(V ),

and the morphism υτ‡ : Y ×X → Z defined by τ ‡ as in (4.2.2.7) (us-
ing the discrete valuation υ : Inv(V ) → Z of V ) defines an element
υτ‡ ∈ P+

ΦH
in the image ρ of ρ̂ = pr(ŜΦ̆Ĥ

)∨R
(ρ̆) under (1.2.4.37). If κ

satisfies Condition 7.1.1.17, which means any such ρ is contained in
some cone in the cone decomposition ΣΦH (in Σord), then the condi-
tion in (6) of Theorem 5.2.1.1 is satisfied for all such ξ, and hence it
follows that fκ extends to a (necessarily unique) f tor

κ , as desired. It
satisfies the descriptions concerning stratifications and formal comple-
tions in the second paragraph of (2) of Theorem 7.1.4.1 because the
universal property of Mtor

H,Σ given by (6) of Theorem 1.3.1.3 is given in
terms of the degeneration data, which determines the (approximations

of) the invertible sheaves such as ~Ψord
ΦH,δH

(`), and the same is true for
the constructions of the canonical morphisms in Lemmas 5.2.4.38 and
7.1.2.29, and Proposition 7.1.2.17, using the various universal proper-
ties (all given in terms of degeneration data). �

Now let us resume the notation system at the end of Section 7.2.1
(using τ̆ instead of ρ̆). By construction (and the proof of Proposition

7.2.3.5), for κ = [κ̃] = [(H̃, Σ̃, σ̃)] ∈ Kord,++
Q,H,Σord , we have a commutative

diagram

(7.2.3.6) ~Nord,tor
κ

f tor

��

~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ̆
oo

��

//
~̃
C

ord

Φ̆H̃,δ̆H̃

��

~Mord,tor
H,rκ

~Xord
ΦH,δH,τ,rκ

oo // ~Cord
ΦH,δH,rκ

of canonical morphisms (where all subscripts “rκ” mean base changes

from ~S0,rH to ~S0,rκ) whenever the image of τ̆ under the (canonical)
second morphism in (1.2.4.20) is contained in τ .

It is worth recording the following observations:

Lemma 7.2.3.7. Suppose κ = (Ĥ, Σ̂ord) ∈ Kord,++
Q,H extends to some

κ′ = (Ĥ, Σ̂) ∈ Kstd,++
Q,H (see Definition 7.1.1.20), which means in par-

ticular that Σ̂ord extends to some Σ̂ as in Lemma 1.2.4.42. That is,
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κ = [κ̃] for some κ̃ = (H̃, Σ̃ord, σ̃) ∈ K̃ord,++
Q,H , and κ̃ extends to some

κ̃′ = (H̃, Σ̃, σ̃) ∈ K̃ord,++
Q,H , which means in particular that the projec-

tive smooth Σ̃ord for
~̃
M

ord

H̃ extends to some projective smooth Σ̃ for M̃H̃,
which can always be achieved by Proposition 5.1.3.4. Hence, we set
κ′ = [κ̃′] ∈ Kord,++

Q,H . Then there are canonical open immersions

(7.2.3.8) ~Nord,tor
κ ⊗

Z
Q ↪→ Ntor

κ′,rκ = Ntor
κ′ ×

S0

S0,rκ

inducing an isomorphism

(7.2.3.9)
~̂
Z

ord

[(Φ̆Ĥ,δ̆Ĥ,τ̂)]⊗
Z
Q ∼→ Ẑ[(Φ̆Ĥ,δ̆Ĥ,τ̂)],rκ

:= Ẑ[(Φ̆Ĥ,δ̆Ĥ,τ̂)]×
S0

S0,rκ

(see Definition 7.2.2.20; cf. Definition 2.2.3.4) when the underlying

Z̆Ĥ of [(Φ̆Ĥ, δ̆Ĥ, τ̂)] (suppressed in the notation by our convention;
cf. Lemma 1.2.4.42) is compatible with D; otherwise, the pullback of

Ẑ[(Φ̆Ĥ,δ̆Ĥ,τ̂)],rκ
under (7.2.3.8) is empty.

Proof. This follows from (2) and (7) of Theorem 5.2.1.1, because

by construction ~Nord,tor
κ is the closure of Nκ =

~̃
Z

ord

[(Φ̃H̃,δ̃H̃,σ̃)] in
~̃
M

ord,tor

H̃,Σ̃ord . �

Lemma 7.2.3.10. With the same setting as in Lemma 7.2.3.7, sup-
pose there exist Σord and Σ such that Σord extends to Σ as in Proposi-

tion 5.1.3.2, and such that κ = (Ĥ, Σ̂ord) ∈ Kord,++
Q,H,Σord and κ′ = (Ĥ, Σ̂) ∈

Kstd,++
Q,H,Σ . (This is always possible up to replacing Σ̂ with a refinement

satisfying Condition 7.1.1.17 for this Σ.) Then the diagram

(7.2.3.11) ~Nord,tor
κ ⊗

Z
Q

(7.2.3.8)
//

f tor
κ ⊗

Z
Q
��

Ntor
κ′,rκ

f tor
κ′

��

~Mord,tor
H,Σord,rκ

⊗
Z
Q

(5.2.1.2)
// Mtor
H,Σ,rκ

of canonical morphisms is commutative and Cartesian.

Proof. The diagram (7.2.3.11) is commutative because f tor
κ and

f tor
κ′ are induced by compatible universal properties of ~Mord,tor

H,Σord and Mtor
H,Σ

(see (6) of Theorem 1.3.1.3 and (6) and (7) of Theorem 5.2.1.1).
By (2) and (7) of Theorem 5.2.1.1, the open image of (5.2.1.2) is

the union of the strata Z[(ΦH,δH,τ)],rH of Mtor
H,Σ,rκ (as in (2) of Theorem

1.3.1.3) whose underlying cusp labels [(ΦH, δH)] are ordinary. Similarly,
by Lemma 7.2.3.7 (which is based on the same argument), the open
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image of (7.2.3.8) is the union of the strata Z̃[(Φ̆H̃,δ̆H̃,τ̆)],rκ
of M̃tor

H̃,Σ̃,rκ
having Nκ′ = Z̃[(Φ̃H̃,δ̃H̃,σ̃)],rκ

as a face, whose underlying cusp labels

[(Φ̆H̃, δ̆H̃)] are ordinary. Hence, it follows from Lemma 7.1.1.8 that the
diagram (7.2.3.11) is Cartesian, as desired. �

Corollary 7.2.3.12. For every κ ∈ Kord,++
Q,H,Σ , the characteristic

zero fiber f tor
κ ⊗

Z
Q of the morphism f tor

κ : ~Nord,tor
κ → ~Mord,tor

H,Σord,rκ
is proper

(although f tor
κ might not be).

Proof. Up to replacing Σ̂ with some refinement, we may assume
that the assumptions of Lemma 7.2.3.10 are satisfied. Then, since the
diagram (7.2.3.11) is Cartesian, the properness of f tor

κ ⊗
Z
Q follows from

that of f tor
κ : Ntor

κ′ → Mtor
H,Σ (see (2) of Theorem 1.3.3.15). �

7.2.4. Properness of f tor.

Proposition 7.2.4.1. With the setting as in Proposition 7.2.3.5,
suppose moreover that Hκ and H are equally deep as in Definition

3.2.2.9. Then the morphism f tor
κ : ~Nord,tor

κ → ~Mord,tor
H,Σord,rκ

is proper.

Proof. Starting with H, Σord, and κ = (Ĥ, Σ̂) ∈ Kord,++
Q,H,Σord , under

the assumption that Hκ and H are equally deep, by making compatible

choices of κ̃ = (H̃, Σ̃ord, σ̃) ∈ K̃ord,++
Q,H,Σord (such that κ = [κ̃]), H′, Σord,′,

κ̃′ = (H̃′, Σ̃ord,′, σ̃′) ∈ K̃ord,+
Q,H′,Σord,′ , κ

′ = (Ĥ′, Σ̂ord,′) := [κ̃] ∈ Kord,+
Q,H′,Σord,′ ,

Haux, Σord
aux, κ̃aux = (H̃aux, Σ̃

ord
aux, σ̃aux) ∈ K̃ord,+

Qaux,Haux,Σord
aux

, and κaux =

(Ĥaux, Σ̂
ord
aux) := [κ̃aux] ∈ Kord,+

Qaux,Haux,Σord
aux

, which are all equally deep of

some depth r at p (in the obvious sense), which can always be achieved
by replacing the collections of cone decompositions with refinements,
we obtain by Proposition 5.2.2.2 (with g = 1), by (7.1.4.11) (with
ĝ = 1) and (4d) of Theorem 7.1.4.1, and by Proposition 6.1.1.6 a
diagram

~̃
M

ord,tor

H̃,Σ̃ord
~̃
M

ord,tor

H̃′,Σ̃ord,′can.

proper
oooo

proper
//
~̃
M

ord,tor

H̃aux,Σ̃ord
aux

~Nord,tor
κ

f tor
κ
����

?�

can.

OO

~Nord,tor
κ′

f tor
κ′
����

can.

proper
oooo

?�

can.

OO

proper
// ~Nord,tor

κaux

f tor
κaux
����

?�

can.

OO

~Mord,tor
H,Σord,rκ

~Mord,tor
H′,Σord,′,rκ′can.

proper
oooo

proper
// ~Mord,tor
Haux,Σord

aux,r
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in which the upward arrows are canonical closed immersions, the left-
ward arrows are canonical proper surjections, the rightward arrows
are proper morphisms, (where the middle ones are induced by the top
ones,) and the downward arrows are surjections. Since all the morphism
are induced by universal properties (using (6) of Theorem 1.3.1.3), the
diagram is commutative. Therefore, to show that f tor

κ is proper, it
suffices to show that f tor

κaux
is proper (and hence so is f tor

κ′ ). Therefore,
for the purpose of proving this proposition, by replacing objects and
morphism in the first column of the above diagram with those auxiliary
ones in the third column, we may assume the following:

• p is a good prime for (O, ?, L, 〈 · , · 〉, h0), and hence also for

(O, ?, L̃, 〈 · , · 〉̃ , h̃0) (see Remark 1.2.4.2);

• H̃ = H̃pH̃p, where H̃p is neat and where H̃p = Ũbal
p,1 (pr);

• Hκ = H = HpHp, where Hp is neat and where Hp = Ubal
p,1 (pr);

and we are free to replace H and H̃ with subgroups that are equally

deep at p, and to replace Σord and Σ̃ord with refinements. (Then rκ = rH
and hence we may drop the subscripts “rκ” from the notation for base

changes from ~S0,rH to ~S0,rκ .)
Since Assumption 5.2.3.1 is satisfied by Lemma 5.2.3.2, by Lemma

5.2.3.9 and Proposition 5.2.3.18, up to replacing Σ̃ord with a refinement,
we have compatible canonical morphisms

(7.2.4.2)
~̃
M

ord,tor

H̃,Σ̃ord ↪→ ~̃
M

tor

H̃,d̃0p̃ol,rκ

(as in (5.2.3.19)) and

(7.2.4.3)
~̃
M

tor

H̃,d̃0p̃ol,rκ
→ M̃tor

H̃p,Σ̃p

(as in (5.2.3.12)) for some (Σ̃, p̃ol) extending (Σ̃ord, p̃ol
ord

) as in Propo-

sition 5.1.3.4, some integer d̃0 ≥ 1, and some collection Σ̃p for M̃H̃p
inducing Σ̃. Consider the tautological degenerating family

(7.2.4.4) (G̃, λ̃, ĩ, α̃H̃p , α̃
ord
pr )→ ~̃

M
ord,tor

H̃,Σ̃ord

of type
~̃
M

ord

H̃ , where we denote α̃ord
H̃p

by α̃ord
pr because H̃p = Ũbal

p,1 (pr).

Then the subtuple (G̃, λ̃, ĩ, α̃H̃p) →
~̃
M

ord,tor

H̃,Σ̃ord extends to a degenerating
family

(7.2.4.5) (G̃, λ̃, ĩ, α̃H̃p)→
~̃
M

tor

H̃,d̃0p̃ol,rκ
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of type M̃H̃p , by taking the pullback under (7.2.4.3) of the tautologi-

cal degenerating family of the same type over M̃tor
H̃p,Σ̃p . Hence, by (6) of

Theorem 1.3.1.3, the image of (7.2.4.2) can be characterized as the max-

imal open subscheme of
~̃
M

tor

H̃,d̃0p̃ol,rκ
such that the pullback of (7.2.4.5)

carries an ordinary level structure α̃ord
pr .

Since ~Nord,tor
κ is quasi-projective over ~S0,rκ and ~Mord,tor

H,Σord is separated

over ~S0,rκ , the morphism f tor
κ is separated and finite type. Moreover, the

restriction of f tor
κ to ~Nord

κ is the proper morphism fκ : ~Nord
κ → ~Mord

H (un-

derlying an abelian scheme torsor), and ~Nord
κ ⊗

Z
Q is open and dense in

~Nord,tor
κ by construction. Also, f tor

κ ⊗
Z
Q : ~Nord,tor

κ ⊗
Z
Q → ~Mord,tor

H,Σord,rκ
⊗
Z
Q

is proper by Corollary 7.2.3.12. Therefore, in order to show that f tor
κ

is proper (by the valuative criterion), it suffices to show that, for each
complete discrete valuation ring V with fractional field K of charac-
teristic zero and algebraically closed residue field k of characteristic

p, each morphism ξ̆0 : Spec(K) → ~Nord
κ ⊗

Z
Q such that ξ0 := fκ ◦ ξ̆0 :

Spec(K) → ~Mord
H,rκ ⊗Z

Q extends to a morphism ξ : Spec(V ) → ~Mord,tor
H,Σord

also extends to a morphism ξ̆ : Spec(V ) → ~Nord,tor
κ . Note that ξ̆0 in-

duces a morphism ξ0 : Spec(K) → ~̃
M

ord,tor

H̃,Σ̃ord ⊗
Z
Q. Since

~̃
M

tor

H̃,d̃0p̃ol,rκ
is

projective (and hence proper) over ~S0,rκ , the morphism ξ0 extends to

a morphism ξ : Spec(V ) → ~̃
M

tor

H̃,d̃0p̃ol,rκ
. We would like to verify the

following:

Claim 7.2.4.6. The image of ξ is contained in the image of
(7.2.4.2).

Since all objects involved are locally of finite presentation, we may
assume that V is the completion of a localization of an algebra of finite
type over Z. (This might not be absolutely necessary, but will sim-
plify the various constructions.) Then, by lifting (the finitely many)

generators to local rings of
~̃
M

tor

H̃,d̃0p̃ol,rκ
(together with the generators of

the ideals to localize, and by taking suitable completions), there ex-

ists a complete noetherian normal domain Ṽ , with fractional field K̃

and prime ideals Ĩ ⊂ J̃ ⊂ Ṽ , such that Ṽ is complete with respect

to J̃ , such that Ṽ /Ĩ ∼= V , and such that J̃/Ĩ defines the maximal
ideal of the complete discrete valuation ring V , together with a mor-

phism ξ̃ : Spec(Ṽ )→ ~̃
M

tor

H̃,d̃0p̃ol,rκ
inducing the morphism ξ : Spec(V ) =
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Spec(Ṽ /Ĩ) → ~̃
M

tor

H̃,d̃0p̃ol,rκ
extending ξ̆0 : Spec(K) → ~̃

M
ord,tor

H̃,Σ̃ord , and in-

ducing a morphism ξ̃0 : Spec(K̃) → M̃H̃,rκ . Now Claim 7.2.4.6 follows
from the following:

Claim 7.2.4.7. The image of ξ̃ is contained in the image of
(7.2.4.2).

Let us denote by

(7.2.4.8) (G̃Ṽ , λ̃Ṽ , ĩṼ , α̃H̃p,Ṽ )→ Spec(Ṽ )

the pullback of (7.2.4.5), and by

(7.2.4.9) (G̃K̃ , λ̃K̃ , ĩK̃ , α̃H̃,K̃)→ Spec(K̃)

the pullback under K̃ of the tautological tuple (G̃M̃H̃
, λ̃M̃H̃

, ĩM̃H̃
, α̃H̃)

over M̃H̃. Let (α̃H̃p,K̃ , α̃
ord
H̃p,K̃

) = (α̃H̃p,K̃ , α̃
ord
pr,K̃

= (α̃ord,0

pr,K̃
, α̃ord,#,0

pr,K̃
, ν̃ord
pr,K̃

))

be determined by α̃H̃,K̃ as in Section 4.1.6. Then the

pullback of (7.2.4.8) to Spec(K̃) is canonically isomorphic to

(G̃K̃ , λ̃K̃ , ĩK̃ , α̃H̃p,K̃) → Spec(K̃), with the first three entries as in

(7.2.4.9). We shall denote with subscripts “V ” (resp. K) the pullbacks
of these objects under ξ (resp. ξ0).

Since p is a good prime for (O, ?, L̃, 〈 · , · 〉̃ , h̃0) (see Remark 1.2.4.2),

λ̃K̃ and hence λ̃Ṽ are both prime-to-p polarizations, which induce an

isomorphism λ̃Ṽ : G̃Ṽ [pr]
∼→ G̃∨

Ṽ
[pr]. Since ν̃ord

pr,K̃
∈ (Z/prZ)×

Spec(K̃)
al-

ways uniquely extends to some ν̃ord
pr,Ṽ
∈ (Z/prZ)×

Spec(Ṽ )
, we see that α̃ord

pr,K̃

extends to some ordinary level structure α̃ord
pr,Ṽ

= (α̃ord,0

pr,Ṽ
, α̃ord,#,0

pr,Ṽ
, ν̃ord
pr,Ṽ

)

over Ṽ if and only if α̃ord,0

pr,K̃
: (Gr0

D̃,pr
)mult
Spec(K̃)

↪→ G̃K̃ [pr] extends to some

α̃ord,0

pr,Ṽ
: (Gr0

D̃,pr
)mult
Spec(Ṽ )

↪→ G̃Ṽ [pr]. Thus, to verify Claim 7.2.4.7 (which

is equivalent to the extensibility of α̃ord
pr,K̃

to α̃ord
pr,Ṽ

), it suffices to verify

the following:

Claim 7.2.4.10. Let H̃ denote the finite flat subgroup scheme of

multiplicative type of G̃Ṽ [pr] uniquely lifting the maximal finite flat sub-

group scheme H̃0 of multiplicative type of G̃0[pr] (by [26, IX, 3.6 bis]

and [35, III-1, 5.1.4]; see also [34, IX, 6.1]), where G̃0 is the special

fiber of G̃ over Spec(k). Then the generic fiber H̃K̃ of H̃ coincides

with image(α̃ord,0

pr,K̃
) (see Definition 3.3.3.1).



486 7. ORDINARY KUGA FAMILIES

Let Ṽ 1 denote the localization of Ṽ at the kernel of Ṽ � V , which

has residue field K. Since the image of Spec(K) under ξ̃ is contained

in the open image of (7.2.4.2), so is the image of Spec(Ṽ 1). Since

α̃ord
pr,K̃

already extends to Spec(Ṽ 1), it makes sense to write α̃ord,0
pr,K :

(Gr0
D̃,pr

)mult
Spec(K) ↪→ G̃K [pr], and (by [26, IX, 3.6 bis] and [35, III-1, 5.1.4]

again, applied to Ṽ 1), Claim 7.2.4.10 follows from the following:

Claim 7.2.4.11. Let H denote the finite flat subgroup scheme of

multiplicative type of G̃V [pr] uniquely lifting the maximal finite flat sub-

group scheme H0 of multiplicative type of G̃0[pr], then the generic fiber

HK of H coincides with image(α̃ord,0
pr,K ).

Let us denote by

(7.2.4.12) (GV , λV , iV , αHp,K , α
ord
Hp,V )→ Spec(V )

the pullback under ξ : Spec(V ) → ~Mord,tor
H,Σord of the tautological degen-

erating family (G, λ, i, αHp , α
ord
pr ) → ~Mord,tor

H,Σord , and denote its further

pullback to Spec(K) by replacing the subscript “V ” with “K”. (Here
we understand that αHp,K is defined only over Spec(K).)

Since the image of Spec(K) under ξ̃ is on ~Nord
κ ⊂

~̃
M

ord,tor

H̃,Σ̃ord , we know

that G̃K is an extension of GK by the pullback T̃K of a torus T̃ with

character group X̃, and image(α̃ord,0
pr,K ) is an extension of image(αord,0

pr,K )

by T̃K [pr]. As in Section 7.2.3, since V is normal (as a discrete valuation
ring), by [92, IX, 2.4], [28, Ch. I, Prop. 2.9], or [62, Prop. 3.3.1.7], the

embedding T̃K ↪→ G̃K extends to an embedding T̃V ↪→ G̃V . Therefore,

by [26, IX, 3.6 bis] and [35, III-1, 5.1.4], T̃V [pr] is automatically a
closed subgroup scheme of any H in Claim 7.2.4.11. By [92, IX, 1.4],
[28, Ch. I, Prop. 2.7], or [62, Prop. 3.3.1.5], the quotient semi-abelian

scheme G̃V /T̃V is canonically isomorphic to GV . Hence, Claim 7.2.4.11
follows from the following:

Claim 7.2.4.13. Let H denote the finite flat subgroup scheme of
multiplicative type of GV [pr] uniquely lifting the maximal finite flat sub-
group scheme H0 of multiplicative type of G0[pr], where G0 is the special
fiber of G over Spec(k), then the generic fiber HK of HV coincides with

image(αord,0
pr,K ).

But this is trivially verified because αord
pr,K extends to the ordinary

level structure αord
pr,V of (GV , λV , iV ), in which case H = image(αord,0

pr,V ),
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by comparison over the characteristic p special fiber over Spec(k) (and
by [26, IX, 3.6 bis] and [35, III-1, 5.1.4] once again). �

Proposition 7.2.4.14. Suppose no longer that Hκ and H
are equally deep as in Definition 3.2.2.9. For each κ ∈ Kord,++

Q,H ,

there is a canonical surjection ~Nord,tor
κ → ~Mord,min

H extending the

canonical surjection ~Nord
κ → ~Mord

H (which is the composition of

fκ : ~Nord
κ → ~Mord

H,rκ with the canonical morphism ~Mord
H,rκ → ~Mord

H ), and
the latter is the pullback of the former under the canonical morphism
~Mord
H ↪→ ~Mord,min

H on the target (see Theorem 6.2.1.1). More generally,

such a morphism maps the [(Φ̆Ĥ, δ̆Ĥ, τ̂)]-stratum
~̂
Z

ord

[(Φ̆Ĥ,δ̆Ĥ,τ̂)] of ~Nord,tor
κ

to the [(ΦH, δH)]-stratum ~Zord
[(ΦH,δH)] of ~Mord,min

H if and only if the

cusp label [(ΦH, δH)] is assigned to the cusp label [(Φ̆Ĥ, δ̆Ĥ)] as in
Lemma 1.2.4.15. Such surjections are compatible with the canonical

morphisms f tor
κ′,κ : ~Nord,tor

κ′ → ~Nord,tor
κ (defined by Proposition 7.2.4.1)

when κ′ � κ in Kord,++
Q,H . When Hκ and H are equally deep, both

~Nord
κ → ~Mord

H and ~Nord,tor
κ → ~Mord,min

H are proper.

Proof. We may assume that κ = (Ĥ, Σ̂) ∈ Kord,+
Q,H (i.e., Hκ =

H) because, by Proposition 6.2.2.1, there is a canonical quasi-finite

surjection ~Mord,min
Hκ → ~Mord,min

H , and ~Mord
Hκ (as the unique open stratum)

is the pullback of ~Mord
H . Let Σord be any compatible choice for ~Mord

H
as in Definition 1.2.2.13. Take any element κ′′ = (Ĥ′′, Σ̂′′) ∈ Kord,+

Q,H,Σord

such that Ĥ = Ĥ′′, and such that Σ̂′′ is a refinement of Σ̂, so that
κ′′ � κ in Kord,+

Q,H . Then Hκ′′ = Hκ = H, and hence we have canonical

proper surjections f tor
κ′′,κ : ~Nord,tor

κ′′ → ~Nord,tor
κ (by Proposition 7.2.2.19

and Corollary 7.2.2.21) and f tor
κ′′ : ~Nord,tor

κ′′ → ~Mord,tor
H,Σord (by Proposition

7.2.4.1).
These proper surjections are their own Stein factorizations (see [35,

III-1, 4.3.3]), by the normality of the target schemes, by [62, Lem.
7.2.3.1], and by Zariski’s main theorem (see [35, III-1, 4.4.3, 4.4.11]).
That is, the canonical morphisms

(7.2.4.15) O~Nord,tor
κ

→ (f tor
κ′′,κ)∗O~Nord,tor

κ′′

and

(7.2.4.16) O~Mord,tor

H,Σord
→ (f tor

κ′′ )∗O~Nord,tor

κ′′

are isomorphisms. (These are special cases of (7.1.4.4) with a = b = 0.)
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Let ω~Nord,tor
κ

:= ∧top Lie∨
Ĝ/~Nord,tor

κ
= ∧top e∗

Ĝ
Ω1

Ĝ/~Nord,tor
κ

, where Ĝ →
~Nord,tor
κ is the tautological semi-abelian scheme as in (7.2.2.4), and

ω~Nord,tor

κ′′
be similarly defined, so that

(7.2.4.17) ω~Nord,tor

κ′′
∼= (f tor

κ′′,κ)
∗ ω~Nord,tor

κ
.

On the other hand, by (7.2.3.1), we have

ω~Nord,tor

κ′′
∼= (∧top

Z X̃)⊗
Z

(f tor
κ′′ )

∗ω~Mord,tor

H,Σord

(cf. [62, Lem. 7.1.2.1]). Hence, by choosing any isomorphism

(∧top
Z X̃)

∼→ Z, we have

(7.2.4.18) ω~Nord,tor

κ′′
∼= (f tor

κ′′ )
∗ω~Mord,tor

H,Σord
.

By composing f tor
κ′′ with the canonical proper surjection

~∮ ord

H : ~Mord,tor
H,Σord → ~Mord,min

H , we obtain a canonical proper surjection

(7.2.4.19) ~Nord,tor
κ′′ → ~Mord,min

H ,

which is canonically determined by the canonical isomorphisms

~Mord,min
H

∼= Proj
(
⊕
k≥0

Γ(~Mord,tor
H , ω⊗ k~Mord,tor

H
)
)

∼= Proj
(
⊕
k≥0

Γ(~Nord,tor
κ′′ , ω⊗ k~Nord,tor

κ′′
)
)

(by (3) of Theorem 6.2.1.1, and (7.2.4.15), (7.2.4.16), and (7.2.4.18)).
By (7.2.4.17), we also have a canonical isomorphism

~Mord,min
H

∼= Proj
(
⊕
k≥0

Γ(~Nord,tor
κ , ω⊗ k~Nord,tor

κ
)
)
,

which induces the desired canonical morphism

(7.2.4.20) ~Nord,tor
κ → ~Mord,min

H ,

whose composition with f tor
κ′′,κ : ~Nord,tor

κ′′ → ~Nord,tor
κ is (7.2.4.19).

Note that (7.2.4.20) is proper because (7.2.4.19) is proper and f tor
κ′′,κ

is surjective. (This uses the simplifying assumption that Hκ = H.)

The preimage of ~Mord
H under (7.2.4.19) is the preimage of ~Mord

H under

f tor
κ′′ : ~Nord,tor

κ′′ → ~Mord,tor
H,Σord , which is nothing but ~Nord

κ′′ (which can be

shown in many ways—e.g., by comparing the ranks of torus parts, or by

comparing the dimensions of abelian parts). Since Ĥ = Ĥ′, by Lemma

7.2.1.3, ~Nord
κ′′ is mapped isomorphically to ~Nord

κ under f tor
κ′′,κ. Hence,

the preimage of ~Mord
H under (7.2.4.19) is ~Nord

κ . This shows that the

canonical surjection ~Nord
κ → ~Mord

H is the pullback of (7.2.4.20) under the
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canonical morphism ~Mord
H ↪→ ~Mord,min

H on the target. More generally, by

(4) of Theorem 6.2.1.1, the preimage of the [(ΦH, δH)]-stratum ~Zord
[(ΦH,δH)]

of ~Mord,min
H under the canonical morphism ~∮ ord

H : ~Mord,tor
H,Σord → ~Mord,min

H

is the union of the strata ~Zord
[(ΦH,δH,σ)] with the same underlying cusp

label [(ΦH, δH)]. Hence, its further preimage in ~Nord,tor
κ′′ , and the image

of this preimage in ~Nord,tor
κ , are described as in the statement of the

proposition, because of the corresponding strata-mapping properties of

the canonical morphisms f tor
κ′′,κ : ~Nord,tor

κ′′ → ~Nord,tor
κ and f tor

κ′′ : ~Nord,tor
κ′′ →

~Mord,tor
H,Σord (see Propositions 7.2.2.19 and 7.2.3.5). �

From now on, let us fix a choice of some κ̃ = (H̃, Σ̃, σ̃) ∈ Kord,++
Q,H,Σord ,

inducing some κ = [κ̃] ∈ Kord,++
Q,H,Σord . For simplicity, we shall suppress

κ, Σ̃, and Σ from the notation when their choices are clear from the
context.

7.2.5. Log Smoothness of f tor. We would like to show that the
morphism f tor is log smooth (as in [45, 3.3] and [43, 1.6]) if we equip
~Nord,tor and ~Mord,tor

H,rκ with the canonical fine log structures given respec-
tively by the relative Cartier divisors with simple normal crossings

given by the complements ~Nord,tor− ~Nord and ~Mord,tor
H,rκ − ~M

ord
H,rκ with their

reduced structures. (Note that the log structure of ~Mord,tor
H,rκ is the pull-

back of the one of ~Mord,tor
H defined by ~Mord,tor

H − ~Mord
H . In what follows,

we will freely state related facts about ~Mord,tor
H,rκ that are already know

for ~Mord,tor
H .) Moreover, for each of the sheaves to be introduced below,

we will denote with the subscript “free” its free quotients defined by
the image under ( · )→ ( · )⊗

Z
Q (as in Definition 3.4.3.1).

According to [45, 3.12] (cf. [61, Lem. 3.11]), we have the following:

Lemma 7.2.5.1. To show that the morphism f tor is log smooth, it
suffices to show that the first morphism in the canonical exact sequence

(f tor)∗(Ω1
~Mord,tor
H,rκ /~S0,rκ

[d log∞])→ Ω1
~Nord,tor/~S0,rκ

[d log∞]

→ Ω
1
~Nord,tor/~Mord,tor

H,rκ
→ 0

(7.2.5.2)

is injective, and that Ω
1
~Nord,tor/~Mord,tor

H,rκ
is locally free of finite rank.
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By (4) of Theorem 5.2.1.1, the extended Kodaira–Spencer mor-

phism [62, Def. 4.6.3.44] for G→ ~Mord,tor
H,rκ induces an isomorphism

KSG/~Mord,tor
H,rκ /~S0,rκ

: KS(G,λ,i)/~Mord,tor
H,rκ ,free

∼→ Ω1
~Mord,tor
H,rκ /~S0,rκ

[d log∞]

over ~Mord,tor
H,rκ , while the extended Kodaira–Spencer morphism for G̃ →

~̃
M

ord,tor

H̃ induces an isomorphism

KS
G̃/

~̃
M

ord,tor

H̃ /~S0,rκ

: KS
(G̃,λ̃,̃i)/

~̃
M

ord,tor

H̃ ,free

∼→ Ω1
~̃
M

ord,tor

H̃ /~S0,rκ

[d log∞]

over
~̃
M

ord,tor

H̃ . By (7.2.3.1) and (7.2.3.2), we have a commutative dia-
gram

(7.2.5.3) 0 // Lie∨
G/~Nord,tor

//

λ
∗

��

Lie∨
G̃~Nord,tor/~Nord,tor

//

λ̃∗

��

Lie∨
T̃~Nord,tor/~Nord,tor

//

λ∗
T̃

=φ̃∗

��

0

0 // Lie∨
G
∨
/~Nord,tor

// Lie∨
G̃∨
~Nord,tor/

~Nord,tor
// Lie∨

T̃∨
~Nord,tor/

~Nord,tor
// 0

in which the horizontal rows are exact. Using the sheaves and
vertical arrows in this diagram, we can define KS(G,λ,i)/~Nord,tor ,

KS(G̃,λ̃,̃i)~Nord,tor/~Nord,tor , and KS(T̃ ,λ
T̃
,i
T̃

)~Nord,tor/~Nord,tor as in

[62, Def. 6.3.1] and Definitions 1.3.1.2 and 3.4.3.1. Since

(G, λ, i, αHp , α
ord
Hp ) → ~Nord,tor is canonically isomorphic to the pullback

of (G, λ, i, αHp , α
ord
Hp )→ ~Mord,tor

H,rκ under f tor : ~Nord,tor → ~Mord,tor
H,rκ , we have

a canonical isomorphism

(f tor)∗KS(G,λ,i)/~Mord,tor
H,rκ ,free

∼= KS(G,λ,i)/~Nord,tor,free.

On the other hand, KS(G̃,λ̃,̃i)~Nord,tor/~Nord,tor is canonically isomorphic to

the pullback of KS
(G̃,λ̃,̃i)/

~̃
M

ord,tor

H̃
to ~Nord,tor, and KS(T̃ ,λ

T̃
,i
T̃

)~Nord,tor/~Nord,tor

is canonically isomorphic to the pullback of the sheaf

KS(T̃ ,λ
T̃
,i
T̃

)~S0,rκ
/~S0,rκ

:= (Lie∨
T̃~S0,rκ

/~S0,rκ
⊗

O~S0,rκ

Lie∨
T̃∨
~S0,rκ

/~S0,rκ
)

/

(
λ∗
T̃

(y)⊗ z − λ∗
T̃

(z)⊗ y
(b?x)⊗ y − x⊗(by)

)
x∈Lie∨

T̃~S0,rκ
/~S0,rκ

y,z∈Lie∨
T̃∨
~S0,rκ

/~S0,rκ

b∈O

similarly defined by the split tori T̃ and T̃∨ over ~S0,rκ with respec-

tive character groups X̃ and Ỹ . By the commutativity in the above
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diagram, there is a canonical surjection

(7.2.5.4) KS(G̃,λ̃,̃i)~Nord,tor/~Nord,tor � KS(T̃ ,λ
T̃
,i
T̃

)~Nord,tor/~Nord,tor ,

whose kernel

(7.2.5.5) K := ker(KS(G̃,λ̃,̃i)~Nord,tor/~Nord,tor � KS(T̃ ,λ
T̃
,i
T̃

)~Nord,tor/~Nord,tor)

contains KS(G,λ,i)/~Nord,tor as a natural subsheaf.

Because the étale local structure of
~̃
M

ord,tor

H̃ along the

[(Φ̆H̃, δ̆H̃, τ̆)]-stratum is the same as that of
~̃
Ξ

ord

Φ̆H̃,δ̆H̃
(τ̆), the calculation

in the proof of Proposition 4.2.3.5 shows that the isomorphism

KS
G̃/

~̃
M

ord,tor

H̃ /~S0,rκ

induces by restriction (to the closure ~Nord,tor of the

[(Φ̃H̃, δ̃H̃, σ̃)]-stratum) an isomorphism

(7.2.5.6) Kfree
∼→ Ω1

~Nord,tor/~S0,rκ
[d log∞]

making the diagram

(f tor)∗KS(G,λ,i)/~Mord,tor
H,rκ ,free

oKS
G/~M

ord,tor
H,rκ

/~S0,rκ

��

� � // Kfree

o (7.2.5.6)

��

(f tor)∗(Ω1
~Mord,tor
H,rκ /~S0,rκ

[d log∞]) // Ω1
~Nord,tor/~S0,rκ

[d log∞]

commutative. In particular, the bottom arrow (which is the first mor-
phism in (7.2.5.2)) is injective, and the isomorphism (7.2.5.6) induces
a canonical isomorphism

(7.2.5.7) Kfree/KS(G,λ,i)/~Nord,tor,free

∼→ Ω
1
~Nord,tor/~Mord,tor

H,rκ

of coherent sheaves over ~Nord,tor. We would like to verify the following:

Claim 7.2.5.8. Kfree/KS(G,λ,i)/~Nord,tor,free is locally free of finite rank.

Then it will follow from Lemma 7.2.5.1 and the above that f tor is
log smooth, and the proof of (2) of Theorem 7.1.4.1 will be complete.

Let us define

(7.2.5.9) K′ := K/KS(G,λ,i)/~Nord,tor

over ~Nord,tor.

Lemma 7.2.5.10. The canonical morphism

(7.2.5.11) Kfree/KS(G,λ,i)/~Nord,tor,free → K′free

is an isomorphism.
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Proof. It suffices to verify this over the completions of the strict

local rings of ~Nord,tor at points of characteristic p, which are complete
noetherian normal domains whose spectra we denote by S. Over each
such S, we have compatible (noncanonical) ordinary level structures

α̃ord = (α̃ord,0 : (Gr0
D̃
)mult
S → G\

S[p∞],

α̃ord,#,0 : (Gr0
D̃#)mult

S → G∨,\S [p∞], ν̃ord)

and

αord = (αord,0 : (Gr0
D)

mult
S → GS[p∞],

αord,#,0 : (Gr0
D#)mult → G

∨
S [p∞], νord

S )

(where the subscripts “S” mean pullbacks to S) defining a commutative
diagram

(7.2.5.12) 0 // T̃S[p∞] //

λ
T̃

=φ̃∗

��

image(α̃ord,0) //

λ̃S
��

image(αord,0
S ) //

λS
��

0

0 // T̃∨S [p∞] // image(α̃ord,#,0) // image(αord,#,0) // 0

canonically dual to the pullback of (7.2.5.3) to S, under canonical
isomorphisms as in (5) and (6) of Proposition 3.2.1.1. The diagram
(7.2.5.12) admits (noncanonical) splittings, namely splittings of the two

exact rows compatible with λ̃S, because 〈 · , · 〉̃ is the direct sum of the
pairings on Q−2⊕Q0 and on L (and because the ordinary level struc-
tures match the diagram (7.2.5.12) with the corresponding diagram of
constant objects). Such splittings induce (by duality) splittings of the
pullback of (7.2.5.3) to S, namely splittings of the two exact rows com-

patible with λ̃S. Hence, we have a noncanonical isomorphism between
KS and KS(G,λ,i)/~Nord,tor,S ⊕K′S over S, and also a corresponding one

between their free quotients. Hence, (7.2.5.11) is an isomorphism, as
desired. �

By Proposition 3.1.3.4, HomO(X̃,G) (resp. HomO(X̃,G∨), resp.

HomO(Ỹ , G), resp. HomO(Ỹ , G∨)) is relatively representable by an ex-
tension of a quasi-finite flat group scheme of étale-multiplicative type

by a semi-abelian scheme HomO(X̃,G)◦ (resp. HomO(X̃,G∨)◦, resp.

HomO(Ỹ , G)◦, resp. HomO(Ỹ , G∨)◦) over ~Mord,tor
H,rκ . Then the homo-

morphisms φ̃ : Ỹ ↪→ X̃ and λ : G → G∨ over ~Mord,tor
H,rκ induce ho-

momorphisms HomO(X̃,G∨)◦ → HomO(Ỹ , G∨)◦ and HomO(Ỹ , G)◦ →
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HomO(Ỹ , G∨)◦ with kernels that are quasi-finite group schemes of étale-

multiplicative type over ~Mord,tor
H,rκ , and hence the fiber product

(7.2.5.13)
...
C̃

ord,ext

:= HomO(X̃,G∨) ×
HomO(Ỹ ,G∨)

HomO(Ỹ , G)

is also an extension of a quasi-finite group scheme π0(
...
C̃

ord,ext

/~Mord,tor
H,rκ )

of étale-multiplicative type by a semi-abelian scheme
...
C̃

ord,ext,◦
over

~Mord,tor
H,rκ .

Lemma 7.2.5.14. We have compatible canonical isomorphisms

(7.2.5.15) K′ ∼= (f tor)∗Lie∨...
C̃

ord,ext
/~Mord,tor
H,rκ

and

K′free
∼=
(
(f tor)∗Lie∨...

C̃
ord,ext

/~Mord,tor
H,rκ

)
free

∼= (f tor)∗Lie∨...
C̃

ord,ext
/~Mord,tor
H,rκ ,free

∼= (f tor)∗Lie∨...
C̃

ord,ext,◦
/~Mord,tor
H,rκ

.

(7.2.5.16)

Since
...
C̃

ord,ext,◦
is a semi-abelian scheme over ~Mord,tor

H,rκ , it follows that

Lie∨...
C̃

ord,ext,◦
/~Mord,tor
H,rκ

is locally free of finite rank over ~Mord,tor
H,rκ , and that

K′free is locally free of finite rank over ~Nord,tor.

Proof. By definition, we have canonical isomorphisms

Lie∨
HomZ(X̃,G∨)/~Mord,tor

H,rκ

∼= HomZ(X̃∨,Lie∨
G∨/~Mord,tor

H,rκ
)

∼= HomO
~M

ord,tor
H,rκ

(HomZ(X̃,O~Mord,tor
H,rκ

),Lie∨
G∨/~Mord,tor

H,rκ
)

∼= HomO
~M

ord,tor
H,rκ

(LieT̃
~M

ord,tor
H,rκ

/~Mord,tor
H,rκ

,Lie∨
G∨/~Mord,tor

H,rκ
)

∼= Lie∨
T̃
~M

ord,tor
H,rκ

/~Mord,tor
H,rκ

⊗
O
~M

ord,tor
H,rκ

Lie∨
G∨/~Mord,tor

H,rκ
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and

Lie∨
HomZ(Ỹ ,G)/~Mord,tor

H,rκ

∼= HomZ(Ỹ ∨,Lie∨
G/~Mord,tor

H,rκ
)

∼= HomO
~M

ord,tor
H,rκ

(HomZ(Ỹ ,O~Mord,tor
H,rκ

),Lie∨
G/~Mord,tor

H,rκ
)

∼= HomO
~M

ord,tor
H,rκ

(LieT̃∨
~M

ord,tor
H,rκ

/~Mord,tor
H,rκ

,Lie∨
G/~Mord,tor

H,rκ
)

∼= Lie∨
G/~Mord,tor

H,rκ
⊗

O
~M

ord,tor
H,rκ

Lie∨
T̃∨
~M

ord,tor
H,rκ

/~Mord,tor
H,rκ

.

Since
...
C̃

ord,ext

is (by definition) the subgroup scheme of the ordinary

semi-abelian scheme HomZ(Ỹ , G) ×
~Mord,tor
H,rκ

HomZ(X̃,G∨) over which the

tautological object (c̃, c̃∨) is O-equivariant and satisfies the compat-

ibility c̃φ̃ = λc̃∨, and since (G, λ, i, αHp , α
ord
Hp ) → ~Nord,tor is canoni-

cally isomorphic to the pullback of (G, λ, i, αHp , α
ord
Hp )→ ~Mord,tor

H,rκ under

f tor : ~Nord,tor → ~Mord,tor
H,rκ , the pullback (f tor)∗Lie∨...

C̃
ord,ext

/~Mord,tor
H,rκ

is canon-

ically isomorphic to the quotient of(
Lie∨

T̃~Nord,tor/~Nord,tor ⊗
O~Nord,tor

Lie∨
G
∨
/~Nord,tor

)
+
(

Lie∨
G/~Nord,tor ⊗

O~Nord,tor

Lie∨
T̃∨
~Nord,tor/

~Nord,tor

)
,

as a subsheaf of(
Lie∨

G̃~Nord,tor/~Nord,tor ⊗
O~Nord,tor

Lie∨
G̃∨
~Nord,tor/

~Nord,tor

)
/
(

Lie∨
G/~Nord,tor ⊗

O~Nord,tor

Lie∨
G
∨
/~Nord,tor

)
,

by relations as in Definition 4.2.3.4, which is by definition K′. Hence,
we have the canonical isomorphism (7.2.5.15).

Since
...
C̃

ord,ext,◦
/~Mord,tor
H,rκ is a semi-abelian scheme and

π0(
...
C̃

ord,ext

/~Mord,tor
H,rκ ) is quasi-finite flat of étale-multiplicative type,

Lie∨...
C̃

ord,ext,◦
/~Mord,tor
H,rκ

is locally of finite rank over ~Mord,tor
H,rκ , and the

canonical morphism Lie∨...
C̃

ord,ext
/~Mord,tor
H,rκ

→ Lie∨...
C̃

ord,ext,◦
/~Mord,tor
H,rκ

induces a

canonical isomorphism

(7.2.5.17) Lie∨...
C̃

ord,ext
/~Mord,tor
H,rκ ,free

∼→ Lie∨...
C̃

ord,ext,◦
/~Mord,tor
H,rκ

.
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Since the formation of free quotients is compatible with pulling back
under f tor, the canonical isomorphisms (7.2.5.15) and (7.2.5.17) induce
the canonical isomorphisms in (7.2.5.16). The remaining statements of
the lemma are self-explanatory. �

Thus, we have verified Claim 7.2.5.8 and proved (2) of Theorem
7.1.4.1.

Now suppose κ ∈ Kord,+
Q,H,Σord (not just in Kord,++

Q,H,Σord , so that Hκ = H
and rκ = rH). This is the setting in (3) of Theorem 7.1.4.1, where the

semi-abelian scheme ~Nord,ext = ~Nord,ext
κ → ~Mord,tor

H extending ~Nord,grp =
~Nord,grp
κ → ~Mord

H is also defined (as in Definition 7.1.3.11).
Consider any n = n0p

r such that p - n0, Up(n0) ⊂ Hp,
and Ubal

p,1 (pr) ⊂ Hp ⊂ Up,0(pr). By condition (5) of Definition

3.4.2.10, (by abuse of language) αord
Hp extends to an ordinary

level structure of (G, λ, i) over ~Mord,tor
H . Although αord,0

pr

(resp. αord,#,0
pr ) is only étale locally defined by αord

Hp , its

schematic image image(αord,0
pr ) = αord,0

pr ((Gr0
Dpr

)mult
~Mord,tor
H

) (resp.

image(αord,#,0
pr ) = αord,#,0

pr ((Gr0

D
#
pr

)mult
~Mord,tor
H

)) depends only on αord
Hp and

descends to a finite flat subgroup scheme of multiplicative type of G

(resp. G∨) over ~Mord,tor
H , which we (by abuse of notation) still denote

by image(αord,0
pr ) (resp. image(αord,#,0

pr )). As in Section 4.2.1, let us
define

(7.2.5.18) G� Gord
pr := G/image(αord,0

pr )

and

(7.2.5.19) G∨ � G∨,ord
pr := G∨/image(αord,#,0

pr ),

respectively, together with morphisms

(7.2.5.20) Gord
pr � G

and

(7.2.5.21) G∨,ord
pr � G∨,

respectively, such that the compositions (7.2.5.20) ◦ (7.2.5.18) and
(7.2.5.21) ◦ (7.2.5.19) are multiplications by pr. (See (4.1.4.31),
(4.1.4.32), (4.1.4.34), (4.1.4.33), (4.2.1.1), (4.2.1.2), (4.2.1.3), and
(4.2.1.4). The restrictions of the morphisms (7.2.5.20) and (7.2.5.21)

to ~Mord
H exist as duals of the restrictions of (7.2.5.19) and (7.2.5.18),

respectively, and extends to ~Mord,tor
H by [92, IX, 1.4], [28, Ch.

I, Prop. 2.7], or [62, Prop. 3.3.1.5].) Note that the kernels of
(7.2.5.20) and (7.2.5.21) are quasi-finite étale, because they are étale
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locally subgroups of the constant group schemes (Gr−1
Dpr

)~Mord,tor
H

and

(Gr−1

D
#
pr

)~Mord,tor
H

, respectively.

By Proposition 3.1.3.4 (as above), HomO( 1
n
X̃,G∨,ord

pr ) (resp.

HomO( 1
n
Ỹ , Gord

pr )) is representable by an extension of a quasi-finite flat
group scheme of étale-multiplicative type by a semi-abelian scheme

over ~Mord,tor
H , and the fiber product

(7.2.5.22)
...
C̃

ord,ext

n := HomO( 1
n
X̃,G∨,ord

pr ) ×
HomO(Ỹ ,G∨)

HomO( 1
n
Ỹ , Gord

pr )

is also an extension of a quasi-finite group scheme π0(
...
C̃

ord,ext

n /~Mord,tor
H )

of étale-multiplicative type by a semi-abelian scheme
...
C̃

ord,ext,◦
n over

~Mord,tor
H . Note that

...
C̃

ord,ext

n and
...
C̃

ord,ext,◦
n are closed subgroup schemes

of the semi-abelian scheme HomZ( 1
n
X̃,G∨,ord

pr ) ×
~Mord,tor
H

HomZ( 1
n
Ỹ , Gord

pr )

over ~Mord,tor
H . The group H̃ord

n,Ũess
Z̃n

acts naturally on the (abelian scheme)

pullback of this semi-abelian scheme to ~Mord
H , and this action extends

canonically over ~Mord,tor
H by [92, IX, 1.4], [28, Ch. I, Prop. 2.7], or [62,

Prop. 3.3.1.5]. Let

(7.2.5.23)
...
C̃

ord,ext

H̃,n :=
...
C̃

ord,ext

n /H̃ord
n,Ũess

Z̃n

(cf. (4.2.1.14)—we do not form the quotient by H̃ord
n,G̃ess

h,̃Zn

and other

groups here, because we are already working over ~Mord,tor
H ), so that

(7.2.5.24)
...
C̃

ord,ext,◦
H̃,n

∼=
...
C̃

ord,ext,◦
n /H̃ord

n,Ũess
Z̃n

.

By construction, we have the following commutative diagram
(7.2.5.25)

...
C̃

ord,ext,◦
H̃,n

��

� � //

(
HomZ( 1

n
X̃,G∨,ord

pr ) ×
~Mord,tor
H

HomZ( 1
n
Ỹ , Gord

pr )
)
/H̃ord

n,Ũess
Z̃n

��...
C̃

ord,ext,◦
� � // HomZ(X̃,G∨) ×

~Mord,tor
H

HomZ(Ỹ , G)

of canonical morphisms of semi-abelian schemes over ~Mord,tor
H , in which

all horizontal arrows are closed immersions.
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Lemma 7.2.5.26. In (7.2.5.25), the vertical arrows are (quasi-finite
and) unramified. Also, the first vertical arrow is an étale isogeny be-
tween semi-abelian schemes.

