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Abstract

In this work we formulate the Multi-Element Probabilistic Collocation Method (ME-PCM)

as a tool for sensitivity analysis of differential equation models as applied to cellular signaling

networks. This method utilizes a simple, efficient sampling algorithm to quantify local sensitivi-

ties throughout the parameter space. We apply the ME-PCM to a previously published ordinary

differential equation model of the apoptosis signaling network. We first verify agreement with

the previously identified regions of sensitivity and then go on to analyze this region in greater

detail with the ME-PCM. We demonstrate the generality of the ME-PCM by studying sensitiv-

ity of the system using a variety of biologically relevant markers in the system such as variation

in one (or many) chemical species as a function of time, and total exposure of a single chemical

species.

1 Introduction

We introduce a general method of parametric sensitivity analysis that enables investigation of

deterministic and stochastic differential equations of cellular signaling networks. Parametric
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sensitivity analysis techniques are used to quantify the sensitivity of system outputs to uncer-

tainty in parameters. With these techniques it is possible to reveal the robustness or fragility

of a system to variation in certain parameters; this may guide experimental design as well as

contribute to the knowledge of a biological system. Many parameter sensitivity analysis tech-

niques have been developed for mathematical models of cellular signaling networks as well as

for metabolic control analysis (MCA)[1]. Local (gradient-based) parameter sensitivity analysis

techniques have been used to identify important parameters in dynamic models of signal trans-

duction (e.g. [2], [3], [4]) and in metabolic pathways ([5], [4], [6]). These methods all utilize

similar gradient-type measures of sensitivity, wherein the sensitivities are defined as derivatives

or a normalized change in output per normalized change in input. Recently, more attention has

been focused on extending these gradient-based techniques for analyzing sensitivities for non-

steady state trajectories ([7], [8]). In many systems it is the transient or oscillatory behaviour

which is of primary interest, such as in signal transduction networks. In ([9]) the authors de-

velop a novel method for studying signal-response systems where transient signals determine

the biological outcome using Direct finite-time Lyapunov exponents (DLEs). Some additional

extensions of metabolic control analysis techniques to non-steady behaviour have appeared in

the literature (e.g. in [5]).

Local sensitivity analysis techniques evaluate slopes of the system outputs with respect to

each parameter at a particular point in the parameter space. By introducing stochasticity

in these parameters, we can quantify the sensitivity of the system to these parameters by

calculating statistical properties of the outputs. Then, the sensitivity of the of a system output

with respect to the parameter can be measured using statistical or probabilistic analyses of

this stochastic system. Thus, stochastic methods present an alternative to local gradient-based

techniques and are philosophically different in their definition of sensitivity as we further address

in the Discussion. Several stochastic Monte Carlo-type sampling methods have been applied

to sensitivity analysis of biological systems (e.g. [10], [11], [12]). These methods are robust

and provide important information about system sensitivity, but are often too computationally

intensive for studying complex systems where the cost of computing a sufficient number of

samples is intractable.

In this paper we propose a general stochastic method, called the Multi-Element Probabilistic

Collocation Method (ME-PCM) ([13]), for sensitivity analysis in large-scale cellular signaling

2



networks. It is based on stochastic spectral methods, a class of numerical methods widely

used in engineering applications ([14, 15, 16, 17]) and more recently in biological systems ([18])

in a gradient-based sensitivity approach. In the ME-PCM, uncertain parameters are cast as

stochastic quantities in the system and sensitivity of the output is measured in terms of local

statistical moments in multidimensional sub-regions of the parametric space. Local variances

of the system output provide novel information about the spread of the system outcomes due

to simultaneous parameter variation throughout each sub-region. If the variance is low, the

system is robust to changes in this parameter sub-region; if the variance is high, the system is

highly sensitive in this region, perhaps indicating that further experimental efforts should be

focused in this area. The ME-PCM, also an algorithmically simple sampling method like Monte

Carlo, has been shown to be much more computationally efficient than Monte-Carlo due to a

‘smart’ choice of sampling points ([13]). With the ME-PCM we can additionally contribute

time-varying sensitivity analysis for systems whose output is determined in transience. Another

attractive feature of the ME-PCM is its ability to simultaneously study a variety of measures

of sensitivity.

In this manuscript, we apply the ME-PCM to the study of a previously published model of

the apoptosis signaling network ([9]). The model we study is a key sub-network in the cellular

signaling network determining if a cell should undergo programmed cell death when confronted

with a death ligand. In Section 2 we develop the ME-PCM and demonstrate ways of using it

to study the sensitivity of the system to a variety of biologically relevant quantities including

variation in any number of chemical species concentrations in time, and exposure to individual

chemical species. In Section 3 we introduce the model of the apoptosis signaling network and

first demonstrate the ME-PCM identifies a similar region of sensitivity as previously reported in

[9]. We go on to illustrate the strength of our method; with minimal additional computational

effort, we are able to study the region of sensitivity as it emerges and evolves in time as well as

the sensitivity of other biologically relevant quantities. We demonstrate that by studying the

contribution of each variable to the sensitivity allows us to determine the single variable that

contributes the most to the overall global sensitivity. In Section 4 we discuss the advantages

and limitations of the ME-PCM, applications to studying biological systems and comparisons

between our approach and gradient-based approaches such as the one used in ([9]). In the

Appendix, we establish a mathematical connection between variance-based and gradient-based
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approaches to sensitivity analysis.

