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546 - Ch. 13

‘infinite Series

The convergence or divergence of a series can sometimes be deduced from the
convergence or divergence of a closely related improper integral.

Theorem 13.3.2 The Integral Test

If fis continuous, decreasing, and positive on [ 1, «),.then

i flk) converges iff f °°f(x) dx converges.
! i s .

k=1

PROOF. . fcontin-

uous, decreasing, and positive on [1, w) IMPLIES Sy

R i
f Fx) dx converges iff  the sequence { f Fie9) dx} COnVerges.
1 1 .

We assume this result and base our proof on the behavior of the sequence of inte-
grals. To visualize our argument see Figure 13.3.1. '
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FIGURrRE 13.3.1

Since f decreases on the interval [1, #],
el

F@ '+ -+ fln) s a lower sum for f on [1, k]
L -
and .
f(y+ - -« +f(n — 1) is an upper sum for fon[1, n].
Consequently

Q) f(Z)J.r e+ fm) < n'f(x) dx.-_-S'harid flnf(x)'axsf(l) e fln— s

D | : RS _
v W S, & S%P 5 1 If the sequence of integrals‘converges, it is bounded. By the first inequality the
v 2 +-(3(,,)5 )?ﬁ}(sequence of partial sums is bounded and the series is therefore convergent.

PRICAS ' Suppose now that the sequenéésgf’ integrals diverges. Since fis positive, the se-

 guence of integrals increases:

. fl " f) dx < fl " ) dx.

‘Since this sequence diverges, it must be unbounded. By the second inequality, the
sequence of partial sums must be unbounded and the series divergent. O
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- ~ GROUP WORK 2, SECTION 11.3
Y . Unusval Sums

In each of the following problems, determine if the sum converges, diverg
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