Proof. The first statement is true because the vertical arrows are
homomorphisms with quasi-finite étale kernels (because (7.2.5.20) and
(7.2.5.21) are). Since the first vertical arrow is a homomorphism be-
tween semi-abelian schemes, it is surjective and automatically flat by
[35, IV-3, 11.3.10 a)⇒b) and 15.4.2 e′)⇒b)] (cf. the proof of [62, Lem.
1.3.1.11]), and hence is an étale isogeny. �

By construction, under the canonical isomorphism (7.2.1.1), we
have a canonical isomorphism

(7.2.5.27)
...
C̃

ord,◦
Φ̃H̃,n

×...
M̃

ord,̃ZH
H

~Mord
H
∼=

...
C̃

ord,ext,◦
H̃,n ×

~Mord,tor
H

~Mord
H

of abelian schemes over ~Mord
H , where

...
C̃

ord,◦
Φ̃H̃,n

is defined over
...
M̃

ord,Z̃H

H as in

(4.2.1.15), in the toroidal boundary construction of
~̃
M

ord

H̃ .

Recall (see Section 7.2.1) that ~Nord
κ =

~̃
Z

ord

[(Φ̃H̃,δ̃H̃,σ̃)]
∼= ~̃
C

ord

Φ̃H̃,δ̃H̃
, which

(by Proposition 4.2.1.30) is a torsor under an abelian scheme ~Nord,grp
κ =

~̃
C

ord,grp

Φ̃H̃,δ̃H̃
, which (as in the proof of Proposition 4.2.1.30) is canonically

isomorphic to
...
C̃

ord,◦
Φ̃H,n

×...
M̃

ord,̃ZH
H

~Mord
H . Combining this with (7.2.5.27), we

obtain a canonical isomorphism

(7.2.5.28) ~Nord,grp
κ

∼→
...
C̃

ord,ext,◦
H̃,n ×

~Mord,tor
H

~Mord
H

of abelian schemes over ~Mord
H . Since ~Mord,tor

H is noetherian normal, by
[92, IX, 1.4], [28, Ch. I, Prop. 2.7], or [62, Prop. 3.3.1.5], we obtain a
canonical isomorphism

(7.2.5.29) ~Nord,ext
κ

∼→
...
C̃

ord,ext,◦
H̃,n .

of semi-abelian schemes over ~Mord,tor
H . Combining this with the first

vertical arrow in (7.2.5.25), we obtain (see Lemma 7.2.5.26) a canonical
quasi-finite étale isogeny

(7.2.5.30) ~Nord,ext
κ →

...
C̃

ord,ext,◦

of semi-abelian schemes over ~Mord,tor
H . Hence, we obtain the following:
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Corollary 7.2.5.31. The canonical isogeny (7.2.5.30) induces a
canonical isomorphism

(7.2.5.32) Lie∨...
C̃

ord,ext,◦
/~Mord,tor
H

∼→ Lie∨~Nord,ext
κ /~Mord,tor

H
.

Consequently, we obtain a canonical isomorphism

(7.2.5.33) (f tor)∗Lie∨~Nord,ext/~Mord,tor
H

∼= Ω
1
~Nord,tor/~Mord,tor

H

by combining (7.2.5.7), Lemmas 7.2.5.10 and 7.2.5.14, and (7.2.5.32).

This isomorphism (7.2.5.33) gives the desired isomorphism (7.1.4.2).

(The restriction of (7.2.5.33) to ~Nord is compatible with the composition
of isomorphisms (7.1.4.3) because of the same calculation in the proof
of Proposition 4.2.3.5.) Thus, we have also proved (3a) of Theorem
7.1.4.1.

The same argument above (based on Proposition 4.2.3.5) also shows
the following:

Lemma 7.2.5.34. (Compare with Lemma 1.3.2.79. This is a con-
tinuation of Lemma 7.1.2.29.) Consider the morphisms

(7.2.5.35)
~̂
C

ord

Φ̆Ĥ,δ̆Ĥ
=
~̃
C

ord

Φ̆H̃,δ̆H̃
→ ~Cord

ΦH,δH,rκ
:= ~Cord

ΦH,δH
×

~S0,rH

~S0,rκ

and

(7.2.5.36)
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
→ ~Ξ

ord

ΦH,δH,ΣΦH ,rκ
:= ~Ξ

ord

ΦH,δH,ΣΦH
×

~S0,rH

~S0,rκ

induced by (7.1.2.2) and (7.1.2.34), respectively. Over ~Cord
ΦH,δH

(where

G\ etc are tautologically defined), we have an extension

(7.2.5.37) 0→
...
E

ord,◦
Ĥ,n →

...
C̃

ord,\,◦
Ĥ,n →

...
C

ord,\,◦
H,n → 0

of a semi-abelian scheme by a torus, where the definition of
...
C̃

ord,\,◦
Ĥ,n

(resp.
...
C

ord,\,◦
H,n , resp.

...
E

ord,◦
Ĥ,n ) is similar to that of

...
C̃

ord,ext,◦
H̃,n , but with G etc

replaced with G\ etc (resp. B etc, resp. T etc), which can be identified
up to compatible Q×-isogenies with an extension
(7.2.5.38)

0→ HomO(X̃, T )◦ → HomO(X̃,G\)◦ → HomO(X̃, B)◦ → 0.

Then (7.2.5.35) is smooth, (7.2.5.36) is log smooth, and we have canon-
ical isomorphisms

(7.2.5.39) Ω1
~̂
C

ord

Φ̆Ĥ,δ̆Ĥ
/ ~Cord

ΦH,δH,rκ

∼= (
~̂
C

ord

Φ̆Ĥ,δ̆Ĥ
→ ~Cord

ΦH,δH
)∗Lie∨...

C
ord,\,◦
H,n / ~Cord

ΦH,δH
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(cf. (1.3.2.54)) and
(7.2.5.40)

Ω
1

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
/~Ξ

ord

ΦH,δH,ΣΦH ,rκ

∼= (
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
→ ~Cord

ΦH,δH
)∗Lie∨...

C̃
ord,\,◦
Ĥ,n / ~Cord

ΦH,δH

(cf. (1.3.2.86)), where

Ω
1

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
/~Ξ

ord

ΦH,δH,ΣΦH ,rκ

:= (Ω1

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
/ ~Cord

ΦH,δH

[d log∞])/

((
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
→ ~Ξ

ord

ΦH,δH,ΣΦH ,rκ
)∗Ω1

~Ξ
ord

ΦH,δH,ΣΦH ,rκ
/ ~Cord

ΦH,δH

[d log∞])

is the sheaf of modules of relative log 1-differentials. Moreover, the
canonical morphism

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
→ ~Ξ

ord

ΦH,δH,ΣΦH
×

~Cord
ΦH,δH

~̂
C

ord

Φ̆Ĥ,δ̆Ĥ

∼= ~Ξ
ord

ΦH,δH,ΣΦH ,rκ
×

~Cord
ΦH,δH

,rκ

~̂
C

ord

Φ̆Ĥ,δ̆Ĥ

(7.2.5.41)

(induced by (7.1.2.2) and (7.1.2.34), or by (7.2.5.35) and (7.2.5.36); cf.
(1.3.2.87)) induces a canonical short exact sequence

0→ (
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
→ ~̂

C
ord

Φ̆Ĥ,δ̆Ĥ
)∗Ω1

~̂
C

ord

Φ̆Ĥ,δ̆Ĥ
/ ~Cord

ΦH,δH,rκ

→ Ω
1

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
/~Ξ

ord

ΦH,δH,ΣΦH ,rκ

→ Ω
1

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
/~Ξ

ord

ΦH,δH,ΣΦH
×

~Cord
ΦH,δH

~̂
C

ord

Φ̆Ĥ,δ̆Ĥ

→ 0

(7.2.5.42)

(cf. (1.3.2.88)), where

Ω
1

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
/~Ξ

ord

ΦH,δH,ΣΦH
×

~Cord
ΦH,δH

~̂
C

ord

Φ̆Ĥ,δ̆Ĥ

:= (Ω1

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
/
~̂
C

ord

Φ̆Ĥ,δ̆Ĥ

[d log∞])/

((
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
→ ~Ξ

ord

ΦH,δH,ΣΦH
)∗Ω1

~Ξ
ord

ΦH,δH,ΣΦH
/
~̂
C

ord

Φ̆Ĥ,δ̆Ĥ

[d log∞])
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is the sheaf of modules of relative log 1-differentials, which is exact and
has locally free terms, which can be canonically identified with the pull-

back under
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
→ ~Cord

ΦH,δH
of the canonical short exact sequence

(7.2.5.43)
0→ Lie∨...

C
ord,\,◦
H,n / ~Cord

ΦH,δH
→ Lie∨...

C̃
ord,\,◦
Ĥ,n / ~Cord

ΦH,δH

→ Lie∨...
E

ord,◦
Ĥ,n

/ ~Cord
ΦH,δH

→ 0

of locally free sheaves. Hence, (7.2.5.41) is also log smooth (by [45,
3.12]).

If p - [L# : L] as in Definition 1.1.1.6 and hence λ is prime-to-p, and
if O is maximal at p, then we may assume in the above that (7.2.5.37)
and (7.2.5.38) can be identified up to Q×-isogenies which are separable
up to Z×(p)-isogenies, and hence that (7.2.5.42) can be identified up with

the pullback under
~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
→ ~Cord

ΦH,δH
of the canonical short exact

sequence

0→ HomO(X̃,Lie∨
B/~Cord

ΦH,δH
)→ HomO(X̃,Lie∨

G\/ ~Cord
ΦH,δH

)

→ HomO(X̃,Lie∨
T/~Cord

ΦH,δH
)→ 0

(7.2.5.44)

(cf. (1.3.2.89)).

Proof. The statements are self-explanatory. (For the last para-

graph, note that, under the assumption, [X̃ : φ̃(Ỹ )], [X̆ : φ̆(Y̆ )], and
[X : φ(Y )] are also prime-to-p, and the canonical homomorphisms

Gord
pr → G and G∨,ord

pr � G∨, as in (7.2.5.20) and (7.2.5.21), are
étale.) �

7.2.6. Equidimensionality of f tor. Let us resume the context of
the diagram (7.2.3.6) and take a closer look at it. (Then we no longer

suppose that κ ∈ Kord,+
Q,H,Σord .) By the construction of f tor, given any

stratum ~Zord
[(ΦH,δH,τ)],rκ

of ~Mord,tor
H,rκ , the preimage

~̃
Z

ord

[(ΦH,δH,τ)] := (f tor)−1(~Zord
[(ΦH,δH,τ)],rκ)

has a stratification formed by
~̃
Z

ord

[(Φ̆H̃,δ̆H̃,τ̆)], where τ̆ runs through cones

in Σ̃Φ̆H̃
satisfying the following conditions:

(1) τ̆ ⊂ P+

Φ̆H̃
.

(2) τ̆ has a face σ̆ that is a ΓΦ̆H̃
-translation of the image of σ̃ ⊂

P+

Φ̃H̃
under the first morphism in (1.2.4.20).
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(3) The image of τ̆ under the (canonical) second morphism in
(1.2.4.20) is contained in τ ⊂ P+

ΦH
.

The formal completion (~Nord,tor)∧
~̃
Z

ord

[(ΦH,δH,τ)]

admits a canonical morphism

(~Nord,tor)∧
~̃
Z

ord

[(ΦH,δH,τ)]

→ ~Cord
ΦH,δH,rκ

= ~Cord
ΦH,δH

×
~S0,rH

~S0,rκ ,

whose pre-composition with the canonical morphism

(~Nord,tor)∧
~̃
Z

ord

[(Φ̆H̃,δ̆H̃,τ̆)]

→ (~Nord,tor)∧
~̃
Z

ord

[(ΦH,δH,τ)]

,

for every stratum
~̃
Z

ord

[(Φ̆H̃,δ̆H̃,τ̆)] of
~̃
Z

ord

[(ΦH,δH,τ)], coincides with the compo-

sition of canonical morphisms
~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ̆
→ ~̃

C
ord

Φ̆H̃,δ̆H̃
→ ~Cord

ΦH,δH,rκ
by its

very construction.
Since f tor is étale locally given by morphisms between toric schemes

equivariant under (surjective) morphisms between tori, to determine
whether f tor is equidimensional (cf. [28, Ch. VI, Def. 1.3 and Rem. 1.4]
and [61, Sec. 3D]), it suffices to determine whether the relative dimen-

sion of each of the induced (smooth) morphism
~̃
Z

ord

[(Φ̆H̃,δ̆H̃,τ̆)] → ~Zord
[(ΦH,δH,τ)]

between strata is at most dim~Mord
H

(~Nord), the relative dimension of

f : ~Nord → ~Mord
H,rκ .

By abuse of language, we define the R-dimension of a cone to be the

R-dimension of its R-span. Then the codimension of ~Nord =
~̃
Z

ord

[(Φ̃H̃,δ̃H̃,σ̃)]

in
~̃
M

ord,tor

H̃ is dimR(σ̃) = dimR((SΦ̃H̃
)∨R) because σ̃ is top-dimensional.

The codimension of
~̃
Z

ord

[(Φ̆H̃,δ̆H̃,τ̆)]
∼= ~̃

Ξ
ord

Φ̆H̃,δ̆H̃,τ̆

in
~̃
M

ord,tor

H̃ is equal to dimR(τ̆). Therefore, the codimension of
~̃
Z

ord

[(Φ̆H̃,δ̆H̃,τ̆)]

in ~Nord,tor is equal to dimR(τ̆) − dimR(σ̃) = dimR(τ̆) − dimR((SΦ̃H̃
)∨R).

On the other hand, the codimension of ~Zord
[(ΦH,δH,τ)]

∼= ~Ξord
ΦH,δH,τ

in ~Mord,tor
H

is dimR(τ), and so is the codimension of ~Zord
[(ΦH,δH,τ)],rκ

∼= ~Ξord
ΦH,δH,τ,rκ

:=

~Ξord
ΦH,δH,τ

×
~S0,rH

~S0,rκ in ~Mord,tor
H,rκ . Hence, we have (as in [61, (3.16)])

dim~Zord
[(ΦH,δH,τ)],rκ

(
~̃
Z

ord

[(Φ̆H̃,δ̆H̃,τ̆)])

= dim~Mord
H

(N)− (dimR(τ̆)− dimR((SΦ̃H̃
)∨R)) + dimR(τ).

(7.2.6.1)
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Let τ ′ denote the image of τ̆ in (SΦH)∨R. By assumption on τ̆ , we
have τ ′ ⊂ τ . If τ ′ = τ , then

dimR(τ) = dimR(τ ′) ≤ dimR(τ̆)− dimR((SΦ̃H̃
)∨R),

and hence (7.2.6.1) implies

dim~Zord
[(ΦH,δH,τ)],rκ

(
~̃
Z

ord

[(Φ̆H̃,δ̆H̃,τ̆)]) ≤ dim~Mord
H,rκ

(~Nord).

(If this is true for all
~̃
Z

ord

[(Φ̆H̃,δ̆H̃,τ̆)], then f tor is equidimensional.) On

the other hand, suppose τ ′ ( τ . Then there exists a face of τ ′′ of τ ′

such that τ ′′ ⊂ τ and dimR(τ ′′) < dimR(τ). Note that τ ′′ is the image
of at least one face of τ̆ satisfying the three conditions in the first
paragraph of this subsection. By dropping redundant basis vectors,
we may assume moreover that this face τ̆ ′′ of τ̆ satisfies dimR(τ ′′) =
dimR(τ̆ ′′)− dimR((SΦ̃H̃

)∨R). Then we have

dimR(τ) > dimR(τ ′′) = dimR(τ̆ ′′)− dimR((SΦ̃H̃
)∨R),

and hence (7.2.6.1) implies

dim~Zord
[(ΦH,δH,τ)],rκ

(
~̃
Z

ord

[(Φ̆H̃,δ̆H̃,τ̆
′′)]) > dim~Mord

H,rκ
(~Nord),

which means f tor cannot be equidimensional.
This motivates the following strengthening of Condition 7.1.1.15 on

an element κ̃ = (H̃, Σ̃ord, σ̃) in K̃ord,++
Q,H :

Condition 7.2.6.2. (Compare with [61, Cond. 3.17].) For each

(Φ̆H̃, δ̆H̃, τ̆) such that ~Zord
[(Φ̆H̃,δ̆H̃,τ̆)]

is a stratum in ~Nord,tor, the image of

τ̆ ⊂ P+
ΦH

under the (canonical) second morphism in (1.2.4.20) is ex-

actly some cone τ ⊂ P+
ΦH

in the cone decomposition ΣΦH (in Σord).

As in the case of Condition 7.1.1.17, if κ = [κ̃] ∈ Kord,++
Q,H is the

element determined by κ̃, then Condition 7.2.6.2 for κ̃ is equivalent to
the following condition for κ:

Condition 7.2.6.3. (Compare with [28, Ch. VI, Def. 1.3].) For

each τ̂ ∈ Σ̂Φ̆Ĥ
(where τ̂ = pr(ŜΦ̆Ĥ

)∨R
(τ̆) for some (Φ̆H̃, δ̆H̃, τ̆) is in

the cone decomposition Σ̂Φ̆Ĥ
in Σ̂ord), the image of τ̂ in P+

ΦH
under

(1.2.4.37) is exactly some cone τ ⊂ P+
ΦH

in the cone decomposition

ΣΦH (in Σord).

Proposition 7.2.6.4. (Compare with [61, Prop. 3.18].) The fol-
lowing are equivalent:
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(1) Condition 7.2.6.3 is satisfied.

(2) The morphism f tor : ~Nord,tor → ~Mord,tor
H,rκ is equidimensional

(with relative dimension equal to the one of f : ~Nord → ~Mord
H,rκ).

(3) The morphism f tor is flat.
(4) The morphism f tor is log integral (see [45, Def. 4.3]).

Proof. The equivalence between Condition 7.2.6.3 and equidimen-

sionality has been explained above. Since both ~Nord,tor and ~Mord,tor
H,rκ

are regular (because they are smooth over ~S0,rκ = Spec(OF0,(p)[ζprκ ])),
the equidimensionality and flatness of f tor are equivalent by [35, IV-
3, 15.4.2 b)⇔e’)]. By [45, Prop. 4.1(2)], the log integrality of f tor

is equivalent to the flatness of each of the canonical homomorphisms

Z[τ∨] ↪→ Z[τ̆∨] (defined when ~Zord
[(Φ̆H̃,δ̆H̃,τ̆)]

is mapped to ~Zord
[(ΦH,δH,τ)],rκ

),

which is equivalent to the equidimensionality of each such homomor-
phism (by the smoothness of Z[τ∨] and Z[τ̆∨] over Z, and by [35, IV-3,
15.4.2 b)⇔e’)] again), which is equivalent to Condition 7.2.6.3 by the
same (dimension comparison) argument. �

Proposition 7.2.6.5. (Compare with [28, Ch. VI, Rem. 1.4] and
[61, Prop. 3.18].) Condition 7.2.6.3 can be achieved by replacing both

the cone decompositions Σ̃ord and Σord with some refinements.

Proof. Since this is a question only about cone decompositions,
the same argument of the proof of [61, Prop. 3.18] works here. �

Remark 7.2.6.6. (Compare with [61, Rem. 3.20].) We will not
need Propositions 7.2.6.4 and 7.2.6.5 in what follows. We supply them
here because knowing equidimensionality, flatness, or log integrality of
f tor is useful in many applications.

7.2.7. Hecke Actions. The aim of this subsection is to explain
the proof of statements (4) and (5) of Theorem 7.1.4.1, with (4c) and
(5c) conditional on (3b) and (3c) of Theorem 7.1.4.1. These state-
ments might seem elaborate, but they are self-explanatory and based
on the following simple idea: Since N and Ntor are constructed using

the toroidal compactifications of M̃H̃, we can use the Hecke actions

on M̃H̃ and their (compatible) extensions to toroidal compactifications
provided by Proposition 5.2.2.2.

Let ĝ, Ĥ′, Σord,′, gl, and Q′ be as in (4) and (5) of Theorem
7.1.4.1. (For proving (4) and (5) of Theorem 7.1.4.1, we may as-
sume in what follows that either ĝ = 1 or gl = 1, although the theory
works in a more general context.) Let g̃ = (g̃0, g̃p) be any element in
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P̃Z̃(A∞,p)× P̃ord
Z̃,D̃

(Qp) such that, under the canonical isomorphism

P̃Z̃(A
∞,p)× P̃ord

Z̃,D̃
(Qp) ∼= G̃l,Z̃(A

∞) n (P̃′
Z̃
(A∞,p)× P̃ord,′

Z̃,D̃
(Qp))

induced by the splitting δ̃ (as in Definition 1.2.4.3), g̃ is mapped to

(g−1
l , g̃′) for some element g̃′ ∈ P̃′

Z̃
(A∞,p)× P̃ord,′

Z̃,D̃
(Qp) that is mapped to

ĝ under the canonical morphism

P̃′
Z̃
(A∞,p)× P̃ord,′

Z̃,D̃
(Qp)→ Ĝ(A∞,p)× P̂ord

D (Qp).

Suppose κ = [κ̃] for some κ̃ = (H̃, Σ̃, σ̃). Let H̃′ be a (necessarily

neat) subgroup of G̃(Ẑ) such that we have the following:

• H̃′ = H̃′,pH̃′p is of standard form (where H̃′,p ⊂ H̃p is neces-
sarily neat) such that rH̃′ ≥ rH̃, and such that g̃p satisfies the
conditions analogous to those given in Section 3.3.4.

• H̃′ ⊂ g̃H̃g̃−1.

• H̃′ also satisfies Conditions 1.2.4.7 and 7.1.1.5.
• H̃′

Ĝ
= Ĥ′ when Ĥ′ is prescribed (as in (4) of Theorem 7.1.4.1).

• H̃′ satisfies Condition 1.2.4.8 or 1.2.4.9 when H̃ does.

(These are possible by Lemma 1.2.4.45.) By Proposition 5.2.2.2, there

exists some choice of projective smooth Σ̃ord,′ such that the canon-

ical morphism [g̃] :
~̃
M

ord

H̃′ →
~̃
M

ord

H̃ extends canonically to ~[g̃]
ord,tor

:
~̃
M

ord,tor

H̃′,Σ̃ord,′ → ~̃
M

ord,tor

H̃,Σ̃ord . By replacing Σ̃ord,′ with a refinement such that

it satisfies Condition 7.1.1.15 (with Σord,′ and) with some choice of σ̃′,

and such that the morphism ~[g̃]
ord,tor

sends the stratum
~̃
Z

ord

[(Φ̆H̃′ ,δ̆H̃′ ,σ̃
′)]

to
~̃
Z

ord

[(Φ̆H̃,δ̆H̃,σ̃)], we see that the induced morphism from the closure of

~̃
Z

ord

[(Φ̆H̃′ ,δ̆H̃′ ,σ̃
′)] to the closure of

~̃
Z

ord

[(Φ̆H̃,δ̆H̃,σ̃)] gives the existences of the

morphisms [ĝ] and [ĝ]tor when gl = 1 (resp. [gl]
∗
κ′,κ and ([gl]

∗
κ′,κ)

tor when
ĝ = 1) as in (4a) and (4b) (resp. (5a) and (5b)) of Theorem 7.1.4.1,

where κ′ = (H̃′, Σ̃′, σ̃′) lies in KQ,H′,Σord,′ (resp. KQ′,H,Σ), which satisfy
(4d), (4e), and (4f) (resp. (5e) and (5f)) thanks to the corresponding

statements of Proposition 5.2.2.2 for ~[g̃]
ord,tor

, except that (7.1.4.12) and
(7.1.4.23) still have to be explained. (As explained at the end of the
proof of Proposition 7.2.3.5, the description concerning stratifications
and formal completions are true because such a canonical morphism
~[g̃]

ord,tor
is constructed using (6) of Theorem 5.2.1.1, which is consis-

tent with the constructions of the canonical morphisms in Lemmas
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5.2.4.38 and 7.1.2.29, and Proposition 7.1.2.17, using the various uni-
versal properties given in terms of degeneration data.) Also, (4g) and
(5g) follow from Corollaries 3.4.4.3 and 5.2.2.3; (4h) and (5h) follow
from Corollaries 3.4.4.4 and 5.2.2.4; (4i) follows from Corollaries 3.4.4.6
and 5.2.2.5; and (4j) follows from Corollary 5.2.2.5 and (4i) (where the
finite flatness of (7.1.4.20), which is a finite morphism between regu-
lar schemes, is automatic by [35, IV-3, 15.4.2 e′)⇒b)]; cf. [62, Lem.
6.3.1.11]).

As in the case of showing Ri(f tor
κ′,κ)∗O~Nord,tor

κ′
= 0 for i > 0 in Propo-

sition 7.2.2.19, since the morphisms [ĝ]tor and ([gl]
∗
κ′,κ)

tor are étale lo-
cally given by equivariant morphisms between toric schemes, we have
Ri[ĝ]tor

∗ O~Nord,tor

κ′
= 0 and Ri([gl]

∗
κ′,κ)

tor

∗ O~Nord,tor

κ′
= 0 for i > 0 (by [50, Ch.

I, Sec. 3]), which are (7.1.4.12) and (7.1.4.23) of Theorem 7.1.4.1.
The remaining statements in (4c) and (5c) of Theorem 7.1.4.1 now

follow if we assume statements (3b) and (3c) of Theorem 7.1.4.1. (See
Section 7.3.6 below.)

7.3. Calculation of Formal Cohomology

7.3.1. Setting. Throughout this section, unless otherwise speci-

fied, we assume that κ = (Ĥ, Σ̂ord) = [κ̃] ∈ Kord,+
Q,H,Σord for some κ̃ =

(H̃, Σ̃ord, σ̃) ∈ K̃ord,+
Q,H,Σord , so that Hκ = H and rκ = rH, and so that

f : ~Nord → ~Mord
H is a torsor under an abelian scheme ~Nord,grp → ~Mord

H ,

which extends to a semi-abelian scheme ~Nord,ext → ~Mord,tor
H = ~Mord,tor

H,Σord

(where the subscripts “κ” are suppressed for the sake of simplicity); and

we fix the choice of an arbitrary (locally closed) stratum ~Zord
[(ΦH,δH,τ)] of

~Mord,tor
H . The aim of this section is to calculate the relative cohomology

of the pullback of the structural morphism f tor : ~Nord,tor → ~Mord,tor
H

to the formal completion (~Mord,tor
H )∧~Zord

[(ΦH,δH,τ)]

. (See (5) of Theorem

5.2.1.1 for a description of this formal completion. See also the first
paragraph of Section 7.2.6 for a description of the formal completion

(Ntor)∧
Z̃[(ΦH,δH,τ)]

of Ntor along
~̃
Z

ord

[(ΦH,δH,τ)] = (f tor)−1(~Zord
[(ΦH,δH,τ)]).)

Let I~Dord
∞,H

be the O~Mord,tor
H

-ideal defining the relative Cartier divisor

~Dord
∞,H (with its reduced structure) in (3) of Theorem 5.2.1.1, and let

I~Eord
∞

= I~Eord
∞,κ

be the O~Nord,tor-ideal defining the relative Cartier divisor

~Eord
∞ = ~Eord

∞,κ (with its reduced structure) in (1) of Theorem 7.1.4.1.
(The subscripts “κ” are suppressed for the sake of simplicity.) Note
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that we have a canonical inclusion

(7.3.1.1) (f tor)∗I~Dord
∞,H

↪→ I~Eord
∞

of O~Nord-ideals, realizing I~Eord
∞

as the radical of (f tor)∗I~Dord
∞,H

.

For M being one of the following quasi-coherent ONtor-modules
ONtor , I~Eord

∞
, and (f tor)∗I~Dord

∞,H
, we will show that the relative

cohomology Rbf tor
∗ (M ) is locally free and canonically isomorphic

to the (putative) answers given in the statements of Theorem
7.1.4.1. As a byproduct of the method, we will also investigate
the cases of M being I~̃

Z
ord

[(ΦH,δH,τ)]

:= ker(ONtor � O~̃
Z

ord

[(ΦH,δH,τ)]

)

or O~̃
Z

ord

[(ΦH,δH,τ)]

. Since f tor is proper (and since the choice of

~Zord
[(ΦH,δH,τ)] is arbitrary), by Grothendieck’s fundamental theorem

[35, III-1, 4.1.5] (and by fpqc descent for the property of local
freeness [33, VIII, 1.11]), it suffices to show these over the

pullback f tor : (Ntor)∧
~̃
Z

ord

[(ΦH,δH,τ)]

→ (~Mord,tor
H )∧~Zord

[(ΦH,δH,τ)]

of f tor to

(~Mord,tor
H )∧~Zord

[(ΦH,δH,τ)]

. These will be carried out in the remainder of this

section.
For simplicity of notation, we will denote by O+

X (resp. O++
X , resp.

O0+
X ) the pullback of I~Eord

∞
(resp. (f tor)∗I~Dord

∞,H
, resp. I~̃

Z
ord

[(ΦH,δH,τ)]

) under

any morphism X → Ntor from a formal scheme. For example, the
pullback of I~Eord

∞
under the canonical morphism (Ntor)∧

~̃
Z

ord

[(ΦH,δH,τ)]

→ Ntor

will be denoted O+
(Ntor)∧

~̃
Z
ord
[(ΦH,δH,τ)]

.

The definitions and arguments in this section will follow those in
[61, Sec. 4] very closely, but we will take this opportunity to clarify or
correct some flaws in the exposition there.

7.3.2. Formal Fibers of f tor. The definitions and arguments in
this subsection will follow those in [61, Sec. 4A] very closely.

Definition 7.3.2.1. ΓΦ̆H̃,τ
is the subgroup of elements in ΓΦ̆H̃

sta-

bilizing (both) X and Y and inducing an element in ΓΦH,τ (the subgroup
of ΓΦH formed by elements mapping τ to itself).

Since we have tacitly assumed that ΓΦH,τ is trivial by Conditions
1.2.2.9 and [62, Lem. 6.2.5.27], ΓΦ̆H̃,τ

is also the subgroup of elements

in ΓΦ̆H̃
fixing (both) X and Y .
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Let ΓΦ̆Ĥ,ΦH
be as in Definition 1.2.4.21. By Lemma 1.2.4.25, ΓΦ̆Ĥ,ΦH

maps σ̆, the image of σ̃ in PΦ̆H̃
, to itself. On the other hand, by

Condition 1.2.2.9 (and Lemma 1.3.4.3), if a cone τ̆ ⊂ P+

Φ̆H̃
in Σ̃Φ̆H̃

has

a face that is a ΓΦ̆H̃,τ
-translation of σ̆, then it cannot have a different

face that is also a ΓΦ̆H̃,τ
-translation of σ̆.

Definition 7.3.2.2. Σ̃Φ̆H̃,σ̆,τ
is the subset of Σ̃Φ̆H̃

consisting of cones

τ̆ satisfying the following conditions (cf. similar conditions in the first
paragraph of Section 7.2.6):

(1) τ̆ ⊂ P+

Φ̆H̃
.

(2) τ̆ has σ̆ as a face.
(3) The image of τ̆ under the (canonical) second morphism in

(1.2.4.20) is contained in τ ⊂ P+
ΦH

.

In other words, Σ̃Φ̆H̃,σ̆,τ
is the subset of Σ̃Φ̆Ĥ,σ̆

= Σ̃Φ̆H̃,σ̆
(see (1) of Defi-

nition 1.2.4.21) consisting of cones τ̆ whose image under the (canonical)
second morphism in (1.2.4.20) is contained in τ ⊂ P+

ΦH
.

Thus, to obtain a complete list of representatives of the equivalence

classes [(Φ̆H̃, δ̆H̃, τ̆)] parameterizing the strata of
~̃
Z

ord

[(ΦH,δH,τ)], it suffices

to take representatives of Σ̃Φ̆H̃,σ̆,τ
modulo the action of ΓΦ̆Ĥ,ΦH

. (That

is, we do not have to consider ΓΦ̆Ĥ,ΦH
-translations of σ̆.)

Let
~̃
Ξ

ord

Φ̆H̃,δ̆H̃
(τ) denote the toroidal embedding of

~̃
Ξ

ord

Φ̆H̃,δ̆H̃
formed by

gluing the affine toroidal embeddings
~̃
Ξ

ord

Φ̆H̃,δ̆H̃
(τ̆) over

~̃
C

ord

Φ̆H̃,δ̆H̃
, where τ̆

runs through cones in ΣΦ̆H̃,σ̆,τ
. To minimize confusion, we shall dis-

tinguish between
~̃
Ξ

ord

Φ̆H̃,δ̆H̃
(τ̆1) and

~̃
Ξ

ord

Φ̆H̃,δ̆H̃
(τ̆2) even when [(Φ̆H̃, δ̆H̃, τ̆1)] =

[(Φ̆H̃, δ̆H̃, τ̆2)]. For each τ̆ as above (having σ̆ as a face), recall that we

have denoted the closure of the σ̆-stratum of
~̃
Ξ

ord

Φ̆H̃,δ̆H̃
(τ̆) by

~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(τ̆).

Let
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(τ) denote the union of all such

~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(τ̆), let

~̃
Ξ

ord

Φ̆H̃,δ̆H̃,τ

denote the union of all such
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,τ̆
, and let

~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ
denote the

formal completion of
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(τ) along

~̃
Ξ

ord

Φ̆H̃,δ̆H̃,τ
.
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For each τ̆ ∈ Σ̃Φ̆H̃,σ̆,τ
, consider the open subscheme Uτ̆ of

~̃
Ξ

ord

Φ̆H̃,δ̆H̃,τ

formed by the union of all (locally closed) strata of
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,τ
that con-

tains the stratum
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,τ̆
in its closure, and consider the open formal

subscheme Uτ̆ of
~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ
supported on Uτ̆ . The subscheme Uτ̆ of

~̃
Ξ

ord

Φ̆H̃,δ̆H̃,τ
is the closed subscheme of

~̃
Ξ

ord

Φ̆H̃,δ̆H̃
(τ̆) given by the intersec-

tion of
~̃
Ξ

ord

Φ̆H̃,δ̆H̃
(τ̆) and

~̃
Ξ

ord

Φ̆H̃,δ̆H̃,τ
(as an open subscheme of

~̃
Ξ

ord

Φ̆H̃,δ̆H̃,τ
),

and the formal subscheme Uτ̆ of
~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ
is the formal completion of

~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(τ̆) along Uτ̆ . The collection {Uτ̆}τ̆∈Σ̃Φ̆H̃,σ̆,τ

forms an open cov-

ering of
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,τ
. We can interpret

~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ
as constructed by gluing

the collection {Uτ̆}τ̆∈Σ̃Φ̆H̃,σ̆,τ
of formal schemes along their intersections

(of supports).

Definition 7.3.2.3. (1) τ̆∨σ̆ is the intersection of (τ̆ ′)∨0 (in

SΦ̆H̃
) for τ̆ ′ running through faces of τ̆ in Σ̃Φ̆H̃,σ̆,τ

(including

τ̆ itself).
(2) τ̆∨σ̆,+ is the intersection of (τ̆ ′)∨0 (in SΦ̆H̃

) for τ̆ ′ running through

faces of τ̆ in ΣΦ̆H̃
(including τ̆ itself) that also has σ̆ as a face.

(3) τ∨+ is the intersection of (τ ′)∨0 (in SΦH) for τ ′ running through
faces of τ in ΣΦH (including τ itself).

Then we have the canonical isomorphism

Uτ̆ ∼= Spec
O
~̃
C

ord
Φ̆H̃,δ̆H̃

((
⊕

˘̀∈τ̆∨

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)
)
/
(
⊕

˘̀∈τ̆∨σ̆

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)
))

of schemes affine over
~̃
C

ord

Φ̆H̃,δ̆H̃
. As O~̃

C
ord

Φ̆H̃,δ̆H̃

-modules, we have a canoni-

cal isomorphism(
⊕

˘̀∈τ̆∨

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)
)
/
(
⊕

˘̀∈τ̆∨σ̆

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)
) ∼= ⊕

˘̀∈τ̆∨−τ̆∨σ̆

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀).

If we equip τ̆∨ − τ̆∨σ̆ with the semigroup structure induced by the
canonical bijection (τ̆∨ − τ̆∨σ̆ ) → τ̆∨/τ̆∨σ̆ , then we may interpret

⊕
˘̀∈τ̆∨−τ̆∨σ̆

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀) as an O~̃

C
ord

Φ̆H̃,δ̆H̃

-algebra, with algebra structure given
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by the isomorphisms

~̃
∆

ord,∗

Φ̆H̃,δ̆H̃,
˘̀,˘̀′ :

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀) ⊗

O
~̃
C

ord
Φ̆H̃,δ̆H̃

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀′)

∼→ ~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀+ ˘̀′)

inherited from those of O~̃
Ξ

ord

Φ̆H̃,δ̆H̃

∼= ⊕
˘̀∈SΦ̆H̃

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀) if ˘̀+ ˘̀′ ∈ τ̆∨ − τ̆∨σ̆

and by

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀) ⊗

O
~̃
C

ord
Φ̆H̃,δ̆H̃

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀′)→ 0

otherwise. Then we have a canonical isomorphism

Uτ̆ ∼= Spec
O
~̃
C

ord
Φ̆H̃,δ̆H̃

(
⊕

˘̀∈τ̆∨−τ̆∨σ̆

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)
)
.

By definition, we have

τ̆∨ − τ̆∨σ̆ =
(

∪
τ̆ ′ face of τ̆
in Σ̃Φ̆H̃,σ̆,τ

(
(τ̆ ′)⊥ ∩ τ̆∨

))
⊂ σ̆⊥ ∩ τ̆∨.

The formal scheme Uτ̆ , being the formal completion of

~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(τ̆) ∼= Spec

O
~̃
C

ord
Φ̆H̃,δ̆H̃

(
⊕

˘̀∈σ̆⊥ ∩ τ̆∨

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)
)

along Uτ̆ , can be canonically identified with the relative formal spec-

trum of the OC̃Φ̆H̃,δ̆H̃

-algebra ⊕̂
˘̀∈σ̆⊥ ∩ τ̆∨

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀) over

~̃
C

ord

Φ̆H̃,δ̆H̃
, where ⊕̂

denotes the completion of the sum with respect to the O~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(τ̆)

-ideal

⊕
˘̀∈σ̆⊥ ∩ τ̆∨σ̆

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀). Note that all the above canonical isomorphisms

correspond to canonical isomorphisms of O~̃
C

ord

Φ̆H̃,δ̆H̃

-algebras formed by

sums of sheaves of the form
~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀) (with O~̃

C
ord

Φ̆H̃,δ̆H̃

-algebra structures
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inherited from that of O~̃
Ξ

ord

Φ̆H̃,δ̆H̃

). By abuse of language, let us write

OUτ̆
∼= ⊕̂

˘̀∈σ̆⊥ ∩ τ̆∨

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀),

O0+
Uτ̆
∼= ⊕̂

˘̀∈σ̆⊥ ∩ τ̆∨σ̆

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀),

OUτ̆
∼= ⊕

˘̀∈τ̆∨−τ̆∨σ̆

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀).

By Condition 1.2.2.9 (and Lemma 1.3.4.3), the action of ΓΦ̆Ĥ,ΦH

induces only the trivial action on each stratum it stabilizes. Therefore,
the quotient morphism

(7.3.2.4)
~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ
→ ~̃

X
ord

Φ̆H̃,δ̆H̃,σ̆,τ
/ΓΦ̆Ĥ,ΦH

of formal schemes over ~S0,rH is a local isomorphism. The morphism

(7.3.2.4) is not defined over
~̃
C

ord

Φ̆H̃,δ̆H̃
when the action of ΓΦ̆Ĥ,ΦH

on

~̃
C

ord

Φ̆H̃,δ̆H̃
is nontrivial. Nevertheless, since ΓΦ̆Ĥ,ΦH

acts trivially on ΦH,

it acts trivially on ~Cord
ΦH,δH

, and hence (7.3.2.4) is defined over ~Cord
ΦH,δH

.

Proposition 7.3.2.5. (Compare with [61, Prop. 4.3].) There is a
canonical isomorphism

(7.3.2.6) (~Nord,tor)∧
~̃
Z

ord

[(ΦH,δH,τ)]

∼= ~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ
/ΓΦ̆Ĥ,ΦH

of formal schemes over ~Cord
ΦH,δH

, characterized by the identifications

(~Nord,tor)∧
~̃
Z

ord

[(Φ̆H̃,δ̆H̃,τ̆)]

∼= ~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ̆

of formal schemes over
~̃
C

ord

Φ̆H̃,δ̆H̃
(compatible with the canonical mor-

phisms

(~Nord,tor)∧
~̃
Z

ord

[(Φ̆H̃,δ̆H̃,τ̆)]

→ (~Nord,tor)∧
~̃
Z

ord

[(ΦH,δH,τ)]

and
~̃
C

ord

Φ̆H̃,δ̆H̃
→ ~Cord

ΦH,δH
). (The formation of the formal completion here

is similar to the one in (5) of Theorem 5.2.1.1.)
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Proof. Let τ̆ ∈ Σ̃Φ̆H̃,σ̆,τ
. Let Ũτ̆ denote the completion of

~̃
Ξ

ord

Φ̆H̃,δ̆H̃
(τ̆) along Uτ̆ , which contains Uτ̆ as a closed formal subscheme

(with the same support Uτ̆ ).

Since Uτ̆ is the union of (
~̃
Ξ

ord

Φ̆H̃,δ̆H̃
)τ̆ ′ with τ̆ ′ running through faces

of τ̆ in Σ̃Φ̆H̃,σ̆,τ
, which are cones in P+

Φ̆H̃
, the tautological degenera-

tion data over Ũτ̆ satisfies the positivity condition (with respect to the
ideal defining Uτ̆ ), and we obtain by Mumford’s construction as in Sec-

tion 4.2.2 a degenerating family ( ♥G̃, ♥λ̃, ♥ĩ, ♥α̃H̃p ,
♥α̃ord
H̃p

) → Ũτ̆ of

type
~̃
M

ord

H̃ (cf. Definition 3.4.2.10), which we call a Mumford family
(cf. Definition 4.2.2.21). Note that a Mumford family is defined in the
sense of relative schemes, namely as a functorial assignment to each

affine open formal subscheme Spf(R) of Ũτ̆ a degenerating family of

type
~̃
M

ord

H̃ over Spec(R). Therefore, (6) of Theorem 5.2.1.1 applies,
and implies the existence of a canonical (strata-preserving) morphism

Ũτ̆ →
~̃
M

ord,tor

H̃ under which ( ♥G̃, ♥λ̃, ♥ĩ, ♥α̃H̃p ,
♥α̃ord
H̃p

) → Ũτ̆ is the

pullback of (G̃, λ̃, ĩ, α̃H̃p , α̃
ord
H̃p

) → ~̃
M

ord,tor

H̃ . Moreover, if τ̆ ′ ∈ Σ̃Φ̆H̃,σ̆,τ
,

then the morphisms from Ũτ̆ and from Ũτ̆ ′ to
~̃
M

ord,tor

H̃ agree over the

intersection Ũτ̆ ∩ Ũτ̆ ′ .
By taking the closures of the [(Φ̃H̃, δ̃H̃, σ̃)]-strata (not as closed sub-

schemes of the supports, but as closed formal subschemes), and by
arguing as in the proof of Proposition 7.2.2.19, we obtain canonical

morphisms Uτ̆ → ~Nord,tor for all τ̆ in Σ̃Φ̆H̃,σ̆,τ
, which patch together,

cover all strata above [(ΦH, δH, τ)], and induce the desired isomorphism
(7.3.2.6). �

Let us also consider O+
Uτ̆

and O++
Uτ̆

. By definition, the OUτ̆ -ideal

O+
Uτ̆

is isomorphic to the pullback of the O~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(τ̆)

-ideal defining the

complement of
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
in
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(τ̆). (In general, this is different

from the O~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(τ̆)

-ideal defining the closed subscheme
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,τ̆
of

~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(τ̆).) The above descriptions imply the following simple but

important facts:
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Lemma 7.3.2.7. (Compare with [61, Lem. 4.1].) Suppose τ̆ and τ̆ ′

are two cones in Σ̃Φ̆H̃,σ̆,τ
such that τ̆ ′ is a face of τ̆ . Then:

(1) We have a canonical open immersion Uτ̆ ′ ↪→ Uτ̆ (resp. Uτ̆ ′ ↪→

Uτ̆ ) of formal subschemes of
~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ
.

(2) The compatible canonical restriction morphisms

OUτ̆ → OUτ̆ ′
,

O+
Uτ̆
→ O+

Uτ̆ ′
,

O++
Uτ̆
→ O++

Uτ̆ ′
,

O0+
Uτ̆
→ O0+

Uτ̆ ′

correspond to the compatible canonical morphisms

⊕̂
˘̀∈σ̆⊥ ∩ τ̆∨

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)→ ⊕̂

˘̀∈σ̆⊥ ∩(τ̆ ′)∨

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀),

⊕̂
˘̀∈σ̆⊥ ∩ τ̆∨σ̆,+

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)→ ⊕̂

˘̀∈σ̆⊥ ∩(τ̆ ′)∨σ̆,+

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀),

⊕̂
˘̀∈σ̆⊥ ∩(τ̆∨+τ∨+)

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)→ ⊕̂

˘̀∈σ̆⊥ ∩((τ̆ ′)∨+τ∨+)

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀),

⊕̂
˘̀∈σ̆⊥ ∩ τ̆∨σ̆

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)→ ⊕̂

˘̀∈σ̆⊥ ∩(τ̆ ′)∨σ̆

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)

of O~̃
C

ord

Φ̆H̃,δ̆H̃

-algebras, respectively, where the two instances of

⊕̂ in each expression denote the completions of the sums

with respect to the sheaves of ideals ⊕
˘̀∈σ̆⊥ ∩ τ̆∨σ̆

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀) and

⊕
˘̀∈σ̆⊥ ∩(τ̆ ′)∨σ̆

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀), respectively, and where τ̆∨ + τ∨+ and

(τ̆ ′)∨ + τ∨+ are defined by viewing SΦH as a subsemigroup of
SΦ̆H̃

using the (canonical) first morphism SΦH ↪→ SΦ̆H̃
in

(1.2.4.18).
(3) The canonical restriction morphism

OUτ̆ → OUτ̆ ′

corresponds to the canonical morphism

⊕
˘̀∈τ̆∨−τ̆∨σ̆

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)→ ⊕

˘̀∈(τ̆ ′)∨−(τ̆ ′)∨σ̆

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)
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of O~̃
C

ord

Φ̆H̃,δ̆H̃

-algebras, which maps
~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀) to

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀) when

˘̀∈ (τ̆∨ − (τ̆ ′)∨σ̆) = (τ̆∨ − τ̆∨σ̆ )∩((τ̆ ′)∨ − (τ̆ ′)∨σ̆),

and to zero otherwise.
(4) The correspondences in (2) and (3) above are canonically com-

patible with each other.

By (5) of Theorem 5.2.1.1, we have a canonical isomorphism

(7.3.2.8) (~Mord,tor
H )∧~Zord

[(ΦH,δH,τ)]

∼= ~Xord
ΦH,δH,τ

.

By Proposition 7.3.2.5 and by the very constructions, we may identify

the pullback of f tor to (~Mord,tor
H )∧~Zord

[(ΦH,δH,τ)]

with the canonical morphism

~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ
/ΓΦ̆Ĥ,ΦH

→ ~Xord
ΦH,δH,τ

. By abuse of notation, we shall also

denote this pullback by

f tor :
~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ
/ΓΦ̆Ĥ,ΦH

→ ~Xord
ΦH,δH,τ

.

For each τ̆ ∈ Σ̃Φ̆H̃,σ̆,τ
, let U[τ̆ ] denote the image of Uτ̆ under (7.3.2.4),

which is isomorphic to Uτ̆ as a formal scheme over ~Cord
ΦH,δH

. By admis-

sibility of ΣΦ̆H̃
, we know that the set Σ̃Φ̆H̃,σ̆,τ

/ΓΦ̆Ĥ,ΦH
is finite. Then

~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ
/ΓΦ̆Ĥ,ΦH

can be constructed by gluing the finite collection

{U[τ̆ ]}[τ̆ ]∈Σ̃Φ̆H̃,σ̆,τ
/ΓΦ̆Ĥ,ΦH

of formal schemes over their intersections. Let

us denote by

f tor
[τ̆ ] : U[τ̆ ] → ~Xord

ΦH,δH,τ

the restriction of f tor to U[τ̆ ]. If we choose a representative τ̆ of [τ̆ ], then

we can identify f tor
[τ̆ ] : U[τ̆ ] → ~Xord

ΦH,δH,τ
with the canonical morphism

f tor
τ̆ : Uτ̆ → ~Xord

ΦH,δH,τ
induced by the canonical morphism

~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ
→

~Xord
ΦH,δH,τ

. Let us denote by

gτ̆ : Uτ̆ → ~Xord
ΦH,δH,τ

×
~Cord

ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃
,

h :
~̃
C

ord

Φ̆H̃,δ̆H̃
→ ~Cord

ΦH,δH
,

and

hτ : ~Xord
ΦH,δH,τ

×
~Cord

ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃
→ ~Xord

ΦH,δH,τ
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the canonical morphisms. Then we have a canonical identification
f tor
τ̆ = hτ ◦ gτ̆ . (Note that gτ̆ is a morphism between affine formal

schemes over
~̃
C

ord

Φ̆H̃,δ̆H̃
, and that hτ is the pullback of h to the affine

formal scheme ~Xord
ΦH,δH,τ

over ~Cord
ΦH,δH

.)
For simplicity, let us view O~Xord

ΦH,δH,τ
and O~Zord

[(ΦH,δH,τ)]
as sheaves

over ~Cord
ΦH,δH

, and suppress (~Xord
ΦH,δH,τ

→ ~Cord
ΦH,δH

)∗ and (~Zord
[(ΦH,δH,τ)] →

~Cord
ΦH,δH

)∗ from the notation. For push-forwards (to ~Cord
ΦH,δH

) of sheaves

over ~Xord
ΦH,δH,τ

, we shall use the notation ⊕̂ to denote the completion with
respect to (the push-forward of) the ideal of definition of O~Xord

ΦH,δH,τ
.