2 Sensitivity Analysis Using the Multi-Element Prob-

abilistic Collocation Method

We begin by describing the Multi-Element Probabilistic Collocation Method (ME-PCM) ([13]),

and its application to sensitivity analysis in biological systems. The ME-PCM is an outgrowth

of the probabilistic collocation method originally introduced in ([19]) for finding statistical mo-

ments of solutions to partial differential equations with random parameters. It is essentially a

sampling method, similar to Monte Carlo methods in implementation but with additional pre-

and post-processing procedures. Instead of randomly sampling the parameter space, the ME-

PCM uses domain decomposition and numerical quadrature rules to sample more efficiently.

The inherent generality of the ME-PCM allows us to calculate the sensitivity of a large variety

of biologically relevant quantities, and to locate regions of high sensitivity within the parameter

space. In the following we describe the process of using this method for sensitivity analysis of

a model problem and give some example measures of sensitivity.

For clarity, we formulate the ME-PCM here in the context of studying the sensitivity of

a general system of ODEs describing a biochemical system to varying initial conditions and

parameters. However, this method is applicable for sensitivity analysis of general PDE and

ODE systems with general parametric inputs. Thus, it can be viewed as a sensitivity analysis

tool for general differential equation models of biological systems and cellular signaling networks,

including systems with spatial dependence and diffusion, for example.

Consider a general model system of equations representing the biochemical pathways of a

cellular signaling network with N molecular species. Define x(t) to be a vector of concentra-

tions of each molecular species as a function of time (x1(t), x2(t), ..., xN(t)) where xi(t) is the

concentration of the i-th chemical at time t. The ODE model describing the chemical kinetics

of this system is given by:

ẋ(t) = f(x, x0, t) (1)

where x0 = (x1(0), x2(0), ..., xN (0)) denotes the initial conditions of the system. Suppose we

are interested in studying the sensitivity of this system to its initial conditions within defined

ranges. The initial condition of each chemical xi is assumed to vary on an interval [ai, bi],
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and Γ =
QN

i
[ai, bi] is defined to be the space of all possible initial condition combinations (i.e.

parameter space). Now, define Yi to be a uniform random variable on the Γi for each i = 1, .., N

and let Y = (Y1, Y2, ..., YN ). We are interested in quantifying the sensitivity in the following

stochastic system:

ẋ(t) = f(x(t), Y , t). (2)

Since the parameters Y are stochastic, the dependent variables x1(t), ..., xN (t) are all stochastic

as well. In fact, we will explicitly refer to to this dependence as xi(t, Y ) often in this paper.

The ‘random dimension’ of the system is defined to be the dimension of the parameter space

Γ, or N in this example. The same formulation can also be used to study sensitivity to varying

other parameters such as rate constants, by setting them to be random parameters as well.

Using this setup, we next describe the ME-PCM procedure in three steps. During the pre-

processing step, the parameter space is discretized and a set of sampling points is chosen. Next,

mathematical markers are chosen to characterize biologically relevant quantities. In the last

step, the sensitivity of these quantities is evaluated in each region of parameter space.

2.0.1 Step 1: Preprocessing

We first decompose the parameter space Γ into Ne nonoverlapping rectangular elements {Bi}Ne

i=1.

In each element Bi, we choose a set of r points {qi
j}

r
j=1 and weights {wi

j}
r
j=1, which correspond

to a numerical integration (or quadrature) rule over the element such that:

r
X

j=1

g(qi
j)w

i
j ≈

Z

Bi

g(x)dx (3)

for g in a class of functions specified by the quadrature rule. These quadrature points will

prescribe the sampling locations later in the procedure. We consider two main types of multi-

dimensional numerical integration rules: tensor-product Gaussian quadrature rules, and Smolyak

sparse grid quadrature rules ([20]). A brief introduction to Smolyak sparse grid rules and some

details about choice of quadrature rules are given in the Appendix 6.2. In Figure 1 we show

examples of meshes with prescribed quadrature points for two-dimensional (N = 2) parameter

space Γ.
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Figure 1: Left: Tensor-product Gauss-Legendre quadrature grid in N = 2 dimensions with a 4-element
uniform mesh. Right: Clenshaw-Curtis Smolyak sparse quadrature grid in N = 2 dimensions with a 4-
element uniform mesh. The solid lines denote the boundaries between elements.

2.0.2 Step 2: Characterize biological markers

The next step is to develop mathematical metrics, or markers, that characterize the biological

outcomes of interest. These metrics can depend on the solution itself, x, as well as temporal

and spatial variables. The inherent generality of these metrics is one of the strengths of the ME-

PCM since we can calculate the sensitivity of a large variety of biologically relevant quantities.

Determining the sensitivity of these metrics to varying parameters is described in the third step

of the ME-PCM procedure. Below we provide three example metrics that are relevant in most

cellular signaling networks.

Metric 1 - System sensitivity. Here, we are interested in determining the overall sen-

sitivity of the system to random initial conditions. In this case, we may define the sum of the

variance of all molecular species concentrations to be a measure of system sensitivity in each

element SBi at time t. Recall that the variance of a uniform random variable X on a (possibly

multidimensional) interval I is the expected value of X2 minus the squared expected value of

X. Also recall that the expected value of a function v(X) is given by:

E[v(X)] =
1

vol(I)

Z

I

v(y)dy

where the 1

vol(I)
arises as the probability density function of X. Let vol(Bi) denote the volume

of the element Bi. Using the above formulation and the numerical integration rule set in (3),
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we may now write an approximate expression for SBi :

S[Bi](t) ≡
N
X

j=1

VarBi [xj(t, Y )] =
N
X

j=1

`

E[xj(t, Y )2] − E[xj(t, Y )]2
´

(4)

=

N
X

j=1

 

1

vol(Bi)

Z

Bi

x
2
j(t, y)dy −

„

1

vol(Bi)

Z

Bi

xj(t, y)dy

«2
!

,

where VarBi denotes the variance of a random quantity over Bi.

Since this metric sums over the variances of all N species, it reflects a measure total sensitivity

of the system to parametric variation. Thus we expect the sensitivity results obtained using

this metric to correspond loosely to those obtained using the DLE analysis in ([9]), although the

mathematical definition of system sensitivity in these two methods is substantially different.

Metric 2 - Molecular species-specific sensitivity. We might also be interested in

determining the sensitivity of individual protein concentrations in the system. To this end, the

sensitivity of the concentration xk in each element is defined as:

S[Bi
, xj ](t) ≡ VarBi [xj(t, Y )] ≡

1

vol(Bi)

Z

Bi

x
2
j(t, y)dy −

„

1

vol(Bi)

Z

Bi

xj(t,y)dy

«2

. (5)

This equation, similar to (4), defines the sensitivity as the variance of the random quantity

xk(t, Y ) over the element Bi. Likewise, analagous markers can be defined for all other proteins

in the system.

Metric 3 - Total exposure of a single molecular species. The total exposure of the

system to a particular molecular species may play an important role in system dynamics, espe-

cially in situations where irreversible decisions are made such as developmental or death/survival

signals. Mathematically, this amounts to the integration of the concentration of the molecu-

lar species xj in time. Denote this integrated quantity by f(Y , t) =
R t

0
xj(s, Y )ds; since the

concentration xj is a quantity with random dependence through Y , f also carries a random de-

pendence. We can define a marker to study the sensitivity of this integrated value f to random

initial conditions:

M [Bi
, I(xj)](t) ≡ E[f(Y , t)] =

1

vol(Bi)

Z

Bi

f(t, y)dy (6)

=
1

vol(Bi)

Z

Bi

Z t

0

xj(s,y)dsdy.
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Metric 4 - General user-defined outputs. Using the ME-PCM, it is possible to analyse

the sensitivity of many biological markers at once without additional sampling. The generality

of these markers or metrics allows the user to define sensitivity in terms of biologically relevant

quantities for each problem.

For example, higher moments such as variance, skewness and kurtosis of the integrated value

used in Metric 3 could be defined as sensitivity measures. The ‘skewness’ or normalized centered

third moment of the data effectively shows the propensity of a random quantity to be higher

or lower than the mean value. In a region where the mean is near a threshold, a negative

skewness would indicate a propensity to values above the mean. Figure 10 in the Appendix

shows examples of probability distribution functions with positive and negative skewness.

2.0.3 Step 3: Sampling and postprocessing

The main computational effort in the ME-PCM lies in the sampling step, in which the solution of

the problem (2) is computed with initial condition set to each quadrature point in each element.

The set of initial conditions (or samples) is given as {qi
j} for i = 1...Ne and j = 1...r where the

qi
j are prescribed by the quadrature rule in (3). Recall that r is the number of points in the

quadrature rule and Ne is the number of elements in the mesh; thus there are rNe sampling

points in total. The discretization used to compute the solution at each sample point is up to

the user; in this work we use MATLAB’s ode15s to discretize (2) as in ([9]).

After sampling, we obtain a set of solutions: {x(t, qi
j)} for i = 1...Ne and j = 1...r. We

next postprocess the solutions to obtain approximations to the markers chosen in step 2. Using

the numerical quadrature rules we have prescribed in each element, the moment integrals in the

marker definitions are approximated by weighted summations.

Metric 1 - System sensitivity. For example, we approximate the integrals in (4) using

the quadrature rule (3). Written explicitly, we have:

S[Bi](t) =

N
X

j=1

 

1

vol(Bi)

Z

Bi

x
2
j (t,y)dy −

„

1

vol(Bi)

Z

Bi

xj(t, y)dy

«2
!

(7)

≈

N
X

j=1

 

1

vol(Bi)

r
X

k=1

x
2
j(t, q

i
k)wi

k −

 

1

vol(Bi)

r
X

k=1

xj(t, q
i
k)wi

k

!2!

where the integrals from the expected value have been approximated by numerical quadrature
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sums, utilizing the set of solutions {x(t, qi
j)} at each quadrature point.

Metric 2 - Species-specific sensitivity. Similarly, the variance of casp-3* concentration

in element Bi is approximated by:

S[Bi
, xj ](t) ≈

1

vol(Bi)

r
X

k=1

x
2
j(t, q

i
k)wi

k −

 

1

vol(Bi)

r
X

k=1

xj(t, q
i
k)wi

k

!2

(8)

where once again the integrals in (5) have been replaced by their respective numerical quadrature

approximations.

Metric 3 - Total exposure of a single molecular species. Using the same technique

we can approximate the mean of the total time-integrated amount of chemical xj in element Bi:

M [Bi
, I(xj)](t) ≈

1

vol(Bi)

r
X

k=1

„Z t

0

xj(s, q
i
k)ds

«

w
i
k (9)

Here, note that the integral
R t

0
xj(s, q

i
k))ds is required. This is easily achieved by using a

numerical integration in time, such as a trapezoid rule and storing the integrated quantity at

each time step in addition to the solutions xj(s, q
i
k)).

9



3 Results

We demonstrate the ability of the ME-PCM to study various sensitivity measures of a biochem-

ical system using some example metrics from the previous section. As a model problem, we use

the apoptosis regulatory network model from ([9]). The network modeled is a key sub-network

that regulates the decision for a cell to live or die. The apoptosis network has been studied pre-

viously as a system where survival and death are each a stable locally attracting steady-state

([21, 22]). However, other work suggests that the decision for cell apoptosis is determined by a

transient response. That is, in response to external stimuli this sub-network creates a transient

response that signals cell survival or cell death ([9, 21]).