Based on Lemma 7.3.2.7, we have the following important facts:

Lemma 7.3.2.9. (Compare with [61, Lem. 4.6].)

(1) For each τ̆ ∈ Σ̃Φ̆H̃,σ̆,τ
, and each integer d ≥ 0, we have the

canonical isomorphisms

Rd(f tor
τ̆ )∗OUτ̆

∼= ⊕̂
˘̀∈σ̆⊥ ∩ τ̆∨

Rd(hτ )∗(
~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)),

Rd(f tor
τ̆ )∗O

+
Uτ̆
∼= ⊕̂

˘̀∈σ̆⊥ ∩ τ̆∨σ̆,+
Rd(hτ )∗(

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)),

Rd(f tor
τ̆ )∗O

++
Uτ̆
∼= ⊕̂

˘̀∈σ̆⊥ ∩(τ̆∨+τ∨+)

Rd(hτ )∗(
~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)),

Rd(f tor
τ̆ )∗O

0+
Uτ̆
∼= ⊕̂

˘̀∈σ̆⊥ ∩ τ̆∨σ̆
Rd(hτ )∗(

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)),

Rd(f tor
τ̆ )∗OUτ̆

∼= ⊕
˘̀∈τ̆∨−τ̆∨σ̆

Rd(hτ )∗(
~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀))

of O~Xord
ΦH,δH,τ

-modules.

(2) For each γ ∈ ΓΦ̆Ĥ,ΦH
, we have a commutative diagram

Uτ̆
γ

//

gτ̆
��

Uγτ̆

gγτ̆
��

~Xord
ΦH,δH,τ

×
~Cord

ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃

γ
//

hτ

��

~Xord
ΦH,δH,τ

×
~Cord

ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃

hτ

��

~Xord
ΦH,δH,τ

~Xord
ΦH,δH,τ
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of formal schemes, (naturally) compatible with the commuta-
tive diagram

Uτ̆
γ

//

gτ̆
��

Uγτ̆

gγτ̆
��

~Ξord
ΦH,δH,τ

×
~Cord

ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃

γ
//

hτ

��

~Ξord
ΦH,δH,τ

×
~Cord

ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃

hτ

��

~Ξord
ΦH,δH,τ

~Ξord
ΦH,δH,τ

of their supports. Then the canonical morphisms in (1) are
compatible with the canonical isomorphisms γ∗OUγτ̆ → OUτ̆ ,

γ∗O+
Uγτ̆

→ O+
Uτ̆

, γ∗O++
Uγτ̆

→ O++
Uτ̆

, γ∗O0+
Uγτ̆

→ O0+
Uτ̆

, and

γ∗OUγτ̆ → OUτ̆ induced by the canonical isomorphisms

γ∗ : γ∗
~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(γ ˘̀)

∼→ ~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀) over

~̃
C

ord

Φ̆H̃,δ̆H̃
, respectively.

(3) For each integer d ≥ 0, if τ̆ ′ is a face of τ̆ in Σ̃Φ̆H̃,σ̆,τ
, then the

canonical morphisms

Rd(f tor
τ̆ )∗OUτ̆ → Rd(f tor

τ̆ ′ )∗OUτ̆ ′
,

Rd(f tor
τ̆ )∗O

+
Uτ̆
→ Rd(f tor

τ̆ ′ )∗O
+
Uτ̆ ′
,

Rd(f tor
τ̆ )∗O

++
Uτ̆
→ Rd(f tor

τ̆ ′ )∗O
++
Uτ̆ ′
,

Rd(f tor
τ̆ )∗O

0+
Uτ̆
→ Rd(f tor

τ̆ ′ )∗O
0+
Uτ̆ ′
,

Rd(f tor
τ̆ )∗OUτ̆ → Rd(f tor

τ̆ ′ )∗OUτ̆ ′
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induced by restriction from Uτ̆ to Uτ̆ ′ correspond to the mor-
phisms

⊕̂
˘̀∈σ̆⊥ ∩ τ̆∨

Rdh∗(
~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀))→ ⊕̂

˘̀∈σ̆⊥ ∩(τ̆ ′)∨
Rdh∗(

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)),

⊕̂
˘̀∈σ̆⊥ ∩ τ̆∨σ̆,+

Rdh∗(
~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀))→ ⊕̂

˘̀∈σ̆⊥ ∩(τ̆ ′)∨σ̆,+

Rdh∗(
~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)),

⊕̂
˘̀∈σ̆⊥ ∩(τ̆∨+τ∨+)

Rdh∗(
~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀))→ ⊕̂

˘̀∈σ̆⊥ ∩((τ̆ ′)∨+τ∨+)

Rdh∗(
~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)),

⊕̂
˘̀∈σ̆⊥ ∩ τ̆∨σ̆

Rdh∗(
~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀))→ ⊕̂

˘̀∈σ̆⊥ ∩(τ̆ ′)∨σ̆

Rdh∗(
~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)),

⊕
˘̀∈τ̆∨−τ̆∨σ̆

Rdh∗(
~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀))→ ⊕

˘̀∈(τ̆ ′)∨−(τ̆ ′)∨σ̆

Rdh∗(
~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀))

of O~Xord
ΦH,δH,τ

-modules, respectively. All of these morphisms

send Rdh∗(
~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)) (identically) to Rdh∗(

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)) when

it is defined on both sides, and to zero otherwise.

7.3.3. Relative Cohomology and Local Freeness. The defi-
nitions and arguments in this subsection will follow those in [61, Sec.
4B] very closely.

By (7.3.2.8), we shall identify (~Mord,tor
H )∧~Zord

[(ΦH,δH,τ)]

with ~Xord
ΦH,δH,τ

, and

identify ~Zord
[(ΦH,δH,τ)] with ~Ξord

ΦH,δH,τ
. For simplicity of notation, we shall

use ~Xord
ΦH,δH,τ

and ~Zord
[(ΦH,δH,τ)] more often than their counterparts.

Recall that ~Cord
ΦH,δH

(resp.
~̃
C

ord

Φ̃H̃,δ̃H̃
) is a torsor under an abelian

scheme ~Cord,grp
ΦH,δH

(resp.
~̃
C

ord,grp

Φ̃H̃,δ̃H̃
) over the finite étale cover ~Mord,ΦH

H (resp.

~̃
M

ord,Φ̃H̃

H̃ ) of ~Mord,ZH
H (resp.

~̃
M

ord,Z̃H̃

H̃ ) (see Section 4.2 and, in particular,
Propositions 4.2.1.29 and 4.2.1.30). Since the pairing 〈 · , · 〉̃ is the di-

rect sum of the pairings on Q−2⊕Q0 and on L, we have
~̃
M

ord,Φ̃H̃

H̃
∼=

~Mord,ΦH
H and

~̃
M

ord,Z̃H̃

H̃
∼= ~Mord,ZH

H (cf. Lemmas 5.2.4.1 and 5.2.4.5). Let
(B, λB, iB, ϕ−1,Hp , ϕ

ord
−1,Hp) and (ϕord

−2,H, ϕ
ord
0,H) (resp. (ϕ̃ord

−2,H̃, ϕ̃
ord
0,H̃)) be the

tautological tuples over ~Mord,ΦH
H (resp. ~M

ord,Φ̃H̃
H̃

). Let T (resp. T∨) be

the split torus with character group X (resp. Y ). For simplicity of



7.3. CALCULATION OF FORMAL COHOMOLOGY 517

notation, we shall denote the pullbacks of B, B∨, T , and T∨, respec-

tively, by the same symbols. The pullback of G (resp. G∨) to ~Xord
ΦH,ZH,τ

(as a formal scheme, rather than as a relative scheme as in the case
of Mumford families) is an extension of B (resp. B∨) by T (resp. T∨),
and this extension is a pullback of the tautological extension G\ (resp.

G∨,\) over ~Cord
ΦH,δH

. For simplicity, we shall also denote the pullbacks of

G\ and G∨,\, respectively, by the same symbols. By Lemma 7.1.2.1, the

morphism h :
~̃
C

ord

Φ̆H̃,δ̆H̃
→ ~Cord

ΦH,δH
is proper and smooth, and is a torsor

under the pullback to ~Cord
ΦH,δH

of an abelian scheme Q×-isogenous to

HomO(X̃, B)◦ → ~Mord,ΦH
H .

Consider the union Ñσ̆,τ of the cones τ̆ in Σ̃Φ̆H̃,σ̆,τ
, which has a

closed covering by the closures τ̆ cl (in Ñσ̆,τ ) of the cones τ̆ in Σ̃Φ̆H̃,σ̆,τ

(with natural incidence relations inherited from those of the cones τ̆ as
locally closed subsets of (SΦ̆H̃

)∨R). By definition, the nerve of the open

covering {Uτ̆}τ̆∈Σ̃Φ̆H̃,σ̆,τ
of
~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ
, or equivalently the open covering

{Uτ̆}τ̆∈Σ̃Φ̆H̃,σ̆,τ
of
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,σ̆
(τ) (by the supports of the formal schemes

{Uτ̆}τ̆∈Σ̃Φ̆H̃,σ̆,τ
), is naturally identified with the nerve of the closed cov-

ering {τ̆ cl}τ̆∈Σ̃Φ̆H̃,σ̆,τ
of Ñσ̆,τ .

Remark 7.3.3.1. Our description of Ñσ̆,τ here differs from that in
[61, Sec. 4B]. (The description in [61, Sec. 4B] is misleading because it
abusively identifies the homology of the nerve with the cohomology of
the dual one realized by the unions of closures of cones. We take this
opportunity to present the clarified and corrected exposition here.)

Accordingly, if we set

Nσ̆,τ := Ñσ̆,τ/ΓΦ̆Ĥ,ΦH
,

and let [τ̆ ]cl denote the closure of [τ̆ ] in Nσ̆,τ , for each

[τ̆ ] ∈ Σ̃Φ̆H̃,σ̆,τ
/ΓΦ̆Ĥ,ΦH

. Then the nerve of the open covering

(7.3.3.2) {U[τ̆ ]}[τ̆ ]∈Σ̃Φ̆H̃,σ̆,τ
/ΓΦ̆Ĥ,ΦH

of (~Nord,tor)∧
~̃
Z

ord

[(ΦH,δH,τ)]

∼= ~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ
/ΓΦ̆Ĥ,ΦH

, or equivalently the open

covering
{Uτ̆}[τ̆ ]∈Σ̃Φ̆H̃,σ̆,τ

/ΓΦ̆Ĥ,ΦH
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of
~̃
Z

ord

[(ΦH,δH,τ)]
∼= ~̃

Ξ
ord

Φ̆H̃,δ̆H̃,τ
/ΓΦ̆Ĥ,ΦH

of the supports of formal schemes, is

naturally identified with the nerve of the closed covering

(7.3.3.3) {[τ̆ ]cl}[τ̆ ]∈Σ̃Φ̆H̃,σ̆,τ
/ΓΦ̆Ĥ,ΦH

of Nσ̆,τ .

Let us analyze the topological structure of Ñσ̆,τ in closer detail. By

choosing some (noncanonical) splitting of sX̆ ⊗Z
Q : X̆ ⊗

Z
Q � X̃ ⊗

Z
Q

(over Q), we obtain the decomposition (1.2.4.31) of (SΦ̆H̃
)∨R, inducing

the projection pr(ŜΦ̆Ĥ
)∨R

in (1.2.4.32) (defined over Q). Note that σ̆⊥ =

ŜΦ̆Ĥ
(see Definition 1.2.4.29) because σ̃ is a top-dimensional cone in

P+

Φ̃H̃
. Then Lemmas 1.2.4.38 and 1.2.4.39 also imply the following:

Corollary 7.3.3.4. (Compare with Corollary 1.2.4.40.) The set

{pr(ŜΦ̆Ĥ
)∨R

(τ̆)}τ̆∈Σ̃Φ̆H̃,σ̆,τ

of rational polyhedral cones defines a ΓΦ̆Ĥ,ΦH
-admissible rational

polyhedral cone decomposition (cf. Definition 1.2.2.4) of

(7.3.3.5) pr(ŜΦ̆Ĥ
)∨R

(Ñσ̆,τ ) = ∪
τ̆∈Σ̃Φ̆H̃,σ̆,τ

(
pr(ŜΦ̆Ĥ

)∨R
(τ̆)
)

in the sense that we have the following:

(1) Every pr(ŜΦ̆Ĥ
)∨R

(τ̆) is a nondegenerate rational polyhedral cone.

(2) The union (7.3.3.5) is disjoint and defines a stratification of

pr(ŜΦ̆Ĥ
)∨R

(Ñσ̆,τ ).

(3) {pr(ŜΦ̆Ĥ
)∨R

(τ̆)}τ̆∈Σ̃Φ̆H̃,σ̆,τ
is invariant under the action of ΓΦ̆Ĥ,ΦH

in the sense that ΓΦ̆Ĥ,ΦH
permutes the cones in it. Under this

action, the set of ΓΦ̆Ĥ,ΦH
-orbits is finite.

Proof. The same argument of the proof of Corollary 1.2.4.40 also
works here (see Definition 7.3.2.2). �

Corollary 7.3.3.6. The projection pr(ŜΦ̆Ĥ
)∨R

in (1.2.4.32) induces

a homotopy equivalence from Ñσ̆,τ to pr(ŜΦ̆Ĥ
)∨R

(Ñσ̆,τ ).

Proof. Any continuous section x̃0 as in Lemma 1.2.4.39

defines a continuous map pr(ŜΦ̆Ĥ
)∨R

(Ñσ̆,τ ) → Ñσ̆,τ whose pre- and
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post-compositions with pr(ŜΦ̆Ĥ
)∨R

are homotopic to the identity

morphisms. Hence, the corollary follows. �

Lemma 7.3.3.7. The preimage of pr(ŜΦ̆Ĥ
)∨R

(Ñσ̆,τ ) under the

identification (ΓΦ̆Ĥ,ΦH
)∨R⊕(SΦH)∨R

∼= (ŜΦ̆Ĥ
)∨R (in (1.2.4.32), induced by

(1.2.4.31)) is the subset (ΓΦ̆Ĥ,ΦH
)∨R× τ .

Proof. By Condition 7.1.1.17, we know that τ̆ ⊂ (ΓΦ̆Ĥ,ΦH
)∨R× τ

for every τ̆ ∈ Σ̃Φ̆H̃,σ̆,τ
. The question is whether every point of

(ΓΦ̆Ĥ,ΦH
)∨R× τ is contained in τ̆ ′ for some τ̆ ∈ Σ̃Φ̆H̃,σ̆,τ

. By definition of

Ñσ̆,τ as the union of the cones τ̆ in Σ̃Φ̆H̃,σ̆,τ
(see Definition 7.3.2.2),

the answer is in the affirmative, because of the following elementary

fact: If

(
0 y
ty z

)
is a (partitioned) real symmetric matrix with entries

in R such that z is positive definite, and if x0 is a particular positive
definite matrix with entries in R, then there exists a sufficiently

large real number t0 such that

(
tx0 y
ty z

)
is positive definite for all

t ≥ t0. �

Lemma 7.3.3.8. The projection

pr(ΓΦ̆Ĥ,ΦH
)∨R

: (ΓΦ̆Ĥ,ΦH
)∨R⊕(SΦH)∨R → (ΓΦ̆Ĥ,ΦH

)∨R : (y, z) 7→ y

induces a homotopy equivalence from (ΓΦ̆Ĥ,ΦH
)∨R× τ to (ΓΦ̆Ĥ,ΦH

)∨R.

Proof. By choosing any point z0 in τ , we obtain a continuous
section

(ΓΦ̆Ĥ,ΦH
)∨R → (ΓΦ̆Ĥ,ΦH

)∨R× τ : y 7→ (y, z0)

whose pre- and post-compositions with pr(ΓΦ̆Ĥ,ΦH
)∨R
|(

(ΓΦ̆Ĥ,ΦH
)∨R × τ

) are

homotopic to the identity morphisms. Hence, the lemma follows, as
desired. �

Lemma 7.3.3.9. (Compare with [61, Lem. 4.21].) The topological
space Nσ̆,τ is homotopic to the real torus

TΦ̃H̃,ΦH
:= (ΓΦ̆Ĥ,ΦH

)∨R/ΓΦ̆Ĥ,ΦH
,

whose cohomology groups (by contractibility of (ΓΦ̆Ĥ,ΦH
)∨R) are

Hj(TΦ̃H̃,ΦH
,Z) ∼= Hj(ΓΦ̆Ĥ,ΦH

,Z) ∼= ∧j(HomZ(ΓΦ̆Ĥ,ΦH
,Z))
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for each integer j ≥ 0. Over ~Cord
ΦH,δH

⊗
Z
Q, we have a canonical isomor-

phism
(7.3.3.10)
Hj(ΓΦ̆Ĥ,ΦH

,Z)⊗
Z

O ~Cord
ΦH,δH

⊗
Z
Q ∼= ∧j(HomO(Q∨,LieT∨/ ~Cord

ΦH,δH
))⊗

Z
Q.

Proof. By Corollary 7.3.3.6 and Lemma 7.3.3.8, the projection

(SΦ̃H̃
)∨R⊕(ΓΦ̆Ĥ,ΦH

)∨R⊕(SΦH)∨R → (ΓΦ̆Ĥ,ΦH
)∨R : (x, y, z) 7→ y

defines a homotopy equivalence from Ñσ̆,τ to (ΓΦ̆Ĥ,ΦH
)∨R. This homo-

topy equivalence (defined by projection) is compatible with the action
of (ΓΦ̆Ĥ,ΦH

)∨R, because the action is defined by translations on the sec-

ond factor (ΓΦ̆Ĥ,ΦH
)∨R. Therefore, Nσ̆,τ = Ñσ̆,τ/ΓΦ̆Ĥ,ΦH

is homotopic to

the real torus TΦ̃H̃,ΦH
= (ΓΦ̆Ĥ,ΦH

)∨R/ΓΦ̆Ĥ,ΦH
.

The canonical isomorphism (7.3.3.10) then follows from the com-
position of the following canonical isomorphisms

Hj(ΓΦ̆Ĥ,ΦH
,Z)⊗

Z
O ~Cord

ΦH,δH
⊗
Z
Q

∼= (∧j(HomZ(ΓΦ̆Ĥ,ΦH
,Z)))⊗

Z
O ~Cord

ΦH,δH
⊗
Z
Q

∼= (∧j(HomZ(HomO(X̃,X),Z)))⊗
Z

O ~Cord
ΦH,δH

⊗
Z
Q

∼= ∧j(HomO(Q∨,HomZ(Y,O ~Cord
ΦH,δH

)))⊗
Z
Q

∼= ∧j(HomO(Q∨,LieT∨/ ~Cord
ΦH,δH

)))⊗
Z
Q

induced by the canonical isomorphisms

ΓΦ̆Ĥ,ΦH
⊗
Z
Q ∼= HomO(X̃,X)⊗

Z
Q ∼= HomO(Q, Y )⊗

Z
Q,

as desired. �

Lemma 7.3.3.11. Let τ̆ = R>0v1 + · · ·+R>0vn be a nonzero smooth
nondegenerate rational polyhedral cone in (SΦ̆H̃

)∨R, where v1, . . . , vn are

nonzero vectors, and let K be a cone in (SΦ̆H̃
)∨R (i.e., a subset stable un-

der the multiplicative action of R×>0) such that 0 6∈ K and τ̆K := τ̆ ∩K

is convex. (Here τ̆ is the closure of τ̆ in (SΦ̆H̃
)∨R.) Up to reorder-

ing v1, . . . , vn if necessary, suppose moreover that, for some nonzero
m ≤ n, we have

(7.3.3.12) (R≥0v1 + · · ·+ R≥0vm)− {0} ⊂ K

but

(7.3.3.13) (R≥0vm+1 + · · ·+ R≥0vn)∩K = ∅.
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In this case, τ̆ ′ := R>0v1 + · · ·+R>0vm is the largest face of τ̆ such that
its closure τ̆ ′ (in (SΦ̆H̃

)∨R) satisfies τ̆ ′−{0} ⊂ K (so that τ̆ ′−{0} ⊂ τ̆K).

Consider the continuous map

F : [0, 1]× τ̆K → τ̆K

defined by sending

(t, x1v1 + · · ·+ xmvm + xm+1vm+1 + · · ·+ xnvn)

to

x1v1 + · · ·+ xmvm + (1− t)xm+1vm+1 + · · ·+ (1− t)xnvn.

Then F defines a deformation retract from τ̆K to its subset τ̆ ′ − {0}.
The construction of F is compatible with restrictions to faces τ̆ ′′ of τ̆
that still satisfy the condition of this lemma.

Proof. The statements are self-explanatory. (The condition
(7.3.3.12) is needed for the compatibility with restrictions to faces.
The condition (7.3.3.13) is needed for the deformation retract F to be
defined at t = 1.) �

Definition 7.3.3.14. For each ˘̀∈ SΦ̆H̃
, define the following sub-

sets of Ñσ̆,τ :

(1) Ñ
˘̀
σ̆,τ is the union of τ̆ ∈ Σ̃Φ̆H̃,σ̆,τ

such that ˘̀∈ σ̆⊥ ∩ τ̆∨.

(2) Ñ
˘̀,+
σ̆,τ is the union of τ̆ ∈ Σ̃Φ̆H̃,σ̆,τ

such that ˘̀∈ σ̆⊥ ∩ τ̆∨σ̆,+.

(3) Ñ
˘̀,0+
σ̆,τ is the union of τ̆ ∈ Σ̃Φ̆H̃,σ̆,τ

such that ˘̀∈ σ̆⊥ ∩ τ̆∨σ̆ .

Lemma 7.3.3.15. Suppose there exist nonzero rational vectors
v1, . . . , vn in (SΦ̆H̃

)∨R such that

σ̆ = R>0v1 + · · ·+ R>0vm,

and such that

τ̆ = R>0v1 + · · ·+ R>0vm + R>0vm+1 + · · ·+ R>0vn

is a cone in Σ̃Φ̆H̃,σ̆,τ
. Then we have the following criteria:

(1) ˘̀∈ σ̆⊥ ∩ τ̆∨ if and only if 〈˘̀, vi〉 ≥ 0 for all m+ 1 ≤ i ≤ n.

(2) ˘̀∈ σ̆⊥ ∩ τ̆∨σ̆,+ if and only if 〈˘̀, vi〉 > 0 for all m+ 1 ≤ i ≤ n.

(3) ˘̀∈ σ̆⊥ ∩ τ̆∨σ̆ if and only if 〈˘̀, vi〉 ≥ 0 for all m+ 1 ≤ i ≤ n and

〈˘̀, vi〉 > 0 for all m+ 1 ≤ i ≤ n such that vi ∈ P+

Φ̃H̃
and such

that the image of vi under the (canonical) second morphism in
(1.2.4.20) is contained in τ ⊂ P+

ΦH
.
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Proof. These follow immediately from the definitions. (See Defi-
nitions 7.3.2.2, 7.3.2.3, and 7.3.3.14.) �

Proposition 7.3.3.16. For each ˘̀∈ SΦ̆H̃
, the subsets Ñ

˘̀
σ̆,τ , Ñ

˘̀,+
σ̆,τ ,

and Ñ
˘̀,0+
σ̆,τ of Ñσ̆,τ (in Definition 7.3.3.14) all have contractible or empty

complements in Ñσ̆,τ .

Proof. We may and we shall assume that ˘̀ ∈ σ̆⊥, because oth-
erwise all subsets in question will be empty (and the lemma becomes

trivial). Since ˘̀∈ σ̆⊥, the conditions for each cone τ̆ ∈ Σ̃Φ̆H̃,σ̆,τ
to be

in each of the four subsets (see Definition 7.3.3.14) depend only on the
image τ̂ = pr(ŜΦ̆Ĥ

)∨R
(τ̆) under the projection pr(ŜΦ̆Ĥ

)∨R
in (1.2.4.32). By

Lemma 1.2.4.39, as in Corollary 7.3.3.6 (and its proof), the projection

pr(ŜΦ̆Ĥ
)∨R

induces homotopy equivalences from Ñσ̆,τ , Ñ
˘̀
σ̆,τ , Ñ

˘̀,+
σ̆,τ , Ñ

˘̀,0+
σ̆,τ ,

Ñσ̆,τ − Ñ
˘̀
σ̆,τ , Ñσ̆,τ − Ñ

˘̀,+
σ̆,τ , and Ñσ̆,τ − Ñ

˘̀,0+
σ̆,τ to their images

̂̃
Nσ̆,τ ,

̂̃
N

˘̀

σ̆,τ ,̂̃
N

˘̀,+

σ̆,τ ,
̂̃
N

˘̀,0+

σ̆,τ ,
̂̃
Nσ̆,τ−

̂̃
N

˘̀

σ̆,τ ,
̂̃
Nσ̆,τ−

̂̃
N

˘̀,+

σ̆,τ , and
̂̃
Nσ̆,τ−

̂̃
N

˘̀,0+

σ̆,τ , respectively. By
Corollary 7.3.3.4, each of such images has an induced cone decomposi-
tion (in the obvious sense) by subsets of {pr(ŜΦ̆Ĥ

)∨R
(τ̆)}τ̆∈Σ̃Φ̆H̃,σ̆,τ

. Using

Lemma 7.3.3.7 to identify
̂̃
Nσ̆,τ with (ΓΦ̆Ĥ,ΦH

)∨R× τ , we have(
pr(ŜΦ̆Ĥ

)∨R
(τ̆)− {0}

)
∩
(
(ΓΦ̆Ĥ,ΦH

)∨R×{0}
)

= ∅

for all τ̆ ∈ Σ̃Φ̆H̃,σ̆,τ
, because a real symmetric matrix

(
x y
ty 0

)
can be

positive semi-definite only when y = 0. (The proof is elementary.)

For simplicity, let us denote P̂Φ̆Ĥ
−
(
(ΓΦ̆Ĥ,ΦH

)∨R×{0}
)

by P̂′. Let

P̂′˘̀<0
:= {y ∈ P̂′ : 〈˘̀, y〉 < 0}

and

P̂′˘̀≤0
:= {y ∈ P̂′ : 〈˘̀, y〉 ≤ 0}.

Let P̂′˘̀<0+
denote the subset of P̂′˘̀≤0

consisting of y ∈ P̂′˘̀≤0
such that

〈˘̀, y〉 < 0 if the image of y under the (canonical) second morphism in

(1.2.4.20) is not contained in τ ⊂ P+
ΦH

. By Lemma 7.3.3.15,
̂̃
Nσ̆,τ−

̂̃
N

˘̀

σ̆,τ

(resp.
̂̃
Nσ̆,τ −

̂̃
N

˘̀,+

σ̆,τ , resp.
̂̃
Nσ̆,τ −

̂̃
N

˘̀,0+

σ̆,τ ) is the union of all pr(ŜΦ̆Ĥ
)∨R

(τ̆)
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such that pr(ŜΦ̆Ĥ
)∨R

(τ̆) − {0} has a nonempty intersection with P̂′˘̀<0

(resp. P̂′˘̀≤0
, resp. P̂′˘̀<0+

).

Consider the canonical embeddings

(7.3.3.17)
̂̃
Nσ̆,τ ∩ P̂′˘̀<0

↪→ ̂̃
Nσ̆,τ −

̂̃
N

˘̀

σ̆,τ ,

(7.3.3.18)
̂̃
Nσ̆,τ ∩ P̂′˘̀≤0

↪→ ̂̃
Nσ̆,τ −

̂̃
N

˘̀,+

σ̆,τ ,

and

(7.3.3.19)
̂̃
Nσ̆,τ ∩ P̂′˘̀<0+

↪→ ̂̃
Nσ̆,τ −

̂̃
N

˘̀,0+

σ̆,τ .

Consider any τ̆ ∈ Σ̃Φ̆H̃,σ̆,τ
such that pr(ŜΦ̆Ĥ

)∨R
(τ̆)− {0} has a nonempty

intersection with
̂̃
Nσ̆,τ −

̂̃
N

˘̀

σ̆,τ (resp.
̂̃
Nσ̆,τ −

̂̃
N

˘̀,+

σ̆,τ , resp.
̂̃
Nσ̆,τ −

̂̃
N

˘̀,0+

σ̆,τ ).

Each face pr(ŜΦ̆Ĥ
)∨R

(τ̆ ′) of pr(ŜΦ̆Ĥ
)∨R

(τ̆) is still the image of some face τ̆ ′

of τ̆ having σ̆ has a face, although τ̆ ′ might not satisfy the conditions
in Definition 7.3.2.2. Up to replacing the cone decomposition with
smooth locally finite refinements without changing the two sides of
(7.3.3.17) (resp. (7.3.3.18), resp. (7.3.3.19)), we may assume that, for

each τ̆ as above, at least one pr(ŜΦ̆Ĥ
)∨R

(τ̆) − {0} as above is contained

in
̂̃
Nσ̆,τ ∩ P̂′˘̀<0

(resp.
̂̃
Nσ̆,τ ∩ P̂′˘̀≤0

, resp.
̂̃
Nσ̆,τ ∩ P̂′˘̀<0+

).

Since
̂̃
Nσ̆,τ = (ΓΦ̆Ĥ,ΦH

)∨R× τ and P̂′˘̀<0
(resp. P̂′˘̀≤0

, resp. P̂′˘̀<0+
) are

convex subsets of P̂′, both being stable under the multiplicative action
of R×>0, by Lemma 7.3.3.11, there are deformation retracts, compat-

ible with restrictions to faces, from both pr(ŜΦ̆Ĥ
)∨R

(τ̆) − pr(ŜΦ̆Ĥ
)∨R

(τ̆ ′′)

and
(
pr(ŜΦ̆Ĥ

)∨R
(τ̆)−{0}

)
∩ P̂′˘̀<0

(resp.
(
pr(ŜΦ̆Ĥ

)∨R
(τ̆)−{0}

)
∩ P̂′˘̀≤0

, resp.(
pr(ŜΦ̆Ĥ

)∨R
(τ̆)−{0}

)
∩ P̂′˘̀<0+

) to pr(ŜΦ̆Ĥ
)∨R

(τ̆ ′)−{0}, where τ̆ ′ is the largest

face of τ̆ also having σ̆ as a face such that pr(ŜΦ̆Ĥ
)∨R

(τ̆ ′) − {0} is con-

tained in P̂′˘̀<0
(resp. P̂′˘̀≤0

, resp. P̂′˘̀<0+
), and where τ̆ ′′ is the largest

face of τ̆ such that

pr(ŜΦ̆Ĥ
)∨R

(τ̆ ′)− {0} ⊂ pr(ŜΦ̆Ĥ
)∨R

(τ̆)− pr(ŜΦ̆Ĥ
)∨R

(τ̆ ′′).

Hence, we see that (7.3.3.17) (resp. (7.3.3.18), resp. (7.3.3.19)) is a
homotopy equivalence.
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Since the left-hand sides of (7.3.3.17), (7.3.3.18), and (7.3.3.19) are

all convex subsets of P̂′, which are therefore contractible or empty, the
proposition follows. �

Suppose M is a quasi-coherent O~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ
/ΓΦ̆Ĥ,ΦH

-module (which

can be canonically viewed as a sheaf over the support
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,τ
/ΓΦ̆Ĥ,ΦH

of the formal scheme
~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ
/ΓΦ̆Ĥ,ΦH

). Let us define for each inte-

ger d ≥ 0 the constructible sheaf H d(M ) over Nσ̆,τ which has stalk

Hd(U[τ̆ ],M |U[τ̆ ]
) at each point of [τ̆ ], where [τ̆ ] ∈ Σ̃Φ̆H̃,σ̆,τ

/ΓΦ̆Ĥ,ΦH
is

viewed as a locally closed stratum of Nσ̆,τ . For each representative

τ̆ ∈ Σ̃Φ̆H̃,σ̆,τ
of [τ̆ ], we have canonical isomorphisms U[τ̆ ]

∼= Uτ̆ and

U[τ̆ ]
∼= Uτ̆ identifying f tor

[τ̆ ] : U[τ̆ ] → ~Xord
ΦH,δH,τ

with f tor
τ̆ = hτ ◦ gτ̆ : Uτ̆ →

~Xord
ΦH,δH,τ

×
~Cord

ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃
→ ~Xord

ΦH,δH,τ
, and Uτ̆ and Uτ̆ are relatively affine

over ~Xord
ΦH,δH,τ

×
~Cord

ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃
under the morphism gτ̆ .

Lemma 7.3.3.20. For each [τ̆ ] ∈ Σ̃Φ̆H̃,σ̆,τ
/ΓΦ̆Ĥ,ΦH

, we have

H0([τ̆ ]cl,H d(M )) = H d(M )([τ̆ ]cl) ∼= Hd(U[τ̆ ],M |U[τ̆ ]
)

and

Hj([τ̆ ]cl,H d(M )) = 0

for each integer j > 0.

Proof. By [30, II, 5.2.1], the sheaf H d(M )|[τ̆ ]cl has a resolution

by the Čech complex defined by the (locally finite) closed covering of [τ̆ ]

by [τ̆ ′], where [τ̆ ′] runs through faces of [τ̆ ] in Σ̃Φ̆H̃,σ̆,τ
/ΓΦ̆Ĥ,ΦH

. By defini-

tion of H d(M ), this corresponds to the resolution of Rd(f tor
[τ̆ ] )∗(M |U[τ̆ ]

)

by the Čech complex defined by the open covering of U[τ̆ ] by U[τ̆ ′], where
[τ̆ ′] are as above. Hence, the lemma follows because U[τ̆ ] and hence each
open formal subscheme U[τ̆ ′] is relatively affine over the same formal

scheme ~Xord
ΦH,δH,τ

×
~Cord

ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃
under the morphism gτ̆ . �

Consequently, by comparing the nerve spectral sequences as in [30,
II, 5.2.4 and 5.4.1] defined by open covering (7.3.3.2) for M and by the
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closed covering (7.3.3.3) for H d(M ) (for various d), there is a spectral
sequence

(7.3.3.21) Ec,d
2 := Hc(Nσ̆,τ ,H

d(M ))⇒ Hc+d(
~̃
Ξ

ord

Φ̆H̃,δ̆H̃,τ
/ΓΦ̆Ĥ,ΦH

,M ).

(Here we are computing the left-hand side using a Čech
spectral sequence defined by the locally finite closed covering
{[τ̆ ]cl}[τ̆ ]∈Σ̃Φ̆H̃,σ̆,τ

/ΓΦ̆Ĥ,ΦH
of Nσ̆,τ .) The construction of Nσ̆,τ depends

only on the cone decomposition Σ̃Φ̆H̃,σ̆,τ
, while the constructions of

both H d(M ) and the spectral sequence (7.3.3.21) are compatible

with restrictions to affine open subschemes of ~Zord
[(ΦH,δH,τ)]. Therefore,

we can define the sheaves H d(M ) (of constructible sheaves over

Nσ̆,τ ) over ~Zord
[(ΦH,δH,τ)], and obtain a spectral sequence

(7.3.3.22) Ec,d
2 := Hc(Nσ̆,τ ,H

d(M ))⇒ Rc+df tor
∗ (M ).

Here Hc(Nσ̆,τ ,H
d(M )) is interpreted as a sheaf over ~Zord

[(ΦH,δH,τ)], and

the formation of (7.3.3.22) is compatible with morphisms in M .
In particular, we have compatible spectral sequences

Ec,d
2 := Hc(Nσ̆,τ ,H

d(O?
(~Nord,tor)∧

~̃
Z
ord
[(ΦH,δH,τ)]

))

⇒ Rc+df tor
∗ (O?

(~Nord,tor)∧
~̃
Z
ord
[(ΦH,δH,τ)]

)
(7.3.3.23)

(for ? = ∅, +, ++, and 0+) and
(7.3.3.24)

Ec,d
2 := Hc(Nσ̆,τ ,H

d(O~̃
Z

ord

[(ΦH,δH,τ)]

))⇒ Rc+df tor
∗ (O~̃

Z
ord

[(ΦH,δH,τ)]

).

To calculate the left-hand sides of (7.3.3.23) and (7.3.3.24), we de-
fine the sheaves H d(O?

~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ

) (for ? = ∅, +, ++, and 0+) and

H d(O~̃
Ξ

ord

Φ̆H̃,δ̆H̃,τ
) of constructible sheaves over Ñσ̆,τ (in the obvious way,

with an analogue of Lemma 7.3.3.20 over Ñσ̆,τ ), which, by Lemma
7.3.2.9, carry canonical equivariant actions of the group ΓΦ̆Ĥ,ΦH

, and

descend to the sheaves H d(O?
(~Nord,tor)∧

~̃
Z
ord
[(ΦH,δH,τ)]

) (for ? = ∅, +, ++,

and 0+) and H d(O~̃
Z

ord

[(ΦH,δH,τ)]

) on Nσ̆,τ , respectively. Hence, we obtain
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compatible spectral sequences

Ec−e,e
2 := Hc−e(ΓΦ̆Ĥ,ΦH

, He(Ñσ̆,τ ,H
d(O?

~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ

)))

⇒ Hc(Nσ̆,τ ,H
d(O?

(~Nord,tor)∧
~̃
Z
ord
[(ΦH,δH,τ)]

))
(7.3.3.25)

(for ? = ∅, +, ++, and 0+) and

Ec−e,e
2 := Hc−e(ΓΦ̆Ĥ,ΦH

, He(Ñσ̆,τ ,H
d(O~̃

Ξ
ord

Φ̆H̃,δ̆H̃,τ
)))

⇒ Hc(Nσ̆,τ ,H
d(O~̃

Z
ord

[(ΦH,δH,τ)]

)).
(7.3.3.26)

Lemma 7.3.3.27. (Compare with [61, Lem. 4.16].) For all integers
d ≥ 0 and e > 0, we have

(7.3.3.28) He(Ñσ̆,τ ,H
d(O?

~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ

)) = 0

(for ? = ∅, +, ++, and 0+) and

(7.3.3.29) He(Ñσ̆,τ ,H
d(O~̃

Ξ
ord

Φ̆H̃,δ̆H̃,τ
)) = 0.

Proof. By (1) of Lemma 7.3.2.9, we have

H d(O~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ
)(τ̆ cl) ∼= Rd(f tor

τ̆ )∗(OUτ̆ )
∼= ⊕̂

˘̀∈σ̆⊥ ∩ τ̆∨
Rdh∗(

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)),

and for each face τ̆ ′ of τ̆ also in Σ̃Φ̆H̃,σ̆,τ
, the canonical morphism

H d(O~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ
)(τ̆ cl)→H d(O~̃

X
ord

Φ̆H̃,δ̆H̃,σ̆,τ
)((τ̆ ′)

cl
)

sends the subsheaf Rdh∗(
~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)) (identically) to Rdh∗(

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀))

when ˘̀ ∈ σ̆⊥ ∩ τ̆∨. By Definition 7.3.3.14, ˘̀ ∈ σ̆⊥ ∩ τ̆∨ exactly when

τ̆ cl ⊂ Ñ
˘̀
σ̆,τ . Since Ñσ̆,τ and Ñσ̆,τ−Ñ

˘̀
σ̆,τ are either contractible or empty

for each given ˘̀ ∈ σ̆⊥, by Proposition 7.3.3.16, we have (7.3.3.28) for
e > 0 and ? = ∅ as usual (cf. the argument in [50, Ch. I, Sec. 3]).
(Since the nerves involve infinitely many cones, let us briefly explain
why we can work weight-by-weight as in [50, Ch. I, Sec. 3]. This is
because, up to replacing the cone decompositions with locally finite re-
finements not necessarily carrying ΓΦ̆Ĥ,ΦH

-actions, which is harmless for

proving this lemma, we can compute the cohomology as a limit using
unions of finite cone decompositions on expanding convex polyhedral
subcones, by proving inductively that the cohomology of one degree
lower has the desired properties, using [103, Thm. 3.5.8]. Then we can
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consider the associated graded pieces defined by the completions, and
work weight-by-weight with subsheaves of H d(O~̃

X
ord

Φ̆H̃,δ̆H̃,σ̆,τ
)(τ̆ cl) of the

form Rdh∗(
~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀)), because taking cohomology commutes with tak-

ing infinite direct sums for Čech complexes defined by finite coverings,
as desired.)

The cases of (7.3.3.28) for ? = + and 0+ are similar using Lemma
7.3.3.16. The case of (7.3.3.28) for ? = ++ follows from the case for
? = ∅ (by the projection formula [35, 0I, 5.4.10.1]) because O++

~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ

is (by definition) the pullback of I~Dord
∞,H

over ~Mord,tor
H . The case of

(7.3.3.29) then follows from the cases of (7.3.3.28) for ? = 0+ and ∅
by considering the long exact sequence attached to the pullback of the
short exact sequence

0→ O0+
~Nord
→ O~Nord → O~̃

Z
ord

[(ΦH,δH,τ)]

→ 0

(by definition of O0+
~Nord

). �

Lemma 7.3.3.30. (Compare with [61, Lem. 4.16].) For every integer
d ≥ 0, the canonical morphisms
(7.3.3.31)

Rdh∗(O~Xord
ΦH,δH,τ

×
~Cord

ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃

)→ H0(Ñσ̆,τ ,H
d(O~̃

X
ord

Φ̆H̃,δ̆H̃,σ̆,τ
)),

Rdh∗(O~Xord
ΦH,δH,τ

×
~Cord

ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃

) ⊗
O
~M

ord,tor
H

I~Dord
∞,H

∼= H0(Ñσ̆,τ ,H
d(O++

~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ

))→ H0(Ñσ̆,τ ,H
d(O+

~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ

))

(7.3.3.32)

(induced by the projection formula [35, 0I, 5.4.10.1] and (7.3.1.1)), and
(7.3.3.33)

Rdh∗(O~Zord
[(ΦH,δH,τ)]

×
~Cord

ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃

)→ H0(Ñσ̆,τ ,H
d(O~̃

Ξ
ord

Φ̆H̃,δ̆H̃,τ
))

are isomorphisms compatible with each other.

Proof. Let us continue with the setting in the proof of Lemma
7.3.3.27. Since

∩
τ̆∈Σ̃Φ̆H̃,σ̆,τ

(σ̆⊥ ∩ τ̆∨) = τ∨,
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we see that (7.3.3.31) is an isomorphism. Since O++

~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ

is (by

definition) the pullback of I~Dord
∞,H

over ~Mord,tor
H , the first morphism

in (7.3.3.32) is an isomorphism (by the projection formula [35, 0I,
5.4.10.1]). Since

∩
τ̆∈Σ̃Φ̆H̃,σ̆,τ

(σ̆⊥ ∩ τ̆∨σ̆,+) = τ∨+,

the composition of the two morphisms in (7.3.3.32) is an isomorphism.
In particular, the second morphism in (7.3.3.32) is also an isomorphism.
Finally, since

∩
τ̆∈Σ̃Φ̆H̃,σ̆,τ

(τ̆∨ − τ̆∨σ̆ ) = τ⊥,

we see that (7.3.3.33) is also an isomorphism. �

Lemma 7.3.3.34. (Compare with [61, Lem. 4.23].) Let c ≥ 0 be any
integer. The O~Xord

ΦH,δH,τ
-module Rdh∗(O~Xord

ΦH,δH,τ
×

~Cord
ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃

) is locally

free of finite rank, and there is a canonical isomorphism

Rdh∗(O~Xord
ΦH,δH,τ

×
~Cord

ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃

)⊗
Z
Q

∼= ∧d(HomO(Q∨,LieB∨/~Xord
ΦH,δH,τ

)⊗
Z
Q.

(7.3.3.35)

Similarly, the O~Zord
[(ΦH,δH,τ)]

-module Rdh∗(O~Zord
[(ΦH,δH,τ)]

×
~Cord

ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃

) is lo-

cally free of finite rank, and there is a canonical isomorphism

Rdh∗(O~Zord
[(ΦH,δH,τ)]

×
~Cord

ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃

)⊗
Z
Q

∼= ∧d(HomO(Q∨,LieB∨/~Zord
[(ΦH,δH,τ)]

))⊗
Z
Q.

(7.3.3.36)

The isomorphisms (7.3.3.35) and (7.3.3.36) are compatible with each
other.

Proof. By Lemma 7.1.2.1, the morphism h :
~̃
C

ord

Φ̆H̃,δ̆H̃
→ ~Cord

ΦH,δH

is a torsor under (the pullback of) an abelian scheme Q×-isogenous
to HomO(Q,B)◦ (and hence has a section étale locally). Since
the cohomology of abelian schemes (with coefficients in the
structural sheaves) are free and are compatible with arbitrary
base changes (see [6, Prop. 2.5.2] and [81, Sec. 5]), we see that
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Rdh∗(O~Xord
ΦH,δH,τ

×
~Cord

ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃

) and Rdh∗(O~Zord
[(ΦH,δH,τ)]

×
~Cord

ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃

) are

locally free and finite rank over ~Xord
ΦH,δH,τ

and ~Zord
[(ΦH,δH,τ)], respectively.

Moreover, we obtain compatible canonical isomorphisms

Rdh∗(O~Xord
ΦH,δH,τ

×
~Cord

ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃

)⊗
Z
Q

∼= ∧d(Lie(HomO(Q,B)◦)∨/~Xord
ΦH,δH,τ

)⊗
Z
Q

∼= ∧d(HomO(Q∨,LieB∨/~Xord
ΦH,δH,τ

))⊗
Z
Q

and

Rdh∗(O~Zord
[(ΦH,δH,τ)]

×
~Cord

ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃

)⊗
Z
Q

∼= ∧d(Lie(HomO(Q,B)◦)∨/~Zord
[(ΦH,δH,τ)]

)⊗
Z
Q

∼= ∧d(HomO(Q∨,LieB∨/~Zord
[(ΦH,δH,τ)]

))⊗
Z
Q

for all d ≥ 0. �

Proposition 7.3.3.37. (Compare with [61, Prop.
4.24].) Let c, d ≥ 0 be any integers. The O~Xord

ΦH,δH,τ
-modules

Hc(Nσ̆,τ ,H
d(O?

(~Nord,tor)∧
~̃
Z
ord
[(ΦH,δH,τ)]

)), for ? = ∅, +, and ++, are locally

free of finite rank, and there are canonical isomorphisms

Hc(Nσ̆,τ ,H
d(O(~Nord,tor)∧

~̃
Z
ord
[(ΦH,δH,τ)]

)) ⊗
O
~M

ord,tor
H

I~Dord
∞,H

∼= Hc(Nσ̆,τ ,H
d(O++

(~Nord,tor)∧
~̃
Z
ord
[(ΦH,δH,τ)]

))

∼→ Hc(Nσ̆,τ ,H
d(O+

(~Nord,tor)∧
~̃
Z
ord
[(ΦH,δH,τ)]

))

(7.3.3.38)

(induced by the projection formula [35, 0I, 5.4.10.1] and (7.3.1.1)), to-
gether with canonical isomorphisms

Hc(Nσ̆,τ ,H
d(O(~Nord,tor)∧

~̃
Z
ord
[(ΦH,δH,τ)]

))⊗
Z
Q

∼= (∧c(HomO(Q∨,LieT∨/~Xord
ΦH,δH,τ

)))

⊗
O~Xord

ΦH,δH,τ

(∧d(HomO(Q∨,LieB∨/~Xord
ΦH,δH,τ

)))⊗
Z
Q

(7.3.3.39)
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and

Hc(Nσ̆,τ ,H
d(O+

(~Nord,tor)∧
~̃
Z
ord
[(ΦH,δH,τ)]

))⊗
Z
Q

∼= Hc(Nσ̆,τ ,H
d(O++

(~Nord,tor)∧
~̃
Z
ord
[(ΦH,δH,τ)]

))⊗
Z
Q

∼= (∧c(HomO(Q∨,LieT∨/~Xord
ΦH,δH,τ

)))

⊗
O~Xord

ΦH,δH,τ

(∧d(HomO(Q∨,LieB∨/~Xord
ΦH,δH,τ

))) ⊗
O
~M

ord,tor
H

I~Dord
∞,H
⊗
Z
Q.

(7.3.3.40)

On the other hand, the O~Zord
[(ΦH,δH,τ)]

-module Hc(Nσ̆,τ ,H
d(O~̃

Z
ord

[(ΦH,δH,τ)]

))

is locally free of finite rank, and there is a canonical isomorphism

Hc(Nσ̆,τ ,H
d(O~̃

Z
ord

[(ΦH,δH,τ)]

))⊗
Z
Q

∼= (∧c(HomO(Q∨,LieT∨/~Zord
[(ΦH,δH,τ)]

)))

⊗
OZ[(ΦH,δH,τ)]

(∧d(HomO(Q∨,LieB∨/~Zord
[(ΦH,δH,τ)]

)))⊗
Z
Q.

(7.3.3.41)

The isomorphisms (7.3.3.38), (7.3.3.39), (7.3.3.40), and (7.3.3.41) are
compatible with each other.

Proof. By Lemmas 7.3.3.30 and 7.3.3.27, the spectral sequences
(7.3.3.25) and (7.3.3.26) degenerate and show that for each pair of
integers c and d we have compatible canonical isomorphisms

Hc(Nσ̆,τ ,H
d(O(~Nord,tor)∧

~̃
Z
ord
[(ΦH,δH,τ)]

))

∼= Hc(ΓΦ̆Ĥ,ΦH
, H0(Ñσ̆,τ ,H

d(O~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ
)))

∼= Hc(ΓΦ̆Ĥ,ΦH
,Z)⊗

Z
Rdh∗(O~Xord

ΦH,δH,τ
×

~Cord
ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃

),

(7.3.3.42)

Hc(Nσ̆,τ ,H
d(O?