We first introduce the model of the apoptosis regulatory network and demonstrate the same

region of sensitivity determined in ([9]). We then go on to study this region in greater detail

with the metrics developed in section 2. Using the ME-PCM we study the emergence of the

region of sensitivity as a function of time and variation in individual molecular species. In doing

so, we demonstrate that the system is most sensitive to perturbations in activated caspase 8. In

addition, we use integrated values and skewness (metrics 3 and 4 from section 2) to investigate

the fate of cells within the highly sensitive region. Finally, we consider the sensitivity of the

system to varying initial conditions and reaction rates.

3.1 Model Problem: Apoptosis Regulatory Network

A system of 8 ordinary differential equations models the caspase activation cascade (see (10) and

Tables 1 and 2). This model considers the apoptosis signaling network as having two pathways:

survival and death (see Figure 1 from [9]).

The pathway to cell death consists of caspase activation. The cascade begins with activation

of the initiator caspase, caspase-8, which then activates the effector caspase, caspase-3. (The

caspases are created in the in-active state. In Figure 1 from ([9]) the superscript ∗ indicates

activation.) Apoptosis is effected by active caspase-3, which cleaves hundreds of protein sub-

strates, thus killing the cells. XIAP, X-linked inhibitor of apoptsosis, negatively regulates the

activity of casp-3* by tagging casp-3 for ubiquitination; this action promotes the dissassociation

of casp-3 and reduces its activity. As discussed in [9], this model is mechanistic in nature and

does not explicitly model every protein in the apoptosis signaling network. However, this model

does capture the signal for cell death coming in the form of a transient response.
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ẋ1 = −k1x4x1 + kd1x5

ẋ2 = kd2x5 − k3x2x3 + kd3x6 + kd4x6

ẋ3 = −k3x2x3 + kd3x6

ẋ4 = kd4x6 − k1x4x1 + kd1x5 − k5x7x4 + kd5x8 + kd2x5

ẋ5 = −kd2x5 + k1x4x1 − kd1x5

ẋ6 = −kd4x6 + k3x2x3 − kd3x6

ẋ7 = −k5x7x4 + kd5x8 + kd6x8

ẋ8 = k5x7x4 − kd5x8 + kd6x8

(10)

Table 1: Key for chemical compounds in equations (10). (*) denotes activation, :ub denotes ubiqui-
tination tag

symbol molecular species initial concentration range
x1 casp-8 102 to 3.5(10)5 mol/cell
x2 casp-8* 102 to 105 mol/cell
x3 casp-3 102 to 3.5(10)5 mol/cell
x4 casp-3* 102 to 105 mol/cell
x5 casp-8:casp-3* 102 to 2.5(10)4 mol/cell
x6 casp-8*:casp-3 102 to 2.5(10)4 mol/cell
x7 XIAP 102 to 105 mol/cell
x8 casp-3*:XIAP 102 to 2.5(10)4 mol/cell

3.2 Sensitivity to Initial Conditions

3.2.1 Metric 1: System sensitivity

We first study the sensitivity of the system to varying initial concentrations at the time t = 6

hours. In the discussion in ([9]), the time of 6 hours is identified as a time by which all of their

cell lines would have responded to treatment designed to induce cell death. As in ([9]), we model

the initial conditions as uniformly distributed in the ranges given in Table 1. Thus, our random

dimension is 8.
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Table 2: Key for reaction rates in equations (10). These values are used for the rate constants
throughout unless otherwise noted.

symbol rate constants value

k1 binding rate of casp-8,casp-3* 2.67(10)−9cell*(s*mol)
−1

k3 binding rate of casp-8*, casp-3 6.8(10)−8cell*(s*mol)
−1

k5 binding rate of casp-3*, XIAP 7(10)−5cell*(s*mol)
−1

kd1 dissociation rate of x5 to casp-8, casp-3* 1(10)−2s−1

kd2 dissociation rate of x5 to casp-8*, casp-3* 8(10)−3s−1

kd3 dissociation rate of x6 to casp-8*, casp-3 5(10)−2s−1

kd4 dissociation rate of x6 to casp-8*, casp-3* 1(10)−3s−1

kd5 dissociation rate of x8 to XIAP, casp-3* 1.67(10)−5s−1

kd6 dissociation rate of x8 to XIAP, casp-3*:ub 1.67(10)−4s−1

We discretize the parameter space with 10 elements in the casp-8* and XIAP ranges each,

9 elements in each of the remaining caspase ranges, and 1 element in each of the chemical

intermediate ranges. The ME-PCM is performed using 100 elements in a uniform mesh and a

sparse Clenshaw-Curtis grid of 317 points per element.

In this and following examples, we plot the results on a two-dimensional slice of elements

in the parameter mesh. Specifically, the results are plotted on all elements in the XIAP-casp-

8* plane containing the following initial conditions: 2.6(10)5 mol/cell of casp-3, 100 mol/cell

of casp-3* and intermediate complexes), and 1.7(10)5 mol/cell of casp-8. Figure 2 shows the

results of this case in the XIAP-casp-8* plane at a time of 6 hours. The grid of circles represents

the mesh used in the problem, and the colour of each circle represents the value of the sum of

species variances as defined in Metric 1. A large region of high system sensitivity is observed in

the XIAP-casp-8* plane. It remains relatively constant throughout the initial condition range

of casp-8. This region agrees with the described separatrix in ([9]) that is thought to delineate

the regimes of cell death and survival. However, it is important to note that the high-sensitivity

regions found using the ME-PCM are mathematically different from separatrices. These high-

sensitivity regions indicate locations in parameter space where perturbations to initial conditions

cause large variation in system behavior; thus they do not necessarily ‘separate’ the parameter

space in every problem.
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Figure 2: System sensitivity, S[Bi](t), at t = 6 hours in casp-8*-XIAP plane for the case of all initial
conditions random. The horizontal axis represents the initial concentration of XIAP and the vertical axis
represents the initial concentration of casp-8* in mol/cell. Warm colours indicate high sensitivity, cooler
colours indicate low sensitivity. Region of high sensitivity agrees with DLE separatrix found in ([9]) sepa-
rating the survival and death regions of the parameter space.

3.2.2 Metric 1: Time-varying system sensitivity

Without performing any additional samples of the system, we are able to also output the

following sensitivity analyses via additional postprocessing (weighted summations). Figure 3

shows snapshots of the system sensitivity at various points in time. By generating a system

sensitivity map at various time increments, we are able to study the evolution of the sensitivity

maps in time. The same input parameters are used as in the previous section, and the results

are visualized in the same XIAP-casp-8* plane. In these plots, the variance is normalized by

its maximum value over the parameter space and time so that the same colourscale between 0

and 1 may be used throughout the time series. These kinds of maps can provide a useful tool in

deciding parameter regimes for more detailed experimental testing. For example, in this model

problem, performing experiments in the initial-concentration regime within the high-sensitivity

region could lend much more insight into the mechanism of the cell decision than experimental

investigation of other regions of the parameter space.

Time-varying sensitivity maps can provide useful information about the time scale of system

dynamics within the course of an experiment. In this case, we see that the high sensitivity

region we observe in Figure 2 is actually formed and stabilized by time t = 3 hours, suggesting

that the cell decision is made by that time. Also, we note the high sensitivity of the system at

early times. This suggests that if the system is perturbed experimentally during this stage the

outcome is more easily changed than by intervention at a later stage.
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Figure 3: We plot the system sensitivity to varying initial conditions, SBi(t), in each element at various
snapshots in time from t = 0 to t = 6 hours. The horizontal axis represents the initial concentration of
XIAP and the vertical axis represents the initial concentration of casp-8* in mol/cell. The colourscale is
conserved across the series, with the variance normalized by its maximum value over the parameter space
and time. The snapshots demonstrate the emergence/evolution of the separatrix in time. Note that there
is little change in the regions of high sensitivity between t = 3 and t = 6; this indicates potentially at what
time the cellular response is determined.

3.2.3 Metric 2: Molecular species-specific sensitivity

We may also be interested in studying the sensitivity of specific components of the system. Using

the marker formulated in Metric 2, we plot the sensitivity of the activated effector caspase (casp-

3*), S[Bi, x4](t), as a function of time in Figure 4. We note that the high sensitivity regions in
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the lower left corner eventually fade away. This is evidence of the transient nature of the signal;

all trajectories of casp-3* eventually reach a steady state at zero concentration and the system

thus becomes insensitive to parameter changes at later times.
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Figure 4: Maps of casp-3* sensitivity, S[Bi, x4](t), at various times until t = 6 hours. The horizontal
axis represents the initial concentration of XIAP and the vertical axis represents the initial concentration of
casp-8* in mol/cell. As mentioned previously, snapshots are taken ar regular intervals and the colourscale
is conserved across the series, with the variance normalized by its maximum value over the parameter space
and time.

Figure 5 shows analagous sensitivity maps for the activated caspase-8. Here we note that

the system sensitivity is largely dominated by the sensitivity of casp-8*, since a similar high
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Figure 5: Maps of casp-8* sensitivity, S[Bi, x2](t), at various times until t = 6 hours. In each plot,
the horizontal axis represents the initial concentration of XIAP and the vertical axis represents the initial
concentration of casp-8* in mol/cell. Snapshots are taken ar regular intervals and the colourscale is conserved
across the series, with the variance normalized by its maximum value over the parameter space and time.
Note that the high sensitivity region is stable after t = 3 and closely corresponds to the region of high global
system sensitivity in figure 2, suggesting that the sensitivity of this species provides a large contribution to
the global system sensitivity.

sensitivity region appears in these plots. This indicates that the system will be most sensitive

to perturbations in casp-8*, and this insight can be useful in motivating experimental design.
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3.2.4 Metric 3: Integrated casp-3*

We now focus our attention on Metric 3, which marks the total exposure to activated caspase-3

over time. The horizontal axis represents the initial concentration of XIAP and the vertical axis

represents the initial concentration of casp-8* in mol/cell. Since the cell decision is made based

on prolonged activation of caspase-3, we hypothesize that the total exposure (i.e., integrated

value) of activated caspase-3 is important to the outcome. Figure 6 shows the mean value of the

integrated casp-3* at time t = 6 hours. Note that the integrated value increases monotonically

for decreasing XIAP initical conditions. This is somewhat intuitive since the pro-survival XIAP

tags casp-3* for ubiquitination. In addition, the region of sensitivity seems to be consistent with

the total exposure to casp-3*.
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Figure 6: Mean of integrated casp-3* concentration, M [Bi, I(x4)](t), at t = 6 hours for the same variable
initial conditions as used in all previous examples. The sensitivity marker is defined to be the mean value
of the total (integrated) amount of activated caspase-3 present in the cell until t = 6 hours.