(~Nord,tor)∧
~̃
Z
ord
[(ΦH,δH,τ)]

))

∼= Hc(ΓΦ̆Ĥ,ΦH
, H0(Ñσ̆,τ ,H

d(O?
~̃
X

ord

Φ̆H̃,δ̆H̃,σ̆,τ

)))

∼= Hc(ΓΦ̆Ĥ,ΦH
,Z)⊗

Z
Rdh∗(O~Xord

ΦH,δH,τ
×

~Cord
ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃

) ⊗
O
~M

ord,tor
H

I~Dord
∞,H

,

(7.3.3.43)
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for ? = + and ++, and

Hc(Nσ̆,τ ,H
d(O~̃

Z
ord

[(ΦH,δH,τ)]

))

∼= Hc(ΓΦ̆Ĥ,ΦH
, H0(Ñσ̆,τ ,H

d(O~̃
Ξ

ord

Φ̆H̃,δ̆H̃,τ
)))

∼= Hc(ΓΦ̆Ĥ,ΦH
,Z)⊗

Z
Rdh∗(O~Zord

[(ΦH,δH,τ)]
×

~Cord
ΦH,δH

~̃
C

ord

Φ̆H̃,δ̆H̃

).

(7.3.3.44)

Now the proposition follows from Lemmas 7.3.3.9 and 7.3.3.34, and
the compatible canonical isomorphisms (7.3.3.42), (7.3.3.43), and
(7.3.3.44). �

Proposition 7.3.3.45. (Compare with [61, Lem. 4.29].) The spec-
tral sequence (7.3.3.23) degenerates at E2 terms for ? = ∅, +, and ++.

Consequently, since the choice of the stratum ~Zord
[(ΦH,δH,τ)] is arbitrary,

by Grothendieck’s fundamental theorem [35, III-1, 4.1.5] (and by fpqc
descent for the property of local freeness [33, VIII, 1.11]), for ? = ∅, +,
and ++, the O~Mord,tor

H
-module Rbf tor

∗ (O?
~Nord,tor

) is locally free of the same

rank as ∧b(HomO(Q∨,LieG∨/~Mord,tor
H

)), and the composition of canonical

morphisms
(7.3.3.46)
Rbf tor

∗ (O~Nord,tor) ⊗
O
~M

ord,tor
H

I~Dord
∞,H
∼= Rbf tor

∗ ((f tor)∗I~Dord
∞,H

)→ Rbf tor
∗ (I~Eord

∞
)

(induced by (7.3.1.1) and the projection formula [35, 0I, 5.4.10.1]) is an
isomorphism. On the other hand, if we have

dimk(s)((R
bf tor
∗ (O~̃

Z
ord

[(ΦH,δH,τ)]

)) ⊗
O~Zord

[(ΦH,δH,τ)]

k(s))

≥ dimk(s)((R
bf tor
∗ (O(~Nord,tor)∧

~̃
Z
ord
[(ΦH,δH,τ)]

)) ⊗
O~Xord

ΦH,δH,τ

k(s))
(7.3.3.47)

at every maximal point s of ~Zord
[(ΦH,δH,τ)] (see [36, 0, 2.1.2]), then the

spectral sequence (7.3.3.24) degenerates at E2 terms as well, and the
canonical morphism

(7.3.3.48) Rbf tor
∗ (O~Nord,tor) ⊗

O
~M

ord,tor
H

O~Zord
[(ΦH,δH,τ)]

→ Rbf tor
∗ (O~̃

Z
ord

[(ΦH,δH,τ)]

)

of O~Zord
[(ΦH,δH,τ)]

-modules is an isomorphism.

Proof. Let Spf(R, I) be any connected affine open formal sub-
scheme of XΦH,δH,τ , with the ideal of definition I satisfying rad(I) = I

for simplicity. Since ~Mord,tor
H is smooth and of finite type over ~S0,rH =
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Spec(OF0,(p)[ζprH ]), the ring R is a noetherian domain. (See [76, 33.I

and 34.A].) Since the subscheme ~Zord
[(ΦH,δH,τ)] of ~Mord,tor

H is also smooth

(and of finite type) over ~S0,rH , the quotient R/I is also a noetherian
domain. Let K := Frac(R) and k := Frac(R/I) be the fraction fields.
Note that they are both of characteristic zero. By abuse of notation, we
shall denote with subscripts “K” (resp. “k”) the pullbacks of schemes
to Spec(K) (resp. Spec(k)).

Since we have an exact sequence

0→ LieT∨/~Xord
ΦH,δH,τ

→ LieG∨,\/~Xord
ΦH,δH,τ

→ LieB∨/~Xord
ΦH,δH,τ

→ 0

of locally free sheaves, we have an equality

∑
c+d=b

dimK(∧c(HomO(Q∨,LieB∨K )))⊗
K

(∧d(HomO(Q∨,LieT∨K )))

= dimK(∧b(HomO(Q∨,LieG∨,\K
))) = dimK(∧b(HomO(Q∨,LieG∨K ))),

(7.3.3.49)

and an analogous equality with K replaced with k.
By the construction of the spectral sequences (7.3.3.23) and

(7.3.3.24), by the canonical isomorphisms (7.3.3.39) and (7.3.3.41),
and by the equality (7.3.3.49), we have∑

c+d=b

dimK(Hc(Nσ̆,τ ,H
d(O?

(~Nord,tor)∧
~̃
Z
ord
[(ΦH,δH,τ)]

)) ⊗
O~Xord

ΦH,δH,τ

K)

= dimK(∧b(HomO(Q∨,LieG∨K )))

≥ dimK((Rbf tor
∗ (O?

(~Nord,tor)∧
~̃
Z
ord
[(ΦH,δH,τ)]

)) ⊗
O~Xord

ΦH,δH,τ

K)

(7.3.3.50)

for ? = ∅, +, and ++, and∑
c+d=b

dimk(H
c(Nσ̆,τ ,H

d(O~̃
Z

ord

[(ΦH,δH,τ)]

)) ⊗
O~Zord

[(ΦH,δH,τ)]

k)

= dimk(∧b(HomO(Q∨,LieG∨k )))

≥ dimk(R
bf tor
∗ (O~̃

Z
ord

[(ΦH,δH,τ)]

) ⊗
O~Zord

[(ΦH,δH,τ)]

k).

(7.3.3.51)

Let ? be either ∅, +, or ++. Since the pullback of f tor to the open

dense subscheme ~Mord
H of ~Mord,tor

H is simply the abelian scheme torsor

f : ~Nord → ~Mord
H , and since the canonical morphism Spec(K)→ ~Mord,tor

H
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factors through some maximal point of ~Mord
H , we have

(Rbf tor
∗ (O?

~Nord,tor)) ⊗
O
~M

ord,tor
H

K ∼= Rbf∗(O
?
~Nord) ⊗

O~Mord
H

K

∼= (∧bLieN∨/MH) ⊗
O~Mord
H

K ∼= ∧b(HomO(Q∨,LieG∨K )).

This implies that the inequality in (7.3.3.50) is an equality, and hence
that the spectral sequence (7.3.3.23) degenerates at E2 terms (for ? = ∅,
+, and ++) after pulled back to K. Since all E2 terms of this spectral
sequence are locally free sheaves, this shows that (7.3.3.23) degenerates
at E2 terms after pulled back to R. Since the choice of R is arbitrary,

this shows that (7.3.3.23) degenerates over the whole ~Xord
ΦH,δH,τ

. Hence,
as explained in the statement of the proposition, since the choice of
~̃
Z

ord

[(ΦH,δH,τ)] is arbitrary, this shows that Rbf tor
∗ (O?

~Nord,tor
) is locally free

of the same rank as ∧b(HomO(Q∨,LieG∨/~Mord,tor
H

)) over ~Mord,tor
H . (Never-

theless, since f tor is not necessarily flat, this does not imply that the
formation of Rbf tor

∗ (O?
~Nord,tor

) is compatible with arbitrary base change.)

By Proposition 7.3.3.37, the canonical inclusion O++
~Nord,tor

↪→ O+
~Nord,tor

(which is nothing but (7.3.1.1)) induces isomorphisms between the E2

terms of the spectral sequences (7.3.3.23) for ? = + and ++. Hence, the
composition of canonical morphisms in (7.3.3.46) is an isomorphism.

Since the canonical morphism Spec(k) → ~Zord
[(ΦH,δH,τ)] factors

through some maximal point of ~Zord
[(ΦH,δH,τ)], the inequality (7.3.3.47)

implies that

dimk(R
bf tor
∗ (O~̃

Z
ord

[(ΦH,δH,τ)]

) ⊗
O~Zord

[(ΦH,δH,τ)]

k)

≥ dimk((R
bf tor
∗ (O(~Nord,tor)∧

~̃
Z
ord
[(ΦH,δH,τ)]

)) ⊗
O~Xord

ΦH,δH,τ

k)

= dimK((Rbf tor
∗ (O(~Nord,tor)∧

~̃
Z
ord
[(ΦH,δH,τ)]

)) ⊗
O~Xord

ΦH,δH,τ

K),

and hence the inequality in (7.3.3.50) being an equality implies that
the inequality in (7.3.3.51) is also an equality, because

dimk(∧b(HomO(Q∨,LieG∨k ))) = dimK(∧b(HomO(Q∨,LieG∨K ))).

Therefore, by the same argument as in the case of (7.3.3.23), the spec-
tral sequence (7.3.3.24) also degenerates at E2 terms. Since the spectral
sequences (7.3.3.23) and (7.3.3.24) are compatible with each other (by
their very construction), their degeneracy implies that the canonical
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morphism

Rbf tor
∗ (O(~Nord,tor)∧

~̃
Z
ord
[(ΦH,δH,τ)]

) ⊗
O~Xord

ΦH,δH,τ

O~Zord
[(ΦH,δH,τ)]

→ Rbf tor
∗ (O~̃

Z
ord

[(ΦH,δH,τ)]

)

is an isomorphism (by comparing graded pieces). Since the choice of the

stratum
~̃
Z

ord

[(ΦH,δH,τ)] is arbitrary, this shows that the canonical morphism
(7.3.3.48) is also an isomorphism. �

Remark 7.3.3.52. (Compare with [61, Rem. 4.35].) By upper
semicontinuity for proper flat morphisms (see [81, Sec. 5, Cor. (a)]),
the assumption (7.3.3.47) is satisfied when f tor is flat, or equivalently
when Condition 7.2.6.3 is satisfied (by Proposition 7.2.6.4), which can

be achieved by refining both Σ̃ord and Σord (by Proposition 7.2.6.5).

Corollary 7.3.3.53. (Compare with [61, Cor.
4.36].) For each integer b ≥ 0, the canonical morphism
∧b(R1f tor

∗ (O~Nord,tor)) → Rbf tor
∗ (O~Nord,tor) (defined by cup product) is an

isomorphism.

Proof. As in Proposition 7.3.3.45, by properness of f tor, this is
true if and only if it is true over the formal completion along each

stratum ~Zord
[(ΦH,δH,τ)], which is the case because the canonical morphism

induces isomorphisms on all graded pieces defined by spectral sequences
such as (7.3.3.23), which are compatible with cup products by the very
construction (see [30, II, Sec. 5–6]). �

7.3.4. Degeneracy of the (Relative) Hodge Spectral Se-
quence. Let

H i
log-dR(~Nord,tor/~Mord,tor

H ) := Rif tor
∗ Ω

•
~Nord,tor/~Mord,tor

H

be the (relative) log de Rham cohomology as in (3c) of Theorem
7.1.4.1. By the definition, the natural (Hodge) filtration on the

complex Ω
•
~Nord,tor/~Mord,tor

H
defines the (relative) Hodge spectral sequence

(7.1.4.7):

Ea,b
1 := Rbf tor

∗ (Ω
a
~Nord,tor/~Mord,tor

H
)⇒ Ha+b

log-dR(~Nord,tor/~Mord,tor
H ).

By (3a) of Theorem 7.1.4.1 (which we have proved in Section 7.2.5),
there is a canonical isomorphism

Ω
a
~Nord,tor/~Mord,tor

H
∼= ∧a

[
(f tor)∗(Lie∨~Nord,ext/~Mord,tor

H
)
]

∼= (f tor)∗
[
∧a (Lie∨~Nord,ext/~Mord,tor

H
)
]
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of locally free sheaves over ~Nord,tor. Then (by the projection formula
[35, 0I, 5.4.10.1]) we have canonical isomorphisms

Rbf tor
∗ (Ω

a
~Nord,tor/~Mord,tor

H
)

∼= (Rbf tor
∗ (O~Nord,tor)) ⊗

O
~M

ord,tor
H

(∧a(Lie∨~Nord,ext/~Mord,tor
H

)).(7.3.4.1)

Lemma 7.3.4.2. (Compare with [61, Rem. 4.38].) If Rbf tor
∗ (O~Nord,tor)

is locally free for every integer b ≥ 0, then the spectral sequence (7.1.4.7)
degenerates at the E1 terms.

Proof. By (7.3.4.1), if Rbf tor
∗ (O~Nord,tor) is locally free for every inte-

ger b ≥ 0, then all the E1 terms Rbf tor
∗ (Ω

a
~Nord,tor/~Mord,tor

H
) of the spectral

sequence (7.1.4.7) are locally free. Therefore, to show that (7.1.4.7)
degenerates at E1 terms, it suffices to show that it degenerates at E1

terms over the open dense subscheme ~Mord
H of ~Mord,tor

H , which is true

because f tor|~Nord = f : ~Nord → ~Mord
H is an abelian scheme torsor. (See,

for example, [6, Prop. 2.5.2].) �

This proves (3c) of Theorem 7.1.4.1, because the local freeness of
Rbf tor

∗ (O~Nord,tor) has been established in Section 7.3.3 for every integer
b ≥ 0.

7.3.5. Extended Gauss–Manin Connections. In Section
7.2.5, we proved the log smoothness of f tor : ~Nord,tor → ~Mord,tor

H by
verifying Lemma 7.2.5.1. For simplicity, let us set

Ω
1
~Mord,tor
H /~S0,rH

:= Ω1
~Mord,tor
H /~S0,rH

[d log∞]

and
Ω

1
~Nord,tor/~S0,rH

:= Ω1
~Nord,tor/~S0,rH

[d log∞].

Then (7.2.5.2) can be rewritten as the exact sequence
(7.3.5.1)

0→ (f tor)∗(Ω
1
~Mord,tor
H /~S0,rH

)→ Ω
1
~Nord,tor/~S0,rH

→ Ω
1
~Nord,tor/~Mord,tor

H
→ 0,

which induces the Koszul filtration [48, 1.2, 1.3]

Ka(Ω
•
~Nord,tor/~S0,rH

)

:= image
(
Ω
•−a
~Nord,tor/~S0,rH

⊗
O~Nord,tor

(f tor)∗(Ω
a
~Mord,tor
H /~S0,rH

)→ Ω
•
~Nord,tor/~S0,rH

)
on Ω

•
~Nord,tor/~S0,rH

, with graded pieces

GraK(Ω
•
~Nord,tor/~S0,rH

) ∼= Ω
•−a
~Nord,tor/~Mord,tor

H
⊗

O~Nord,tor

(f tor)∗(Ω
a
~Mord,tor
H /~S0,rH

).
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On the other hand, we have the Hodge filtration

Fa(Ω
•
~Nord,tor/~S0,rH

) := Ω
•≥a
~Nord,tor/~S0,rH

on Ω
•
~Nord,tor/~S0,rH

, giving the Hodge filtration

Fa(H i
log-dR(~Nord,tor/~Mord,tor

H ))

:= image
(
Rif tor

∗ (Fa(Ω
•
~Nord,tor/~S0,rH

))→ Rif tor
∗ (Ω

•
~Nord,tor/~S0,rH

)
)

on H i
log-dR(~Nord,tor/~Mord,tor

H ). By applying R•f tor
∗ to the short exact

sequence

0→ Ω
•−1
~Nord,tor/~Mord,tor

H
⊗

O~Nord,tor

(f tor)∗(Ω
1
~Mord,tor
H /~S0,rH

)

→ K0(Ω
•
~Nord,tor/~S0,rH

)/K2(Ω
•
~Nord,tor/~S0,rH

)→ Ω
•
~Nord,tor/~Mord,tor

H
→ 0,

(7.3.5.2)

we obtain in the long exact sequence the connecting homomorphisms

H i
log-dR(~Nord,tor/~Mord,tor

H ) = Rif tor
∗ (Ω

•
~Nord,tor/~Mord,tor

H
)

∇→ Ri+1f tor
∗ (Ω

•−1
~Nord,tor/~Mord,tor

H
⊗

O~Nord,tor

Ω
1
~Mord,tor
H /~S0,rH

)

∼= H i
log-dR(~Nord,tor/~Mord,tor

H ) ⊗
O
~M

ord,tor
H

Ω
1
~Mord,tor
H /~S0,rH

.

(7.3.5.3)

As explained in [48, 1.4], the pullback of ∇ in (7.3.5.3) to ~Mord
H is

nothing but the usual Gauss–Manin connection on H i
dR(~Nord/~Mord

H ).
Since the sheaves involved in (7.3.5.3) are all locally free,

∇ : H i
log-dR(~Nord,tor/~Mord,tor

H )

→ H i
log-dR(~Nord,tor/~Mord,tor

H ) ⊗
O
M

ord,tor
H

Ω
1
~Mord,tor
H /~S0,rH

satisfies the necessary conditions for being an integrable connection

with log poles (because its restriction to the dense subscheme ~Mord
H

does). We call this ∇ over ~Mord,tor
H the extended Gauss–Manin connec-

tion. If we take the F-filtration on (7.3.5.2), we obtain

0→ (Fa−1(Ω
•
~Nord,tor/~Mord,tor

H
) ⊗

O~Nord,tor

(f tor)∗(Ω
1
~Mord,tor
H /~S0,rH

))[−1]

→ Fa(K2/K0)→ Fa(Ω
•
~Nord,tor/~S0,rH

)→ 0
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and hence the Griffiths transversality

∇(Fa(H i
log-dR(~Nord,tor/~Mord,tor

H )))

⊂ Fa−1(H i
log-dR(~Nord,tor/~Mord,tor

H )) ⊗
O
~M

ord,tor
H

Ω
1
~Mord,tor
H /~S0,rH

(as in [48, Prop. 1.4.1.6]). This proves (3e) of Theorem 7.1.4.1.

Remark 7.3.5.4. By (3c) of Theorem 7.1.4.1, the (relative) Hodge
spectral sequence

Ea,i−a
1 := Ri−af tor

∗ (Ω
a
~Nord,tor/~Mord,tor

H
)⇒ H i

log-dR(~Nord,tor/~Mord,tor
H )

degenerates. Then we have

GraF(H
i
log-dR(~Nord,tor/~Mord,tor

H )) ∼= Ri−af tor
∗ (Ω

a
~Nord,tor/~Mord,tor

H
),

and we can conclude (as in [48, Prop. 1.4.1.7]) that the induced mor-
phism

∇ : GraFH
i
log-dR(~Nord,tor/~Mord,tor

H )

→ Gra−1
F H i

log-dR(~Nord,tor/~Mord,tor
H ) ⊗

O
~M

ord,tor
H

Ω
1
~Mord,tor
H /~S0,rH

agrees with the morphism

Ri−af tor
∗ (Ω

a
~Nord,tor/~Mord,tor

H
)

→ Ri−a+1f tor
∗ (Ω

a−1
~Nord,tor/~Mord,tor

H
) ⊗

O
~M

ord,tor
H

Ω
1
~Mord,tor
H /~S0,rH

defined by cup product with the so-called extended Kodaira–Spencer
class defined by the extension class of (7.3.5.1). We will revisit a special
case of this in Chapter 8 (see, in particular, Proposition 8.1.3.6 below).

7.3.6. Identification of Rbf tor
∗ (O~Nord,tor). Let us define

Der~Nord,tor/~Mord,tor
H

:= HomO~Nord,tor
(Ω

1
~Nord,tor/~Mord,tor

H
,O~Nord,tor).

Its restriction to ~Mord
H can be canonically identified with

Der~Nord/~Mord
H

:= HomON
(Ω1

~Nord/~Mord
H
,O~Nord).

Then, by (7.1.4.2) and (7.1.4.3), and by the projection formula [35, 0I,
5.4.10.1], we have a canonical isomorphism

(7.3.6.1) f∗(Der~Nord,ext/~Mord,tor
H

) ∼= Lie~Nord,ext/~Mord,tor
H

extending the canonical isomorphism

(7.3.6.2) f∗(Der~Nord/~Mord
H

) ∼= Lie~Nord/~Mord
H
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(cf. [62, Lem. 2.1.5.11]).

Over ~Mord
H , by Lemma 7.1.3.10, we have a canonical isomorphism

(7.3.6.3) R1f∗(O~Nord) ∼= Lie~Nord,∨/~Mord
H
.

The goal is to show that (7.3.6.3) extends to a canonical isomorphism

(7.3.6.4) R1f tor
∗ (O~Nord,tor) ∼= Lie~Nord,ext,∨/~Mord,tor

H
.

However, since ~Nord,tor and ~Nord,ext,∨ (or rather ~Nord,ext) are not di-
rectly related, there is no obvious morphism between R1f tor

∗ O~Nord,tor

and Lie~Nord,ext,∨/~Mord
H

(in either direction). Nevertheless, since ~Mord
H is

normal (and, in fact, regular, being smooth over ~S0,rH), we have the
following:

Lemma 7.3.6.5. To show that there exists an isomorphism (7.3.6.4)
(extending (7.3.6.3)), it suffices to show that there exists a canonical
isomorphism

(7.3.6.6) R1f tor
∗ (O~Nord,tor)⊗

Z
Q ∼= Lie~Nord,ext,∨/~Mord,tor

H
⊗
Z
Q

extending (7.3.6.3)⊗
Z
Q.

Proof. Let us denote by U the union of ~Mord
H and ~Mord,tor

H ⊗
Z
Q in

~Mord,tor
H . Then U is an open subscheme of ~Mord,tor

H such that its comple-

ment ~Mord,tor
H − U is of codimension at least two in ~Mord,tor

H . Since the
canonical isomorphisms (7.3.6.6) and (7.3.6.3) agree with (7.3.6.3)⊗

Z
Q

over ~Mord
H ⊗

Z
Q, they define a canonical isomorphism

R1f tor
∗ (O~Nord,tor) ⊗

O
~M

ord,tor
H

OU
∼= Lie~Nord,ext,∨/~Mord,tor

H
⊗

O
~M

ord,tor
H

OU

over U . Since R1f tor
∗ (O~Nord,tor) and Lie~Nord,ext,∨/~Mord,tor

H
are both locally

free O~Mord,tor
H

-modules of finite rank, and since ~Mord,tor
H is noetherian and

normal, this uniquely extends to the desired canonical isomorphism

(7.3.6.4) over ~Mord,tor
H . �

Suppose L is any invertible sheaf over ~Nord. Since ~Nord → ~Mord
H is

a torsor under the abelian scheme ~Nord,grp → ~Mord
H , by [92, XIII, Prop.

1.1], we have a canonical isomorphism of relative Néron–Severi groups

NS(~Nord/~Mord
H ) := Pic(~Nord/~Mord

H )/Pic0(~Nord/~Mord
H )

∼= NS(~Nord,grp/~Mord
H ) := Pic(~Nord,grp/~Mord

H )/Pic0(~Nord,grp/~Mord
H ).

(7.3.6.7)
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Let Lgrp be any invertible sheaf over ~Nord,grp → ~Mord
H such that the class

[L] of L in NS(~Nord/~Mord
H ) corresponds under the canonical isomorphism

(7.3.6.7) to the class [Lgrp] of Lgrp in NS(~Nord,grp/~Mord
H ). Then the

homomorphism

(7.3.6.8) λLgrp : ~Nord,grp → ~Nord,grp,∨

induced by Lgrp (as in [62, Constr. 1.3.2.7]) is well defined and does
not depend on the choice of Lgrp (with the same [Lgrp] corresponding
to [L]).

By abuse of notation, we shall also denote (7.3.6.8) by

λL : ~Nord,grp → ~Nord,grp,∨.

Then λL (or rather λLgrp) induces a morphism

(7.3.6.9) dλL : Lie~Nord/~Mord
H
→ Lie~Nord,∨/~Mord

H

(see Definition 7.1.3.9). On the other hand, as an invertible sheaf, L
defines a global section of R1f∗(O

×
~Nord

), and the morphism

d log : O×~Nord
→ Ω1

~Nord/~Mord
H

: a 7→ a−1da

defines a global section d log(L) of R1f∗(Ω
1
~Nord/~Mord

H
). By reducing to

the case of ~Nord,grp by étale descent, we see that the cup product with
d log(L) induces a composition of morphisms

f∗(Der~Nord/~Mord
H

)
∪ d log(L)→ R1f∗(Der~Nord/~Mord

H
⊗

O~Nord

Ω1
~Nord/~Mord

H
)

can.→ R1f∗(O~Nord),

(7.3.6.10)

and the following diagram

(7.3.6.11) f∗(Der~Nord/~Mord
H

) ∼
(7.3.6.2)

//

(7.3.6.10)
��

Lie~Nord/~Mord
H

(7.3.6.9)

��

R1f∗(O~Nord)
∼

(7.3.6.3)
// Lie~Nord,∨/~Mord

H

over ~Mord
H is commutative (cf. [62, Prop. 2.1.5.13]).

Suppose moreover that L is relatively ample over ~Mord
H . Then any

choice of Lgrp over ~Nord,grp is also relatively ample over ~Mord
H , and the

homomorphism λL : ~Nord,grp → ~Nord,grp,∨ is a polarization. Hence,
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(7.3.6.11) induces a commutative diagram

(7.3.6.12) f∗(Der~Nord/~Mord
H

)⊗
Z
Q ∼

(7.3.6.2)⊗
Z
Q
//

o(7.3.6.10)⊗
Z
Q
��

Lie~Nord/~Mord
H
⊗
Z
Q

o (7.3.6.9)⊗
Z
Q

��

R1f∗(O~Nord)⊗
Z
Q ∼

(7.3.6.3)⊗
Z
Q
// Lie~Nord,∨/~Mord

H
⊗
Z
Q

of isomorphisms over ~Mord
H ⊗

Z
Q. (If λL : ~Nord,grp → ~Nord,grp,∨ is a sep-

arable polarization, then the same holds for the original morphisms
in (7.3.6.11).) Thus, (at least) in characteristic zero, the canonical
isomorphism (7.3.6.3) is determined by the other three isomorphisms
(7.3.6.2), (7.3.6.9), and (7.3.6.10).

Since Mord,tor
H is noetherian normal, by [92, IX, 1.4], [28, Ch. I, Prop.

2.7], or [62, Prop. 3.3.1.5] (see also [80, IV, 7.1] or [62, Thm. 3.4.3.2]),

λL : ~Nord,grp → ~Nord,grp,∨ uniquely extends to a homomorphism

λext
L : ~Nord,ext → ~Nord,ext,∨,

which is an isogeny between semi-abelian schemes and induces a mor-
phism

(7.3.6.13) dλext
L : Lie~Nord,ext/Mord,tor

H
→ Lie~Nord,ext,∨/Mord,tor

H
.

In characteristic zero, (7.3.6.13)⊗
Z
Q is an isomorphism because the

(quasi-finite flat) kernel of the isogeny λext
L ⊗

Z
Q is necessarily étale over

Mord,tor
H .

To proceed further we will need a more specific choice of L. Let
jQ : Q∨ ↪→ Q be as in (3d) of Theorem 7.1.4.1. By construction (see

Sections 1.3.3 and 7.2.1), X̃∨(1) ∼= HomO(X̃,Diff−1
O′/Z(1)) is the sub-

module Q−2 of Q∨⊗
Z
Q(1), and Ỹ is the submodule Q0 of Q⊗

Z
Q. There-

fore, the embedding jQ : Q∨ ↪→ Q corresponds to an element ˜̀jQ of

SΦ̃H̃
⊗
Z
Q. The positive definiteness of the induced pairing 〈j−1

Q ( · ), · 〉Q

then translates to the positivity condition that 〈˜̀jQ , y〉 > 0 for every
y ∈ PΦ̃H̃

− {0}. By replacing jQ with a multiple by a positive integer,

we may assume that ˜̀jQ ∈ SΦ̃H̃
(without altering the above positivity

condition). Then we obtain an invertible sheaf
~̃
Ψ

ord

Φ̃H̃,δ̃H̃
(˜̀jQ) over ~Nord

(see (4.2.1.49) in Proposition 4.2.1.46). Note that ˜̀jQ ∈ σ̃∨0 .
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Lemma 7.3.6.14. (Compare with [61, Lem. 5.5].) The invertible

sheaf
~̃
Ψ

ord

Φ̃H̃,δ̃H̃
(˜̀jQ) is relatively ample over ~Mord

H , and the induced homo-

morphism

λ~̃
Ψ

ord

Φ̃H̃,δ̃H̃
(˜̀jQ )

: ~Nord,grp → ~Nord,grp,∨

is a positive Q×-multiple of the Q×-polarization

λ~Nord,jQ
: ~Nord,grp → ~Nord,grp,∨

induced by the Q×-polarization

λ~Mord
H ,jQ

: HomO(Q,G~Mord
H

)◦ → (HomO(Q,G~Mord
H

)◦)∨

in (3d) of Theorem 7.1.4.1. The induced morphism

dλ~̃
Ψ

ord

Φ̃H̃,δ̃H̃
(˜̀jQ )
⊗
Z
Q : Lie~Nord/~Mord

H
⊗
Z
Q→ Lie~Nord,∨/~Mord

H
⊗
Z
Q

is a positive Q×-multiple of the isomorphism

dλ~Nord,jQ
⊗
Z
Q : Lie~Nord/~Mord

H
⊗
Z
Q ∼→ Lie~Nord,∨/~Mord

H
⊗
Z
Q

induced by the isomorphism

dλ~Mord
H ,jQ

⊗
Z
Q : HomO(Q,LieG~Mord

H
/~Mord
H

)⊗
Z
Q

∼→ HomO(Q∨,LieG∨
~Mord
H

/~Mord
H

)⊗
Z
Q.

(These are abuses of notation because dλ~Nord,jQ
and dλ~Mord

H ,jQ
are

not necessarily defined, because λ~Nord,jQ
and λ~Mord

H ,jQ
are merely

Q×-polarizations.) In particular, dλ~̃
Ψ

ord

Φ̃H̃,δ̃H̃
(˜̀jQ )
⊗
Z
Q is an isomorphism.

Proof. The proof of [61, Lem. 5.5], which is in turn based on
the proof of [61, Lem. 2.9, Prop. 2.10, and Cor. 2.12], works almost
verbatim here. �

The upshot is the following:

Proposition 7.3.6.15. Let us take L to be
~̃
Ψ

ord

Φ̃H̃,δ̃H̃
(˜̀jQ). Then

the canonical isomorphism (7.3.6.10)⊗
Z
Q over ~Mord

H ⊗
Z
Q extends to a

canonical isomorphism

(7.3.6.16) f tor
∗ (Der~Nord,tor/~Mord,tor

H
)⊗

Z
Q ∼→ R1f∗(O~Nord,tor)⊗

Z
Q
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over ~Mord,tor
H ⊗

Z
Q, so that the diagram (7.3.6.12) extends to a commu-

tative diagram

(7.3.6.17) f tor
∗ (Der~Nord,tor/~Mord,tor

H
)⊗

Z
Q ∼

(7.3.6.1)⊗
Z
Q
//

o(7.3.6.16)
��

Lie~Nord,ext/~Mord,tor
H

⊗
Z
Q

o (7.3.6.13)⊗
Z
Q

��

R1f∗(O~Nord,tor)⊗
Z
Q ∼

// Lie~Nord,ext,∨/~Mord,tor
H

⊗
Z
Q

in which the dotted arrow is induced by (7.3.6.16) and gives the desired
isomorphism (7.3.6.6). Thus, we also obtain the desired isomorphism
(7.3.6.4) by Lemma 7.3.6.5.

Proof. The arguments in [61, Sec. 5] leading to the proof of [61,
Prop. 5.14], based on the idea of log invertible sheaves L extending
L and on the étale local description of the toroidal boundary charts,
works almost verbatim here. (Since we only need the facts in character-
istic zero, and since all construction steps and proofs are canonically
compatible with those for Theorem 1.3.3.15 after pulled back to the
characteristic zero fibers, thanks to (7) of Theorem 5.2.1.1, this is not
even an imitation but rather a logical repetition of the arguments in
[61, Sec. 5].) �

Combining Proposition 7.3.6.15 and Corollary 7.3.3.53:

Corollary 7.3.6.18. For each integer b ≥ 0, we have a canonical
isomorphism

Rbf tor
∗ (O~Nord,tor) ∼= ∧b(Lie~Nord,ext,∨/~Mord,tor

H
)

of locally free sheaves over ~Mord,tor
H , compatible with cup products and

exterior products, extending the canonical isomorphism (7.1.4.6) over
~Mord
H .

Together with Proposition 7.3.3.45, this completes the proof of (3b)
and (3d) of Theorem 7.1.4.1, using respectively (3a) and (3c) of The-
orem 7.1.4.1. As explained in Section 7.2.7, this also makes (4c) and
(5c) of Theorem 7.1.4.1 unconditional. Finally, (6) of Theorem 7.1.4.1
also follows, because all construction steps and proofs are canonically
compatible with those for Theorem 1.3.3.15 after pulled back to the
characteristic zero fibers, thanks to (7) of Theorem 5.2.1.1 and the cor-
responding statements in Propositions 5.2.2.2 and 6.2.2.1, as remarked
in the proof of Proposition 7.3.6.15. The proof of Theorem 7.1.4.1 is
now complete.



CHAPTER 8

Automorphic Bundles and Canonical Extensions

In this chapter, we explain the construction of automorphic bun-
dles and their canonical extensions over the partial and total toroidal
compactifications defined in Chapters 5 and 2, respectively. These gen-
eralize the constructions in characteristic zero in Section 1.4.

Our constructions are somewhat ad hoc and mainly designed to
extend the definitions in characteristic zero with the least number of
assumptions. It is likely that for applications requiring more refined
properties along the characteristic p fibers our constructions will have
to be substantially improved, which is possible in many special cases.
(Of course, users of this theory can freely decide how they want to con-
struct their automorphic bundles and canonical extensions in mixed
characteristics, as long as they are compatible with the known con-
structions in characteristic zero.)

8.1. Constructions over the Ordinary Loci

8.1.1. Technical Assumptions. Suppose that there exists a dis-
crete valuation ringR0 of mixed characteristics (0, p), which is faithfully
flat over Z(p) by assumption, together with the following data:

(1) TwoO⊗
Z
R0-modules Gr−1

D,0 and Gr−1
D#,0

(with subscripts “0”, by

abuse of notation, meaning “R0-models” of Gr−1
D and Gr−1

D# ; see
below for the precise meaning).

(2) A p-adic complete flat R0-algebra R̃0, which is equipped with
a faithfully flat homomorphism Zp → R̃0 by assumption, to-
gether with two isomorphisms

Gr−1
D,0 ⊗

R0

R̃0
∼→ Gr−1

D ⊗
Zp
R̃0

and

Gr−1
D#,0
⊗
R0

R̃0
∼→ Gr−1

D# ⊗
Zp
R̃0.

(3) An embedding of O⊗
Z
R0-modules

φ−1
D,0 : Gr−1

D,0 → Gr−1
D#,0

543
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making the following diagram

Gr−1
D,0 ⊗

R0

R̃0

o
��

φ−1
D,0 ⊗

R0

R̃0

// Gr−1
D#,0
⊗
R0

R̃0

o
��

Gr−1
D ⊗

Zp
R̃0

φ−1
D ⊗

Zp
R̃0

// Gr−1
D# ⊗

Zp
R̃0

commutative.
(4) There exists some maximal order O′ in O⊗

Z
Q containing O

and satisfying the requirement in Condition 1.2.1.1 such that
the O⊗

Z
R0-module structures of Gr−1

D,0 and Gr−1
D#,0

(necessarily

uniquely) extend to O′⊗
Z
R0-module structures, which then

(automatically) compatible with the above embedding φ−1
D,0 :

Gr−1
D,0 → Gr−1

D#,0
. Moreover, the above diagram is (automati-

cally) compatible with the O′⊗
Z
R̃0-module structures induced

by the O′⊗
Z
R0-module structures of Gr−1

D,0 and Gr−1
D#,0

(in the

last sentence) and by the O′⊗
Z
Zp-module structures of Gr−1

D

and Gr−1
D# (as in the proof of Lemma 3.2.2.6). (These auto-

matic compatibilities follow from the flatness of R0 and R̃0

over Z(p), and from the identity O⊗
Z
Q = O′⊗

Z
Q.)

Let
Gr0

D,0 := HomR0(Gr−1
D#,0

, R0(1))

and
Gr0

D#,0 := HomR0(Gr−1
D,0, R0(1)),

and let
φ0
D,0 : Gr0

D,0 → Gr0
D#,0

be the dual of φ−1
D,0, and let

φD,0 := φ0
D,0⊕φ−1

D,0.

Let
〈 · , · 〉φD,0 : (Gr0

D,0⊕Gr−1
D,0)×(Gr0

D,0⊕Gr−1
D,0)→ R0(1)

be the alternating pairing defined by

〈(x1, y1), (x2, y2)〉φD,0 := x1(φ−1
D,0(y2))− x2(φ−1

D,0(y1))

= y2(φ0
D,0(x1))− y1(φ0

D,0(x2)).
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Definition 8.1.1.1. (Compare with [61, Def. 6.2] and Definition
1.4.1.1.) For each R0-algebra R, set

Gord
D,0 (R) :=

(g, r) ∈ GLO⊗
Z
R((Gr0

D,0⊕Gr−1
D,0)⊗

R0

R)×Gm(R) :

〈gx, gy〉 = r〈x, y〉,∀x, y ∈ (Gr0
D,0⊕Gr−1

D,0)⊗
R0

R

 ,

Pord
D,0 (R) := {(g, r) ∈ G0(R) : g(Gr0

D,0 ⊗
R0

R) = Gr0
D,0 ⊗

R0

R},

Mord
D,0 (R) := GLO⊗

Z
R(Gr0

D,0 ⊗
R0

R)×GLO⊗
Z
R(Gr−1

D,0 ⊗
R0

R)×Gm(R),

with a canonical homomorphism

Pord
D,0 (R)→ Mord

D,0 (R) : (g, r) 7→ (Gr0(g),Gr−1(g), r).

The assignments are functorial in R and define group functors Gord
D,0 ,

Pord
D,0 , and Mord

D,0 over R0, which are affine group schemes over Spec(R0).

In the generality we are working, it is not always possible to con-
struct automorphic bundles in the same way as in the smooth case. For
constructions involving Pord

D,0 , we will need to assume that the following
holds:

Condition 8.1.1.2. Suppose R is a flat R0-algebra, M is an
O⊗

Z
R-module of finite presentation, and 〈 · , · 〉M : M ×M → R(1) is

an alternating pairing satisfying 〈bx, y〉 = 〈x, b?y〉 for all x, y ∈M .
Suppose there exists a short exact sequence

0→ Gr0
D,0 ⊗

R0

R→M → Gr−1
D,0 ⊗

R0

R→ 0

such that the image of Gr0
D,0 ⊗

R0

R in M is totally isotropic under the

pairing 〈 · , · 〉M , and such that the induced pairing

Gr0
D,0 ⊗

R0

R×Gr−1
D,0 ⊗

R0

R→ R(1)

coincides with the pairing induced by φD,0, which is given by

Gr0
D,0 ⊗

R0

R×Gr−1
D,0 ⊗

R0

R
Id×φD,0→ Gr0

D,0 ⊗
R0

R×Gr−1
D#,0
⊗
R0

R
can.→ R(1).

There exists a faithfully flat ring extension R→ R1 such that there
is an isomorphism

(M ⊗
R
R1, 〈 · , · 〉M ,Gr0

D,0 ⊗
R0

R1)

∼= ((Gr0
D,0⊕Gr−1

D,0)⊗
R0

R1, 〈 · , · 〉φD,0 ,Gr0
D,0 ⊗

R0

R1).
(8.1.1.3)
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Even when Condition 8.1.1.2 holds, we do not claim that either of
G⊗

Z
R1, Gord

D,0 ⊗
R0

R1, or Pord
D,0 ⊗

R0

R1 is smooth over R1. In practice, it is

sufficiently interesting to consider the theory only for Mord
D,0 . In what

follows, we will make it clear when we need Condition 8.1.1.2. (We will
not need Condition 8.1.1.2 for constructions involving only Mord

D,0 .)

Lemma 8.1.1.4. If p is a good prime as in Definition 1.1.1.6, then
Condition 8.1.1.2 always holds. Moreover, we may assume that the
faithfully flat ring extension R → R1 in Condition 8.1.1.2 is finite
étale.

Proof. This follows from [62, Cor. 1.2.3.10]. �

Lemma 8.1.1.5. (Compare with Lemma 1.4.1.2.) When Condition
8.1.1.2 holds, there exists a faithfully flat ring extension R̃0 → R1 of
Zp-algebras such that there exists an isomorphism

(L⊗
Z
R1, 〈 · , · 〉,Gr−1

D ⊗
Zp
R1)

∼= ((Gr0
D,0⊕Gr−1

D,0)⊗
R0

R1, 〈 · , · 〉φD,0 ,Gr−1
D,0 ⊗

R0

R1)
(8.1.1.6)

over R1, which induces an isomorphism G⊗
Z
R1
∼= Gord

D,0 ⊗
R0

R1. (Con-

sequently, for every R1-algebra R, the group Pord
D,0 (R) can be identified

with a subgroup of G(R).)

Proof. This follows by applying the assertion in Condition 8.1.1.2
to (M, 〈 · , · 〉M ,Gr−1

D,0 ⊗
R0

R̃0) = (L⊗
Z
R̃0, 〈 · , · 〉,Gr−1

D ⊗
Zp
R̃0), with R = R̃0

there. �

Lemma 8.1.1.7. Given any F ′0 as in Section 1.4, (without assuming
that Condition 8.1.1.2 holds) there exist ring extensions R0 → K and
F ′0 → K (which are automatically flat) such that there is an isomor-
phism

((Gr0
D,0⊕Gr−1

D,0)⊗
R0

K, 〈 · , · 〉φD,0 ,Gr0
D,0 ⊗

R0

K)

∼= ((L0⊕L∨0 (1))⊗
F ′0

K, 〈 · , · 〉can., L
∨
0 (1)⊗

F ′0

K)
(8.1.1.8)

which induces an isomorphism Gord
D,0 ⊗

R0

K ∼= G0⊗
F ′0

K over K inducing

compatible isomorphisms Pord
D,0 ⊗

R0

K ∼= P0⊗
F ′0

K and Mord
D,0 ⊗

R0

K ∼= M0⊗
F ′0

K

(also over K). (Note the choices of maximal totally isotropic submod-
ules.)
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Proof. This follows from Lemma 1.4.1.2 and from Assumption
3.2.2.10. �

8.1.2. Automorphic Bundles. Let H, Hp, and Hp be as at the
beginning of Section 3.4.1, let rD and rH be as in Definition 3.4.2.1, and

let (A, λ, i, αHp , α
ord
Hp ) be the tautological tuple over ~Mord

H (see Conven-

tion 3.4.2.9).
For simplicity, we shall assume the following in the remainder of

this chapter:

Assumption 8.1.2.1. Up to replacing R0 with a faithfully flat
extension, we shall assume that R0 is an OF0,(p)-algebra. Moreover,

by abuse of notation, we shall replace ~Mord
H etc with their base

changes from Spec(OF0,(p)[ζprH ]) to Spec(R0[ζprH ]), and replace
~S0,rH = Spec(OF0,(p)[ζprH ]) with Spec(R0[ζprH ]).

Note that the base changes of ~Mord
H and its partial toroidal compact-

ifications ~Mord,tor
H remain smooth over ~S0,rH and hence regular; and the

base change of the partial minimal compactification ~Mord,min
H remains

normal, by Proposition 6.2.1.6.

Definition 8.1.2.2. (Compare with Definition 1.4.1.3.) The prin-

cipal Gord
D,0 -bundle over ~Mord

H is the relative scheme

~Eord
Gord

D,0
:= IsomO⊗

Z
O~Mord
H

((HdR
1 (A/~Mord

H ), 〈 · , · 〉λ,O~Mord
H

(1)),

((Gr0
D,0⊕Gr−1

D,0)⊗
R0

O~Mord
H
, 〈 · , · 〉φD,Z ,O~Mord

H
(1))),

the sheaf of isomorphisms of O~Mord
H

-sheaves of symplectic O-modules,

over ~Mord
H . (By definition, the group Gord

D,0 acts as automorphisms on

((Gr0
D,0⊕Gr−1

D,0)⊗
R0

O~Mord
H
, 〈 · , · 〉φD,0 ,O~Mord

H
(1)). The third entries in the

tuples represent the values of the pairings.)

Definition 8.1.2.3. (Compare with Definition 1.4.1.4.) The prin-

cipal Pord
D,0 -bundle over ~Mord

H is the relative scheme

~Eord
Pord
D,0

:= IsomO⊗
Z

O~Mord
H

((HdR
1 (A/~Mord

H ), 〈 · , · 〉λ,O~Mord
H

(1),Lie∨
A∨/~Mord

H
(1)),

((Gr0
D,0⊕Gr−1

D,0)⊗
R0

O~Mord
H
, 〈 · , · 〉φD,0 ,O~Mord

H
(1),Gr0

D,0 ⊗
R0

O~Mord
H

)),

the sheaf of isomorphisms of O~Mord
H

-sheaves of symplectic

O-modules with maximal totally isotropic O-submodules, over
~Mord
H . (By definition, the group Pord

D,0 acts as automorphisms on
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((Gr0
D,0⊕Gr−1

D,0)⊗
R0

O~Mord
H
, 〈 · , · 〉φD,0 ,O~Mord

H
(1),Gr0

D,0 ⊗
R0

O~Mord
H

). The third

entries in the tuples represent the values of the pairings.)

Definition 8.1.2.4. (Compare with Definition 1.4.1.5.) The prin-

cipal Mord
D,0 -bundle over ~Mord

H is the relative scheme

~Eord
Mord

D,0
:= IsomO⊗

Z
O~Mord
H

((Lie∨
A∨/~Mord

H
(1),LieA/~Mord

H
, 〈 · , · 〉λ,O~Mord

H
(1)),

(Gr0
D,0 ⊗

R0

O~Mord
H
,Gr−1

D,0 ⊗
R0

O~Mord
H
, 〈 · , · 〉φD,0 ,O~Mord

H
(1))),

the sheaf of isomorphisms of O~Mord
H

-sheaves of O-modules,

over ~Mord
H . (We view the second entries in the pairs as an

additional structure, inherited from the corresponding objects for
Pord
D,0 . By definition, the group Mord

D,0 acts as automorphisms on

(Gr0
D,0 ⊗

R0

O~Mord
H
,Gr−1

D,0 ⊗
R0

O~Mord
H
, 〈 · , · 〉φD,0 ,O~Mord

H
(1)).)

Remark 8.1.2.5. The induced pairing

〈 · , · 〉λ : Lie∨
A∨/~Mord

H
(1)×LieA/~Mord

H
→ O~Mord

H
(1)

in Definition 8.1.2.4 coincides with the composition

Lie∨
A∨/~Mord

H
(1)⊗LieA/~Mord

H

Id⊗ dλ→ Lie∨
A∨/~Mord

H
(1)⊗LieA∨/~Mord

H

can.→ O~Mord
H

(1).

Lemma 8.1.2.6. (Compare with Lemma 1.4.1.7.) The relative

scheme ~Eord
Mord

D,0
over ~Mord

H is an étale torsor under (the pullback of)

the group scheme Mord
D,0 . When Condition 8.1.1.2 holds, the relative

scheme ~Eord
Gord

D,0
(resp. ~Eord

Pord
D,0

) over ~Mord
H is an fpqc torsor under (the

pullback of) the group scheme Gord
D,0 (resp. Pord

D,0 ).

Proof. In the case of ~Eord
Mord

D,0
, as in the proof of Lemma 1.4.1.7, this

follows from the theory of infinitesimal deformations of ordinary abelian

schemes with additional structures parameterized by ~Mord
H (see Theo-

rems 3.4.1.9 and 3.4.2.5, and Convention 3.4.2.9), and from Artin’s ap-
proximation theory (cf. [3, Thm. 1.10 and Cor. 2.5]). More precisely, in
characteristic zero, this is essentially Lemma 1.4.1.7 by Lemma 8.1.1.7;
and, in positive characteristics, instead of using the Lie algebra con-
dition as in the case of MH, we use the theory in [47, 3.4] and the
ordinary level structure αord

Hp to determine the isomorphism classes of

the pullbacks of Lie∨
A∨/~Mord

H
and LieA/~Mord

H
to the completions of strict

local rings of ~Mord
H .
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In the cases of ~Eord
Gord

D,0
and ~Eord

Pord
D,0

, in addition to the above argument

over the completions of strict local rings, we use the assertion in Condi-
tion 8.1.1.2 to match the pairing defined by λ with the pairing 〈 · , · 〉φD,0 .
(We do not need Condition 8.1.1.2 at points of characteristic zero.) �

Definition 8.1.2.7. (Compare with Definition 1.4.1.8.) For each
R0-algebra R, we denote by RepR(Gord

D,0 ) (resp. RepR(Pord
D,0 ), resp.

RepR(Mord
D,0 )) the category of R-modules with algebraic actions of

Gord
D,0 ⊗

R0

R (resp. Pord
D,0 ⊗

R0

R, resp. Mord
D,0 ⊗

R0

R).

Following Lemma 8.1.2.6, by fpqc descent of quasi-coherent sheaves
(see [33, VIII, 1.3]), we can make the following:

Definition 8.1.2.8. (Compare with Definition 1.4.1.9.) Let R be
any R0-algebra. For each W ∈ RepR(Mord

D,0 ), we define

~Eord
Mord

D,0 ,R
(W ) := (~Eord

Mord
D,0
⊗
R0

R)

Mord
D,0 ⊗

R0

R

× W,

called the automorphic sheaf over ~Mord
H ⊗

R0

R associated with W .