3.2.5 Metric 4: Skewness of the integrated casp3* value

Thus far we have identified the same region of sensitivity as observed in [9] separating cell

survival from cell death. However, it remains to be demonstrated what tendency, if any, cells

within the separatrix may have towards survival or death. The generality of the ME-PCM

allows us to interrogate the fate of cells within the region of uncertainty. As an indication of

the propensity of cell death, we study the skewness of the integrated casp-3* concentration in

our system.

As figure 6 shows, the total exposure of a cell to caspase-3* varies continuously from lowest

values in the survival region to highest values in the death region, with cells in the separatrix

17



having intermediate levels of exposure.

As previously mentioned, skewness indicates the propensity of a distribution to be above

or below the mean (see Figure 10 in the appendix). Figure 7 shows the skewness of integrated

casp-3* at t = 6 hours (values have been normalized). Most of the cells in the survival and death

regions of the space have skewness close to 0, indicating the integrated casp-3* concentrations

are fairly symmetrically distributed in these regions of space. However, the skewness is positive

within the separatrix indicating that the casp-3* distribution has a tendency to be less than the

mean. The positive skew suggests that cells within separatrix have a tendency towards lower

(i.e., potentially survival) levels of integrated casp-3*.
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Figure 7: Skewness of integrated casp-3* concentration at t = 6 hours for the same variable initial conditions
as used in all previous examples. The horizontal axis represents the initial concentration of XIAP and the
vertical axis represents the initial concentration of casp-8* in mol/cell. The sensitivity values have been
normalized to scale between −1 and 1. Negative values indicate that the integrated value is more likely to
fall above the mean, and positive values indicate that the integrated value is more likely to fall below the
mean. The zero-skewness neutral colour (green) indicates that the distribution places equal mass above and
below the mean.

3.3 Sensitivity to varying initial conditions and reaction rates

In the next section we aim to study the sensitivity of the system to varying reaction rates in

addition to initial conditions. The initial conditions are taken to be uniformly distributed over

the ranges given in Table 1, and as in ([9]) we investigate sensitivity of the system to varying the

ubiquitination rate kd6. More generally we allow kd6 to vary between 1.7(10)−5 and 6.17(10)−4.

In Figure 8 we show the system sensitivity results on the XIAP-casp-8* slice and at time

t = 6 hours. Here, a 600-element mesh is used to discretize the 9-dimensionsal random space,

with a 181-point sparse Clenshaw Curtis grid in each element. Six equally-sized elements are
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used to discretize the kd6 direction, and the results are plotted separately for each of these

elements. We observe that the location and shape of the high-sensitivity region is very sensitive

to the ubiquitination rate, especially in the lower regime. As the rate is lowered, the sensitive

region shifts to locations of high XIAP-low casp-8* initial conditions and the region of likely cell

death is enlarged. As the rate increases, the sensitive region shifts to the lower initial values of

XIAP, and cell survival is expected in most of the parametric domain.

Next we consider the effect of uncertain kd2, which is the degradation rate of x5 to casp-

8*, casp-3* in addition to uncertain initial conditions. Simulation parameters are the same as

in the previous example, and in Figure 9 we plot here the results for 4 elements in the kd2

discretization. We observe that the shape and location of the region of high sensitivity is fairly

robust to variations in kd2.
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Figure 8: System sensitivity, S[Bi](t), at t = 6 hours on XIAP-casp-8* plane for the case where the
ubiquitination rate kd6 and the initial conditions are taken to be uniformly varying random variables. The
horizontal axis represents the initial concentration of XIAP and the vertical axis represents the initial
concentration of casp-8* in mol/cell. Results are plotted on the same XIAP-casp-8* plane as in other
graphs, for each element in the kd6 mesh discretization. The ubiquitination rate constant kd6 varies over
(a) 1.7(10)−5 to 1.17(10)−4 ; (b) 1.17(10)−4 to 2.17(10)−4; (c) 2.17(10)−4 to 3.17(10)−4 ; (d) 3.17(10)−4 to
4.17(10)−4 ; (e) 4.17(10)−4 to 5.17(10)−4 ; (f) 5.17(10)−4 to 6.17(10)−4 .
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Figure 9: System sensitivity, S[Bi](t), at t = 6 hours on XIAP-casp-8* plane for the case where kd2 and
all initial conditions are taken to be uniformly varying random variables. The horizontal axis represents the
initial concentration of XIAP and the vertical axis represents the initial concentration of casp-8* in mol/cell.
The rate kd2 varies over the ranges (a) 0.0025 to 0.0035; (b) 0.0055 to 0.0065; (c) 0.0075 to 0.0085; (d)
0.0115 to 0.0125.
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4 Discussion

We have described a general method suitable for analysis of any large dimensional ODE or PDE,

but is particularly useful for biological signaling networks. In this section we discuss in more

detail the benefits of our approach. In particular, we describe how incorporating adaptivity

can greatly increase the computational efficiency of our method. In addition, we contrast our

method with gradient-based methods, such as those in ([9]).

Applications of the ME-PCM. We have described how the ME-PCM can be used to study

system sensitivity in biological systems. This type of information can be used to aid in ex-

perimental design and data analysis. The time-varying version of the ME-PCM can be used,

for example, to predict the time at which a system should be perturbed in order to modify

the outcome. It could also be used to estimate the time at which measurements of the system

should be made (if a separatrix has already emerged). In general, we expect that ME-PCM

sensitivity analysis results can be helpful in validating or invalidating models, and to aid in the

construction of better models.

Generality of ME-PCM Analysis. The most attractive feature of the ME-PCM is its ability

to study the sensitivity of general, user-defined, biologically relevant features of the system. The

ME-PCM provides the user with the flexibility to study the sensitivity of any quantity that can

be mathematically obtained using any components of the system solution at a current or previous

time.

In our example problem, the apoptosis regulatory network, the biological outcome was most

affected by perturbations in only a few components. By analyzing a variety of metrics we were

able to determine which ones were most important.

Connection to Gradient-Based Methods. It is important to address the connections

and differences between the variance-based approach that we propose and the more standard

gradient-based techniques currently in use in systems biology. We begin by noting an intuitive

connection between these two perspectives; in the Appendix (section 6.3) we demonstrate that

as the size of ME-PCM elements goes to zero, the variance over the element converges to the

square of the gradient, normalized by a factor. Thus, gradient-based methods essentially rep-

resent a limiting case of the ME-PCM. Both methods will identify regions of high sensitivity
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indeed, as demonstrated in our results sections for the apoptosis model.

In addition to the flexibility of output mentioned previously, there is a key philosophical

difference between these two approaches. In computing the variance over an element, we evaluate

the sensitivity of the output caused by noisy parameters varying over a particular parameter

range of a finite size h. This value of h directly affects the magnitude of the sensitivity output;

by sampling points within each element we are able to compare the noise level and range of

parameter inputs to the noise level and range of the outputs.

On the other hand, the local nature of the gradient calculation provides us only with ap-

proximated derivative information at each sampling point. In taking this gradient calculation

as a measure of sensitivity at a point (and within a small range around that point), one must be

confident in the precision of the model. Typically, mathematical models used in biology involve

simplifications at physical scales. By looking at an exact gradient of the system at a point, our

results could be very sensitive to small structural changes in the model.

Therefore, being able to compare the noise level and range of inputs to the noise level and

range of the outputs will aid in the design and analysis of these imperfect models. Evaluating

local variances may give a more robust representation of sensitivity for biological applications

because, in a sense, computing variance assumes that the model is only locally reasonable and

not locally correct. For this reason, we feel that a variance-based approach such as the ME-

PCM provides a novel perspective to this problem that is not currently offered by gradient-based

methods.

Computational considerations. The ME-PCM hails from the class of stochastic spectral

methods, which comprise an emerging field of computationally efficient, highly accurate moment

estimation techniques. Along with all other members of this class of methods, ME-PCM has

been shown to reduce computation time by several orders of magnitude as compared to Monte

Carlo methods when the random dimension is moderate (N < 50) ([13, 23, 24]). In addition,

the sensitivities of multiple user-defined metrics at any time t can all be computed during

postprocessing without additional sampling.

The ME-PCM also provides a few computational advantages over gradient-based methods.

Specifically, a numerical gradient requires information from both sides of the point in question,

so boundary errors may exist at any edge of the parameter space. Depending on the coarseness

of the sampling grid, these boundary effects may creep several grid points into the domain and
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become very large at corners of the parameter space. In contrast, the ME-PCM suffers from no

such boundary effects, since no gradients are evaluated. Also, in moderately high dimensions

the post-sampling costs of computing the gradient matrix are quite expensive, requiring finite

differences for in each dimension for every point. In contrast, the variance calculation requires

only a simple weighted summation.

Another computational benefit of the ME-PCM is the ability to resolve discontinuities or ir-

regularity in the dependence of a sensitivity metric on the parameters. Elemental decomposition

of the parameter space allows us to finely resolve around discontinuities in the sensitivity, so that

the numerical quadrature remains accurate. This is particularly useful in biological threshold

phenomenon, wherein an outcome may drastically change after a parameter is increased or de-

creased past a certain threshold. If the location or existence of such discontinuities is unknown

beforehand, an adaptive version of the ME-PCM may be employed.

An adaptive version of the ME-PCM has been developed in ([13]) based on the adaptivity

criterion designed in ([25]) which utilizes a generalized Polynomial Chaos basis (gPC). In this

method, the size of the elements Bi are adaptively chosen so that large elements are used

in regions where the solution is relatively smooth, and small elements are used when more

refinement is needed. This type of adaptivity requires a robust “splitting” criterion for deciding

where more refinement is needed. The splitting criterion in ([25]) involves projecting the solution

within each element onto a gPC basis and analyzing the fractional contribution of the highest

basis modes to the total variance in the element. In ([13]), this adaptive version of the ME-PCM

was demonstrated to be highly efficient at locating discontinuities and adaptively resolving the

mesh around them. In addition, this adaptive version was shown to be far more computationally

efficient than other existing techniques with similar capability. Adaptivity greatly enhances the

efficiency of the computations by reducing computational effort in smooth sections of the domain

and should thus be used in systems with a large number of parameters and/or discontinuities in

solution sensitivity. For the model apoptosis regulatory network, this was not needed since the

dimension of the problem N was quite small and the system varies smoothly with parameter

changes.
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6 Appendix

6.1 Example of skewness
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Figure 10: Left: A probability distribution (Beta(2,5)) function with negative skewness. Right: A proba-
bility distribution (Beta(5,2)) function with positive skewness.

6.2 Quadrature rules

We consider two main types of multi-dimensional numerical integration rules: tensor-product

Gaussian quadrature rules, and Smolyak sparse grid quadrature rules. Gaussian quadrature

rules are fairly well-known (see [26] for example) and provide high order accuracy (i.e. the class

of functions for which equality holds in (3) is large). However, the computational complexity of

tensorized Gaussian quadrature rules grows exponentially with increasing dimension N .