It is called an automorphic bundle if W is locally free of finite
rank over R, in which case ~Eord

Mord
D,0 ,R

(W ) is also locally free of finite

rank over ~Mord
H ⊗

R0

R. When Condition 8.1.1.2 holds, we define

similarly ~Eord
Gord

D,0 ,R
(W ) (resp. ~Eord

Pord
D,0 ,R

(W )) for W ∈ RepR(Gord
D,0 ) (resp.

W ∈ RepR(Pord
D,0 )) by replacing Mord

D,0 with Gord
D,0 (resp. Pord

D,0 ) in the above
expression.

Lemma 8.1.2.9. (Compare with Lemma 1.4.1.10.) Let R be any

R0-algebra. The assignment ~Eord
Mord

D,0 ,R
( · ) defines an exact functor from

RepR(Mord
D,0 ) to the category of quasi-coherent sheaves over ~Mord

H .

Proof. By étale descent, the proof is similar to that of Lemma
1.4.1.10. �

Lemma 8.1.2.10. (Compare with Lemma 1.4.1.10.) Let R be any
R0-algebra. Suppose that Condition 8.1.1.2 holds.

(1) The assignment ~Eord
Gord

D,0 ,R
( · ) (resp. ~Eord

Pord
D,0 ,R

( · )) defines an exact

functor from RepR(Gord
D,0 ) (resp. RepR(Pord

D,0 )) to the category

of quasi-coherent sheaves over ~Mord
H .
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(2) If we consider an object W ∈ RepR(Gord
D,0 ) as an object of

RepR(Pord
D,0 ) by restriction to Pord

D,0 , then we have a canonical

isomorphism ~Eord
Gord

D,0 ,R
(W ) ∼= ~Eord

Pord
D,0 ,R

(W ).

(3) If we view an object W ∈ RepR(Mord
D,0 ) as an object

of RepR(Pord
D,0 ) via the canonical homomorphism

Pord
D,0 → Mord

D,0 , then we have a canonical isomorphism
~Eord

Pord
D,0 ,R

(W ) ∼= ~Eord
Mord

D,0 ,R
(W ).

(4) Suppose W ∈ RepR(Pord
D,0 ) has a decreasing filtration by

subobjects Fa(W ) ⊂ W in RepR(Pord
D,0 ) such that each

graded piece GraF(W ) := Fa(W )/Fa+1(W ) can be identified

with an object of RepR(Mord
D,0 ). Then ~Eord

Pord
D,0 ,R

(W ) has a

filtration Fa(~Eord
Pord
D,0 ,R

(W )) := ~Eord
Pord
D,0 ,R

(Fa(W )) with graded pieces

~Eord
Mord

D,0 ,R
(GraF(W )).

Proof. By fpqc descent, the proof is still similar to that of Lemma
1.4.1.10. �

Lemma 8.1.2.11. (Compare with Lemma 1.4.1.11.) For any
R0-algebra R, the pullback of LieA/~Mord

H
(resp. Lie∨

A/~Mord
H

, resp.

ω~Mord
H

= ∧top Lie∨
A/~Mord

H
) to ~Mord

H ⊗
R0

R is canonically isomorphic

to ~Eord
Mord

D,0 ,R
(W ) for W = Gr−1

D,0 ⊗
R0

R (resp. (Gr−1
D,0)
∨ ⊗
R0

R, resp.

∧top (Gr−1
D,0)
∨ ⊗
R0

R).

Proof. This follows from Definitions 8.1.2.4 and 8.1.2.8, and from
Lemma 8.1.2.9. �

8.1.3. Canonical Extensions. Now let us explain the construc-
tion of canonical extensions (along the partial toroidal compactifica-
tions) using Theorem 7.1.4.1. Let (G, λ, i, αHp , α

ord
Hp ) be the tautological

degenerating family of type ~Mord
H over ~Mord,tor

H (as in Theorem 5.2.1.1).

Then its restriction to ~Mord
H is canonically isomorphic to the pullback of

the tautological tuple (A, λ, i, αHp , α
ord
Hp ) over

...
M

ord

H (used in the above

constructions in this subsection).
By taking Q = O, so that HomO(Q,G~Mord

H
)◦ ∼= G~Mord

H
and so that

there exists some Q×-isogeny κisog : G~Mord
H
→ ~Nord,grp

κ = ~Nord
κ over ~Mord

H

for some κ ∈ Kord
Q,H as in Theorem 7.1.4.1. Since Q = O, we have

Q−2 = HomO(O,DiffO′/Z(1)) ∼= Diff−1
O′/Z(1) and Q0 = O′, in which case
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X̃ = HomO(Q−2,Diff−1(1)) ∼= O′ and Ỹ = O′, where O′ is the maximal
order as in the beginning of Section 1.2.4 (satisfying the requirement
of Condition 1.2.1.1).

By using the level structures in characteristic zero, and by [62,
Cor. 1.3.5.4], the action of O on G~Mord

H
⊗
Z
Q extends (canonically) to an

action of O′ on G~Mord
H
⊗
Z
Q. Since ~Mord

H is noetherian normal, by [92, IX,

1.4], [28, Ch. I, Prop. 2.7], or [62, Prop. 3.3.1.5], the action extends
(uniquely) to an action of O′ on the whole G~Mord

H
. Thus, we can define

a canonical morphism

(8.1.3.1) G~Mord
H
∼= HomO(O, G~Mord

H
)→ HomO(O′, G~Mord

H
)

Lemma 8.1.3.2. The canonical morphism

(8.1.3.3) G~Mord
H
∼= HomO(O, G~Mord

H
)→ HomO(O′, G~Mord

H
)◦

induced by (8.1.3.1) is an isomorphism.

Proof. Since the composition of (8.1.3.3) with the canonical re-
striction morphism

(8.1.3.4) HomO(O′, G~Mord
H

)◦ → HomO(O, G~Mord
H

)

is an isomorphism, the induced morphisms between fppf sheaves of
groups must be injective. Hence, (8.1.3.3) and (8.1.3.4) must be group
scheme isomorphisms, because they are at the same time isogenies of
abelian schemes. (There are many ways to show this last fact. For
example, they are flat by fiberwise criterion of flatness, while over
each geometric fiber we have injective group homomorphisms between
abelian varieties of the same dimension.) �

Lemma 8.1.3.5. There exists κ ∈ KQ,H,Σord such that κisog is an
Z×(p)-isogeny.

Proof. Suppose κ = (H̃, Σ̃ord, σ̃). By the construction of ~Nord
κ

in Section 7.2.1, ~Nord
κ =

~̃
Z

ord

[(Φ̃H̃,δ̃H̃,σ̃)] is canonically isomorphic to

~̃
C

ord

Φ̃H̃,δ̃H̃
. By Proposition 4.2.1.34, it suffices to show that the canonical

Q×-isogeny

G~Mord
H
∼= HomO(O, G~Mord

H
)

→
(

HomO(O′, G~Mord
H

) ×
HomO(O′,G∨

~Mord
H

)
HomO(O′, G∨~Mord

H
)
)◦

∼= HomO(O′, G~Mord
H

)◦
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is an isomorphism, which follows from Lemma 8.1.3.2. �

By (3) of Theorem 7.1.4.1, the locally free sheaf H1
dR(~Nord

κ /~Mord
H )

extends to the locally free sheaf H1
log-dR(~Nord,tor

κ /~Mord,tor
H ) over O~Mord,tor

H
.

Let

H log-dR
1 (~Nord,tor

κ /~Mord,tor
H )

:= HomO
~M

ord,tor
H

(H1
log-dR(~Nord,tor

κ /~Mord,tor
H ),O~Mord,tor

H
).

Then, for κ ∈ KQ,H,Σord such that κisog : G~Mord
H
→ ~Nord

κ is

an Z×(p)-isogeny, this H log-dR
1 (~Nord,tor

κ /~Mord,tor
H ) qualifies as the

HdR
1 (G~Mord

H
/~Mord
H )can in the following:

Proposition 8.1.3.6. (Compare with Proposition 1.4.2.1.) There

exists a unique locally free sheaf HdR
1 (G~Mord

H
/~Mord
H )can over O~Mord,tor

H
satisfying the following properties:

(1) The sheaf HdR
1 (G~Mord

H
/~Mord
H )can, which can be canonically iden-

tified with a subsheaf of the quasi-coherent sheaf (~Mord
H ↪→

~Mord,tor
H )∗H

dR
1 (G~Mord

H
/~Mord
H ), admits a pairing 〈 · , · 〉can

λ induced

by (~Mord
H ↪→ ~Mord,tor

H )∗〈 · , · 〉λ. This pairing 〈 · , · 〉can
λ is perfect

after pulled back to Mord
H
∼= ~Mord

H ⊗
Z
Q.

(2) HdR
1 (G~Mord

H
/~Mord
H )can contains Lie∨

G∨/~Mord,tor
H

(1) as a subsheaf to-

tally isotropic under the pairing 〈 · , · 〉can
λ .

(3) The quotient sheaf (HdR
1 (G~Mord

H
/~Mord
H ))can/Lie∨

G∨/~Mord,tor
H

can be

canonically identified with the subsheaf LieG/~Mord,tor
H

of (~Mord
H ↪→

~Mord,tor
H )∗LieG~Mord

H
/~Mord
H

.

(4) The pairing 〈 · , · 〉can
λ induces a morphism

LieG/~Mord,tor
H

→ LieG∨/~Mord,tor
H

which coincides with (the pullback

of) dλ. This morphism is an isomorphism after pulled back to
~Mord,tor
H ⊗

Z
Q. If p - [L# : L] as in Definition 1.1.1.6 and hence

λ is prime-to-p, then dλ is an isomorphism, and consequently

HdR
1 (G~Mord

H
/~Mord
H )can is self-dual under 〈 · , · 〉can

λ .

(5) Let

H1
dR(G~Mord

H
/~Mord
H )can := HomO

~M
ord,tor
H

(HdR
1 (G~Mord

H
/~Mord
H )can,O~Mord,tor

H
).
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Then the Gauss–Manin connection

∇ : H1
dR(G~Mord

H
/~Mord
H )→ H1

dR(G~Mord
H
/~Mord
H ) ⊗

O~Mord
H

Ω1
~Mord
H /~S0,rH

extends to an integrable connection

∇ : H1
dR(G~Mord

H
/~Mord
H )can

→ H1
dR(G~Mord

H
/~Mord
H )can ⊗

O
~M

ord,tor
H

Ω
1
~Mord,tor
H /~S0,rH

(8.1.3.7)

with log poles along ~Dord
∞,H, called the extended Gauss–Manin

connection, such that the composition (ignoring Tate twists;
cf. Remark 1.1.2.3)

Lie∨
G/~Mord,tor

H
↪→ H1

dR(G~Mord
H
/~Mord
H )can

∇→ H1
dR(G~Mord

H
/~Mord
H )can ⊗

O
~M

ord,tor
H

Ω
1
~Mord,tor
H /~S0,rH

� LieG∨/~Mord,tor
H

⊗
O
~M

ord,tor
H

Ω
1
~Mord,tor
H /~S0,rH

(8.1.3.8)

induces by duality the extended Kodaira–Spencer mor-
phism

Lie∨
G/~Mord,tor

H
⊗

O
~M

ord,tor
H

Lie∨
G∨/~Mord,tor

H
→ Ω

1
~Mord,tor
H /~S0,rH

as in [62, Def. 4.6.3.44], which factors through the analogue

of KSfree (as in Definition 3.4.3.1) over ~Mord,tor
H and induces

the pullback of the extended Kodaira–Spencer isomorphism
KSG/~Mord,tor

H /~S0,rH
in (4) of Theorem 5.2.1.1.

With these characterizing properties, we say (HdR
1 (G~Mord

H
/~Mord
H )can,∇)

is the canonical extension of (HdR
1 (G~Mord

H
/~Mord
H ),∇).

Proof. The uniqueness of HdR
1 (G~Mord

H
/~Mord
H )can is clear by the first

four properties. To show the existence, let us take any κ ∈ KQ,H,Σord

such that κisog : G~Mord
H
→ ~Nord,grp

κ = ~Nord
κ is a Z×(p)-isogeny (for Q = O,

as mentioned before this proposition, by Lemma 8.1.3.5), and take

HdR
1 (G~Mord

H
/~Mord
H )can to be the sheaf H log-dR

1 (~Nord,tor
κ /~Mord,tor

H ). It is lo-

cally free with a Hodge filtration by (3c) of Theorem 7.1.4.1. More-
over, by taking some sufficiently divisible integer N > 0 such that
N Diff−1 ⊂ O, we obtain by multiplication by N a morphism jQ :
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Q∨ ∼= Diff−1 ↪→ Q = O as in Lemma 1.2.4.1 such that pulling back by
κisog identifies

〈 · , · 〉λ~Mord
H ,jQ

: H1
dR(~Nord

κ /~Mord
H )×H1

dR(~Nord
κ /~Mord

H )→ O~Mord
H

(1)

with a nonzero multiple of

〈 · , · 〉λ~Mord
H

: H1
dR(G~Mord

H
/~Mord
H )×H1

dR(G~Mord
H
/~Mord
H )→ O~Mord

H
(1).

(This nonzero multiple is harmless because we will be comparing
locally free sheaves of finite rank over a noetherian normal scheme
flat over Spec(Z) which we already know outside a closed subscheme
of codimension at least two.) Then (1) and (2) follow from (3d)
of Theorem 7.1.4.1, and (3) and (4) follows from Proposition
7.3.6.15 and (7.3.6.4) (which was used to prove (3b) of Theorem
7.1.4.1). (The assertion in (4) about self-duality of the pairing when
p - [L# : L] is self-explanatory.) It remains to verify (5). By definition,

H1
dR(G~Mord

H
/~Mord
H )can ∼= H1

log-dR(~Nord,tor
κ /~Mord,tor

H ). The existence of ∇ in

(8.1.3.7) follows from (3e) of Theorem 7.1.4.1. As explained in [61,

Rem. 4.42], the pullback of (8.1.3.8) to ~Mord
H is induced by the usual

Kodaira–Spencer morphism. Since the extended Kodaira–Spencer
morphism in [62, Def. 4.6.3.44] is defined exactly as a morphism
induced by the usual Kodaira–Spencer morphism (by normality of
~Mord,tor
H and local freeness of the sheaves involved), it is induced by

duality by (8.1.3.8), as desired. �

Then the principal bundle ~Eord
Gord

D,0
extends canonically to a principal

bundle ~Eord,can

Gord
D,0

over ~Mord,tor
H by setting

~Eord,can

Gord
D,0

:= IsomO⊗
Z

O
~M

ord,tor
H

(

(HdR
1 (G~Mord

H
/~Mord
H )can, 〈 · , · 〉can

λ ,O~Mord,tor
H

(1)),

((Gr0
D,0⊕Gr−1

D,0)⊗
R0

O~Mord,tor
H

, 〈 · , · 〉φD,0 ,O~Mord,tor
H

(1))).

(8.1.3.9)
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The principal bundle ~Eord
Pord
D,0

extends canonically to a principal bundle

~Eord,can

Pord
D,0

over ~Mord,tor
H by setting

~Eord,can

Pord
D,0

:= IsomO⊗
Z

O
~M

ord,tor
H

(

(HdR
1 (G~Mord

H
/~Mord
H )can, 〈 · , · 〉can

λ ,O~Mord,tor
H

(1),Lie∨
G∨/~Mord,tor

H
(1)),

((Gr0
D,0⊕Gr−1

D,0)⊗
R0

O~Mord,tor
H

, 〈 · , · 〉φD,0 ,O~Mord,tor
H

(1),Gr0
D,0 ⊗

R0

O~Mord,tor
H

)).

(8.1.3.10)

The principal bundle ~Eord
Mord

D,0
extends canonically to a principal bundle

~Eord,can

Mord
D,0

over ~Mord,tor
H by setting

~Eord,can

Mord
D,0

:= IsomO⊗
Z

O
~M

ord,tor
H

(

(Lie∨
G∨/~Mord,tor

H
(1),LieG/~Mord,tor

H
, 〈 · , · 〉can

λ ,O~Mord,tor
H

(1)),

(Gr0
D,0 ⊗

R0

O~Mord,tor
H

,Gr−1
D,0 ⊗

R0

O~Mord,tor
H

, 〈 · , · 〉φD,0 ,O~Mord,tor
H

(1))).

(8.1.3.11)

Lemma 8.1.3.12. (Compare with Lemmas 1.4.2.8 and 8.1.2.6.) The

relative scheme ~Eord,can

Mord
D,0

over ~Mord,tor
H is an étale torsor under the pull-

back of the group scheme Mord
D,0 . When Condition 8.1.1.2 holds, the

relative scheme ~Eord,can

Gord
D,0

(resp. ~Eord,can

Pord
D,0

) over ~Mord,tor
H is an fpqc torsor

under the pullback of the group scheme Gord
D,0 (resp. Pord

D,0 , resp. Mord
D,0 ).

Proof. At points of residue characteristic zero, this is essentially
Lemma 1.4.2.8 by Lemma 8.1.1.7 (and we do not need Condition
8.1.1.2). At points of residue characteristic p > 0, we shall rigidify
the isomorphism classes of Lie∨

G∨/~Mord,tor
H

and LieG/~Mord,tor
H

using the

extensions of the ordinary level structure αord
Hp to all of ~Mord,tor

H (cf.

condition (5) in Definition 3.4.2.10). Then the same argument as in
the proof of Lemma 8.1.2.6 works here. �

Definition 8.1.3.13. (Compare with Definition 1.4.2.9.) Let R be
any R0-algebra. For each W ∈ RepR(Mord

D,0 ), we define

~Eord,can

Mord
D,0 ,R

(W ) := (~Eord,can

Mord
D,0
⊗
R0

R)

Mord
D,0 ⊗

R0

R

× W,
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called the canonical extension of ~Eord
Mord

D,0 ,R
(W ), and define

~Eord,sub

Mord
D,0 ,R

(W ) := ~Eord,can

Mord
D,0 ,R

(W ) ⊗
O
~M

ord,tor
H

I~Dord
∞,H

,

called the subcanonical extension of ~Eord
Mord

D,0 ,R
(W ), where I~Dord

∞,H
is

the O~Mord,tor
H

-ideal defining the relative Cartier divisor ~Dord
∞,H (with its

reduced structure) in (3) of Theorem 5.2.1.1. When Condition 8.1.1.2

holds, we define similarly ~Eord,can

Gord
D,0 ,R

(W ) and ~Eord,sub

Gord
D,0 ,R

(W ) (resp. ~Eord,can

Pord
D,0 ,R

(W )

and ~Eord,sub

Pord
D,0 ,R

(W )) with Mord
D,0 and its principal bundle replaced accordingly

with Gord
D,0 (resp. Pord

D,0 ) and its principal bundle.

Then we have:

Lemma 8.1.3.14. (Compare with Lemma 1.4.2.10.) Lemmas 8.1.2.9
and 8.1.2.10 remain true if we replace the automorphic sheaves with
their canonical or subcanonical extensions.

As in the case of Lemma 1.4.2.10, the same argument of the proof
of Lemma 1.4.1.10 (by étale or fpqc descent) works here.

Lemma 8.1.3.15. (Compare with Lemmas 1.4.2.11 and 8.1.2.11.)
For any R0-algebra R, the pullback of LieG/~Mord,tor

H
(resp. Lie∨

G/~Mord,tor
H

,

resp. ω~Mord,tor
H

= ∧top Lie∨
G/~Mord,tor

H
) to ~Mord,tor

H ⊗
R0

R is canonically iso-

morphic to ~Eord,can

Mord
D,0 ,R

(W ) for W = Gr−1
D,0 ⊗

R0

R (resp. (Gr−1
D,0)
∨ ⊗
R0

R, resp.

∧top (Gr−1
D,0)
∨ ⊗
R0

R).

Proof. This follows from (8.1.3.11), Definition 8.1.3.13, and
Lemma 8.1.3.14. �

8.1.4. Hecke Actions.

Proposition 8.1.4.1. (Compare with Propositions 1.4.3.1, 3.4.4.1,
and 5.2.2.2, and (4) of Theorem 7.1.4.1.) Let R be any R0-algebra,
and let W ∈ RepR(Mord

D,0 ). Suppose we have an element g = (g0, gp) ∈
G(A∞,p)×Pord

D (Qp) ⊂ G(A∞) (see Definition 3.2.2.7), and suppose

we have two open compact subgroups H and H′ of G(Ẑ) such that
H′ ⊂ gHg−1, and such that H and H′ are of standard form as in
Definition 3.2.2.9. Suppose moreover that gp satisfies the conditions

given in Section 3.3.4, so that ~[g]
ord

: ~Mord
H′ → ~Mord

H is defined as in
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Proposition 3.4.4.1; and that gp ∈ Pord
D (Zp) when p is not invertible in

R. Then there is (by abuse of notation) a canonical isomorphism

(8.1.4.2) ( ~[g]
ord

)∗ : ( ~[g]
ord

)∗~Eord
Mord

D,0 ,R
(W )

∼→ ~Eord
Mord

D,0 ,R
(W )

of quasi-coherent sheaves over ~Mord
H′ , where the first ~Eord

Mord
D,0 ,R

(W ) is de-

fined over ~Mord
H , and where the second is defined over ~Mord

H′ .
Suppose Σord = {ΣΦH}[(ΦH,δH)] and Σord,′ = {Σ′Φ′H′}[(Φ′H′ ,δ

′
H′ )]

are compatible choices of admissible smooth rational polyhedral

cone decomposition data for ~Mord
H and ~Mord

H′ , respectively, such that
Σord,′ is a g-refinement of Σord as in Definition 5.2.2.1, so that
~[g]

ord,tor
: ~Mord,tor

H′,Σord,′ → ~Mord,tor
H,Σord is defined as in Proposition 5.2.2.2.

Then there is (by abuse of notation) a canonical isomorphism

(8.1.4.3) ( ~[g]
ord,tor

)∗ : ( ~[g]
ord,tor

)∗~Eord,can

Mord
D,0 ,R

(W )
∼→ ~Eord,can

Mord
D,0 ,R

(W )

of quasi-coherent sheaves over ~Mord,tor
H′,Σord,′, where the first ~Eord,can

Mord
D,0 ,R

(W ) is

defined over ~Mord,tor
H,Σord, and where the second is defined over ~Mord,tor

H′,Σord,′.

There is also (by abuse of notation) a canonical morphism

(8.1.4.4) ( ~[g]
ord,tor

)∗ : ( ~[g]
ord,tor

)∗~Eord,sub

Mord
D,0 ,R

(W )→ ~Eord,sub

Mord
D,0 ,R

(W )

of quasi-coherent sheaves over ~Mord,tor
H′,Σord,′. The canonical morphisms

(8.1.4.2), (8.1.4.3), and (8.1.4.4) are compatible with each other.
When Condition 8.1.1.2 holds, the analogous statements are true if

we replace Mord
D,0 with Pord

D,0 .
If g = g1g2, where g1 = (g1,0, g1,p) and g2 = (g2,0, g2,p) are elements

of G(A∞,p)×Pord
D (Qp), each having a setup similar to that of g, then

we have ( ~[g]
ord

)∗ = ( ~[g1]
ord

)∗ ◦ ( ~[g2]
ord

)∗ and ( ~[g]
ord,tor

)∗ = ( ~[g1]
ord,tor

)∗ ◦
( ~[g2]

ord,tor
)∗ whenever the involved isomorphisms are defined.

Proof. Let us first compatibly define canonical isomorphisms

(8.1.4.5) ( ~[g]
ord

)∗ : ( ~[g]
ord

)∗~Eord
Mord

D,0
⊗
R0

R
∼→ ~Eord

Mord
D,0
⊗
R0

R

and

(8.1.4.6) ( ~[g]
ord,tor

)∗ : ( ~[g]
ord,tor

)∗~Eord,can

Mord
D,0
⊗
R0

R
∼→ ~Eord,can

Mord
D,0
⊗
R0

R

between the pullbacks to R of the corresponding principal bundles and

their canonical extensions. Under ~[g]
ord,tor

: ~Mord,tor
H′,Σord,′ � ~Mord,tor

H,Σord , the
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ordinary Hecke twist of the tautological family (G, λ, i, αH′,p , α
ord
H′p ) →

~Mord,tor
H′,Σord,′ by g (defined by Proposition 3.3.4.21 and Lemma 3.1.3.2) is

the pullback (G′, λ′, i′, α′Hp , α
ord,′
Hp )→ ~Mord,tor

H′,Σord,′ of the tautological family

(G, λ, i, αHp , α
ord
Hp ) → ~Mord,tor

H,Σord , equipped with a Q×-isogeny [g−1]ord :

G→ G′. (See Propositions 3.4.4.1 and 5.2.2.2 and their proofs.) Since
gp ∈ Pord

D (Zp) when p is not invertible in R, the Q×-isogeny [g−1]ord :
G→ G′ induces isomorphisms

[g−1]ord
∗ : LieG/~Mord,tor

H′,Σord,′
⊗
R0

R

∼→ LieG′/~Mord,tor

H′,Σord,′
⊗
R0

R ∼= ( ~[g]
ord,tor

)∗LieG/~Mord,tor

H,Σord
⊗
R0

R
(8.1.4.7)

and

[g−1]ord
∗ : Lie∨

G∨/~Mord,tor

H′,Σord,′
⊗
R0

R

∼→ Lie∨
G′,∨/~Mord,tor

H′,Σord,′
⊗
R0

R ∼= ( ~[g]
ord,tor

)∗Lie∨
G∨/~Mord,tor

H,Σord

⊗
R0

R,
(8.1.4.8)

which induce the desired isomorphism (8.1.4.6) (cf. the definition of
~Eord,can

Mord
D,0

in (8.1.3.11)), whose restrictions to ~Mord
H′ induce the desired

isomorphism (8.1.4.5) (cf. Definition 8.1.2.4). By definition, these iso-
morphisms (8.1.4.5) and (8.1.4.6) then induce the desired morphisms
(8.1.4.2), (8.1.4.3), and (8.1.4.4).

The analogous statements for Pord
D,0 are similar, using the relative

de Rham cohomology HdR
1 (G~Mord

H
/~Mord
H ) and its canonical extension

HdR
1 (G~Mord

H
/~Mord
H )can (see Proposition 8.1.3.6, which is based on Theo-

rem 7.1.4.1—the last statement, for Pord
D,0 , follows from (4f) of Theorem

7.1.4.1). �

8.2. Higher Direct Images to the Minimal Compactifications

8.2.1. Some Vanishing Theorems. Let us begin with the state-
ment in characteristic zero:

Theorem 8.2.1.1. Let R be any F ′0-algebra, and let W be any object
of RepR(M0) (see Definition 1.4.1.8). Consider the canonical morphism∮
H : Mtor

H → Mmin
H (where Mtor

H = Mtor
H,Σ can be as in Theorem 1.3.1.3

for any Σ). Suppose H is neat. Then

Rb
∮
H,∗

(
E sub

M0,R
(W )

)
= 0

for all b > 0 (see Definition 1.4.2.9).
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(See Remark 8.2.1.5 below for more information.)
When p is a good prime (for the integral PEL datum

(O, ?, L, 〈 · , · 〉, h0); see Definition 1.1.1.6), and when there is no level
structure at p, we have the following analogue:

Theorem 8.2.1.2. In this theorem, let R0 and other related objects
be chosen and defined as in [61, Sec. 6], except that we shall denote

the level by Hp to emphasize that it is a subgroup of G(Ẑp). Let R be
any R0-algebra, and let W be any object of RepR(M0) (see [61, Def.
6.5]). Consider the canonical morphism

∮
Hp : Mtor

Hp → Mmin
Hp (where

Mtor
Hp = Mtor

Hp,Σp can be as in [62, Thm. 6.4.1.1] for any Σp—here we use
the superscript “p” to emphasize that Σp is a choice for MHp). Suppose
Hp is neat. Then

Rb
∮
Hp,∗

(
E sub

M0,R
(W )

)
= 0

for all b > 0 (see [61, Def. 6.13]).

More generally (regardless of whether p is a good prime or not),
we have the following analogue over the ordinary loci: (Here we rein-
state the choice of R0 and the other running assumptions, including
Assumption 8.1.2.1, in Section 8.1.)

Theorem 8.2.1.3. Let R be any R0-algebra, and let W be any ob-
ject of RepR(Mord

D,0 ) (see Definition 8.1.2.7). Consider the canonical

morphism ~∮ ord

H : ~Mord,tor
H → ~Mord,min

H . Suppose Hp is neat. Then

(8.2.1.4) Rb~∮ ord

H,∗

(
~Eord,sub

Mord
D,0 ,R

(W )
)

= 0

for all b > 0 (see Definition 8.1.3.13).

Remark 8.2.1.5. Theorems 8.2.1.1, 8.2.1.2, and 8.2.1.3 might be

considered surprising because we often have Rb~∮ ord

H,∗

(
~Eord,can

Mord
D,0 ,R

(W )
)
6= 0

for b > 0. One has to realize that there is a substantial difference be-

tween Rb~∮ ord

H,∗

(
~Eord,can

Mord
D,0 ,R

(W )
)

and Rb~∮ ord

H,∗

(
~Eord,sub

Mord
D,0 ,R

(W )
)
. We learned this

possibility from Taylor in our joint work with Harris and Thorne [39]
(in some unitary case, initially only in characteristic zero—but the key
idea based on Shapiro’s lemma is independent of characteristics and
naturally generalizes to our setting here).

Remark 8.2.1.6. In the recent article [1], Andreatta, Iovita, and
Pilloni independently discovered a special case of such vanishing in
the (principally polarized) Siegel modular case, for trivial W . (Their
treatment of nontrivial W requires the base ring to be annihilated by
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a power of p that is no higher than the level at p, so that the non-
trivial automorphic bundles admit filtrations with trivial graded pieces
induced by the tautological level structures. Nevertheless, it should be
possible to modify their strategy and make it also work for nontrivial
locally free coefficients. They also treated the case of formal models of
strict neighborhoods of the ordinary loci, which is possible because of
the existence of good reduction models of toroidal compactifications at
the base level.) For sufficiently large p (or in characteristic zero), still
for trivial W , Stroh informed us (in personal communications) another
approach based on an analogue of the Grauert–Riemenschneider van-
ishing theorem [31]. Later we realized that, when W = Wν for some
weight ν as in [71], we can deduce Theorem 8.2.1.1, and also Theorem
8.2.1.2 when p is larger than an explicitly computable bound defined
by ν, from [71, Thm. 8.13]. See [69] for more details. (However, the
approach does not work for Theorem 8.2.1.3 when p is ramified or when
p is not larger than the above-mentioned bound. Also, since [71, Thm.
8.13] depends on nontrivial inputs such as [27] and [84], this shorter
approach is arguably simpler but less elementary than the one we will
present below.)

Remark 8.2.1.7. There has been some more recent progress since
[1], [69], and [39] were available as preprints and then published.
Firstly, in [66], we discovered that the relative vanishing as in Theorems
8.2.1.1 and 8.2.1.2 (or in any cases where we have proper smooth models
of toroidal compactifications) can be used to prove a generalization—
which we call a “higher Koecher’s principle”—of the classical Koecher’s
principle to the case of higher cohomology (see [66, Sec. 2] for the
precise statements). In [66], we also generalized the proof of Theo-
rem 8.2.1.3 (to be given below) to all cases where smooth models of
toroidal compactifications are available (see [66, Sec. 3 and 10]). Later,
we found a sharper argument which also works for bad reduction cases
with no restriction at all on the levels, ramifications, and polarization
degrees at p, and obtained the generalizations in [68, Sec. 8] and [64,
Sec. 4.4]. On the other hand, the rather different approach in [69] has
also been generalized in [67] to incorporate all locally symmetric vari-
eties (over C). Thus, we now have two kinds of proofs for the analogue
of Theorem 8.2.1.1 for Shimura varieties of exceptional type! However,
given how different the two kinds of proofs are, the precise nature of
such an analogue remains very mysterious.

We shall omit the proofs of Theorems 8.2.1.1 and 8.2.1.2 because
they are similar to (and simpler than) that of Theorem 8.2.1.3. The
proof of Theorem 8.2.1.3 will be carried out in the remainder of this
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section (and will be finished in Section 8.2.5). Apart from the key idea
based on Shapiro’s lemma, the details we will present below uses tech-
niques similar to those in [61] and in Section 7.3, which we developed
independently from (and earlier than) those in [39]. We are inspired by
similar strategies in [50, Ch. I, Sec. 3] and [40, Lem. 1.6.5], although
our use of nerve spectral sequences based on [30, II, 5.2.1, 5.2.4, and
5.4.1] is somewhat different.

In the remainder of Section 8.2, let us fix the choice of an arbi-

trary (locally closed) stratum ~Zord
[(ΦH,δH)] of ~Mord,min

H . We shall assume

that Hp is neat, so that ~Zord
[(ΦH,δH)]

∼= [~Mord,ZH
H ] ∼= ~Mord,ZH

H (see Corollary

6.1.2.21), without having to deal with coarse moduli spaces and the

groups Aut(x̄) of automorphisms of geometric points x̄ → ~Mord,ZH
H as

in Proposition 6.1.2.19. (When Aut(x̄) is nontrivial, we will have to
assume conditions analogous to (6.2.1.9), without which most results
concerning direct images and higher direct images will no longer hold.

Moreover, we will have to pullback to ([~Mord,ZH
H ])∧x̄ for most of our results

and proofs.)

8.2.2. Formal Fibers of ~
∮ ord

H . The aim of this subsection is to de-

scribe the pullback of the structural morphism ~∮ ord

H : ~Mord,tor
H → ~Mord,min

H
to the formal completion (~Mord,min

H )∧~Zord
[(ΦH,δH)]

. By abuse of notation, we

shall denote this pullback morphism as
(8.2.2.1)
~∮ ord

H : (~Mord,tor
H )∧~Zord

[(ΦH,δH)]

:= (~Mord,tor
H )∧

~̃Zord
[(ΦH,δH)]

→ (~Mord,min
H )∧~Zord

[(ΦH,δH)]

,

where ~̃Zord
[(ΦH,δH)] = (~

∮ ord

H )−1(~Zord
[(ΦH,δH)]) as in Section 6.1.2. (The for-

mation of the formal completions here are similar to the one in (5) of
Theorem 5.2.1.1.)

By Proposition 6.1.2.13, as in the proof of Proposition 6.1.2.19, we
have

(8.2.2.2) ~̃Zord
[(ΦH,δH)] = ∪

[(ΦH,δH,σ)]

~Zord
[(ΦH,δH,σ)],

where ~Zord
[(ΦH,δH,σ)] runs through the strata of ~Mord,tor

H over ~Zord
[(ΦH,δH)].

More precisely, for each fixed representative (ΦH, δH) of the cusp la-
bel [(ΦH, δH)], the indices [(ΦH, δH, σ)] above are parameterized by
ΓΦH-orbits of cones in

Σ+
ΦH

:= {σ ∈ ΣΦH : σ ⊂ P+
ΦH
}.
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For each such σ ∈ Σ+
ΦH

, let Uσ denote the formal completion of
~Ξord

ΦH,δH
(σ) along the closed subscheme Uσ formed by the union of the

(locally closed) subschemes ~Ξord
ΦH,δH,τ

of ~Ξord
ΦH,δH

(σ), where τ runs through
the faces of σ (which automatically satisfies τ ∈ ΣΦH) such that τ ∈
Σ+

ΦH
. Then the formal schemes Uσ (resp. the scheme Uσ) is relatively

affine over ~Cord
ΦH,δH

.

Definition 8.2.2.3. (Compare with Definition 7.3.2.3.)

(1) σ∨0+ is the intersection of τ∨0 (in SΦH) for τ running through
faces of σ in ΣΦH (including σ itself) such that τ ⊂ P+

ΦH
.

(2) σ∨+ is the intersection of τ∨0 (in SΦH) for τ running through
faces of σ in ΣΦH (including σ itself).

By abuse of notation, we have the O ~Cord
ΦH,δH

-algebra isomorphism

(8.2.2.4) OUσ
∼= ⊕̂

`∈σ∨
~Ψord

ΦH,δH
(`)

where ⊕̂
`∈σ∨

denotes the completion of the sum with respect to the

O~Ξord
ΦH,δH

(σ)-ideal ⊕
`∈σ∨0+

~Ψord
ΦH,δH

(`).

Let ~Ξ
ord

ΦH,δH
= ~Ξ

ord

ΦH,δH,ΣΦH
and ~Xord

ΦH,δH
= ~Xord

ΦH,δH,ΣΦH
be as in Section

4.2.2, where the latter is the formal completion of the former along the
union of the σ-strata ~Ξord

ΦH,δH,σ
for σ ⊂ P+

ΦH
. By Condition 1.2.2.9 and

[62, Lem. 6.2.5.27], and by our running assumption that Hp and hence
H = HpHp are neat, the action of ΓΦH induces only the trivial action
on each stratum it stabilizes. Therefore, the quotient morphism

(8.2.2.5) ~Xord
ΦH,δH

→ ~Xord
ΦH,δH

/ΓΦH

of formal schemes over ~Mord,ZH
H is a local isomorphism.

Proposition 8.2.2.6. (Compare with Lemmas 1.3.2.41 and
5.2.4.38; see also [61, Prop. 4.3] and Proposition 7.3.2.5.) There is a
canonical isomorphism

(8.2.2.7) (~Mord,tor
H )∧

~̃Zord
[(ΦH,δH)]

∼= ~Xord
ΦH,δH

/ΓΦH ,

characterized by the identifications

(~Mord,tor
H )∧~Zord

[(ΦH,δH,σ)]

∼= ~Xord
ΦH,δH,σ

,

compatible with (8.2.2.2) and with the canonical morphisms

(~Mord,tor
H )∧~Zord

[(ΦH,δH,σ)]

→ (~Mord,tor
H )∧

~̃Zord
[(ΦH,δH)]

.
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For each geometric point x̄ of ~Zord
[(ΦH,δH)]

∼= ~Mord,ZH
H , the pullback

of these canonical morphisms to (~Mord,min
H )∧x̄ are morphisms of

formal schemes over (~Mord,ZH
H )∧x̄ (using the canonical morphism

(~Mord,min
H )∧x̄ → (~Mord,ZH

H )∧x̄ as in Proposition 6.1.2.19 and the canonical

morphism ~Xord
ΦH,δH

→ ~Mord,ZH
H by the very construction of ~Xord

ΦH,δH
).

Proof. The first statement is already established in Lemma
5.2.4.38. The last statement follows from the proof of Proposition
6.1.2.19. �

For simplicity of notation, we will denote by O+
X the pullback of

I~Dord
∞,H

under any morphism X → ~Mord,tor
H from a formal scheme. For

example, the pullback of I~Dord
∞,H

under

~Xord
ΦH,δH,σ

= ~Xord
ΦH,δH,σ

/ΓΦH,σ
∼= (~Mord,tor

H )∧~Zord
[(ΦH,δH,σ)]

→ ~Mord,tor
H

(cf. (5) of Theorem 5.2.1.1 and [62, Lem. 6.2.5.27]) will be denoted
O+
~Xord

ΦH,δH,σ
. By Proposition 8.2.2.6, the canonical isomorphism (8.2.2.4)

induces compatibly a canonical isomorphism

(8.2.2.8) O+
Uσ
∼= ⊕̂

`∈σ∨+

~Ψord
ΦH,δH

(`)

of O ~Cord
ΦH,δH

-submodules (viewed as ideals of the two sides of (8.2.2.4)).

By construction, we have:

Lemma 8.2.2.9. (Compare with [61, Lem. 4.1] and Lemma 7.3.2.7.)
Suppose σ and τ are two cones in Σ+

ΦH
such that τ is a face of σ. Then:

(1) We have a canonical open immersion Uτ ↪→ Uσ (resp. Uτ ↪→
Uσ) of formal subschemes of ~Xord

ΦH,δH
.

(2) The compatible canonical restriction morphisms

OUσ → OUτ

and
O+

Uσ
→ O+

Uτ

correspond to the compatible canonical morphisms

⊕̂
`∈σ∨

~Ψord
ΦH,δH

(`)→ ⊕̂
`∈τ∨

~Ψord
ΦH,δH

(`)

and
⊕̂
`∈σ∨+

~Ψord
ΦH,δH

(`)→ ⊕̂
`∈τ∨+

~Ψord
ΦH,δH

(`)

of O ~Cord
ΦH,δH

-algebras, respectively, where the two instances of

⊕̂ in each expression denote the completions of the sums
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with respect to the sheaves of ideals ⊕
`∈σ∨0+

~Ψord
ΦH,δH

(`) and

⊕
`∈τ∨0+

~Ψord
ΦH,δH

(`), respectively.

For each σ ∈ Σ+
ΦH

, let U[σ] denote the image of Uσ under (8.2.2.5),

which is isomorphic to Uσ as a formal scheme over ~Mord,ZH
H . By the

admissibility of ΣΦH , we know that the set ΣΦH/ΓΦH is finite. Let us
denote by

f[σ] : U[σ] → ~Mord,ZH
H

denote the composition of the restriction of (8.2.2.1) to U[σ] with the
canonical morphisms in Proposition 8.2.2.6, which can be identified
with the canonical morphism

fσ : Uσ → ~Mord,ZH
H

induced by the canonical morphism (8.2.2.5). Let us denote by

gσ : Uσ → ~Cord
ΦH,δH

and

h : ~Cord
ΦH,δH

→ ~Mord,ZH
H

the canonical morphisms, so that we have a canonical identification

fσ = h ◦ gσ.

Note that gσ is relatively affine, and h is an abelian scheme torsor over
a finite étale cover, which was denoted ~pord

ΦH,δH
in Section 6.1.2.

Based on Lemma 8.2.2.9, we have the following important facts:

Lemma 8.2.2.10. (Compare with [61, Lem. 4.6] and Lemma
7.3.2.9.)

(1) For each σ ∈ Σ+
ΦH

, and each integer d ≥ 0, we have the canon-
ical isomorphisms

Rd(fσ)∗OUσ
∼= ⊕̂

`∈σ∨
Rdh∗(~Ψ

ord
ΦH,δH

(`))

and

Rd(fσ)∗O
+
Uσ
∼= ⊕̂

`∈σ∨+
Rdh∗(~Ψ

ord
ΦH,δH

(`))

of O~M
ord,ZH
H

-modules.
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(2) For each γ ∈ ΓΦH, we have a commutative diagram

Uσ ∼
γ

//

gσ
��

Uγσ

gγσ
��

~Cord
ΦH,δH ∼

γ
//

h
��

~Cord
ΦH,δH

h
��

~Mord,ZH
H

~Mord,ZH
H

of formal schemes. Then the canonical morphisms in (1) are

compatible with the canonical isomorphisms γ∗OUγσ
∼→ OUσ

and γ∗O+
Uγσ

∼→ O+
Uσ

induced by the canonical isomorphisms

γ∗ : γ∗~Ψord
ΦH,δH

(γ`)
∼→ ~Ψord

ΦH,δH
(`) over ~Cord

ΦH,δH
, respectively.

(3) For each integer d ≥ 0, if τ is a face of σ in Σ+
ΦH

, then the
canonical morphisms

Rd(fσ)∗OUσ → Rd(fτ )∗OUτ

and

Rd(fσ)∗O
+
Uσ
→ Rd(fτ )∗O

+
Uτ

induced by restriction from Uσ to Uτ correspond to the mor-
phisms

⊕̂
`∈σ∨

Rdh∗(~Ψ
ord
ΦH,δH

(`))→ ⊕̂
`∈τ∨

Rdh∗(~Ψ
ord
ΦH,δH

(`))

and

⊕̂
`∈σ∨+

Rdh∗(~Ψ
ord
ΦH,δH

(`))→ ⊕̂
`∈τ∨+

Rdh∗(~Ψ
ord
ΦH,δH

(`))

of O~M
ord,ZH
H

-modules, respectively. All of these morphisms send

Rdh∗(~Ψ
ord
ΦH,δH

(`)) (identically) to Rdh∗(~Ψ
ord
ΦH,δH

(`)) when it is
defined on both sides, and to zero otherwise.

8.2.3. Relative Cohomology of Formal Fibers of ~
∮ ord

H . Con-

sider the union Ñ of the cones σ in Σ+
ΦH

, which admits a closed covering

by the closures σcl (in Ñ) of the cones σ in Σ+
ΦH

(with natural incidence
relations inherited from those of the cones σ as locally closed subsets
of (SΦH)∨R). Let

N := Ñ/ΓΦH .
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By definition, the nerve of the open covering {Uσ}σ∈Σ+
ΦH

of ~Xord
ΦH,δH

is

naturally identified with the nerve of the (locally finite) closed cov-

ering {σcl}σ∈Σ+
ΦH

of Ñ. Accordingly, the nerve of the open covering

{U[σ]}[σ]∈Σ+
ΦH

/ΓΦH
of ~Xord

ΦH,δH
/ΓΦH

∼= (~Mord,tor
H,Σord)∧

~̃Zord
[(ΦH,δH)]

(see (8.2.2.7))

is naturally identified with the nerve of the (finite) closed covering

{[σ]cl}[σ]∈Σ+
ΦH

/ΓΦH
of N, where [σ]cl denotes the closure of [σ] in N.

Definition 8.2.3.1. (Compare with Definition 7.3.3.14.) For each

` ∈ SΦH, define the following subsets of Ñ:

(1) Ñ` is the union of σ ∈ Σ+
ΦH

such that ` ∈ σ∨.

(2) Ñ`,+ is the union of σ ∈ Σ+
ΦH

such that ` ∈ σ∨+.

Lemma 8.2.3.2. (Compare with Lemma 7.3.3.15.) Suppose

σ = R>0v1 + · · ·+ R>0vn

is a cone in Σ+
ΦH

, where v1, . . . , vn are nonzero rational vectors in
SΦH)∨R. Then we have the following criteria:

(1) ` ∈ σ∨ if and only if 〈`, vi〉 ≥ 0 for all 1 ≤ i ≤ n.
(2) ` ∈ σ∨+ if and only if 〈`, vi〉 > 0 for all 1 ≤ i ≤ n.

Proof. These follow immediately from the definitions. (See Defi-
nitions 8.2.2.3 and 8.2.3.1.) �

Proposition 8.2.3.3. (Compare with Proposition 7.3.3.16.) For

each ` ∈ SΦH, the subsets Ñ` and Ñ`,+ of Ñ (in Definition 8.2.3.1)

both have contractible or empty complements in Ñ.

Proof. For simplicity, let us denote PΦH − {0} by P′. Let

P′`<0 := {y ∈ P′ : 〈`, y〉 < 0}
and

P′`≤0 := {y ∈ P′ : 〈`, y〉 ≤ 0}.
Consider the canonical embeddings

(8.2.3.4) Ñ∩P′`<0 ↪→ Ñ− Ñ`

and

(8.2.3.5) Ñ∩P′`≤0 ↪→ Ñ− Ñ`,+.

Consider any σ ∈ Σ+
ΦH

such that σ − {0} has a nonempty intersection

with Ñ− Ñ` (resp. Ñ− Ñ`,+). Up to replacing the cone decomposition
with smooth locally finite refinements without changing the two sides
of (8.2.3.4) (resp. (8.2.3.5)), we may assume that, for each σ as above,
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there exists at least one face τ of σ such that τ − {0} is contained in

Ñ∩P′`<0 (resp. Ñ∩P′`≤0).

Since Ñ = P+
ΦH

and P′`<0 (resp. P′`≤0) are convex subsets of P′,

both being stable under the multiplicative action of R×>0, by Lemma
7.3.3.11, there are deformation retracts, compatible with restrictions to
faces, from both σ−τ ′ and

(
σ−{0}

)
∩P′`<0 (resp.

(
σ−{0}

)
∩P′`≤0) to

τ −{0}, where τ is the largest face of σ such that τ −{0} is contained
in P′`<0 (resp. P′`≤0), and where τ ′ is the largest face of σ such that

τ − {0} ⊂ σ − τ ′.

Hence, we see that (8.2.3.4) (resp. (8.2.3.5)) is a homotopy equivalence.
Since the left-hand sides of (8.2.3.4) and (8.2.3.5) are convex subsets

of P′, which are therefore contractible or empty, the proposition follows.
�

Suppose M is a quasi-coherent O~Xord
ΦH,δH

/ΓΦH
-module. As in Section

7.3.3, let us define for each integer d ≥ 0 (by abuse of language) the
constructible sheaf H d(M ) over N which has stalk Rd(f[σ])∗(M |U[σ]

)

at each point of [σ], where [σ] ∈ Σ+
ΦH
/ΓΦH is viewed as a locally closed

stratum of N. Then we have, as in Section 7.3.3, the following spectral
sequence (based on [30, II, 5.2.1, 5.2.4, and 5.4.1]):

(8.2.3.6) Ec,d
2 := Hc(N,H d(M ))⇒ Rc+d~∮ ord

H,∗(M ).

Let us also denote by M its pullback to ~Xord
ΦH,δH

. Then the E2 terms of
(8.2.3.6) can be computed by the spectral sequence

(8.2.3.7) Ec−e,e
2 := Hc−e(ΓΦH , H

e(Ñ,H d(M )))⇒ Hc(N,H d(M )).

Definition 8.2.3.8. A quasi-coherent O~Xord
ΦH,δH

/ΓΦH
-module M is

formally canonical if there exists a quasi-coherent O ~Cord
ΦH,δH

-module

N satisfying the following conditions:

(1) For each σ ∈ Σ+
ΦH

, the pullback M |Uσ of M to Uσ admits an
isomorphism

iσ : M |Uσ
∼→ g∗σN .

(2) For each γ ∈ ΓΦH and each σ ∈ Σ+
ΦH

, under the isomorphism

γ : Uσ
∼→ Uγσ in (2) of Lemma 8.2.2.10, the canonical isomor-

phism

γ∗M |Uγσ
∼→M |Uσ
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induces by pre- and post-compositions with iσ and γ∗(iγσ)−1 an
isomorphism

γ∗ : γ∗g∗γσN
∼→ g∗σN

of OUσ-modules. This last isomorphism induces by adjunction
an isomorphism

(8.2.3.9) γ∗ : γ∗N
∼→ N

of O ~Cord
ΦH,δH

-modules, which induces an isomorphism

γ∗ : γ∗Rdh∗(~Ψ
ord
ΦH,δH

(γ`) ⊗
O~Cord

ΦH,δH

N )

∼→ Rdh∗(~Ψ
ord
ΦH,δH

(`) ⊗
O~Cord

ΦH,δH

N )
(8.2.3.10)

of O~M
ord,ZH
H

-modules for each d ≥ 0. For simplicity, for each

` ∈ SΦH, let us set (as in (6.1.2.4))

(8.2.3.11) FJ
ord,d,(`)
ΦH,δH

(N ) := Rdh∗(~Ψ
ord
ΦH,δH

(`) ⊗
O~Cord

ΦH,δH

N ).