Smolyak sparse grids were introduced in ([20]) and provide an attractive alternative quadra-

ture choice which scales favorably with increasing dimension. The following description of the

Smolyak method closely follows the descriptions in ([27, 28] and [29]) where the interpolation

and cubature errors and costs of this method are investigated.

We assume for simplicity that the parameter space Γ = [−1, 1]N without loss of generality,

since the N-dimensional element can always be mapped to this standard element. We begin

by choosing a one-dimensional quadrature formula U i
j suited to the setting in which we are

interested. More specifically, for functions v : [−1, 1] → R, choose a quadrature rule

U i
j(v) =

ni
X

m=1

v(yi
m) · wi

m
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which approximates the integral
Z

[−1,1]

v(y)dy

for i ∈ N and j = 1, ..., N . Here i ∈ N specifies the degree of the quadrature, ni is the number

of points used, the {yi
m}ni

m=1 are quadrature points and the {wi
m}ni

m=1 are quadrature wieghts.

The index j indicates that this quadrature formula is used in the j-th dimension. In practice, we

will always use the same formulas in every dimension, but for now we will retain the subscript

in order to better elucidate the Smolyak construction.

This one-dimensional formula U i
j could be chosen to be the a Gauss-Legendre quadrature

rule, where the {yi
m}ni

m=1 are the roots of the (ni−1)-th degree Legendre polynomials in the j-th

dimension as described above and the {wi
m}ni

m=1 are weights chosen so that the approximation

is exact for polynomials of degree 2ni − 1.

The Clenshaw-Curtis integration rule is another choice for the one-dimensional formula U i
j .

In this case, the {yi
m}ni

m=1 would be Clenshaw-Curtis points, which can be found, along with

the corresponding weights, in ([29]). The Clenshaw-Curtis points possess the attractive quality

of nestedness for certain choices of ni. In other words, point sets of increasing order are nested

within each other. This leads to an overall decrease in computational effort. (See the references

[27], [28], [29] and others for more detail on the Clenshaw-Curtis quadrature).

The one-dimensional interpolant serves as a building block for the Smolyak formula, as we

will see soon. In this work we choose n1 = 1 and ni = 2i−1 + 1, so that the Clenshaw-Curtis

point sets are indeed nested, which reduces the number of points used in total. The Smolyak

N−dimensional cubature operator is defined as follows:

X

s−N+1≤|i|≤s

(−1)s−|i|

0

B

@

N − 1

s − |i|

1

C

A
· (U i1

1 ⊗ · · · ⊗ U iN

N ),

approximating the N-dimensional integral

Z

Γ

v(y)dy.

for smooth functions v : Γ → R. The summation is over N-dimensional vectors i with com-

ponents i1, ..., iN ∈ N. The parameter s controls the sparseness of the grid; larger s results in

more points. The weights for the N-dimensional cubature are combinations of products of the
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one-dimensional weights.

We assume that the rule U i
j is the same for all dimensions j, so that we can drop the subscript.

Let χi denote the one dimensional point set used in U i. The total set of points used in SΓ(s) is:

HΓ(s) =
[

s−N+1≤|i|≤s

(χi1 × · · · × χ
iN ).

Then, in the general notation we have used above, the collocation points are given by {qj}
r
j=1

where each qj ∈ HΓ(s) and the total number of points r = Card(HΓ(s)). When Clenshaw-Curtis

one-dimensional rules are used with this choice of ni, the point sets are nested (i.e. χi−1 ⊂ χi).

When using nested one-dimensional rules the Smolyak formula is actually interpolatory (see [27]

for details).

We choose the quadrature rule in each element based on the needs of the problem. The

quadrature rule and total number of points need not be the same for all elements. In practice,

the choice of what type of approximation to use should be problem-dependent, and factors to

take into consideration include: regularity of the integrand and robustness of the rule, preference

for points on or off boundaries, and of course the number of points required to achieve a par-

ticular degree of exactness. This last consideration is addressed in detail in ([28]). Since nested

quadrature rules require less overall points in the Smolyak algorithm, the Clenshaw-Curtis rule

is often an attractive choice.

6.3 Connection to gradient-based methods

In this section we make some mathematical connections between ME-PCM local variance-based

sensitivity techniques and gradient-based methods. Let us focus on a particular hypercube

element B, written without loss of generality as the product set
QN

i=1 [x0,i − h, x0,i + h] where

x0 = (x0,1, x0,2, ..., x0,N) is the center of B. Suppose we have a function f ∈ C3(B) and assume

let X is a random variable uniformly distributed on B. We will show that the variance of f(X)

over Bi, when normalized with the one-dimensional uniform distribution variance, approximates

the norm of the gradient ‖∇f |x0
‖2 in the limit as h → 0+. This result is easily generalizable to

rectangular B, but we will assume uniform edge lengths for simplicity here.
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We begin with the multi-dimensional Taylor expansion:

f(x) = f(x0) +
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,

(11)

where α is a multiindex of dimension N . In other words, α = (α1, α2, ..., αN ), αi ∈ N, and

|α| = α1 + · · · + αN . Let
R

x0+h

x0−h
f(x)dx denote the N-dimensional integral of f over B. Then,
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+ O(h4) := EB[f(X)].

Using this result,
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Then we obtain the variance of f over the element B:

VarB [f(X)] = EB[f(X)2] − EB[f(X)]2

= f(x0)
2 +
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3
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Note that h2

3
is the variance of the one-dimensional distribution of the underlying variable X,

and

VarB [f(X)]
h2

3

= ‖∇f |x0
‖2 + O(h2).

The rate of convergence here is O(h2) which is independent of N .
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