(3) The isomorphisms as in (8.2.3.9) satisfy the compatibility γ∗ =
γ∗1 ◦ (γ∗1(γ∗2)) when γ = γ2 ◦ γ1 in ΓΦH. Hence, by (2) of
Lemma 8.2.2.10, the isomorphisms as in (8.2.3.10) also sat-
isfy the compatibility γ∗ = γ∗1 ◦ (γ∗1(γ∗2)) when γ = γ2 ◦ γ1 in

ΓΦH, and define an action of ΓΦH on
∏

`∈ΓΦH ·`0
FJ

ord,d,(`)
ΦH,δH

(N ),

for each `0 ∈ SΦH.

A quasi-coherent O~Xord
ΦH,δH

/ΓΦH
-module M ′ is formally subcanonical

if

M ′ ∼= M + := M ⊗
O~Xord

ΦH,δH
/ΓΦH

O+
~Xord

ΦH,δH
/ΓΦH

for some formally canonical O~Xord
ΦH,δH

/ΓΦH
-module M . In this case, we

have isomorphisms

i+σ : M ′|Uσ
∼→ (g∗σN ) ⊗

OUσ

O+
Uσ

with properties analogous to those of iσ above.

Lemma 8.2.3.12. (Compare with [61, Lem. 4.16] and Lemma
7.3.3.27.) Suppose M is the pullback of a formally canonical
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O~Xord
ΦH,δH

/ΓΦH
-module to ~Xord

ΦH,δH
. Then, for all integers d ≥ 0 and

e > 0, we have

(8.2.3.13) He(Ñ,H d(M ?)) = 0

for ? = ∅ and +. (See Definition 8.2.3.8 for the notation M ?.)

Proof. By assumption, there exists some quasi-coherent
O ~Cord

ΦH,δH
-module N , together with an isomorphism

i?σ : M ?|Uσ
∼→ (g∗σN ) ⊗

OUσ

O?
Uσ .

for each σ ∈ Σ+
ΦH

, as in Definition 8.2.3.8 (with the desired properties).

By (1) of Lemma 8.2.2.10, by using the above isomorphism i?σ, and
by the projection formula [35, 0I, 5.4.10.1], we have

H d(M ?)(σcl) ∼= ⊕̂
`∈σ∨?

FJ
ord,d,(`)
ΦH,δH

(N ),

and for every face τ of σ also in Σ+
ΦH

, the canonical morphism

H d(M ?)(σcl)→H d(M ?)(τ cl)

sends the subsheaf FJ
ord,d,(`)
ΦH,δH

(N ) (identically) to FJ
ord,d,(`)
ΦH,δH

(N ) when

` ∈ σ∨? . By Definition 8.2.3.1, ` ∈ τ∨? exactly when τ cl ⊂ Ñ`,?. Since Ñ

and Ñ− Ñ`,? are either contractible or empty for each given ` ∈ SΦH ,
by Proposition 8.2.3.3, we have (8.2.3.13) for e > 0 as usual (cf. the
argument in [50, Ch. I, Sec. 3] and the proof of Lemma 7.3.3.27). (Since
the nerves involve infinitely many cones, let us briefly review why we
can still work weight-by-weight as in [50, Ch. I, Sec. 3]. This is because,
up to replacing the cone decomposition ΣΦH in Σord with locally finite
refinements not necessarily carrying ΓΦH-actions, which is harmless for
proving this lemma, we can compute the cohomology as a limit using
unions of finite cone decompositions on expanding convex polyhedral
subcones, by proving inductively that the cohomology of one degree
lower has the desired properties, using [103, Thm. 3.5.8]. Then we
can consider the associated graded pieces defined by the completions,
and work weight-by-weight with subsheaves of H d(N ?)(σcl) of the

form FJ
ord,d,(`)
ΦH,δH

(N ), because taking cohomology commutes with taking

infinite direct sums for Čech complexes defined by finite coverings, as
desired.) �

Let us denote by P∨,+ΦH
the subset of P∨ΦH consisting of elements

` ∈ SΦH that pairs positively with all nonzero elements in PΦH . By
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definition, for both ? = ∅ and +, we have

(8.2.3.14) ∩
σ∈Σ+

ΦH

σ∨? = P∨,?ΦH
.

Lemma 8.2.3.15. (Compare with [61, Lem. 4.16] and Lemma
7.3.3.30.) Suppose M is the pullback of a formally canonical

O~Xord
ΦH,δH

/ΓΦH
-module to ~Xord

ΦH,δH
, which is the pullback of some

quasi-coherent O ~Cord
ΦH,δH

-module N as in Definition 8.2.3.8. For every

integer d ≥ 0, and for ? = ∅ or +, we have a canonical isomorphism

(8.2.3.16) H0(Ñ,H d(M ?)) ∼= ⊕̂
`∈P∨,?ΦH

FJ
ord,d,(`)
ΦH,δH

(N ),

which carries the action of ΓΦH induced by that on FJ
ord,d,(`)
ΦH,δH

(N ) (see
Definition 8.2.3.8).

Proof. Let us continue with the setting in the proof of Lemma
8.2.3.12. Then the lemma follows from (8.2.3.14). �

Lemma 8.2.3.17. Let `0 be any element of P∨,+ΦH
. Under the running

assumption that H and hence H = HpHp are neat, the stabilizer ΓΦH,`0

of `0 in ΓΦH is trivial.

Proof. Up to choosing a Z-basis of Y , the element `0 can be rep-
resented as a positive definite matrix, which implies that ΓΦH,`0 is finite
because it is a discrete subset of a compact real orthogonal group. Con-
sequently, the eigenvalues of all elements in ΓΦH,`0 are roots of unity,
which must be 1 because H is neat. Hence, ΓΦH,`0 is trivial for all
`0 ∈ P∨,+ΦH

, and the lemma follows. �

Proposition 8.2.3.18. Suppose M is the pullback of a formally

canonical O~Xord
ΦH,δH

/ΓΦH
-module to (~Xord

ΦH,δH
)∧x̄ ; that is, there exists some

quasi-coherent O ~Cord
ΦH,δH

-module N , together with an isomorphism

i?σ : M ?|Uσ
∼→ (g∗σN ) ⊗

OUσ

O?
Uσ

for each σ ∈ Σ+
ΦH

, as in Definition 8.2.3.8 (with the desired properties).
Suppose moreover that there exists one such N such that

FJ
ord,d,(`)
ΦH,δH

(N ) = Rdh∗(~Ψ
ord
ΦH,δH

(`) ⊗
O~Cord

ΦH,δH

N ) = 0

for all d > 0 and ` ∈ P∨,+ΦH
. Then

Rb~∮ ord

H,∗(M
+) = 0
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for all b > 0.

Proof. Using the spectral sequence (8.2.3.6), it suffices to show
that Hc(N,H d(M +)) = 0 when either c > 0 or d > 0. Using the
spectral sequence (8.2.3.7), by Lemmas 8.2.3.12 and 8.2.3.15, we have

Hc(N,H d(M +)) ∼= Hc
(

ΓΦH , ⊕̂
`∈P∨,+ΦH

FJ
ord,d,(`)
ΦH,δH

(N )
)
,

which admits a filtration with graded pieces given by subquotients of

(8.2.3.19) Hc
(

ΓΦH ,
∏

`∈ΓΦH ·`0

FJ
ord,d,(`)
ΦH,δH

(N )
)

for `0 running through representatives of ΓΦH-orbits in P∨,+ΦH
. By as-

sumption, we may assume that N is chosen such that FJ
ord,d,(`)
ΦH,δH

(N ) =

0 for all d > 0 and ` ∈ P∨,+ΦH
. Hence, we have Hc(N,H d(M +)) = 0

when d > 0. On the other hand, suppose c > 0. By (3) of Definition
8.2.3.8, and by Lemma 8.2.3.17, we have∏

`∈ΓΦH ·`0

FJ
ord,d,(`)
ΦH,δH

(N ) ∼= Coind
ΓΦH
ΓΦH,`0

(
FJ

ord,d,(`0)
ΦH,δH

(N )
)

= Coind
ΓΦH
{Id}
(
FJ

ord,d,(`0)
ΦH,δH

(N )
)

(see [11, Ch. III, Sec. 5]), and hence (8.2.3.19) is equal to zero for all
c > 0, by Shapiro’s lemma (see [11, Ch. III, (6.2)]). Thus, we also have
Hc(N,H d(M +)) = 0 when c > 0, as desired. �

8.2.4. Formal Fibers of Canonical Extensions. By the con-

struction of ~Xord
ΦH,δH

, we have a commutative diagram of canonical mor-
phisms
(8.2.4.1)

(~Xord
ΦH,δH

→ ~Mord,tor
H )∗LieG/~Mord,tor

H

∼
//

λ

��

(~Xord
ΦH,δH

→ ~Cord
ΦH,δH

)∗LieG\/ ~Cord
ΦH,δH

λ\

��

(~Xord
ΦH,δH

→ ~Mord,tor
H )∗LieG∨/~Mord,tor

H

∼
// (~Xord

ΦH,δH
→ ~Cord

ΦH,δH
)∗LieG∨,\/ ~Cord

ΦH,δH

(see Lemma 5.2.4.38). As in Remark 8.1.2.5, consider the pairing

〈 · , · 〉λ\ : Lie∨
G∨,\/ ~Cord

ΦH,δH
(1)×LieG\/ ~Cord

ΦH,δH
→ O ~Cord

ΦH,δH
(1)
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defined by the composition

Lie∨
G∨,\/ ~Cord

ΦH,δH
(1)⊗LieG\/ ~Cord

ΦH,δH

Id⊗ dλ\→ Lie∨
G∨,\/ ~Cord

ΦH,δH
(1)⊗LieG∨,\/ ~Cord

ΦH,δH

can.→ O ~Cord
ΦH,δH

(1).

Let us define (cf. (8.1.3.11))

~Eord,ΦH,δH
Mord

D,0
:= IsomO⊗

Z
O~Cord

ΦH,δH

(

(Lie∨
G∨,\/ ~Cord

ΦH,δH
(1),LieG\/ ~Cord

ΦH,δH
, 〈 · , · 〉λ\ ,O ~Cord

ΦH,δH
(1)),

(Gr0
D,0 ⊗

R0

O ~Cord
ΦH,δH

,Gr−1
D,0 ⊗

R0

O ~Cord
ΦH,δH

, 〈 · , · 〉φD,0 ,O ~Cord
ΦH,δH

(1))),

(8.2.4.2)

which is an Mord
D,0 -torsor with the group Mord

D,0 acting as automorphisms

on (Gr0
D,0 ⊗

R0

O ~Cord
ΦH,δH

,Gr−1
D,0 ⊗

R0

O ~Cord
ΦH,δH

, 〈 · , · 〉φD,0 ,O ~Cord
ΦH,δH

(1)). By con-

struction, and by (4) of Proposition 8.1.3.6, the commutative diagram
(8.2.4.1) induces a canonical isomorphism
(8.2.4.3)

(~Xord
ΦH,δH

→ ~Mord,tor
H )∗~Eord,can

Mord
D,0

∼= (~Xord
ΦH,δH

→ ~Cord
ΦH,δH

)∗~Eord,ΦH,δH
Mord

D,0

of Mord
D,0 -torsors.

Definition 8.2.4.4. (Compare with Definition 8.1.3.13.) Let R be
any R0-algebra. For each W ∈ RepR(Mord

D,0 ), we define

~Eord,ΦH,δH
Mord

D,0 ,R
(W ) := (~Eord,ΦH,δH

Mord
D,0

⊗
R0

R)

Mord
D,0 ⊗

R0

R

× W.

Lemma 8.2.4.5. Let R be any R0-algebra.

(1) The assignment ~Eord,ΦH,δH
Mord

D,0 ,R
( · ) defines an exact functor from

RepR(Mord
D,0 ) to the category of quasi-coherent O ~Cord

ΦH,δH
-modules.

(2) For each W ∈ RepR(Mord
D,0 ), we have a canonical isomorphism

(8.2.4.6)

(~Xord
ΦH,δH

→ ~Mord,tor
H )∗~Eord,can

Mord
D,0 ,R

(W ) ∼= (~Xord
ΦH,δH

→ ~Cord
ΦH,δH

)∗~Eord,ΦH,δH
Mord

D,0 ,R
(W ),

functorial in W , of quasi-coherent O~Xord
ΦH,δH

-modules.

Proof. The proof of the first statement is the same as that of
Lemmas 1.4.1.10 and 8.1.2.10. The second statement follows from the
very constructions of both sides of (8.2.4.6), and from the canonical
isomorphism (8.2.4.3). �
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Let (c : X → B∨, c∨ : Y → B) be the tautological pair of mor-

phisms over ~Cord
ΦH,δH

. Then γ = (γX : X
∼→ X, γY : Y

∼→ Y ) ∈ ΓΦH acts

on ~Cord
ΦH,δH

by sending (c, c∨) to the pair of pre-compositions (cγX , c
∨γY ).

Since λBc
∨ = cφ and φγY = γXφ, we still have the compatibility re-

lation λB(c∨γY ) = cφγY = (cγX)φ. By [62, Lem. 3.4.4.2], we have a
commutative diagram

(8.2.4.7) 0 // T //

γ∗Xo
��

λT

��

γ∗G\ //

o
��

γ∗λ\

��

B //

λB

��

0

0 // T //

λT

��

G\ //

λ\

��

B //

λB

��

0

0 // T∨ //

oγ∗Y
��

γ∗G∨,\ //

o
��

B∨ // 0

0 // T∨ // G∨,\ // B∨ // 0

of canonically defined morphisms, in which the horizontal rows are
exact, inducing the corresponding commutative diagrams between
sheaves of relative Lie algebras and their duals.

Remark 8.2.4.8. Although γ∗G∨
∼→ G∨ is an isomorphism of semi-

abelian schemes that are extensions of B by T , and it induces the
identity morphism on B, it does not induce the identity morphism on
T . Hence, we cannot view γ∗G∨ as the tautological object over ~Cord

ΦH,δH
.

Similarly, although γ∗G∨,\
∼→ G∨,\ as extensions of B∨ by T∨, we cannot

view γ∗G∨,\ as the tautological object over ~Cord
ΦH,δH

.

Lemma 8.2.4.9. For each γ ∈ ΓΦH, we have a canonically defined
isomorphism

γ∗ : γ∗~Eord,ΦH,δH
Mord

D,0

∼→ ~Eord,ΦH,δH
Mord

D,0

of Mord
D,0 -torsors over ~Cord

ΦH,δH
. Such morphisms satisfy the compatibility

γ∗ = γ∗1 ◦ (γ∗1(γ∗2)) when γ = γ2 ◦ γ1 in ΓΦH. Consequently, for each
W ∈ RepR(Mord

D,0 ), we have a canonically defined isomorphism

γ∗ : γ∗~Eord,ΦH,δH
Mord

D,0 ,R
(W )

∼→ ~Eord,ΦH,δH
Mord

D,0 ,R
(W ),

also satisfying the compatibility γ∗ = γ∗1 ◦ (γ∗1(γ∗2)) when γ = γ2 ◦ γ1 in
ΓΦH.

Proof. These follow from the very constructions of the objects
and from the commutativity of (8.2.4.7). �
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Proposition 8.2.4.10. Let R be any R0-algebra, and let
W be any object of RepR(Mord

D,0 ). Then the pullback of the

automorphic sheaf ~Eord,can

Mord
D,0 ,R

(W ) (resp. ~Eord,sub

Mord
D,0 ,R

(W )) over ~Mord,tor
H to

(~Mord,tor
H )∧

~̃Zord
[(ΦH,δH)]

∼= ~Xord
ΦH,δH

/ΓΦH (see (8.2.2.7)) is formally canonical

(resp. subcanonical) as in Definition 8.2.3.8.

Proof. Let M := ((~Xord
ΦH,δH

/ΓΦH) → ~Mord,tor
H )∗~Eord,can

Mord
D,0 ,R

(W ) and

N := ~Eord,ΦH,δH
Mord

D,0 ,R
(W ). By construction, the isomorphism (8.2.4.6) in-

duces an isomorphism iσ : M |Uσ
∼→ g∗σN for each σ ∈ Σ+

ΦH
. Hence, (1)

of Definition 8.2.3.8 is verified. Since the isomorphism (8.2.4.6) is based
on (8.2.4.1), in which the horizontal isomorphisms (which is dependent
on the rigidification of ΦH over Uσ) is twisted by γ (in the same way
as the diagram of relative Lie algebras induced by (8.2.4.7)) under the

isomorphism γ : Uσ
∼→ Uγσ in (2) of Lemma 8.2.2.10, the canonical

isomorphism γ∗M |Uγσ
∼→M |Uσ induces by pre- and post-compositions

with iσ and γ∗(iγσ)−1 the same isomorphism γ∗ : γ∗g∗γσN
∼→ g∗σN

defined by adjunction by the isomorphism given by Lemma 8.2.4.9.
Hence, (2) and (3) of Definition 8.2.3.8 are also verified, as desired. �

Lemma 8.2.4.11. Let ` be any element of P∨,+ΦH
. Then the invertible

sheaf ~Ψord
ΦH,δH

(`) over ~Cord
ΦH,δH

→ ~Mord,ZH
H is relatively ample.

Proof. Since ` pairs positively with all elements in PΦH , up to
choosing a Z-basis y1, . . . , yr of Y , and by completion of squares for
quadratic forms, there exists some integer N ≥ 1 such that N ·` can be
represented as a positive definite matrix of the form ue tu, where e and
u are matrices with integer coefficients, and where e = diag(e1, . . . , er)
is diagonal with positive entries. Consider the finite morphism defined

by the composition ~Cord
ΦH,δH

can.→ HomZ(Y,B)
u∗→ HomZ(Y,B) (see Sec-

tion 4.2.1 for the first morphism), where B is the tautological abelian

scheme over ~Mord,δH
H , under which a positive tensor power of ~Ψord

ΦH,δH
(`)

is isomorphic to a positive tensor power of the pullback of the ample
line bundle ⊗

1≤i≤r
(pr∗i (IdB, λB)∗PB)⊗ ei over B. Since λB is a polariza-

tion (cf. [62, Def. 1.3.2.16]), and since all the ei’s are positive, we see

that ~Ψord
ΦH,δH

(`) is relatively ample, as desired. �
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For each geometric point x̄ of ~Mord,ZH
H , we consider the completion

(~Mord,ZH
H )∧x̄ of the strict localization of ~Mord,ZH

H at x̄, and denote (abu-

sively) by the same notation the pullback h : (~Cord
ΦH,δH

)∧x̄ → (~Mord,ZH
H )∧x̄

of h : ~Cord
ΦH,δH

→ ~Mord,ZH
H .

Corollary 8.2.4.12. Suppose N is a coherent O ~Cord
ΦH,δH

-module

such that, at each geometric point x̄ of ~Mord,ZH
H , the pullback (N )∧x̄

of N from ~Cord
ΦH,δH

to (~Cord
ΦH,δH

)∧x̄ admits an exhaustive and separated
filtration (depending on x̄) by coherent O( ~Cord

ΦH,δH
)∧x̄

-submodules {N a}a∈Z
such that each graded piece Gra(N ) := N a/N a+1 is isomorphic to

the pullback (from Spec(R0) to (~Cord
ΦH,δH

)∧x̄ ) of some (finitely generated)

R0-module N (a). Then

FJ
ord,d,(`)
ΦH,δH

(N ) = Rdh∗(~Ψ
ord
ΦH,δH

(`) ⊗
O~Cord

ΦH,δH

N ) = 0

for all d > 0 and ` ∈ P∨,+ΦH
.

Proof. Since h : ~Cord
ΦH,δH

→ ~Mord,ZH
H is proper, by [35, III-1, 4.1.5],

for our purpose, we may fix the choice of an arbitrary geometric point

x̄ of ~Mord,ZH
H , and replace all objects with their pullbacks from ~Mord,ZH

H
to (~Mord,ZH

H )∧x̄ . Since any exhaustive and separated filtration defines
a filtration spectral sequence, we are reduced to the case that N is
the pullback (from Spec(R0) to (~Cord

ΦH,δH
)∧x̄ ) of some finitely generated

R0-module N . Since R0 is a Dedekind domain, by the same reduction
argument as in the proof of [62, Lem. 7.1.1.4], we may assume that
N = R0/n for some (possibly zero) ideal n of R0, and work over N after
making the base change from R0. Hence, we are reduced to showing
(after base change from R0 to R0/n) that Rdh∗((~Ψ

ord
ΦH,δH

(`))∧x̄ ) = 0 for
all d > 0, which then follows from Lemma 8.2.4.11, [81, Sec. 16], and
[35, III-1, 4.1.5], because h is an abelian scheme torsor over a finite étale
cover. (Alternatively, without reducing to the case that N = R0/n, but
still using the fact that R0 is a Dedekind domain, we may invoke the
perfect complex construction as in [81, Sec. 5, Thm.] (see also [7, III,
3.7 and 3.7.1]) and the “universal coefficient theorem” as in the proof
of [71, Thm. 8.2].) �
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The question is how to verify the rather elaborate condition in
Corollary 8.2.4.12. Let us define (cf. (8.2.4.2))

~Eord,ΦH,δH
Mord

D,0,fil

:= IsomO⊗
Z

O~Cord
ΦH,δH

(

(Lie∨
G∨,\/ ~Cord

ΦH,δH
(1),LieG\/ ~Cord

ΦH,δH
, 〈 · , · 〉λ\ ,O ~Cord

ΦH,δH
(1), filtrations),

(Gr0
D,0 ⊗

R0

O ~Cord
ΦH,δH

,Gr−1
D,0 ⊗

R0

O ~Cord
ΦH,δH

, 〈 · , · 〉φD,0 ,O ~Cord
ΦH,δH

(1), filtrations)),

(8.2.4.13)

where the filtrations on Lie∨
G∨,\/ ~Cord

ΦH,δH
(1) and LieG\/ ~Cord

ΦH,δH
are defined

by the commutative diagram

(8.2.4.14) 0 // LieT/~Cord
ΦH,δH

//

dλT
��

LieG\/ ~Cord
ΦH,δH

//

dλ\

��

LieB/~Cord
ΦH,δH

//

dλB
��

0

0 // LieT∨/ ~Cord
ΦH,δH

// LieG∨,\/ ~Cord
ΦH,δH

// LieB∨/ ~Cord
ΦH,δH

// 0

of canonically defined morphisms, in which the horizontal rows are
exact; and where the filtrations on Gr0

D,0(1) and Gr−1
D,0 can be any filtra-

tions such that ~Eord,ΦH,δH
Mord

D,0,fil

is indeed an étale torsor. (For example, they

can be defined by any liftings of (4.1.4.14) and (4.1.4.15) to admissible

filtrations over Zp and the isomorphisms Gr−1
D,0 ⊗

R0

R̃0
∼→ Gr−1

D ⊗
Zp
R̃0 and

Gr−1
D#,0
⊗
R0

R̃0
∼→ Gr−1

D# ⊗
Zp
R̃0 in Section 8.1.1. Then we can deduce the

existence of sections over geometric points in characteristic p by the
deformation theory of ordinary abelian varieties, and in characteristic
zero, or in any good characteristics, by classification of pairings. Af-
terwards, we can deduce the existence of étale locally defined sections
as in the proof of Lemma 1.4.1.7.) We shall fix the choice of this filtra-
tions on Gr0

D,0(1) and Gr−1
D,0, and denote by Mord

D,0,fil the subgroup scheme

of Mord
D,0 defined by elements stabilizing this chosen filtration. Then

~Eord,ΦH,δH
Mord

D,0,fil

is an Mord
D,0,fil-torsor over ~Cord

ΦH,δH
as the subscript suggests.

Let us define the category RepR0
(Mord

D,0,fil) as in Definition 8.1.2.7.
Then, as in Lemmas 1.4.1.10 and 8.1.2.10 (whose proofs are essentially

the same), we have an exact functor ~Eord,ΦH,δH
Mord

D,0,fil,R0
( · ) from RepR0

(Mord
D,0,fil)

to the category of quasi-coherent O ~Cord
ΦH,δH

-modules. Moreover, if we

view an object W of RepR0
(Mord

D,0 ) as an object of RepR0
(Mord

D,0,fil) by
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restriction to Mord
D,0,fil, then we have a canonical isomorphism

(8.2.4.15) ~Eord,ΦH,δH
Mord

D,0,fil,R0
(W ) ∼= ~Eord,ΦH,δH

Mord
D,0 ,R0

(W ).

Let Mord
D,0,uni be the normal subgroup scheme of Mord

D,0,fil defined by

sections of Mord
D,0,fil inducing the trivial automorphisms on the graded

pieces.

Lemma 8.2.4.16. Suppose W is a finitely generated object of
RepR0

(Mord
D,0,fil). Then W admits an exhaustive and separated filtration

{W a}a∈Z by (finitely generated) subobjects in RepR0
(Mord

D,0,fil), such that

Mord
D,0,uni acts trivially on each graded pieces Gra(W ) := W a/W a+1.

Proof. Let W ′ be the R0-submodule of W spanned by (u− Id)W
for all sections u of Mord

D,0,uni. For any section p of Mord
D,0,fil, we have

p(u − 1) = (pup−1 − 1)p, where pup−1 is also a section of the normal
subgroup scheme Mord

D,0,uni of Mord
D,0,fil. Therefore, W ′ and W/W ′ are sub-

object and quotient objects of W in RepR0
(Mord

D,0,fil), respectively, and

Mord
D,0,uni acts trivially on the quotient object W/W ′. Since W is finitely

generated over R0, the submodule W ′ of W is a proper (and possibly
zero) submodule. (To show this, we can reduce modulo the maximal
ideal of R0, base extend to the algebraically closure, and apply the
Lie–Kolchin theorem.) By replacing W with W ′, and by repeating this
process (which terminates in finitely many steps because W is finitely
generated), we obtain the desired exhaustive and separated filtration
as in the statement of the lemma. �

Corollary 8.2.4.17. Suppose W is a finitely generated object of
RepR0

(Mord
D,0,fil). Then N := ~Eord,ΦH,δH

Mord
D,0,fil,R0

(W ) satisfies the condition in

Corollary 8.2.4.12 (and hence FJ
ord,d,(`)
ΦH,δH

(N ) = 0 for all d > 0 and

` ∈ P∨,+ΦH
).

Proof. By Lemma 8.2.4.16 (and by the obvious analogue of Lem-

mas 1.4.1.10 and 8.1.2.10 for ~Eord,ΦH,δH
Mord

D,0,fil,R0
( · )), we may assume that W

is a finitely generated object of RepR0
(Mord

D,0,fil) on which Mord
D,0,uni acts

trivially.

Let x̄ be an arbitrary geometric point of ~Mord,ZH
H . By construction,

over the formal completion (~Cord
ΦH,δH

)∧ȳ of the strict localization of ~Cord
ΦH,δH

at any geometric point ȳ above x̄, we have a section of ~Eord,ΦH,δH
Mord

D,0,fil

giving
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an isomorphism between the pullbacks to (~Cord
ΦH,δH

)∧ȳ of
(8.2.4.18)

(Lie∨
G∨,\/ ~Cord

ΦH,δH
(1),LieG\/ ~Cord

ΦH,δH
, 〈 · , · 〉λ\ ,O ~Cord

ΦH,δH
(1), filtrations)

and
(8.2.4.19)

(Gr0
D,0 ⊗

R0

O ~Cord
ΦH,δH

,Gr−1
D,0 ⊗

R0

O ~Cord
ΦH,δH

, 〈 · , · 〉φD,0 ,O ~Cord
ΦH,δH

(1), filtrations),

inducing isomorphisms between the graded pieces. Since the graded

pieces of (8.2.4.18) are pullbacks of objects defined over ~Mord,ZH
H , the

section of ~Eord,ΦH,δH
Mord

D,0,fil

over any such (~Cord
ΦH,δH

)∧ȳ defines a section of

~Eord,ΦH,δH
Mord

D,0,gr
:= IsomO⊗

Z
O~Cord

ΦH,δH

(

Gr(Lie∨
G∨,\/ ~Cord

ΦH,δH
(1),LieG\/ ~Cord

ΦH,δH
, 〈 · , · 〉λ\ ,O ~Cord

ΦH,δH
(1)),

Gr(Gr0
D,0 ⊗

R0

O ~Cord
ΦH,δH

,Gr−1
D,0 ⊗

R0

O ~Cord
ΦH,δH

, 〈 · , · 〉φD,0 ,O ~Cord
ΦH,δH

(1)),

(8.2.4.20)

in the image of the canonical morphism ~Eord,ΦH,δH
Mord

D,0,fil

→ ~Eord,ΦH,δH
Mord

D,0,gr
, over

all of (~Cord
ΦH,δH

)∧x̄ (not just over (~Cord
ΦH,δH

)∧ȳ ).

Consequently, the construction of (N )∧x̄ = (~Eord,ΦH,δH
Mord

D,0,fil,R0
(W ))∧x̄ de-

pends only on the local choices of liftings of the above global sec-
tion ~Eord,ΦH,δH

Mord
D,0,gr

over (~Cord
ΦH,δH

)∧x̄ to local sections of ~Eord,ΦH,δH
Mord

D,0,fil

(under the

canonical morphism ~Eord,ΦH,δH
Mord

D,0,fil

→ ~Eord,ΦH,δH
Mord

D,0,gr
), and such choices form a

torsor under Mord
D,0,uni. Since Mord

D,0,uni acts trivially on W , we see that
(N )∧x̄ is constant in the sense that it is isomorphic to the pullback

(from Spec(R0) to (~Cord
ΦH,δH

)∧x̄ ) of the R0-module W , as desired. �

Proposition 8.2.4.21. Let R be any R0-algebra, let W be
any object of RepR(Mord

D,0 ), and let N := ~Eord,ΦH,δH
Mord

D,0 ,R
(W ). Then

FJ
ord,d,(`)
ΦH,δH

(N ) = 0 for all d > 0 and ` ∈ P∨,+ΦH
.

Proof. Since this is a statement independent of the R-module
structure of W , we may view W as an R0-module. By construction,
we have a canonical isomorphism ~Eord,ΦH,δH

Mord
D,0 ,R

(W ) ∼= ~Eord,ΦH,δH
Mord

D,0 ,R0
(W ) of

quasi-coherent O ~Cord
ΦH,δH

-modules. Since taking cohomology and tensor

products commutes with direct limits, and since ~Eord,ΦH,δH
Mord

D,0 ,R0
( · ) is an

exact functor (by Lemma 8.2.4.5), by writing W as a direct limit of
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finitely generated R0-subobjects in RepR(Mord
D,0 ) (which is possible be-

cause Mord
D,0 is of finite type over R0), we may assume that W is finitely

generated object of RepR(Mord
D,0 ). Then it follows from (8.2.4.15) and

Corollary 8.2.4.17 that N satisfies the condition in Corollary 8.2.4.12,
and hence the proposition follows. �

Remark 8.2.4.22. For general W , even when W is locally free of
finite rank, it is not true that the pullback of the automorphic sheaf
~Eord,can

Mord
D,0 ,R

(W ) to (~Mord,tor
H )∧

~̃Zord
[(ΦH,δH)]

∼= ~Xord
ΦH,δH

/ΓΦH (see (8.2.2.7)) admits

an exhaustive and separated filtration such that each of the graded

pieces is the pullback of some coherent sheaf from ~Mord,ZH
H (let alone

from Spec(R0)). This is why we need a different trivialization over each
Uσ in (1) of Definition 8.2.3.8.

8.2.5. End of the Proof.

Proof of Theorem 8.2.1.3. As in the proof of Proposition
8.2.4.21, we may reduce the question to the case that R = R0 and W
is a finitely generated object of RepR(Mord

D,0 ), so that ~Eord,sub

Mord
D,0 ,R

(W ) is a

coherent O~Mord,tor
H

-module. Since ~
∮ ord

H : ~Mord,tor
H → ~Mord,min

H is proper,

by [35, III-1, 4.1.5], in order to show (8.2.1.4) for all b > 0, we may

fix the choice of an arbitrary (locally closed) stratum ~Zord
[(ΦH,δH)] of

~Mord,min
H , and replace all objects with their pullbacks from ~Mord,min

H to

(~Mord,min
H )∧~Zord

[(ΦH,δH)]

. Then the theorem follows as a combination of

Propositions 8.2.3.18, 8.2.4.10, and 8.2.4.21. �

8.3. Constructions over the Total Models

In this section, our goal is to extend the construction of ~Eord
Mord

D,0 ,R
( · )

over ~Mord
H to the construction of certain ~EMord

D,0 ,R
( · ) over ~MH (see

Proposition 2.2.1.1), and to extend the constructions of ~Eord,can

Mord
D,0 ,R

( · )

and ~Eord,sub

Mord
D,0 ,R

( · ) over ~Mord,tor
H,Σord to the constructions of certain ~Ecan

Mord
D,0 ,R

( · )

and ~E sub
Mord

D,0 ,R
( · ) over ~Mtor

H,d0pol
, respectively, when H is neat and when

Σord extends to some projective Σ (so that ~Mtor
H,d0pol

is defined as in
Proposition 2.2.2.1 for some integer d0 ≥ 1). When Assumption
3.2.2.10 holds, we will also construct the analogues of these with Mord

D,0

replaced with Pord
D,0 , such that they specialize to the constructions in

the previous subsection. (Since we can canonically view objects of
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RepR(Mord
D,0 ) as objects of RepR(Pord

D,0 ), we would like ~Ecan
Pord
D,0 ,R

( · ) to be

compatible with ~Ecan
Mord

D,0 ,R
( · ) as in Lemma 1.4.1.10, and as in Lemma

8.1.2.10 when Assumption 3.2.2.10 holds. On the other hand, since
~Mtor
H,d0pol

is often far from smooth, we do not expect ~Eord,can

Gord
D,0 ,R

( · ) and the

corresponding extended Gauss–Manin connections, induced by the

one in Proposition 8.1.3.6, to further extend to the whole ~Mtor
H,d0pol

.)
Throughout this section, we shall retain Assumption 8.1.2.1; and

we shall also replace ~MH etc with the normalizations of their base
changes from Spec(OF0,(p)) to Spec(R0), and replace S0 = Spec(F0)

and ~S0 = Spec(OF0,(p)) with Spec(R0⊗
Z
Q) and Spec(R0), respectively.

8.3.1. Principal Bundles. Let us begin with some preliminary
constructions in characteristic zero.

Construction 8.3.1.1. Over S0, we can define the principal
Gord

D,0 -bundle (resp. Pord
D,0 -bundle, resp. Mord

D,0 -bundle) EGord
D,0

(resp.

EPord
D,0

, resp. EMord
D,0

) over MH as in Definition 1.4.1.3 (resp. Definition

1.4.1.4, resp. Definition 1.4.1.5) by the tautological objects over MH,
which satisfy the analogue of Lemma 1.4.1.7. These are possible
because of Lemma 8.1.1.7 (in characteristic zero). Thus, for each
W in RepR(Gord

D,0 ) (resp. RepR(Pord
D,0 ), resp. RepR(Mord

D,0 )), if we set
RQ := R⊗

Z
Q and WQ := W ⊗

Z
Q, then we can define EGord

D,0 ,RQ
(WQ)

(resp. EPord
D,0 ,RQ

(WQ), resp. EMord
D,0 ,RQ

(WQ)) over MH ⊗
R0

RQ as in Definition

1.4.1.9, which satisfy the analogue of Lemma 1.4.1.10. (We only
define these sheaves for WQ, but not for W itself.) For each Σ of
admissible smooth rational polyhedral cone decomposition data for
MH, we can define Ecan

Gord
D,0

, E sub
Gord

D,0
, Ecan

Pord
D,0

, E sub
Pord
D,0

, Ecan
Mord

D,0
, E sub

Mord
D,0

, Ecan
Gord

D,0 ,RQ
( · ),

E sub
Gord

D,0 ,RQ
( · ), Ecan

Pord
D,0 ,RQ

( · ), E sub
Pord
D,0 ,RQ

( · ), Ecan
Mord

D,0 ,RQ
( · ), and E sub

Mord
D,0 ,RQ

( · ) as

in Definition 1.4.2.9, which satisfy the analogue of Lemma 1.4.2.10.
For each R0-algebra K as in Lemma 8.1.1.7, set R̃Q := R⊗

R0

K

and W̃Q := W ⊗
R0

K. Then EGord
D,0 ,R̃Q

(W̃Q) (resp. EPord
D,0 ,R̃Q

(W̃Q),

resp. EMord
D,0 ,R̃Q

(W̃Q)) is isomorphic to the usual EG0,R̃Q
(W̃Q) (resp.

EP0,R̃Q
(W̃Q), resp. EM0,R̃Q

(W̃Q)) constructed as in [61, Sec. 6] and

Section 1.4.1 over MH ⊗
R0

R̃Q, and these isomorphisms extend to

isomorphisms between the canonical (or subcanonical) extensions of
the sources and the targets.
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In mixed characteristics, we will only construct principal bundles

over ~MH, over which we have the degenerating family ( ~A,~λ,~i, ~αH)
of type MH as in Proposition 2.2.1.1. Let us define the principal
Mord

D,0 -bundle

~EMord
D,0

:= IsomO⊗
Z

O~MH
((Lie∨~A∨/~MH

(1),Lie ~A/~MH , 〈 · , · 〉~λ,O~MH
(1)),

(Gr0
D,0 ⊗

R0

O~MH
,Gr−1

D,0 ⊗
R0

O~MH
, 〈 · , · 〉φD,0 ,O~MH

(1)))

(8.3.1.2)

over ~MH (cf. Definition 8.1.2.4), which extends the principal
Mord

D,0 -bundle EMord
D,0

over MH in Construction 8.3.1.1. When Condition

8.1.1.2 holds, let us also define the principal Pord
D,0 -bundle

~EPord
D,0

:= IsomO⊗
Z

O~MH
((HdR

1 ( ~A/~MH), 〈 · , · 〉λ,O~MH
(1),Lie∨~A∨/~MH

(1)),

((Gr0
D,0⊕Gr−1

D,0)⊗
R0

O~MH
, 〈 · , · 〉φD,0 ,O~MH

(1),Gr0
D,0 ⊗

R0

O~MH
))

(8.3.1.3)

over ~MH (cf. Definition 8.1.2.3), which extends the principal
Pord
D,0 -bundle EPord

D,0
over MH in Construction 8.3.1.1. To justify these

terminologies, we need the following:

Lemma 8.3.1.4. (Compare with Lemmas 1.4.1.7 and 8.1.2.6.) The

relative scheme ~EMord
D,0

over ~MH is an étale torsor under (the pullback

of) the group scheme Mord
D,0 . When Condition 8.1.1.2 holds, the relative

scheme ~EPord
D,0

over ~MH is an fpqc torsor under (the pullback of) the group

scheme Pord
D,0 .

Proof. Let O′ be any maximal order in O⊗
Z
Q containing O as

in the beginning of Section 8.1.1, which satisfies Condition 1.2.1.1, so
that the O-action on L⊗

Z
Ẑ extends to an O′-action on the same mod-

ule. By using the level structures in characteristic zero, and by [62,
Cor. 1.3.5.4], the O-structure i : O → EndMH(A) uniquely extends to
an O′-structure i′ : O′ → EndMH(A), and LieA/MH with its O⊗

Z
Q =

O′⊗
Z
Q-module structure given naturally by i′ also satisfies the determi-

nantal condition in [62, Def. 1.3.4.1] given by (L⊗
Z
R, 〈 · , · 〉, h0). Since

~MH is noetherian and normal, by [92, IX, 1.4], [28, Ch. I, Prop. 2.7],

or [62, Prop. 3.3.1.5], i′ uniquely extends to an O′-structure ~i′ : O′ →
End~MH( ~A). Since the determinantal condition is closed, Lie ~A/~MH with
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its O′⊗
Z
Z(p)-module structure given naturally by~i′ also satisfies the de-

terminantal condition in [62, Def. 1.3.4.1] given by (L⊗
Z
R, 〈 · , · 〉, h0).

Since the filtrations D and D# are O′⊗
Z
Zp-equivariant, as explained in

the proof of Lemma 3.2.2.6, and by the assumptions made in the be-
ginning of Section 8.1.1, O′ acts equivariantly on the source and target

of φ0
D,0. Over the formal completions of ~MH at points of finite type over

~S0, by Lemma 8.1.1.7 in characteristic zero, and by [91, 3.23 c) and
d), and the reductions in Ch. 6] in characteristic p, the infinitesimal

deformations of pullbacks of ( ~A,~λ,~i′) define sections of the pullback of
the relative subscheme

IsomO′⊗
Z

O~MH
((Lie∨~A∨/~MH

(1),Lie ~A/~MH , 〈 · , · 〉~λ,O~MH
(1)),

(Gr0
D,0 ⊗

R0

O~MH
,Gr−1

D,0 ⊗
R0

O~MH
, 〈 · , · 〉φD,0 ,O~MH

(1)))

of ~EMord
D,0

(note the difference between O and O′), which induce sections

of the pullback of ~EMord
D,0

. Hence, by Artin’s approximation theory (cf.

[3, Thm. 1.10 and Cor. 2.5]), as in the proof of Lemma 8.1.2.6, it follows

that ~EMord
D,0

is an étale Mord
D,0 -torsor, as desired. When Condition 8.1.1.2

holds, the analogous statements for Pord
D,0 can be similarly proved. �

8.3.2. Automorphic Bundles. Following Lemma 8.3.1.4, by
fpqc descent of quasi-coherent sheaves (see [33, VIII, 1.3]), we can
make the following:

Definition 8.3.2.1. (Compare with Definitions 1.4.1.9 and
8.1.2.8.) Let R be any R0-algebra. For each W in RepR(Mord

D,0 ), we
define

~EMord
D,0 ,R

(W ) := (~EMord
D,0
⊗
R0

R)

Mord
D,0 ⊗

R0

R

× W,

called the automorphic sheaf over ~MH ⊗
R0

R associated with W . It

is called an automorphic bundle if W is locally free of finite rank
over R, in which case ~EMord

D,0 ,R
(W ) is also locally free of finite rank over

~MH ⊗
R0

R. When Condition 8.1.1.2 holds, we define similarly ~EPord
D,0 ,R

(W )

for W ∈ RepR(Pord
D,0 ) by replacing Mord

D,0 with Pord
D,0 in the above expres-

sion.

Lemma 8.3.2.2. (Compare with Lemmas 1.4.1.10 and 8.1.2.9.) Let

R be any R0-algebra. The assignment ~EMord
D,0 ,R

( · ) defines an exact
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functor from RepR(Mord
D,0 ) to the category of quasi-coherent sheaves

over ~MH.

Proof. By étale descent, the proof is similar to that of Lemma
1.4.1.10. �

Lemma 8.3.2.3. (Compare with Lemmas 1.4.1.10 and 8.1.2.10.) Let
R be any R0-algebra. Suppose that Condition 8.1.1.2 holds.

(1) The assignment ~EPord
D,0 ,R

( · ) defines an exact functor from

RepR(Pord
D,0 ) to the category of quasi-coherent sheaves over ~MH.

(2) If we view an object of W ∈ RepR(Mord
D,0 ) as an

object of RepR(Pord
D,0 ) via the canonical homomorphism

Pord
D,0 → Mord

D,0 , then we have a canonical isomorphism
~EPord

D,0 ,R
(W ) ∼= ~EMord

D,0 ,R
(W ).

(3) Suppose W ∈ RepR(Pord
D,0 ) has a decreasing filtration by

subobjects Fa(W ) ⊂ W in RepR(Pord
D,0 ) such that each

graded piece GraF(W ) := Fa(W )/Fa+1(W ) can be identified

with an object of RepR(Mord
D,0 ). Then ~EPord

D,0 ,R
(W ) has a

filtration Fa(~EPord
D,0 ,R

(W )) := ~EPord
D,0 ,R

(Fa(W )) with graded pieces

~EMord
D,0 ,R

(GraF(W )).

Proof. By fpqc descent, the proof is still similar to that of Lemma
1.4.1.10. �

Lemma 8.3.2.4. With the setting as in Definition 8.3.2.1, we have
a canonical isomorphism

(8.3.2.5) ~EMord
D,0 ,R

(W )⊗
Z
Q ∼→ EMord

D,0 ,RQ
(WQ)

over MH ⊗
R0

RQ. When Condition 8.1.1.2 holds, the analogous statement

is true if we replace Mord
D,0 with Pord

D,0 .

Proof. We have (8.3.2.5) because we have ~EMord
D,0
⊗
Z
Q ∼→ EMord

D,0
by

definition (see Construction 8.3.1.1 and (8.3.1.2)). The analogous state-
ment for Pord

D,0 can be similarly proved. �

Lemma 8.3.2.6. (Compare with Lemmas 1.4.1.11 and 8.1.2.11.) Let
~A and ω~MH be as in Proposition 2.2.1.1. For any R0-algebra R, the pull-

back of Lie ~A/~MH (resp. Lie∨~A/~MH
, resp. ω~MH) to ~MH ⊗

R0

R is canonically
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isomorphic to ~EMord
D,0 ,R

(W ) for W = Gr−1
D,0 ⊗

R0

R (resp. (Gr−1
D,0)
∨ ⊗
R0

R, resp.

∧top (Gr−1
D,0)
∨ ⊗
R0

R).

Proof. This follows from the definition (see (8.3.1.2)), and from
Lemma 8.3.2.2. �

8.3.3. Canonical Extensions.

Definition 8.3.3.1. With the setting as in Definition 8.3.2.1, sup-
pose moreover that H is neat and that Σ is projective, with a collection

pol of polarization functions, so that ~Mtor
H,d0pol

over ~S0 = Spec(OF0,(p))

is defined. Then, by Lemma 8.3.2.4, we can patch ~EMord
D,0 ,R

(W ) (over

~MH ⊗
R0

R) and Ecan
Mord

D,0 ,RQ
(WQ) (over Mtor

H,Σ ⊗
R0

RQ) into a quasi-coherent

sheaf
~EMord

D,0 ,R
(W )∪Ecan

Mord
D,0 ,RQ

(WQ)

over the open subscheme

(~MH ⊗
R0

R)∪(Mtor
H,Σ ⊗

R0

RQ)

of ~Mtor
H,d0pol

⊗
R0

R (see Proposition 2.2.2.1), and define the quasi-coherent

sheaf

~Ecan
Mord

D,0 ,R
(W ) :=

((
(~MH ⊗

R0

R)∪(Mtor
H,Σ ⊗

R0

RQ)
)
↪→ ~Mtor

H,d0pol
⊗
R0

R
)
∗(

~EMord
D,0 ,R

(W )∪Ecan
Mord

D,0 ,RQ
(WQ)

)
over ~Mtor

H,d0pol
⊗
R0

R. Similarly, we define the quasi-coherent sheaf

~E sub
Mord

D,0 ,R
(W )

over ~Mtor
H,d0pol

⊗
R0

R by replacing Ecan
Mord

D,0 ,R
(WQ) with E sub

Mord
D,0 ,R

(WQ) in the

above definition of ~Ecan
Mord

D,0 ,R
(W ).

When Condition 8.1.1.2 holds, we also define similar assignments
W 7→ ~Ecan

Pord
D,0 ,R

(W ) and W 7→ ~E sub
Pord
D,0 ,R

(W ) by replacing Mord
D,0 with Pord

D,0 in

the above constructions.

Lemma 8.3.3.2. With the setting as in Lemma 8.3.3.1, we have
compatible canonical isomorphisms

~Ecan
Mord

D,0 ,R
(W )⊗

Z
Q ∼→ Ecan

Mord
D,0 ,RQ

(WQ)



8.3. CONSTRUCTIONS OVER THE TOTAL MODELS 585

and
~E sub

Mord
D,0 ,R

(W )⊗
Z
Q ∼→ E sub

Mord
D,0 ,RQ

(WQ)

over Mtor
H,Σ ⊗

R0

RQ. When Condition 8.1.1.2 holds, the same is true if we

replace Mord
D,0 with Pord

D,0 .

Proof. This follows immediately from the definitions. �

Lemma 8.3.3.3. When Condition 8.1.1.2 holds, if we view an ob-
ject W ∈ RepR(Mord

D,0 ) as an object of RepR(Pord
D,0 ) via the canonical

homomorphism Pord
D,0 → Mord

D,0 , then we have canonical isomorphisms
~Ecan

Pord
D,0 ,R

(W ) ∼= ~Ecan
Mord

D,0 ,R
(W ) and ~E sub

Pord
D,0 ,R

(W ) ∼= ~E sub
Mord

D,0 ,R
(W ), compatible

with each other, and with the isomorphism in Lemma 8.3.2.3.

Proof. This is because the analogues statements are true for
Ecan

Pord
D,0 ,RQ

(WQ), E sub
Pord
D,0 ,RQ

(WQ), and ~E sub
Pord
D,0 ,R

(W ). �

Lemma 8.3.3.4. With the setting as in Definition 8.3.3.1, suppose
moreover that R is an integral domain flat over R0, and that W is
locally free over R. Then ~Ecan

Mord
D,0 ,R

(W ) and ~E sub
Mord

D,0 ,R
(W ) are torsion-

free over ~Mtor
H,d0pol

⊗
R0

R, and their restrictions to the open subscheme

(~MH ⊗
R0

R)∪(Mtor
H,Σ ⊗

R0

RQ) of ~Mtor
H,d0pol

⊗
R0

R (see Definition 8.3.3.1) are

locally free.
When Condition 8.1.1.2 holds, the analogues statements are true if

we replace Mord
D,0 with Pord

D,0 .

Proof. Since MH is smooth over S0 and since RQ is an integral do-

main, the local rings of MH ⊗
R0

RQ are integral domains. Since ~Mtor
H,d0pol

is flat over R0, since MH is open and dense in the noetherian normal

scheme ~Mtor
H,d0pol

, and since R is flat over R0, it follows that the local

rings of ~Mtor
H,d0pol

are also integral domains. By definition (see Construc-
tion 8.3.1.1 and Definition 8.3.2.1), when W is locally free over R, the

sheaves ~EMord
D,0 ,R

(W )∪Ecan
Mord

D,0 ,RQ
(WQ) and ~EMord

D,0 ,R
(W )∪E sub

Mord
D,0 ,RQ

(WQ) are

locally free over (~MH ⊗
R0

R)∪(Mtor
H,Σ ⊗

R0

RQ), and hence their direct images

~Ecan
Mord

D,0 ,R
(W ) and ~E sub

Mord
D,0 ,R

(W ) are also torsion-free over ~Mtor
H,d0pol

⊗
R0

R, as

desired. The analogous statement for Pord
D,0 can be similarly proved. �

8.3.4. Compatibility with the Constructions over the Or-
dinary Loci.
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Proposition 8.3.4.1. For each R flat over R0, and for each W in
RepR(Mord

D,0 ) that is flat over R0, there is a canonical isomorphism

(8.3.4.2) ~Eord
Mord

D,0 ,R
(W ) ∼= (~Mord

H ⊗
R0

R→ ~MH ⊗
R0

R)∗~EMord
D,0 ,R

(W ),

(cf. (3.4.6.4)) and there are compatible canonical isomorphisms

(8.3.4.3) ~Eord,can

Mord
D,0 ,R

(W ) ∼= (~Mord,tor
H,Σord ⊗

R0

R→ ~Mtor
H,d0pol

⊗
R0

R)∗~Ecan
Mord

D,0 ,R
(W )

and

(8.3.4.4) ~Eord,sub

Mord
D,0 ,R

(W ) ∼= (~Mord,tor
H,Σord ⊗

R0

R→ ~Mtor
H,d0pol

⊗
R0

R)∗~E sub
Mord

D,0 ,R
(W )

(cf. (5.2.3.19)) when Hp and hence H = HpHp are neat, and when
Σord extends to some projective Σ, with a collection pol of polarization

functions (so that ~Mtor
H,d0pol

is defined as in Proposition 2.2.2.1). These
canonical isomorphisms are compatible with each other.

When Condition 8.1.1.2 holds, the analogous statements are true if
we replace Mord

D,0 with Pord
D,0 .

Proof. We have the canonical isomorphism (8.3.4.2) because, by

Proposition 3.4.6.3, the pullback of the tautological ( ~A,~λ,~i) (see Propo-
sition 2.2.1.1) under (3.4.6.4) is canonically isomorphic to the tauto-

logical (A, λ, i) over ~Mord
H .

As for (8.3.4.3) and (8.3.4.4), by construction, and thanks to the
canonical isomorphism (8.3.4.2), we already have the isomorphisms
(8.3.4.3) and (8.3.4.4) (compatible with (8.3.4.2) and with each other)
in an open dense subscheme whose complement has codimension at
least two. Now the question is whether the direct images of the open
immersion from such an open dense subscheme to the whole scheme co-
incide with the canonical or subcanonical extensions; or, equivalently,
whether the canonical or subcanonical extensions coincide with the
direct images of their restrictions to such an open dense subscheme.
(Note that we start with existing extensions here.) This is a local
question, which we can verify after étale localization or rather just
over the completions of strict local rings, without having to assume
that the sheaves are automorphic. Since R and W are flat, by writ-
ing flat modules as direct limits of finitely generated free modules, and
by using the fact that taking direct images (under quasi-compact and
quasi-separated morphisms) commute with arbitrary direct limits, it
suffices to treat the case that R = R0 and W = R is trivial, which is

then known because the scheme ~Mord,tor
H,Σord is regular.

The analogous statements for Pord
D,0 can be similarly proved. �
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8.3.5. Pushforwards to the Total Minimal Compactifica-
tions.

Definition 8.3.5.1. With the setting as in Definition 8.3.2.1, sup-
pose moreover that H is neat. Let Σ be any collection for MH (which
might not be projective), so that Mtor

H,Σ is defined over S0. Let the quasi-
coherent sheaf

~EMord
D,0 ,R

(W )∪Ecan
Mord

D,0 ,RQ
(WQ)

over the open subscheme

(~MH ⊗
R0

R)∪(Mtor
H,Σ ⊗

R0

RQ)

of ~Mtor
H,d0pol

⊗
R0

R be defined as in Definition 8.3.3.1 (by Lemma 8.3.2.4),

and define the quasi-coherent sheaf

~Ecan,min

Mord
D,0 ,R

(W ) :=
((

(~MH ⊗
R0

R)∪(Mtor
H,Σ ⊗

R0

RQ)
)
→ ~Mmin

H ⊗
R0

R
)
∗(

~EMord
D,0 ,R

(W )∪Ecan
Mord

D,0 ,RQ
(WQ)

)
over ~Mmin

H ⊗
R0

R, using Proposition 2.2.1.2 and the canonical morphisms∮
H : Mtor

H → Mmin
H in (3) of Theorem 1.3.1.5.

Similarly, we define the quasi-coherent sheaf

~E sub,min

Mord
D,0 ,R

(W )

over ~Mmin
H ⊗

R0

R by replacing Ecan
Mord

D,0 ,R
(WQ) with E sub

Mord
D,0 ,R

(WQ) in the above

definition of ~Ecan
Pord
D,0 ,R

(W ). These are well defined (i.e., independent of

the choice of Σ) because of the projection formula [35, 0I, 5.4.10.1],
because of the isomorphism (1.4.3.3) (with g = 1 and H′ = H there),
and because, under any morphism Mtor

H,Σ � Mtor
H,Σ′ as in [62, Prop.

6.4.2.3], the pushforward of the ideal sheaf defining the boundary of
Mtor
H,Σ′ with reduced subscheme structure is canonically isomorphic to

the ideal sheaf defining the boundary of Mtor
H,Σ′ with reduced subscheme

structure (cf. (1.3.3.19), with Q = {0} there).
When Condition 8.1.1.2 holds, we also define similar assignments

W 7→ ~Ecan,min

Pord
D,0 ,R

(W ) and W 7→ ~E sub,min

Pord
D,0 ,R

(W ) by replacing Mord
D,0 with Pord

D,0

in the above constructions.

Lemma 8.3.5.2. With the setting as in Lemma 8.3.5.1, we have
compatible canonical isomorphisms

~Ecan,min

Mord
D,0 ,R

(W )⊗
Z
Q ∼→

∮
H,∗ E

can
Mord

D,0 ,RQ
(WQ)
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and
~E sub,min

Mord
D,0 ,R

(W )⊗
Z
Q ∼→

∮
H,∗ E

sub
Mord

D,0 ,RQ
(WQ)

over Mmin
H ⊗

R0

RQ, where
∮
H : Mtor

H → Mmin
H is as in (3) of Theorem

1.3.1.5. When Condition 8.1.1.2 holds, the same is true if we replace
Mord

D,0 with Pord
D,0 .

Proof. This follows immediately from the definitions. �

Lemma 8.3.5.3. In Definition 8.3.5.1, if Σ is projective, with a col-
lection pol of polarization functions, as in Definition 8.3.3.1, so that
~Mtor
H,d0pol

over ~S0 is defined, then we have compatible canonical isomor-
phisms

~Ecan,min

Mord
D,0 ,R

(W ) ∼= ~∮
H,∗

~Ecan
Mord

D,0 ,R
(W )

and
~E sub,min

Mord
D,0 ,R

(W ) ∼= ~∮
H,∗

~E sub
Mord

D,0 ,R
(W )

over ~Mmin
H , where ~∮

H : ~Mtor
H,d0pol

→ ~Mmin
H is as in Definition

2.2.2.1. Consequently, since (~MH ⊗
R0

R)∪(Mtor
H,Σ ⊗

R0

RQ) is the

preimage of (~MH ⊗
R0

R)∪(Mmin
H ⊗

R0

RQ) under the canonical morphism

~∮
H,∗ : ~Mtor

H,d0pol
⊗
R0

R → ~Mmin
H ⊗

R0

R, by Lemma 8.3.5.2, ~Ecan,min

Mord
D,0 ,R

(W ) and

~E sub,min

Mord
D,0 ,R

(W ) are canonically isomorphic to the pushforwards of the

quasi-coherent sheaves

~EMord
D,0 ,R

(W )∪(
∮
H,∗ E

can
Mord

D,0 ,RQ
(WQ))

and
~EMord

D,0 ,R
(W )∪(

∮
H,∗ E

sub
Mord

D,0 ,RQ
(WQ)),

respectively, over the open subscheme

(~MH ⊗
R0

R)∪(Mmin
H ⊗

R0

RQ)

of ~Mmin
H ⊗

R0

R (cf. Definition 8.3.3.1).

When Condition 8.1.1.2 holds, the analogous statements are true if
we replace Mord

D,0 with Pord
D,0 .

Proof. Since the sheaves ~Ecan,min

Mord
D,0 ,R

(W ) and ~E sub,min

Mord
D,0 ,R

(W ) in Defini-

tion 8.3.5.1 are (up to canonical isomorphisms) independent of the
choice of Σ, we may assume (up to a refinement) that Σ is projective,
with a collection pol of polarization functions. Then it suffices to note
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that the pushforward under a composition of morphisms is the compo-
sition of the pushforwards of the individual morphisms. The analogous
statement for Pord

D,0 can be similarly proved. �

Corollary 8.3.5.4. For each R flat over R0, and for each W in
RepR(Mord

D,0 ) that is flat over R0, there are compatible canonical isomor-
phisms

(8.3.5.5) ~∮ ord

H,∗
~Eord,can

Mord
D,0 ,R

(W ) ∼= (~Mord,min
H ⊗

R0

R→ ~Mmin
H ⊗

R0

R)∗~Ecan,min

Mord
D,0 ,R

(W )

and

(8.3.5.6) ~∮ ord

H,∗
~Eord,sub

Mord
D,0 ,R

(W ) ∼= (~Mord,min
H ⊗

R0

R→ ~Mmin
H ⊗

R0

R)∗~E sub,min

Mord
D,0 ,R

(W )

(cf. (3) and (6) of Theorem 6.2.1.1) when Hp and hence H = HpHp are
neat, and when Σord extends to some projective Σ, with a collection pol
of polarization functions (so that ~Mtor

H,d0pol
is defined as in Proposition

2.2.2.1).
When Condition 8.1.1.2 holds, the analogous statements are true if

we replace Mord
D,0 with Pord

D,0 .

Proof. By choosing a collection Σord for ~Mord
H that extends to some

projective Σ, with a collection pol of polarization functions, these follow
from Lemma 8.3.5.3, Corollary 6.2.3.2, and Proposition 8.3.4.1. �

Lemma 8.3.5.7. With the setting as in Definition 8.3.5.1, suppose
R is noetherian and flat over R0, and suppose W is flat over R0 and
is finitely generated and (S1) over R (see [35, IV-2, 5.7.2]). Then
~Ecan,min

Mord
D,0 ,R

(W ) and ~E sub,min

Mord
D,0 ,R

(W ) are coherent over ~Mmin
H ⊗

R0

R.

Proof. Let us explain the case of ~Ecan,min

Mord
D,0 ,R

(W ), because the case

of ~E sub,min

Mord
D,0 ,R

(W ) is similar. Since ~Mmin
H is flat over R0, and since ~MH

is fiberwise dense in ~Mmin
H by Proposition 2.2.1.7, the complement of

(~MH ⊗
R0

R)∪(Mmin
H ⊗

R0

RQ) in ~Mmin
H ⊗

R0

R is of codimension at least two.

Hence, by [35, IV-2, 5.11.4], it suffices to show that the restrictions
~EMord

D,0 ,R
(W ) and

∮
H,∗ E

can
Pord
D,0 ,RQ

(WQ) of ~Ecan,min

Mord
D,0 ,R

(W ) to ~MH ⊗
R0

R and

Mmin
H ⊗

R0

RQ (see Lemma 8.3.5.2), respectively, are coherent and (S1)

over some open subsets containing all points of codimension one.

Since ~MH is noetherian and normal, it is (S2) by Serre’s criterion [35,

IV-2, 5.8.6]. Since ~MH is flat over the Dedekind scheme ~S0, by [35,

IV-2, 5.7.6], the fibers of ~MH → ~S0 are (S1). By Lemma 8.3.1.4 and
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Definition 8.3.2.1, the sheaf ~EMord
D,0 ,R

(W ) over ~MH ⊗
R0

R, being étale

locally isomorphic to the pullback of W , is coherent by étale descent,
and is (S1) by [35, IV-2, 6.4.2]. Similarly, since Mtor

H,Σ is smooth over
S0, the sheaf Ecan

Pord
D,0 ,RQ

(WQ) over Mtor
H,Σ ⊗

R0

RQ is also coherent and (S1).

By [62, Prop. 7.2.3.13],
∮
H : Mtor

H,Σ → Mmin
H is an isomorphism over

the open subscheme M1
H of Mmin

H formed by the union of all strata
(see (4) of Theorem 1.3.1.5) of codimension at most one. Thus,∮
H,∗ E

can
Pord
D,0 ,RQ

(WQ) is coherent and (S1) over M1
H ⊗
R0

RQ, which contains

all points of Mmin
H ⊗

R0

RQ of codimension one, as desired. �

Corollary 8.3.5.8. (Compare with Lemma 8.3.3.4.) With the set-
ting as in Definition 8.3.5.1, suppose moreover that R is an integral do-
main flat over R0, and that W is locally free over R. Then ~Ecan,min

Mord
D,0 ,R

(W )

and ~E sub,min

Mord
D,0 ,R

(W ) are torsion-free over ~Mmin
H ⊗

R0

R.

When Condition 8.1.1.2 holds, the analogous statements are true if
we replace Mord

D,0 with Pord
D,0 .

Proof. Since R is flat over R0, the canonical morphism

O~Mmin
H ⊗

R0

R →
~∮
H,∗O~Mtor

H,d0pol
⊗
R0

R (cf. (2.2.2.2)) is an isomorphism, and

it follows from Lemmas 8.3.5.3 and 8.3.3.4 that ~Ecan,min

Mord
D,0 ,R

(W ) and

~E sub,min

Mord
D,0 ,R

(W ) are torsion-free over ~Mmin
H ⊗

R0

R under the assumptions we

made on R and W . �

Lemma 8.3.5.9. (Compare with Lemmas 1.4.2.11, 8.1.3.15, and
8.3.2.6.) Let a ≥ 1 be as in Lemma 2.1.2.35, and let N1 ≥ 1 be
as in Proposition 2.2.1.2, so that ω⊗ aN1

~Mmin
H

is defined. For any flat

R0-algebra R, and for each integer k ≥ 1, the pullback of ω⊗ kaN1

~Mmin
H

to ~Mmin
H ⊗

R0

R is canonically isomorphic to ~Ecan,min

Mord
D,0 ,R

(W⊗ kaN1
0 ⊗

R0

R) for

W0 := ∧top (Gr−1
D,0)
∨

.

Proof. By Definition 8.3.5.1, it suffices to verify this separately

over ~MH ⊗
R0

R and Mmin
H ⊗

R0

RQ. Over ~MH ⊗
R0

R, this follows from Lemma

8.3.2.6. Over Mmin
H ⊗

R0

RQ, this is a combination of Lemma 1.4.2.11 and

the fact that ω⊗ kaN1

Mmin
H

∼=
∮
H,∗ ω

⊗ kaN1

Mtor
H

(by (2) and (3) of Theorem 1.3.1.5,

and by the projection formula [35, 0I, 5.4.10.1]). �
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Lemma 8.3.5.10. Let a ≥ 1 be as in Lemma 2.1.2.35, and let ω⊗ aN1

~Mmin
H

and W0 be as in Lemma 8.3.5.9. For each W in RepR(Mord
D,0 ), and for

each integer k ≥ 1, we have compatible canonical isomorphisms

~Ecan,min

Mord
D,0 ,R

(W ⊗
R0

W⊗ ka0N1
0 ) ∼= ~Ecan,min

Mord
D,0 ,R

(W ) ⊗
O~Mmin
H

ω⊗ kaN1

~Mmin
H

and
~E sub,min

Mord
D,0 ,R

(W ⊗
R0

W⊗ k
0 ) ∼= ~E sub,min

Mord
D,0 ,R

(W ) ⊗
O~Mmin
H

ω⊗ kaN1

~Mmin
H

.

Proof. As in the proof of Lemma 8.3.5.9, by Definition 8.3.5.1, it

suffices to verify these separately over ~MH ⊗
R0

R and Mmin
H ⊗

R0

RQ. Over

~MH ⊗
R0

R, this follows from the construction in Definition 8.3.2.1 and

from Lemma 8.3.2.6 that

EMord
D,0 ,R

(W ⊗
R0

W⊗ k
0 ) ∼= EMord

D,0 ,R
(W ) ⊗

O~MH

ω⊗ k~MH

for each integer k and each W in RepR(Gord
D,0 ). On the other hand, by

Lemma 8.3.5.9, by (2) and (3) of Theorem 1.3.1.5, and by the projection
formula [35, 0I, 5.4.10.1], the verification of the lemma over Mmin

H ⊗
R0

RQ

can be reduced to the verification of the corresponding statements

Ecan
Mord

D,0 ,RQ
(WQ ⊗

R0

W⊗ kaN1
0 ) ∼= Ecan

Mord
D,0 ,RQ

(WQ) ⊗
OMtor
H,Σ

ω⊗ kaN1

Mtor
H

and

E sub
Mord

D,0 ,RQ
(WQ ⊗

R0

W⊗ kaN1
0 ) ∼= E sub

Mord
D,0 ,RQ

(WQ) ⊗
OMtor
H,Σ

ω⊗ kaN1

Mtor
H

over Mtor
H,Σ ⊗

R0

RQ, which are true by the construction of Ecan
Mord

D,0 ,RQ
( · )

and E sub
Mord

D,0 ,RQ
( · ) (cf. Construction 8.3.1.1), and by the analogue

Ecan
Mord

D,0 ,RQ
(W⊗ k

0 ⊗
R0

RQ) ∼= ω⊗ k
Mtor
H
⊗
R0

RQ of Lemma 1.4.2.11, for each integer

k. �

8.3.6. Hecke Actions.

Proposition 8.3.6.1. (Compare with Propositions
1.4.3.1, 1.3.1.14, and 2.2.3.1, (4) of Theorem 1.3.3.15, and
Proposition 8.1.4.1.) Suppose that we have an element
g = (g0, gp) ∈ G(A∞,p)×G(Zp) ⊂ G(A∞); that we have two open

compact subgroups H and H′ of G(Ẑ) such that H′ ⊂ gHg−1; and that

the image Hp of H under the canonical homomorphism G(Ẑ)→ G(Ẑp)
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is neat (and so that H is neat, and so that ~[g] : ~MH′ → ~MH is

induced by the ~[g]
min

: ~Mmin
H′ → ~Mmin

H in Proposition 2.2.3.1). For
each W ∈ RepR(Mord

D,0 ), there is (by abuse of notation) a canonical
isomorphism

(8.3.6.2) ~[g]
∗

: ~[g]
∗
~EMord

D,0 ,R
(W )

∼→ ~EMord
D,0 ,R

(W )

of quasi-coherent sheaves over ~MH′, where the first ~EMord
D,0 ,R

(W ) is de-

fined over ~MH, and where the second is defined over ~MH′.
The canonical isomorphism (8.3.6.2) is compatible with the canon-

ical isomorphism

(8.3.6.3) [g]∗ : [g]∗EMord
D,0 ,RQ

(WQ)
∼→ EMord

D,0 ,RQ
(WQ)

over MH (as in (1.4.3.2)). If gp ∈ Pord
D (Zp) (cf. Example 3.3.4.5), and if

H = HpHp and H′ = H′,pH′p are of standard form (with neat Hp), then
(8.3.6.2) is also compatible with the canonical isomorphism (8.1.4.2)
(under the canonical isomorphism induced by (8.3.4.2)).

If g = g1g2, where g1 and g2 are elements of G(A∞,p)×G(Zp), each

having a setup similar to that of g, then we have ~[g]
∗

= ~[g1]
∗
◦ ~[g2]

∗

whenever the involved isomorphisms are defined.
When Condition 8.1.1.2 holds, the analogous statements are true if

we replace Mord
D,0 with Pord

D,0 .

Proof. Since Hp is neat, H′p ⊂ g0Hpg−1
0 is also neat (and so

is H′ = H′,pH′p). By Proposition 2.2.3.1, the canonical surjection
[g] : MH′ → MH (over S0 = Spec(F0)) extends to a canonical finite

surjection ~[g] : ~MH′ → ~MH. By construction, the pullback of the tauto-
logical object (A, λ, i, αH) over MH under [g] : MH′ → MH is canonically
isomorphic to the Hecke twist (A′, λ′, i′, α′H) of the tautological object
(A, λ, i, αm) over MH′ by g, realized by a Z×(p)-isogeny [g] : A→ A′ over

MH′ , because gp ∈ G(Zp). (Here, for simplicity, we use the same nota-
tion (A, λ, i) for both the tautological objects over MH and over MH′ .)

Since ~MH′ is noetherian and normal, and since MH′ is dense in ~MH′ , by
[92, IX, 1.4], [28, Ch. I, Prop. 2.7], or [62, Prop. 3.3.1.5], the pullback

of the ( ~A,~λ,~i) over ~MH (see Proposition 2.2.1.1) under ~[g] : ~MH′ → ~MH
is the unique extension of (A′, λ′, i′) (up to canonical isomorphism) over
~MH′ , which we denote by ( ~A′, ~λ′, ~i′), and the Z×(p)-isogeny [g] : A → A′

uniquely extends to a Z×(p)-isogeny

(8.3.6.4) ~[g]
∗

: ~A→ ~A′,



8.3. CONSTRUCTIONS OVER THE TOTAL MODELS 593

which induces isomorphisms ~[g]∗ : Lie ~A/~MH′
∼→ Lie ~A′/~MH′

∼= ~[g]
∗
Lie ~A/~MH

and ~[g]∗ : Lie∨~A∨/~MH′
∼→ Lie∨~A′,∨/~MH′

∼= ~[g]
∗
Lie ~A∨/~MH , which respect the

pairings defined by ~λ and ~λ′ up to the unique number r0 in Z×(p),>0 such

that r0ν(g0)Ẑp = Ẑp. For each W in RepR(Pord
D,0 ), these two isomor-

phisms induced by (8.3.6.4) define the desired isomorphism (8.3.6.2)

over ~MH′ , which extends the canonical isomorphism (8.3.6.3).
The morphism (8.3.6.2) is compatible with (8.3.6.3) by construc-

tion. If gp ∈ Pord
D (Zp), then (8.3.6.2) is also compatible with the canon-

ical morphism (8.1.4.2) (under the canonical isomorphism induced by

(8.3.4.2)), because ~[g]
ord

and ~[g] are compatible (see (6.2.2.3)) and hence

must induce the same Z×(p)-isogeny over ~Mord
H′ extending the ordinary

Hecke twist of the tautological object over Mord
H′ by [g].

The second last paragraph of the proposition (for Mord
D,0 ) is true

because, by Proposition 2.2.3.1, we have the identity ~[g] = ~[g2] ◦ ~[g1]

between morphisms of schemes, which induces the identity ~[g] = ~[g2] ◦
~[g1] between Z×(p)-isogenies, and hence also the desired identity ~[g]

∗
=

~[g1]
∗
◦ ~[g2]

∗
between isomorphisms like (8.3.6.2).

When Condition 8.1.1.2 holds, the analogous statements for Pord
D,0

can be similarly proved, by using the isomorphism

~[g]
∗

: HdR
1 ( ~A/~MH′)

∼→ HdR
1 ( ~A′/~MH′) ∼= ~[g]

∗
HdR

1 ( ~A/~MH)

induced by (8.3.6.4). �

Corollary 8.3.6.5. With the same setting as in Proposition
8.3.6.1, there are (by abuse of notation) a canonical isomorphism

(8.3.6.6) ( ~[g]
min

)∗ : ( ~[g]
min

)∗~Ecan,min

Mord
D,0 ,R

(W )
∼→ ~Ecan,min

Mord
D,0 ,R

(W )

and a canonical morphism

(8.3.6.7) ( ~[g]
min

)∗ : ( ~[g]
min

)∗~E sub,min

Mord
D,0 ,R

(W )→ ~E sub,min

Mord
D,0 ,R

(W )

of quasi-coherent sheaves over ~Mmin
H′ , where the sheaves at the left-hand

sides are defined over ~Mmin
H , and where the sheaves at the right-hand

sides are defined over ~Mmin
H′ , which are compatible with each other and

with (8.3.6.2).
The canonical morphisms (8.3.6.6) and (8.3.6.7) are compatible

with the canonical morphisms induced by (1.4.3.3) and (1.4.3.4). If
gp ∈ Pord

D (Zp) (cf. Example 3.3.4.5), then they are also compatible with
the canonical morphisms induced by (8.1.4.3) and (8.1.4.4) under the
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canonical isomorphisms induced by (the pushforwards from the partial
toroidal compactifications to the partial minimal compactifications of)
(8.3.4.3) and (8.3.4.4).

If g = g1g2, where g1 and g2 are elements of G(A∞,p)×G(Zp), each

having a setup similar to that of g, then we have ( ~[g]
min

)∗ = ( ~[g1]
min

)∗ ◦
( ~[g2]

min
)∗ whenever the involved morphisms are defined.

When Condition 8.1.1.2 holds, the analogous statements are true if
we replace Mord

D,0 with Pord
D,0 .

Proof. By the constructions of ~Ecan,min

Mord
D,0 ,R

(W ) and ~E sub,min

Mord
D,0 ,R

(W ) as

pushforwards (see Definition 8.3.5.1), these follow from the correspond-

ing statements of Proposition 8.3.6.1 over ~MH and ~MH′ , and of Propo-
sition 1.4.3.1 over Mtor

H,Σ and Mtor
H′,Σ′ (by Lemma 8.3.5.2; and from the

compatibility stated in (6) of Theorem 7.1.4.1). �

Corollary 8.3.6.8. With the same setting as in Proposition
8.3.6.1, suppose H′ is a normal subgroup of H. Then the canonical
morphisms (8.3.6.2), (8.3.6.6), and (8.3.6.7) induce compatible actions

of the finite group H/H′ on ~Ecan
Mord

D,0 ,R
(W ) over ~MH′ and on ~Ecan,min

Mord
D,0 ,R

(W )

and ~E sub,min

Mord
D,0 ,R

(W ) over ~Mmin
H′ , covering those on ~MH′ and ~Mmin

H′ (cf. [62,

Cor. 7.2.5.2] and Corollary 2.2.3.2).

Proof. The statements are self-explanatory, by taking g ∈ H ⊂
G(Ẑ) in Proposition 8.3.6.1 and Corollary 8.3.6.5. �

Proposition 8.3.6.9. With the same setting as in Proposition
8.3.6.1, suppose moreover that H′ is a normal subgroup of H, so that
the actions H/H′ as in Corollary 8.3.6.8 are defined; that R is flat
over R0; and that W is locally free over R. Then the canonical
morphisms induced by (8.3.6.2), (8.3.6.6), and (8.3.6.7) by adjunction
induce canonical isomorphisms

(8.3.6.10) ~EMord
D,0 ,R

(W )
∼→
( ~[1]∗

~EMord
D,0 ,R

(W )
)H/H′

,

(8.3.6.11) ~Ecan,min

Mord
D,0 ,R

(W )
∼→
( ~[1]

min

∗
~Ecan,min

Mord
D,0 ,R

(W )
)H/H′

,

and

(8.3.6.12) ~E sub,min

Mord
D,0 ,R

(W )
∼→
( ~[1]

min

∗
~E sub,min

Mord
D,0 ,R

(W )
)H/H′

,

where ~[1] : ~MH′ → ~MH and ~[1]
min

: ~Mmin
H′ → ~Mmin

H are as in Proposition

2.2.3.1 and Corollary 2.2.3.2, and where the ~EMord
D,0 ,R

(W ), ~Ecan,min

Mord
D,0 ,R

(W ),
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and ~E sub,min

Mord
D,0 ,R

(W ) at the left-hand sides (resp. right-hand sides) are de-

fined over ~MH and ~Mmin
H (resp. ~MH′ and ~Mmin

H′ ).
When Condition 8.1.1.2 holds, the analogous statements are true if

we replace Mord
D,0 with Pord

D,0 .

Proof. By Lemma 8.3.5.3, in order to justify the canonical iso-
morphisms (8.3.6.10), (8.3.6.11), and (8.3.6.12), it suffices to establish
the canonical isomorphisms

(8.3.6.13) ~EMord
D,0 ,R

(W )→
( ~[1]∗

~EMord
D,0 ,R

(W )
)H/H′

,

(8.3.6.14)
∮
H,∗ E

can
Mord

D,0 ,RQ
(WQ)→

(
[1]min
∗
∮
H,∗ E

can
Mord

D,0 ,RQ
(WQ)

)H/H′
,

and

(8.3.6.15)
∮
H,∗ E

sub
Mord

D,0 ,RQ
(WQ)→

(
[1]min
∗
∮
H,∗ E

sub
Mord

D,0 ,RQ
(WQ)

)H/H′
,

where the Ecan
Mord

D,0 ,RQ
(WQ) and E sub

Mord
D,0 ,RQ

(WQ) at the left-hand sides

(resp. right-hand sides) are defined over Mtor
H,Σ (resp. Mtor

H′,Σ′) for
some projective smooth collection Σ for MH′ (resp. Σ′ for MH,
which is a 1-refinement of Σ invariant under the action of H/H′),
and where [1]min : Mmin

H′ → Mmin
H is as in Proposition 1.3.1.14. Or,

since [1]min ◦
∮
H′ =

∮
H ◦[1]tor, where [1]tor : Mtor

H′,Σ′ → Mtor
H,Σ is as in

Proposition 1.3.1.15, we shall consider

(8.3.6.16) Ecan
Mord

D,0 ,RQ
(WQ)→

(
[1]tor
∗ E

can
Mord

D,0 ,RQ
(WQ)

)H/H′
and

(8.3.6.17) E sub
Mord

D,0 ,RQ
(WQ)→

(
[1]tor
∗ E

sub
Mord

D,0 ,RQ
(WQ)

)H/H′
,

instead of (8.3.6.14) and (8.3.6.15).
Let us start with (8.3.6.13). By Corollary 2.2.3.2 (the argument of

whose proof also works for the normalizations of the base changes from
Spec(OF0,(p)) to Spec(R0) of the schemes involved), we have a canonical
isomorphism

(8.3.6.18) O~MH

∼→
( ~[1]∗O~MH′

)H/H′
.

Since R is flat over R0, we have an induced isomorphism

(8.3.6.19) O~MH ⊗
R0

R

∼→
( ~[1]∗O~MH′ ⊗

R0

R

)H/H′
.

Since W is locally free over R, by Lemma 8.3.1.4 and Definition

8.3.2.1, ~EMord
D,0 ,R

(W ) is locally free over ~MH ⊗
R0

R. Therefore, by (8.3.6.2)
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(with g = 1) and by the projection formula [35, 0I, 5.4.10.1], and
by (8.3.6.19), the restriction of the canonical morphism induced by
adjunction by (8.3.6.2) (with g = 1) induces the desired isomorphism
(8.3.6.13).

Next let us consider (8.3.6.16) and (8.3.6.17). Since the morphism
[1]tor : Mtor

H′,Σ′ → Mtor
H,Σ is proper, its admits a Stein factorization (see

[35, III-1, 4.3.3])

Mtor
H′,Σ′ → Z := Spec

OMtor
H,Σ

(
[1]tor
∗ OMtor

H′,Σ′

)
→ Mtor

H,Σ,

where Z is a noetherian normal scheme finite over the projective smooth
scheme Mtor

H,Σ. Hence, Z is also projective, and carries an action of

H/H′ defined by the compatible isomorphisms [g]tor : Mtor
H′,Σ′ → Mtor

H′,Σ′
defined by Proposition 1.3.1.15 for each g ∈ H. By Zariski’s main
theorem (see [35, III-1, 4.4.3, 4.4.11]), the induced morphism

Z/(H/H′)→ Mtor
H,Σ

is an isomorphism, because it is generically the known isomorphism

MH′/(H/H′)
∼→ MH

(see [62, Cor. 7.2.5.2]). (Alternatively, one may define the H/H′-action
on Z using the facts that the pullback of Z → Mtor

H,Σ under MH ↪→ Mtor
H,Σ

on the target is the canonical finite étale cover MH′ → MH carrying a
canonical action of H/H′, and that Z is noetherian normal and hence,
by Zariski’s main theorem, coincides with the normalization of Mtor

H,Σ in
MH′ under the canonical morphism MH′ → MH → Mtor

H,Σ. Therefore, it
is not really necessary to assume that Σ′ is invariant under the action
of H/H′.) Thus, we obtain the canonical isomorphism

(8.3.6.20) OMtor
H,Σ

∼→
(
[1]tor
∗ OMtor

H′,Σ′

)H/H′
,

which induces the canonical isomorphism

(8.3.6.21) ID∞,H
∼→
(
[1]tor
∗ ID∞,H′

)H/H′
,

where ID∞,H (resp. ID∞,H′
) is defined over Mtor

H,Σ (resp. Mtor
H′,Σ′) as in

Definition 1.4.2.9, because D∞,H and D∞,H′ are reduced subschemes

defining normal crossings divisors, and D∞,H′ =
(
([1]tor)−1(D∞,H)

)
red

.
Since R is flat over R0, we have induced isomorphisms

(8.3.6.22) OMtor
H,Σ ⊗

R0

RQ

∼→
(
[1]tor
∗ OMtor

H′,Σ′ ⊗R0

RQ

)H/H′
and

(8.3.6.23) ID∞,H ⊗
R0

RQ
∼→
(
[1]tor
∗ ID∞,H′ ⊗

R0

RQ

)H/H′
,
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Since Ecan
Pord
D,0 ,RQ

(WQ) is locally free over Mtor
H,Σ ⊗

R0

RQ, the desired iso-

morphism (8.3.6.16) (resp. (8.3.6.17)) follows from (8.3.6.22) (resp.
(8.3.6.23)), from (1.4.3.3) (with g = 1 and H′ = H there), and from
the projection formula [35, 0I, 5.4.10.1], as desired.

The analogous statements for Pord
D,0 can be similarly proved. �
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BIBLIOGRAPHY 603

73. J. Lubin, J.-P. Serre, and J. Tate, Elliptic curves and formal groups, Summer
Institute on Algebraic Geometry, Woods Hole, 1964, available at http://www.
ma.utexas.edu/users/voloch/lst.html.

74. K. Madapusi Pera, Toroidal compactifications of integral models of Shimura
varieties of Hodge type, preprint, 2015.

75. Yu. I. Manin, The theory of commutative formal groups over fields of finite
characteristic, Russian Math. Surveys 18 (1963), 1–83.

76. H. Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note
Series, The Benjamin/Cummings Publishing Company, Inc., 1980.

77. , Commutative ring theory, Cambridge Studies in Advanced Mathe-
matics, vol. 8, Cambridge University Press, Cambridge, New York, 1986.

78. J. S. Milne, The points on a Shimura variety modulo a prime of good reduction,
in Langlands and Ramakrishnan [72], pp. 151–253.

79. B. Moonen, Models of Shimura varieties in mixed characteristic, in Galois
Representations in Arithmetic Algebraic Geometry [94], pp. 267–350.

80. L. Moret-Bailly, Pinceaux de variétés abéliennes, Astérisque, vol. 129, Société
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Ĥ

, 108, 470

[α̂\,ord,‡
Ĥ
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ĉ∨,‡n , 108
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determinantal condition on Lie
algebra, xvii, 4, 133, 144, 170,
215, 581, 582

Dieudonné–Manin classification, 160
Diff−1, 26
Diff−1

O/Z, 26

Disc, 89, 163
DiscO/Z, 89, 163
dual lattice, 2
dual semi-abelian scheme, 43, 218,

231, 442

e00,n, 63
e00,n0

, 355
e10,n, 63
e10,n0

, 354
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10,pr , 243, 244

eA[pr], 186
eAs̄[p∞], 191
eAs[p∞], 170
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, 547
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( · ), 549
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( · ), 556, 579–580
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( · ), 556
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∞,κ, 443
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, 581
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, 555
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, 572
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( · ), 579, 582–584, 586, 592,

594
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( · ), 579, 584, 586, 588

~Ecan,min
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( · ), 587–590, 593, 594
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( · ), 549, 579, 586
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( · ), 555, 579, 586, 589
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D,0 ,R
( · ), 572
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( · ), 556, 579, 586, 589
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( · ), 587–590, 593, 594
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∮
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∮
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...
E

ord,◦
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...
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, 288
...
E
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...
E
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...
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...
E
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...
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...
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...
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Φn,tor, 273
EG0

, 116
Ecan

G0
, 120
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( · ), 580

Ecan
Gord

D,0 ,RQ
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eφm, 248
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, 117
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( · ), 121
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( · ), 580, 583

Ecan
Pord

D,0 ,RQ
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EΦ̆H̃
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EΦH , 49, 66, 70, 280, 359, 361
EΦH,σ, 49, 71, 362, 388
EΦn , 66

ẼΦ̆H̃,σ̆
, 79, 429

easier unitary case, xxxi
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elevator, 148
endomorphism structure, 3, 170, 179,

185, 201, 209
ε(g), 22, 24
equally deep

subgroups of Ĝ(Ẑ), 418

subgroups of Ĝ(Zp), 418

subgroups of G(Ẑ), 177
subgroups of G(Zp), 177

ét, 170
extended ordinary Kuga family, see

also ordinary Kuga family,
extended

extension of isogeny, 165–168

F , 2
f , 126, 210
f, 167

F
(g)
−2, 22

F
(g)
−2,h(C), 25

(F
(g)
−2,h(C))

⊥, 25

F
(g)
−2,R, 25

F
(g)
−i , 22
F0, xiii, 3, 28
F0,aux, xx, 129
F ′0, 115

F
(i)
A∨/S , 189
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(W )), 550

Fa(~EPord
D,0 ,R

(W )), 583

Fa(EP0,R(W )), 118

Fa(Hi
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H )), 536
FA/~Mord

H′ ⊗Z
Fp , 225

Fa(Ω
•
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), 536

FA/S , 200

F
(i)
A/S , 189

Fa(W ), 118, 550, 583
Fabs, 406
Faux, 406
f,ét, 167
F(g), 22, 23
fκ, 93, 445

extensibility, 478–480
f tor
κaux

, 482, 483
fκ′,κ, 93, 114, 445, 477

fgrp
κ′,κ, 93, 114, 445, 477

f tor
κ′,κ, 93, 114, 445, 477
properness, 477–478

fκ̃, 102, 461
fκ̃′,κ̃, 111, 472
fgrp
κ̃′,κ̃, 114, 477

f tor
κ̃′,κ̃, 110, 471

f tor
κ , 93, 114, 445, 479
equidimensionality, 501–503
flatness, 503
formal fiber, 506–516
log integrality, 503
log smoothness, 489–495
properness, 482–487

F~Mord,min
H ⊗

Z
Fp , 403

F~Mord
H ⊗

Z
Fp , 225

F~Mord,min

H′ ⊗
Z
Fp , 402

F~Mord
H′ ⊗Z

Fp , 225

F~Mord,tor

H′,Σord,′ ⊗Z
Fp , 336

F~Mord,tor

H,Σord ⊗Z
Fp , 336, 456

F~Nord,tor
κ ⊗

Z
Fp , 455

F(~Nord,tor
κ ⊗

Z
Fp)/(~Mord,tor

H,Σord ⊗Z
Fp), 456

F~Nord,tor

κ′ ⊗
Z
Fp , 455

F~Nord
κ′ ⊗Z

Fp , 454

FS , 189, 200
fσ, 564
f[σ], 564

f tor
[τ̆ ] , 513

f tor
τ̆ , 513
f tor, see also f tor

κ , 513
face, 16

of cusp label with cone, 21, 92, 443
failure of Hasse’s principle, 7
fiber-wise geometric identity

component, 162
group scheme of, 162

filtration
admissible, 8
fully symplectic, 8
fully symplectic-liftable, 8
integrable, 8
split, 8
symplectic, 8
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FJord
ΦH,δH , 379

FJ
ord,(0)
ΦH,δH

(f), 380

(FJ
ord,(0)
ΦH,δH

)∧x̄ , 384

FJ
ord,d,(`)
ΦH,δH

(N ), 568

FJord
ΦH,δH(f), 380

FJ
ord,(`)
ΦH,δH

, 378

FJ
ord,(`)
ΦH,δH

(f), 380

(FJ
ord,(`)
ΦH,δH

)∧x̄ , 384

FJord
ΦH,δH,σ, 379

FJord
ΦH,δH,σ(f), 379

FJ
ord,(`)
ΦH,δH,σ

(f), 379

FJC
ord,(0)
ΦH,δH

(k), 380

FJC
ord,(`)
ΦH,δH

(k), 379
formally canonical sheaf, 567
formally subcanonical sheaf, 568
Fourier–Jacobi

coefficient
along (ΦH, δH), 380
along (ΦH, δH, σ), 379

expansion
along (ΦH, δH), 380
along (ΦH, δH, σ), 379
constant term, 380

morphism
along (ΦH, δH), 379
along (ΦH, δH, σ), 379

Fraktur, 223
Frobenius morphism

absolute, 189, 200, 225, 336, 402,
403, 406, 454, 455
flat, 225, 337
not flat, 403

relative, 189, 200, 225, 336, 406,
456

full-ord, 410
full ordinary locus, xxvi, xxvii, 410
fully symplectic filtration, 8
fully symplectic-liftable filtration, 8

G, xiii, 2
G, 43, 44, 218, 231, 324
[g], xiii, 52, 74, 75, 358
[[g]], xiv, 52
[g−1], 205
[g−1]ord, 201, 205

G0, 116
G[0], 320
G0, 232
[g0], 182
g0, 153, 182, 200, 222, 591
[g−1

0 ], 182, 201
G0(R), 116
G1,Z(R), 12, 42
G(A), 3
G(A∞), 3
G(A∞,p), 3
G(Ap), 3

[ ~[g]], xvi, 154
~[g], xv, 153, 592–593

~[g]
min

i′,i , 156

~[g]
min

, xvi, 153, 592

( ~[g]
min

)∗, 593

[ ~[g]
ord

], xix, 396

~[g]
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, xviii, 222–224, 365, 366, 593

~[g]
ord,min

, xix, 396, 401, 402

( ~[g]
ord,min

)∗, 396

( ~[g]
ord

)∗, 557

~[g]
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, xviii, 331, 334, 335

( ~[g]
ord,tor

)∗, 557

~[g]
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rH′
, 222, 223

~[g]
ord,tor

rH′
, 334

~[g]
∗
, 592, 593

Gaux, xx, 129
Gaux, 371, 406
GO

aux, 139, 371
GO,∨

aux , 139
GM

aux, 139
GM,∨

aux , 139
G, 479

G
∨

, 479
G~Nord

κ
, 479

G
∨
~Nord
κ

, 479

([g]
tor

)∗, 122
Gord

D,0 , 545

Gord
D,0 (R), 545

G†, 46, 148, 326
G‡, 46, 109, 320, 327, 470
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♦G, 306
...
[g]

ord
, 222

G∨, 43, 218, 231
G∨,\, 56, 58, 347, 349, 517
Gess(R), 253
Gess(Z/nZ), 254
Gess(Z/prZ), 257
[gh], 97
gh, 54, 96, 449
gh,0, 449

~[gh]
ord

, 450

~[gh]
ord,tor

, 456

~[gh]
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rκ′ ,rκ
, 450

~[gh]
ord,tor

rκ′ ,rκ
, 452

( ~[gh]
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)∗, 452

gh,p, 449

[gh]
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, 98
Gh,Z, 11
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, 254

Gess,ord
h,Zpr ,Dpr

, 257

G′h,Z(R), 12, 42

Gh,Z(R), 12, 42, 425
(Gh,Z n U1,Z)(R), 12

Ĝ, 104, 465
[ĝ], 83, 84, 97
ĝ, 96, 449
ĝ0, 449

Ĝ1,Z̆(R), 42

~[ĝ]
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, 434, 435, 450, 453, 454

~[ĝ]
ord,tor

, 451, 453, 454

( ~[ĝ]
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)∗, 452

~[ĝ]
ord

rκ′
, 453

~[ĝ]
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, 453, 454

Ĝ‡, 105, 467

Ĝ′
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(R), 42

Ĝh,Z̆(R), 41, 42, 425

Ĝ′
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(R), 42, 425

Ĝl,Z̆(R), 42

Ĝ~Nord
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, 478

Ĝ∨~Nord
κ

, 478

Ĝ~Nord
κ̃

, 465

ĜNκ̃ , 104
ĝp, 449

Ĝ(R), 29, 41

[ĝ]
tor

, 97

([ĝ]
tor

)∗, 98
♥G, 46, 295, 296, 326
gl, 98, 456
gl,0, 456

~[gl]
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κ′,κ,rκ′
, 459

~[gl]
∗,ord

κ′,κ , 457, 459

~[gl]
∗,ord,ext

κ′,κ , 458

~[gl]
∗,ord,ext,∨
κ′,κ , 458

( ~[gl]
∗,ord,ext

κ′,κ )∗, 458

~[gl]
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κ′,κ , 457, 458
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κ′,κ , 458
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κ′,κ , 457, 459
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κ′,κ )∗, 458

[gl]
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∗
κ′,κ)∗, 100, 458

[gl]
∗,tor
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([gl]
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l,Zpr ,Dpr

, 257
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, 257

G(LZ,〈 · , · 〉Z), 11
G′l,Z(R), 12, 42

Gl,Z(R), 12, 42, 43
G~Mord

H
, 324

G~Mord
H,rκ

, 478

G∨~Mord
H,rκ

, 478

GMH , 44

[g]
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, xiv, 52, 53, 402
G~Nord

κ
, 478

G∨~Nord
κ

, 478

G\, 56, 58, 297, 347, 349, 517
[g]ord, 201, 222
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gp, 153, 191, 200, 222, 591
of twisted Up type, 205, 222
of Up type, 205, 224

[g−1
p ], 225

gp,−1, 191
[g−1
p ]ord, 193, 201

tg−1
p , 205

tgp,−1, 191
gp,0, 191
[gp]

ord, 193
gord
p , 191
gp,#, 205
gp,#,0, 191
G(Q), 3
G(Q)0, 21
G(R), 2, 11, 42
G(R), 3
G(R)0, 21
[g]ord

rH′
, 222

[g]
tor
rH′ ,rH

, 332
gσ, 564
[g]∗, 122, 592
gτ̆ , 513

G̃, 29

G̃, 104, 465

G̃1,̃Z(R), 29, 41

G̃‡, 105, 467

G̃′
h,̃Z

(R), 29

G̃l,Z̆,̃Z(R), 42, 43, 426

G̃′
l,̃Z

(R), 29

G̃l,̃Z(R), 29

G̃~Nord
κ

, 478

G̃∨~Nord
κ

, 478

G̃~Nord,tor
κ

, 479

G̃∨~Nord,tor
κ

, 479

G̃\, 104, 465
g̃p, 454, 455

(G n Û)(R), 29

[g]
tor

, xiii, 53, 596
G(Z), 3
GZ, 11

G\
~Z

ord , 353

G\
Z
, 62

G(Ẑ), 3

G(Ẑp), 3
G(Z/nZ), 3
Γ0(pr), xvii
Γ1(pr), xii, xvii

balanced, xvii, xxvi, xxviii
ΓΦ̆Ĥ

, 33, 37, 92, 419, 444

ΓΦ̆Ĥ,ΦH
, 33, 34, 419, 507

(ΓΦ̆Ĥ,ΦH
)∨R , 35, 519

ΓΦ̆H̃
, 33, 419

ΓΦ̆H̃,ΦH
, 33, 419

ΓΦ̆H̃,ΦH,σ̆
, 33, 419

ΓΦ̆H̃,τ
, 506

ΓΦ̆H̃,τ̆
, 464

ΓΦH , 16, 33, 54
ΓΦH,`0 , 570
ΓΦH,σ, 45, 49, 296, 319, 325, 388
ΓΦH,τ , 506
ΓΦ̃H̃

, 33

ΓΦ̃H̃,ΦH
, 34

γ∗, 515, 565, 567, 568, 573
Gauss–Manin connection, 5, 6, 90,

96, 119, 441, 449, 536, 553
extended, 96, 120, 449, 535–537,

553, 580
generalized Kuga family, xiv, see

also Kuga family, generalized
ordinary, see also ordinary Kuga

family, generalized
generalized ordinary Kuga family,

see also ordinary Kuga family,
generalized

generalized Up operator, 193
geometrically normal, 209, 392
geometrically unibranch, 209
good algebraic model

ordinary, see also ordinary good
algebraic model

good formal model
ordinary, see also ordinary good

formal model
good prime, xi, xx, xxx, 3, 28, 128,

156–158, 209, 215, 225–227,
337–343, 391, 414, 415, 483–487,
559

(GrZ−1,n0
, 〈 · , · 〉11,n0

), 249

GrZ−1,pr , 178

GrZ−1,R, 11
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GrZ−1, 11

GrZ0(g), 12

Gr−2(β̂\,0s̄ ), 59

Gr−2(β̂\,#,0s̄ ), 59
GrZ−2,pr , 235, 237, 264
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−2,pr , 235, 237, 264
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S , 238
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GrZ−i, 12
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GrZ̃−i, 29
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)η, 241

Gr0
D−1,pr
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Gram–Schmidt process, 414
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theorem, 560
Griffiths transversality, 96, 449, 537
group scheme

étale, 159
étale-multiplicative-type, 159
of fiberwise geometric connected

components, 162
multiplicative-type, 159
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), 513
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H )∧x̄ ), 575
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HGh,Z,Φ, 54, 344
HG′h,Z
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(Ĥ, Σ̂ord), 420, 442
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higher Koecher’s principle, 560
Hodge

filtration, 90, 95, 441, 448, 534,
536

invertible sheaf, 128, 369
spectral sequence, 95, 448, 534

Hodge invertible sheaf, xxiii

HomO( 1
nX,B

∨,ord
pr )◦, 272

HomO( 1
nX,B

ord
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HomO(X,B)◦, 55, 346
HomO(X,Bord

pr )◦, 346
HomO(Y,B∨)◦, 272
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∞
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î, 104, 465
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Hord
pr

), 188

image(αord,#,0

Hord
pr

), 188

image(αord,0
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Ĥ

, 469

ι̂ord,‡
Ĥ
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Q,H,Σ, 41, 91

K̃Q,H, 31

K̃ord
Q,H, 419

K̃ord,+
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Ẑ
Zp, D), 347, 349

Lagrange, 126
λ, 3, 43, 44, 69, 208, 218, 231, 324,

360
λ[0], 320
~λ, 144
~λaux, 144
λaux, 371
λOaux, 126, 130, 139, 210, 371
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Ẑ
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of type (L⊗
Z
Ẑ, 〈 · , · 〉, Z), 58, 70

principal, 57, 69
level-H structure datum

of type (L⊗
Z
Ẑ, 〈 · , · 〉), 263

Lie–Kolchin theorem, 577
LieA∨/MH , 5

Lie∨A∨/MH , 5
LieA/MH , 5

Lie∨A/MH , 5
Lie algebra condition, xvii, 4, 133,

144, 170, 215, 581, 582
Lie∨(Vaux), 406
LieG∨/S , 43

Lie∨G∨/S , 43
LieG/S , 43

Lie∨G/S , 43
Lie~Nord,∨

κ /~Mord
H

, 447

Lie∨~Nord,∨
κ /~Mord

H
, 447

Lie~Nord,ext,∨
κ /~Mord,tor

H
, 447

Lie∨~Nord,ext,∨
κ /~Mord,tor

H
, 447

Lie~Nord,ext
κ /~Mord,tor

H
, 447

Lie∨~Nord,ext
κ /~Mord,tor

H
, 447

Lie~Nord
κ /~Mord

H
, 447

Lie∨~Nord
κ /~Mord

H
, 447

LieN∨/~Mord
H

, 440

Lie∨
N∨/~Mord

H
, 440

LieN∨/MH , 90

Lie∨N∨/MH , 90
LieNgrp,∨/~Mord

H
, 440

Lie∨
Ngrp,∨/~Mord

H
, 440

LieNgrp,∨/MH , 90

Lie∨Ngrp,∨/MH , 90
LieNgrp/~Mord

H
, 440

Lie∨
Ngrp/~Mord

H
, 440

LieNgrp/MH , 90
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Lie∨Ngrp/MH , 90
LieN/~Mord

H
, 440

Lie∨
N/~Mord

H
, 440

LieN/MH , 90

Lie∨N/MH , 90
liftability condition

for βn, 69
for βn0 , 360
for β\n0

, 347

for β\n, 57

for β\,ord
pr , 348

for (cn, c
∨
n), 57

for τn, 68
local model, xxviii, 125
log de Rham cohomology, 95, 448,

534
log de Rham complex, 95, 448
log étale, 110, 472
log smooth, 93, 445

M , 506, 524, 567, 574
M0, 116
M0(R), 116
~Mord,Φ1

1 , 285
~Mord,Z1

1 , 285
~Mord,tor

Gaux(Ẑ),Σord
aux

, 374

[ ~MH], 223

[~MH], xv, 144
~MH, 223
~MH, xv, xxi, 143, 374
~MHaux , 374
~Mtor
Haux,d0,auxpolaux,r

, 372

~Mtor,full-ord
Haux,d0,auxpolaux,r

, 412

~Mmin
Haux

, 374
~Mord
Haux

, 227
~Mord,min
Haux

, 372
~Mmin
Haux,r

, 372
~Mord,tor
Haux,Σord

aux
, 371

~Mtor
H,d0pol,i

, xvi, 156

~Mtor
H,d0pol,rH

, 411

~Mtor
H,d0pol,rH

, 405

~Mtor,full-ord
H,d0pol,rH

, 411

~Mtor
H,d0pol

, xvi, xxi, 151

~Mtor,non-ord
H,d0pol

, 410

(~Mtor
H,d0pol

⊗
Z
Fp)non-ord, 410

~Mord
HGh,Z

,rH′
, 344

~MH,i, xvi, 156
~Mmin
H,i , xvi, 156

~Mmin,full-ord
H,i , 412

(~Mmin
H,i ⊗Z

Fp)full-ord, 412

(~Mmin
H,i ⊗Z

Fp)non-ord, 412

(~Mmin
H,i ⊗Z

(Z/pjZ))full-ord, 412

~Mord
Hκ , 461

~Mmin
H , xvi, 146, 374

~Mmin,non-ord
H , 410

(~Mmin
H ⊗

Z
Fp)non-ord, 410

[ ~MH]non-ord, 410
~Mnon-ord
H , 410

[~Mord
H ], xviii, xxii, 228, 377, 386
quasi-projectivity, xxii

~Mord
H , xviii, xxi, xxii, 215, 227

~Mord,1
H , 383, 389

~Mord,min
H , 401, 410, 413

~Mord,min
H , xvi, xviii, xxiii, 342, 370,

386
flatness, 377
normality, 377

(~Mord,min
H )∧x̄ , 383, 563

~Mord,ΦH
H , 282, 290, 325, 344, 388, 427

~Mord,tor
H , 323, see also ~Mord,tor

H,Σord , 324

(~Mord,tor
H )∧x̄ , 390

[~Mord,ZH
H ], 383, 387

~Mord,ZH
H , 282, 290, 325, 344, 387

([~Mord,ZH
H ])∧x̄ , 383

(~Mord,ZH
H )∧x̄ , 563, 575

~Mtor
H′,d0pol′

, 152

~MH,rH , 228
~Mmin
H,rH , 410

~Mmin
H,rH , 388

~Mmin,full-ord
H,rH ⊗

Z
(Z/pjZ), 413

~Mmin,full-ord
H,rH , 410

(~Mmin
H,rH ⊗Z

(Z/pjZ))full-ord, 413
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(~MH,rH ⊗Z
Fp)full-ord, 413

~Mord
H,rκ , 442

~Mord,min
H,S , 391

[~Mord,tor
H,Σord ], 377

~Mord,tor
H,Σord , 334, 411

~Mord,tor
H,Σord , xviii, xxiii, xxvii, 318,

323–324, 342

([~MH⊗
Z
Fp])non-ord, 410

(~MH⊗
Z
Fp)non-ord, 410

~Mmin
H , xxi

~Mord
n0pr , 216

~Mord
n , 216

~Mord,Φn
n , 344, 346

~Mord,Zn
n , 344, 346, 427

Mord
D,0,fil, 576

Mord
D,0 , 545

Mord
D,0 (R), 545

Mord
D,0,uni, 577

Mord
D , 176

Mord
D (R), 176

(Mord
D n Ûord

D )(R), 424
...
M

ord

Haux
, 210

...
M

ord

Hh , 265, 277
...
M

ord

H , xvii, xxii, 208
...
M

ord,ΦH
H , 277

...
M

ord

H (S), 208
...
M

ord,ZH
H , 277

...
M

ord

n0pr , 209
...
M

ord

n , 209
...
M

ord,Zn
n , 269

[MGaux(Ẑp)], 144

MGaux(Ẑp), 130, 143, 374

Mmin
Gaux(Ẑp)

, 146

(Mmin
Gaux(Ẑp)

⊗
Z
Fp)non-ord, 410

Mtor
Gaux(Ẑp),Σpaux

, 374

Mtor
Gaux(Ẑp)

, 406

(Mtor
Gaux(Ẑp)

⊗
Z
Fp)non-ord, 409

[MH], xiv, 7, 48
MH, xiii, xx, 3, 43
[MHaux

], 129

MHaux , 129
Mmin
Haux

, 142

[MHpaux
], 129

MHpaux
, xx, 129

MHpauxGaux(Zp), 130

Mmin
Hpaux

, xx, 142

Mtor
Hpaux,Σ

p
aux

, xx, 138

Mtor
Haux,Σaux

, 138

Mtor
H,d0pol

, 52

MHGh,Z
, 54

MHGh,Z,Φ
, 54

MHh , 13, 54, 265
~Mord
Hh , 299, 322, 344

MH′h , 14

MH′′h , 14

~Mord
Hh,rH , 299, 322, 344

MH,i, 156

Mmin
H,i , 156

MHκ , 91, 102
Mmin
H , xiv, xx, 48

Mord
H , xvii, xxii, 215

Mord,ΦH
H , 282

Mord,ZH
H , 282

[MHp ], 157
MHp , 157, 226, 338
Mmin
Hp , 157, 338

Mord
Hp , 226

Mord,tor
Hp,Σp , 339

Mtor
Hp,Σp , 338

[MZHp
Hp ], 340

MΦH
H , 13, 45, 49, 54, 281

Mtor
H′,d0pol′

, 52

MH,rH , 215

Mmin
H,rH , 388

MZH
H,rH , 282

MH,rν , 215
Mtor
H,Σ,i, 156

Mtor
H,Σ,rH , 327

[Mtor
H,Σ], 123

Mtor
H,Σ, xiii, xx, 44

Mtor
H , 44

[MZH
H ], 49

MZH
H , 13, 14, 45, 49, 54, 281

~̂
M

ord,Φ̆Ĥ

Ĥ , 427, 444
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~̂
M

ord,Z̆Ĥ

Ĥ , 427, 444

M̂ord
D (R), 424

M̂
Φ̆Ĥ
Ĥ

, 77, 92

M̂
Z̆Ĥ
Ĥ

, 77, 92

MΦn
n , 56

MZn
n , 11, 54, 56

MPE,O(R, I), 233
MPEL,

...
Mord
H

(R, I), 263, 269

MPEL,
...
Mord
n

(R, I), 253

MPEL,Mord
H (R,I), 268

MPEL,MH(R,I), 268

M +, 568
~̃
M

tor

H̃,d̃0p̃ol,rκ , 483

~̃
M

ord

H̃ , 419, 426, 461

~̃
M

ord,Φ̆H̃

H̃ , 427

~̃
M

ord,Φ̃H̃

H̃ , 461

~̃
M

ord,tor

H̃ , 426, 461

~̃
M

ord,Z̆H̃

H̃ , 427

~̃
M

ord,̃ZH̃

H̃ , 461

~̃
M

ord,tor

H̃,Σ̃ord , 426, 461

~̃
M

ord,Z̆n

n , 427

M̃ord
D̃

(R), 424
...
M̃

ord,Φ̆H̃

H̃ , 474

M̃
(m)
H , 5

M̃H̃, 30, 76

M̃H̃p , 483

M̃tor
H̃p,Σ̃p

, 483

M̃
Φ̆H̃
H̃

, 76, 77

M̃tor
H̃,Σ̃

, 76, 102

M̃tor
H̃

, 76, 102

M̃Z̆n
n , 78

Mess,ord
Zpr ,Dpr

, 257

maximal point, 290, 291, 531
maximal totally isotropic

submodule, 174
minimal compactification

of MH, xiv, 48–49

mixed Shimura varieties, xxvii, xxix
module of universal finite

differentials, 313
µp∞,S , 161
µp∞,s, 170
mult, 160, 161, 167, 170
multi-rank, 9, 115
Mumford family, 46, 73, 297, 326,

511
Mumford’s construction, 233

N, 89, 439
N , 567, 574, 578
N, 565
N0, 369, 386
n0, 179
N1, 142
N a, 575
~Nord,tor
κaux

, 482
~Nord
κ , 453

~Nord
κ , 443, 477

~Nord,ext
κ , 446

~Nord,grp,∨
κ , 446

~Nord,grp
κ , 443, 477
~Nord,tor
κ , 453

~Nord,tor
κ , 477

~Nord
κ̃ , 461

~Nord,grp
κ̃ , 462

~Nord,tor
κ̃ , 462

N∨, 89, 90, 440
Next, 442
Ngrp, 89, 439
Ngrp,∨, 89, 90, 440
Nκ, 91, 114
Ngrp
κ , 91, 114

Nκ̃, 102
Ntor
κ̃ , 103

Ngrp
κ̃ , 102

Ntor
κ , 91, 114

Nσ̆,τ , 517

Ñ, 565̂̃
Nσ̆,τ , 522̂̃
N

˘̀

σ̆,τ , 522̂̃
N

˘̀,0+

σ̆,τ , 522
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̂̃
N

˘̀,+

σ̆,τ , 522

Ñ`, 566

Ñ`,+, 566

Ñσ̆,τ , 517

Ñ
˘̀
σ̆,τ , 521

Ñ
˘̀,0+
σ̆,τ , 521

Ñ
˘̀,+
σ̆,τ , 521

(N )∧x̄ , 575, 578
∇, 6, 90, 96, 119, 120, 441, 449, 536,

553
naive level structure

of type (GrZ−1,n0
, 〈 · , · 〉11,n0)

principal, 249

of type (L⊗
Z
Ẑ, 〈 · , · 〉), 180

principal, 179
naive ordinary level structure

of type (L/prL, 〈 · , · 〉, Dpr ), 187
principal, 185

of type
φ0
D−1,pr

: Gr0
D−1,pr

→ Gr0
D
#
−1,pr

principal, 238, 249
symplectic condition, 238

of type φ0
D,pr : Gr0

D,pr → Gr0
D#,pr

principal, 185
naive ordinary level-n structure

datum
of type (L/nL, 〈 · , · 〉, Dpr ), 252

orbit of étale-locally-defined,
260

naive ordinary pre-level-n structure
datum

of type (L/nL, 〈 · , · 〉, Dpr ), 249
symplectic condition, 252

NBl · ( · ), 51

NBl ~JH,d0pol
(~Mmin
H ), 151

NBl ~JH,d0polord
(~Mord,min
H ), 403

NBl ~JH,d0polord
(~
∮ ord

H ), 403

NBl ~JH′,d0pol′
(~Mmin
H′ ), 152

NBlJH,d0pol
(Mmin
H ), 51

NBlJH,d0pol
(
∮
H), 51

NBlJHp,d0polp
(Mmin
Hp ), 342

NBlJHp,d0polp
(
∮
Hp), 342

NBlJH′,d0pol′ (M
min
H′ ), 52

neat, xiii, 4
Néron model, 127, 148, 165, 166, 214
Néron–Severi group, 538
nerve, 517, 518, 566

spectral sequence, 524, 561
non-ord, 410
nondegenerate cone, 16
nonemptiness of ordinary locus, xii,

xxvi, xxx, xxxi, 217, 415–416
nonordinary locus, 410
normal morphism, 392

NS(~Nord,grp/~Mord
H ), 538

NS(~Nord/~Mord
H ), 538

ν, 2, 176
ν−1,n0 , 249

νord
−1,pr , 238, 249, 259

νord
−1,pr,S , 238

ν(αHn0
), 181

ν(αord
Hp ), 189

ν(αord
Hord
pr

), 187

ν(αn0
), 180

ν(αord
pr ), 186

ν(g), 2, 176
ν(Hn0

), 181
νord
Hp , 189

νord
Hord
pr

, 187

ν̂, 171
ν̂−1,s̄, 60
ν̂p−1,s̄, 351

ν̂\s̄, 59
ν̂ord
s̄ , 190, 204, 211
ν̂ps̄ , 181

ν̂p,\s̄ , 350, 351
νn, 68, 69
νn0 , 180, 360
ν\n0

, 347
νpr , 203

ν\,ord
pr , 347

νord
pr , 186, 187, 203, 218, 234, 247,

248
νord,O
pr , 212

νord
pr,S , 218, 238

ν̃, 417, 421

O, 2
O(1), 48, 376, 386
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Oaux, 128
O′aux, 128
(Oaux, ?aux, Laux, 〈 · , · 〉aux, h0,aux),

xx, 128, 209
O-lattice, 2
O-multi-rank, 9, 49, 387
O′, 7, 26, 175, 417, 544, 551
(O, ?, L, 〈 · , · 〉, h0), xiii, 2

(O, ?, L̃, 〈 · , · 〉̃ , h̃0), 28
OUσ , 562–564
O+

Uσ
, 563–564

OUτ̆ , 510, 512–513
OUτ̆ , 510, 512
O0+

Uτ̆
, 510, 512

O+
Uτ̆

, 511–512

O++
Uτ̆

, 511–512

O0+
X , 506

O+
X , 506

O+
X , 563

O++
X , 506

i, 3
ωAgaux,daux,n

, 128
ωAg,d,n,n , 128
ω ~B , 378

Ω
1
~Mord,tor
H /~S0,rH

, 535

Ω
1
~Nord,tor/~Mord,tor

H
, 447

Ω
•
~Nord,tor/~Mord,tor

H
, 448

Ω
1
~Nord,tor/~S0,rH

, 535

Ω
1

Ntor/Mtor
H

, 94

Ω
•
Ntor/Mtor

H
, 95

Ω
1

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
/~Ξ

ord

ΦH,δH,ΣΦH ,rκ

, 499

Ω
1

~̂
Ξ

ord

Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
/~Ξ

ord

ΦH,δH,ΣΦH
×

~Cord
ΦH,δH

~̂
C

ord

Φ̆Ĥ,δ̆Ĥ

,

499
Ω

1

Ξ̂Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

/ΞΦH,δH,ΣΦH
, 87

Ω
1

Ξ̂Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ

/(ΞΦH,δH,ΣΦH
×

CΦH,δH

ĈΦ̆Ĥ,δ̆Ĥ
)
,

87
Ω̂1
S/~S0,rH

, 220, 307

Ω̂1
S/~S0,rH

[d log∞], 307

♥ω, 378
ω~MH , 144, 153, 583

ω~Mord
Haux

, 227, 228

ω~Mord,tor

Haux,Σord
aux

, 371, 375

ω~Mtor
H,d0pol

, 151

ω~Mmin
H

, 146, 153, 375, 376, 590

ω~Mord
H

, 227, 228, 386, 550

ω~Mord,min
H

, 376, 386, 388, 390

ω~Mord,tor
H

, see also ω~Mord,tor

H,Σord
, 386

Ω1
~Mord,tor
H /~S0,rH

[d log∞], 326, 447

ω~Mmin
H,rH

, 388

ω~Mord,tor

H,Σord
, xxiii, 339, 369, 371, 375,

376, 488
ωMtor

Gaux(Ẑp),Σ
p
aux

, 375

ωMH , 48, 119, 141
ωMHaux

, 141
ωMmin
Haux

, 142, 143

ωMHpaux
, 141

ωMmin
Hpaux

, 142, 143, 408

ωMtor
Hpaux,Σ

p
aux

, 141

ωMtor
Hpaux

, see also ωMtor
Hpaux,Σ

p
aux

, 408

ωMtor
Haux,Σaux

, 141

ωMmin
H

, 48, 142, 143
ωMtor
Hp,Σp

, 339

ωMmin
H,rH

, 388

ωMtor
H,Σ

, 141

ω′Mtor
H,Σ

, 141

ωMtor
H

, 48, see also ωMtor
H,Σ

, 122

Ω1
Mtor
H /S0

[d log∞], 45, 94

ω~Nord,tor
κ

, 488

Ω1
~Nord,tor/~S0,rH

[d log∞], 447

Ω1
Ntor/S0

[d log∞], 94

Ω̃1
R/OF0,(p)[ζprH ], 313

Ω̃1
S/~S0,rH

, 313

Ω̃1
S/~S0,rH

[d log∞], 313

openness of versality, 315–316
ord, 423
ordinary abelian scheme, xxi, 159,

189, 209, 219, 291, 406
ordinary cusp, xix, 387
ordinary cusp label, 179, 419
ordinary good algebraic model,

313–315
ordinary good formal model, 310–311
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ordinary Hecke twist, 192, 193
by G1,Z(A∞,p)×Pord

1,Z,D(Qp), 356

by G(A∞,p)×Pord
D (Qp), 200–202,

331, 333, 450
by G(A∞,p)×Pord

D (Qp), 451

by Gh,Z(A∞,p)×Pord
h,Z,D(Qp), 345

by GZ(A∞,p)×Pord
DZ (Qp), 345

by Pord
D (Qp), 191–200

by Pord
D (Zp), 192, 199

by PZ(A∞,p)×Pord
Z,D (Qp), 364

by
(PZ(A∞,p)×Pord

Z,D (Qp))/U2,Z(A∞),
357

by P′Z(A∞,p)×Pord,′
Z,D (Qp), 364

by power of p, 192, 199
by Up operator, 193, 200, 336

generalized, 193
ordinary Kuga family, xix, xxv, 439

extended, 442
generalized, xix, xxv, 439
partial toroidal compactification,

xix, xxv, xxvii, 442–460
ordinary level structure, xvii, xxi,

185–191
naive, see also naive ordinary level

structure
symplectic-liftability condition,

187, 188
of type (L⊗

Z
Zp, 〈 · , · 〉, D), 188

lifting, 190
principal, 187

of type (L⊗
Z
Zp, 〈 · , · 〉, Z⊗

Ẑ
Zp, D),

349
principal, 347

ordinary level-H structure datum

of type (L⊗
Z
Ẑ, 〈 · , · 〉, D), 261

ordinary level-n structure datum
of type (L/nL, 〈 · , · 〉, Dpr )

naive, see also naive ordinary
level-n structure datum

of type (L⊗
Z
Ẑ, 〈 · , · 〉, D), 252

orbit of étale-locally-defined,
261

ordinary locus, xii, xvi–xx, xxii,
215–218

full, xxvi, xxvii, 410

nonemptiness, xii, xxvi, xxx, xxxi,
217, 415–416

ordinary pre-level-n structure datum
of type (L/nL, 〈 · , · 〉, Dpr )

naive, see also naive ordinary
pre-level-n structure datum

of type (L⊗
Z
Ẑ, 〈 · , · 〉, D), 252

ordinary semi-abelian scheme, 159,
260, 406

[p−r0gp,−1]ord, 193, 201
[p−r0gp,0]ord, 194

[p−r0g−1
p,#,0]ord, 195

P0, 116
P0(R), 116
Pord

1,Z,D(R), 179, 425
PA, 4, 170

~pord
ΦH,δH , 378, 564
PB , 66
Pord
D,0 , 545

Pord
D,0 (R), 545

Pord
D , xvii, 176

Pord
D (R), 176

Pess
Dpr

, 257

Pord
DZ , 344

Pord
DZ (R), 344

p-divisible group
attached to abelian variety, 170
connected part, 160, 170
Dieudonné–Manin classification,

160
étale, 160
étale part, 170
multiplicative-type, 160, 161
multiplicative-type part, 170

Pord,′
h,Z,D(R), 179, 425

Pord
h,Z,D(R), 179, 425

(Pord
h,Z,D n U1,Z)(R), 179

P̂ord
1,Z̆,D

(R), 425

P̂ord
D (R), 424

P̂ord,′
h,Z̆,D

(R), 425

P̂ord
h,Z̆,D

(R), 425

P̂′˘̀<0+
, 522

P̂′˘̀<0
, 522

P̂′˘̀≤0
, 522
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P̂Φ̆Ĥ
, 35, 419

P̂+

Φ̆Ĥ
, 35, 92, 419, 443

P̂′, 522

P̂ord,′
Z̆,D

(R), 425

P̂ord
Z̆,D

(R), 425

P̂′
Z̆
(R), 42

P̂Z̆(R), 41, 42, 425
P′`<0, 566
P′`≤0, 566
Pm

MH/S0
, 5

PΦ̆Ĥ
, 33

P+

Φ̆Ĥ
, 33

PΦ̆H̃
, 33

P+

Φ̆H̃
, 33

PΦH , 16, 33, 291
PΦHaux

, 136

P+
ΦHaux

, 136

PΦ‡H
, 47, 327

P∨ΦH , 379

P∨,+ΦH
, 569

P+
ΦH

, 291
PΦ̃H̃

, 33

P+

Φ̃H̃
, 30, 33, 429

P′, 566
[pr0 ], 193, 201
[pr0g−1

p,−1]ord, 194

[pr0g−1
p,0]ord, 193, 201

P̃ord
1,Z̆,̃D

(R), 425

P̃ord
1,̃Z,̃D

(R) = P̃ord,′
Z̃,̃D

(R), 424

P̃ord
D̃

(R), 424

P̃ord,′
Z̆,̃D

(R), 425

P̃ord
Z̆,̃D

(R), 425

P̃Z̆(R), 425

P̃ord
Z̆,̃Z,̃D

(R), 425

P̃Z̆,̃Z(R), 42, 426

P̃Z̆,̃Z(R)/Ũ2,Z̆(R), 43

P̃Z̃, 29

P̃ord,′
Z̃,̃D

(R), 424

P̃ord
Z̃,̃D

(R), 424

P̃′
Z̃
(R), 29, 424

P̃Z̃(R), 29, 424

Pord,′
Z,D (R), 179, 425

Pord
Z,D (R), 179, 425, 426

Pess
Zn

, 254
Pess
Zpr ,Dpr

, 257

Pess,ord
Zpr ,Dpr

, 257

P′Z(R), 12, 42
PZ(R), 11, 12, 42
PZ(R)/U2,Z(R), 43
partial canonical subgroup, 208
partial minimal compactification, xii,

xviii
base change properties, 391–395

of ~Mord
Haux

, 372

of ~Mord
H , 386–391

partial toroidal compactification, xii

of ~Mord
Haux

, 371

of ~Mord
H , xviii, xxvii, 324–330

of ordinary Kuga family, xix, xxv,
xxvii, 442–460

PEL datum, 2
integral, xiii, 1, 2

auxiliary choice, xx
PEL-type Shimura variety, 7
Φ, 9, 31
φ, 9, 31, 140, 232, 308
φ, 292
ϕ−1,H, 54, 60, 263, 281, 290, 308
ϕ−1,Hκ , 108
ϕord
−1,Hκ , 470

ϕ−1,Hn , 263
ϕ−1,Hn0

, 255

ϕord
−1,Hn

, 260

ϕord
−1,H, 261, 308

ϕ−1,Hp , 277, 290, 295, 308, 516

ϕ‡−1,Hp , 322

ϕord
−1,Hp , 277, 290, 295, 308, 349, 352,

516
ϕord,‡
−1,Hp , 322

ϕ−1,Hpr , 265

ϕord
−1,Hord

pr
, 259, 265

ϕ−1,n0 , 249, 255, 269, 347
ϕord
−1,n, 249, 346

ϕ−1,pr , 265
ϕord
−1,pr , 237, 238, 249, 259, 269, 347

ϕord,0
−1,pr , 238, 249, 259
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ϕord,#,0
−1,pr , 238, 241, 249, 259

ϕord,0
−1,pr,S , 238

ϕord,#,0
−1,pr,S , 238

ϕ−2, 9, 31

ϕ
(g)
−2, 24

ϕ−2,H, 293

ϕ−2,H, 54, 261, 263, 308
ϕ−2,H(G), 305

(ϕ∼−2,Hn0
, ϕ∼0,Hn0

), 255

ϕord
−2,Hn

, 260

(ϕ∼−2,Hn
, ϕ∼0,Hn), 263

ϕord
−2,H, 277, 290, 295, 308, 352, 516

ϕ−2,Hord
pr

, 265

ϕord
−2,Hord

pr
, 259, 266

(ϕord,#

−2,Hord
pr

)mult
S , 265, 266

(ϕord
−2,Hord

pr
)mult
S , 265, 266

(ϕ#

−2,Hord
pr

)mult
S , 265

(ϕ−2,Hord
pr

)mult
S , 265

(ϕ∼−2,Hpr
, ϕ∼0,Hpr ), 265

ϕ̃−2,H̃, 418

(ϕ∼−2,H, ϕ
∼
0,H), 54, 61, 263, 281, 290,

308
ϕ−2,n, 9, 250, 346
ϕ−2,n0

, 255, 347

(ϕ−2,n)mult
η , 250

ϕ−2,pr , 235, 237, 259, 265, 347

(ϕ−2,pr )
mult
η , 235

ϕ#
−2,pr , 235, 237, 265

(ϕ#
−2,pr )

mult
η , 235

(ϕ#
−2,pr )

mult
S , 238, 250, 265

(ϕ−2,pr )
mult
S , 237, 250, 265

ϕ#
−2, 60, 351

ϕ0, 9, 31

ϕ
(g)
0 , 24

ϕ
0,H, 293

ϕ0,H, 54, 261, 263, 308
ϕ

0,H(G), 305

ϕord
0,Hn

, 260

ϕord
0,H, 277, 290, 295, 308, 352, 516

ϕ0,Hord
pr

, 265, 266

ϕord
0,Hord

pr
, 259, 266

ϕ0,n, 9, 250, 346

ϕ0,n0
, 255, 347

ϕ0,pr , 235, 237, 259, 265, 347
ϕ0,pr,S , 238
Φaux, 135
φaux, 134
ϕaux,−2, 134
ϕaux,0, 134

Φ̆, 31

φ̆, 31
ϕ̆−2, 31
ϕ̆−2,Ĥ, 32, 106, 468

ϕ̆0, 31
ϕ̆0,Ĥ, 32, 106, 468

Φ̆Ĥ, 32, 427

[(Φ̆Ĥ, δ̆Ĥ)], 38, 420

(Φ̆Ĥ, δ̆Ĥ, τ̂), 92, 443

[(Φ̆Ĥ, δ̆Ĥ, τ̂)], 38, 92, 443

(Φ̆H̃, δ̆H̃, τ̆), 31

[(Φ̆H̃, δ̆H̃, τ̆)], 31

φ−1
D , 171, 175
φ0
D−1,pr

, 236, 238–239

φ0
D, 175, 347
φD,0, 544

φ−1
D,0, 543

φ0
D,0, 544

(φ0
D)mult
s , 171

φ0
Daux

, 210

φ−1
D,pr , 175

φ0
D,pr , 175, 185, 186, 234, 265

φ‡, 46, 321, 327
Φ(g), 23
φ(G), 305

φ(g), 24
ΦH, 293, 305
ΦH, 10, 263, 269, 308
ΦHaux

, 135
ΦHpaux

, 136

Φ‡H, 46, 321, 327
(ΦH, δH), 11, 49
[(ΦH, δH)], 11, 49
[(ΦH, δH, σ)], 21, 44
ΦH(G‡), 46, 321, 327
ΦH(♦G), 307
Φ∼H, 281

ϕ̂‡
−1,Ĥ

, 106, 468
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ϕ̂ord,‡
−1,Ĥ

, 468

ϕ̂‡
−1,Ĥp

, 468

ϕ̂ord,‡
−1,Ĥp

, 468

ϕ̂−1,s̄, 60
ϕ̂p−1,s̄, 351

ϕ̂p,#−1,s̄, 351

ϕ̂#
−1,s̄, 60

(ϕ̂‡,∼
−2,Ĥ

, ϕ̂‡,∼
0,Ĥ

), 106, 469

ϕ̂ord,‡
−2,Ĥ

, 469

ϕ̂ord,‡
0,Ĥ

, 469

Φn, 9, 269, 346
φn, 271
φpr , 243

Φ̃, 29

φ̃, 29, 418
ϕ̃−1,H̃, 102, 461

ϕ̃‡
−1,H̃

, 106, 468

ϕ̃ord
−1,H̃

, 461

ϕ̃ord,‡
−1,H̃

, 468

ϕ̃‡
−1,H̃p

, 468

ϕ̃ord,‡
−1,H̃p

, 468

ϕ̃ord,0
−1,pr , 240

ϕ̃ord,#,0
−1,pr , 240

ϕ̃−2, 29

(ϕ̃‡,∼
−2,Ĥ

, ϕ̃‡,∼
0,Ĥ

), 106

ϕ̃−2,H̃, 30, 102, 461

(ϕ̃‡,∼
−2,H̃

, ϕ̃‡,∼
0,H̃

), 106, 468

ϕ̃ord
−2,H̃

, 461, 516

ϕ̃ord,‡
−2,H̃

, 468

(ϕ̃∼
−2,H̃

, ϕ̃∼
0,H̃

), 102, 461

ϕ̃0, 29
ϕ̃0,H̃, 30, 102, 418, 461

ϕ̃ord
0,H̃

, 461, 516

ϕ̃ord,‡
0,H̃

, 468

φ̃‡, 106, 467

Φ̃H̃, 30, 418
physical Tate module, 170, 214

π0(
...
C

ord,grp
ΦH,n

/
...
M

ord,ΦH
H ), 279

π0(
...
C

ord
ΦH,n/

...
M

ord,ΦH
H ), 278

π0(
...
C

ord,◦◦◦
Φn

/
...
M

ord

n ), 272

π0(
...
C

ord
Φn /

...
M

ord

n ), 271, 272

π0(
...
C̃

ord,ext

n /~Mord,tor
H ), 496

π0(
...
C̃

ord,ext

/~Mord,tor
H,rκ ), 493

π0(HomO(N,Z)/U), 163

π0(HomO(N,Z)/U), 168

π0(Ws̄), 161

π0(W/U), 162

Pic0(N/~Mord
H ), 440

Pic0(N/MH), 90

Poincaré

biextension, 273

invertible sheaf, 4, 66

pol, xiv, xvi, 19, 50

polaux, 372

polord
aux, 372

polord, xix, 317, 403

polord,(H′), 404

polp, 338, 341

polΦH , 17, 19, 50, 317

polarization function, xiv, xvi, xix,
17

convexity, 18

polarization type, 181

positivity condition, 233, 295, 321,
511, 540

pr(ŜΦ̆Ĥ
)∨R

, 35, 419

pr(ŜΦ̆Ĥ
)∨R

(τ̆), 36

prime

bad, see also bad prime

good, see also good prime

principal bundle

canonical extension, 120, 121, 554,
555

for G0, 116, 120

for Gord
D,0 , 547, 554, 580

for M0, 117, 121

for Mord
D,0 , 548, 555, 580, 581

for P0, 117, 120

for Pord
D,0 , 547, 555, 580, 581

principal cusp label, 10

principal level structure

of type (L⊗
Z
Ẑp, 〈 · , · 〉), 180
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of type (L⊗
Z
Ẑp, 〈 · , · 〉, Z⊗

Ẑ
Ẑp),

347, 360

of type (L⊗
Z
Ẑ, 〈 · , · 〉, Z), 57, 69

Proj, 48, 142, 143, 146, 151,
340–342, 369–372, 375, 387,
391–393, 399, 488

Proj
S

, 391

projection formula, 152, 370, 377,
391, 527–529, 531, 535, 537,
569, 587, 590, 591, 596, 597

projective
admissible rational polyhedral

cone decomposition, 18
projectivity

of Mtor
H , 51

~Ψord
ΦH,δH

(`), 291, 361
relative ampleness, 574

~Ψord
ΦH,δH

(`)K , 293
~Ψord

ΦH,δH
(`)R, 293

~̂
Ψ

ord

Φ̆Ĥ,δ̆Ĥ
(˘̀), 430, 474

Ψ̂Φ̆Ĥ,δ̆Ĥ
(˘̀), 80

Ψord
n (`), 273

ΨΦH,δH(`), 70
ΨΦn,δn(`), 69

~̃
Ψ

ord

Φ̆H̃,δ̆H̃
(˘̀), 429, 463

~̃
Ψ

ord

Φ̃H̃,δ̃H̃
(˜̀jQ), 540

Ψ̃Φ̆H̃,δ̆H̃
(˘̀), 79

Q, 26, 88, 417
Q−2, 27, 417
Q0, 27, 417
Q∨, 26
q-expansion, 15
(Qp/Zp)S , 160
quasi-projectivity

of ~Cord
ΦH,δH

, 289

of [~MH], 144, 145

of ~Mord
H , 228

of ~Mord,min
H , 370, 373, 376

of ~Mord,ΦH
H , 289

of ~Mord,tor
H , 404

of ~Mord,ZH
H , 289

of [MH], 4, 91

of [MHaux
], 129

of ~Nord,tor
κ , 443

of ~Nord,tor
κ̃ , 463

of ~Ξord
ΦH,δH

, 289

R0, 543, 559
R̃0, 543
Ralg, 314
~Rord
H , 318, 323
~R

ord,[0]
H , 320
rD, xvii, 215
rH, xvii, 215
rHaux , 372
rĤG

, 418
rHκ , 442
rH̃, 417, 418

r(j\, j∨,\), 59, 350
r(j\, j∨,\)s̄, 59, 351
rκ, 442
rn, 431
rν , 202, 215
rν(Haux), 372
rν̃ , 417
RQ, 580

R̃Q, 580
radical

admissible, 16
rational boundary component, 7, 20,

21, 23
rational level structure

of type
(L⊗

Z
A∞,p, 〈 · , · 〉, Z⊗

Ẑ
A∞,p,Φ),

350
based at s̄, 350

of type
(L⊗

Z
A∞, 〈 · , · 〉, Z⊗

Ẑ
A∞,Φ), 59

based at s̄, 59
rational polyhedral cone, 16
reflex field, xiii, 3, 28, 129
regular singularity, 120
relative de Rham cohomology, 4, 90,

441, 558
relative de Rham homology, 4
relative Frobenius morphism, 189,

200, 225, 336, 406, 456
relative scheme, 43, 46, 218, 295, 326
relative Verschiebung morphism, 406
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relatively representable functor, 227,
338

RepR0
(Mord

D,0,fil), 576

RepR(G0), 118
RepR(Gord

D,0 ), 549

RepR(M0), 118
RepR(Mord

D,0 ), 549

RepR(P0), 118
RepR(Pord

D,0 ), 549
ρ, 71, 362
ρ̆, 81, 431
ρ∨, 71, 362
ρ̂, 81, 431
ρ̂⊥, 82, 432
ρ̂-stratum, 81
Rosati condition, 59, 170, 350

S0, 232
S0, xiii, xx, 3
S0,aux, 129
S0,i, xvi, 155
S0,rH , xvii, xxii, 215
S0,rν , 202, 215
(S1), 589–590
(S2), 589
~S0, xv, 143
~S0,aux, xx
S0,aux, 129
~S0,aux,r, 371
~S0,i, xvi, 155
~S0,rH , xvi, xviii, xxi, 216
~S0,rH̃

, 426, 461
~S0,rκ , 442, 461
~SD, 213
~SD,tor, 213
~SD,Z, 213, 216
~SD,Z,free, 216
~SD,Z,tor, 213, 216
~∮
H, 151, 588

~∮ ord

Haux
, 372

~∮
H,i, 156

[~
∮ ord

H ], 378

~∮ ord

H , 342, 370, 387, 561
formal fiber, 561–565

~∮ ord

H,Σ, 389
...
SΦ1 , 288
...
S

ord
Φ1

, 288
...
S

ord
ΦH,n,free, 280

...
S

ord
ΦH,n, 280

...
S

ord
ΦH,n,tor, 280

...
SΦn , 15...
SΦn0

, 273, 288
...
SΦn,free, 15
...
S

ord
Φn,free, 273

...
S

ord
Φn , 273

...
S

ord
Φn,tor, 273

Sfor, 306∮
H, 48, 588∮
Hp , 340

ŜΦ̆1
, 79, 429

Ŝ∨
Φ̆1

, 79, 429

ŜΦ̆Ĥ
, 35, 79, 419, 429

Ŝ∨
Φ̆Ĥ

, 79, 429

(ŜΦ̆Ĥ
)∨R , 35, 419

SΦ̆H̃
, 32

(SΦ̆H̃
)∨R , 33

SΦH , 15, 32, 70, 280, 359, 361
SΦH

, 293

SΦHaux
, 136

S∨ΦHaux
, 136

SΦHpaux
, 136

S∨ΦHpaux

, 136

(SΦHpaux
)Q, 136

(SΦHpaux
)∨Q, 136

(SΦHpaux
)∨R, 136

(SΦHaux
)Q, 136

(SΦHaux
)∨Q, 136

(SΦHaux
)∨R, 136

SΦ‡H
, 46, 321, 327

S∨ΦH , 16, 291
SΦH(G), 305
SΦH(G‡), 46, 321, 327

SΦH(♦G), 307

(SΦHaux
)Q, 136

(SΦH)∨R , 16, 33, 291
SΦH,σ, 49
SΦn , 15
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SΦ̃H̃
, 32

(SΦ̃H̃
)∨R , 33

sX , 14
sX̆ , 31
sY , 14
sY̆ , 31
semi-abelian scheme

dual, 43, 218, 231, 442
ordinary, see also ordinary

semi-abelian scheme
semistable reduction theorem, 148

Serre dual, 161, 194
Serre–Tate deformation theory, xxii,

xxvii, 214, 221
Serre’s construction, 162–165

semi-abelian extension, 168–169
Serre’s criterion, 589
Serre’s lemma, 39, 134
ShH, 7
Shmin
H , 123

Shtor
H,Σ, 123

Shapiro’s lemma, 559, 561, 571
Shimura variety, 7
Siegel case, xxx
Siegel parabolic subgroup, xxxi
Σ, xiii, 19, 20, 44, 51
[σ], 566
σ, 16, 71
σ∨0 , 16
σ∨0+, 562
Σaux, 137, 372
σaux, 136
Σord

aux, xxiv, 371
Σpaux, xxiv, 137, 374
σpaux, 137
σ, 16
σ̆, 33, 79, 419, 429, 507
σ̆⊥, 79, 429

[σ]
cl

, 566
σcl, 565
σ‡, 47, 321, 327
σ∨, 16

Σ̂, 38, 91

Σ̂(Ĥ′′), 40

Σ̂ord, 420, 442

Σ̂Φ̆Ĥ
, 37, 92, 420, 443

ςn, 67
ς∨n , 67

Σord, xviii, 316, 317, 324, 403

Σord,(H′), 404
Σp, 337
ςpr , 245

ςord,−1
pr , 246

ςord,0
pr , 240

ςord,#,0
pr , 240

σ⊥, 16
ΣΦH , 17
ΣΦ‡H

, 47, 327

Σ+
ΦH

, 561

σ∨+, 562
σ-stratum, 49, 71, 294

Σ̃, 30, 76
σ̃, 30, 33, 79, 419, 429

Σ̃ord, 419, 420

Σ̃p, 483

Σ̃Φ̆Ĥ,σ̆
, 33

Σ̃+

Φ̆Ĥ,σ̆
, 33, 34

Σ̃Φ̆H̃
, 33, 420

Σ̃Φ̆H̃,σ̆
, 33, 419

Σ̃+

Φ̆H̃,σ̆
, 33, 419

Σ̃Φ̆H̃,σ̆,τ
, 507

Σ̃Φ̃H̃
, 30

sgn(h), 25
similitude character, 2, 176
similitude isomorphism, 209, 254
slope, 160
smooth cone, 17
split filtration, 8
standard form

subgroup of Ĝ(Ẑ), 418

subgroup of Ĝ(Zp), 417

subgroup of G(Ẑ), 177
subgroup of G(Zp), 177

Stein factorization, 279, 340, 343,
596

strictly compatible stratifications,
310, 311

subcanonical extension, xiv, xvi, xix,
xxv, 121, 556, 580, 584

submodule
admissible, 14, 16

supporting hyperplane, 16
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surjection
admissible, 14
cusp label, 14, 15

with cone decomposition, 19
symplectic condition

for (cn, c
∨
n), 56

for τn, 68
symplectic filtration, 8
symplectic isomorphism

similitude, 209, 254
symplectic-liftability condition

for level structure, 180
for ordinary level structure, 187,

188

T , 56, 58, 349, 516
T0, 232
T̆ , 79
T̆∨, 79
T∨, 56, 58, 349, 516
τn, 266
τord
n , 266

TpA, 214
TpA

∨, 214
TpAs, 170
TpA

∨
s , 170

TΦ̃H̃,ΦH
, 519

T̃~Nord
κ

, 478

T̃∨~Nord
κ

, 478

T̃~Nord,tor
κ

, 479

T̃∨~Nord,tor
κ

, 479

Tate module
physical, 170, 214

Tate twist, 1
τ (cone), 16
τ (trivialization), 66, 69, 140, 232,

273, 308, 360
compatibility with O-actions, 232
positivity, 232

τaux, 140
τ , 16
[τ̆ ], 517, 524
τ̆ , 33

[τ̆ ]
cl

, 517
τ̆ cl, 517
τ̆H̃, 84

τ̆ord
H̃

, 435

τ̆n, 81, 84
τ̆n0 , 435
τ̆ord
n , 435
τ̆∨σ̆ , 508
τ̆∨σ̆,+, 508

τ ‡, 46, 108, 321, 327, 470
τH, 70, 263, 281, 290, 308
τHn , 263
τHn0

, 255, 256

τord
Hn

, 260

τord
H , 261, 277, 290, 295, 308, 435
τHp , 261
τord
Hp , 261

τord
Hord
pr

, 259, 266

τ̂ (cone), 38, 40, 422
τ̂ ‡, 107, 469
τ̂∨,‡, 107, 469
τ̂Ĥ, 80, 85

τ̂ ‡
Ĥ

, 108, 469, 470

τ̂∨
Ĥ

, 80, 85

τ̂∨,‡
Ĥ

, 108, 469, 470

τ̂∨,ord

Ĥ
, 429, 437

τ̂∨,ord,‡
Ĥ

, 469

τ̂ord
Ĥ

, 429, 437

τ̂ord,‡
Ĥ

, 469

τ̂ ‡
Ĥp

, 469

τ̂∨,‡
Ĥp

, 469

τ̂n, 80, 429
τ̂n0 , 430
τ̂∨n0

, 430
τ̂∨n , 80, 429
τn, 66
τn0

, 251, 256, 273, 435
τ∨n , 67
τord
n , 251, 273, 359, 435
τpr , 245

τord
pr , 248

τ∨+ , 508

τ̃ ‡, 106, 467

τ̃ ‡
H̃

, 106, 468

τ̃ord,‡
H̃

, 468

τ̃ ‡n, 107
theory of degeneration, xi, xiv, xx,

xxiii, xxvi, 231–269
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toroidal compactification
of Kuga family, xiv, 91–101
of MH, xiii, 44–47

projectivity, 51
universal property, 47

partial, see also partial toroidal
compactification

toroidal embedding, 15, 71, 82, 292,
432, 562

affine, see also affine toroidal
embedding

torus
isotrivial, 232

torus argument, 9, 32
at level H, 10
at level n, 9

equivalence, 10
total model, xv–xvi, xxv, 143–158,

228–229, 341–343, 374–375,
388–389, 396, 405, 408–414,
579–597

TrO/Z, 26
twisted Up type element, 205, 222
two-step degeneration, 15, 109, 470
type D, 3

Ubal
1 (n), 344
Ubal

1 (n)G1,Z
, 346

Ubal
1 (n)Gh,Z , 345

Ubal
1 (n)G′h,Z

, 345

Ubal
1 (n)P′Z

, 359
Uess

1,Zn , 254
Uess

1,Zpr ,Dpr
, 257

Uess,ord
1,Zpr ,Dpr

, 257

U1,Z(R), 12, 42
Uess

2,Zn , 254
Uess

2,Zpr ,Dpr
, 257

Uess,ord
2,Zpr ,Dpr

, 257

U2,Z(R), 12, 42, 426
~Uord
H , 318
construction, 318–320
stratification, 319

~U
ord,[0]
H , 320

~Uord
H /~Rord

H , 323

Ubal

p,1(pr), 257

Uord
D , 176

Uord,i
D , 176

Uord,i
D (R), 176

Uord
D (R), 176

Ûbal
1 (n), 429–430

Ûbal
1 (n)P̂Z̆

, 429

Û1,Z̆(R), 42, 425

Û2,Z̆(R), 42, 425

Ûord
D (R), 424

Û(n)P̂Z̆
, 80

Ûp,0(pr), 417

Ûbal
p,1 (pr), 417, 424

Ûp(n0), 429–430

Û(R), 29

ÛZ̆(R), 42, 425
U(n), 3
U(n)G1,Z

, 56
U(n)P′Z

, 66
U(n)U1,Z

, 55
U(n)U2,Z

, 66, 69

Uord(pr), 177
Up,0(pr), xvii, 177
Up,1,0(pr1 , pr0), 177, 224
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Ũp,0(pr)Ĝ, 417
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ŨZ̃(R), 29, 424
Uess

Zn
, 254

Uess
Zpr ,Dpr

, 257

Uess,ord
Zpr ,Dpr

, 257

UZ(R), 12, 42
unitary case

easier, xxxi
universal property

of ~Mord,tor
H , 326–328

of Mtor
H , 46–47

of M̃tor
H̃

, 101

of ~Ξord
ΦH,δH

(σ), 293–294

of ~Ξord
ΦH,δH

(σ)/ΓΦH,σ, 307–309
unramified prime, 3

V, 22
V−2, 22
V−i, 22
V0, 3, 115
V0,aux, 129
V c0 , 3
Vaux, 406
υτ‡ , 480
υτ̂‡ , 110, 471
υτ̂∨,‡ , 110, 471
υτ̃‡ , 110, 471
Verschiebung morphism

relative, 406

W , 118, 121, 122, 549, 555, 556, 558,
559, 572–574, 576–580, 585, 586,
589, 591, 592

W0, 590
WQ, 580

W̃Q, 580
Weil pairing, 180

X, 9, 31, 140, 308, 516
X, 232, 292
X, 7, 21
X0, 21
~Xord

ΦH,δH,ΣΦH
, 295, 446, 562

~Xord
ΦH,δH

, 295, 363, 446, 562

~Xord
ΦH,δH,ρ

, 436

~Xord
ΦH,δH,σ

, 295, 325, 363

(~Xord
ΦH,δH,σ

)∧x̄ , 390

~Xord
ΦH,δH,ΣΦH

, 363, 436

~Xord
ΦH,δH,σ,ρ

, 363

~Xord
ΦH,δH,τ

, 446, 513, 516

~Xord
ΦH,δH,τ,rκ

, 480
Xaux, 134
(Xaux, Yaux, φaux, ϕaux,−2, ϕaux,0),

135
X̆, 31, 79

(X̆, Y̆ , φ̆, ϕ̆−2, ϕ̆0), 31

(X̆, Y̆ , φ̆, ϕ̆−2,Ĥ, ϕ̆0,Ĥ), 32
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Φ̆Ĥ,δ̆Ĥ,Σ̂Φ̆Ĥ
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