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DYNAMICS OF CANCER RECURRENCE1

BY JASMINE FOO AND KEVIN LEDER

University of Minnesota

Mutation-induced drug resistance in cancer often causes the failure of
therapies and cancer recurrence, despite an initial tumor reduction. The tim-
ing of such cancer recurrence is governed by a balance between several fac-
tors such as initial tumor size, mutation rates and growth kinetics of drug-
sensitive and resistance cells. To study this phenomenon we characterize the
dynamics of escape from extinction of a subcritical branching process, where
the establishment of a clone of escape mutants can lead to total population
growth after the initial decline. We derive uniform in-time approximations
for the paths of the escape process and its components, in the limit as the
initial population size tends to infinity and the mutation rate tends to zero. In
addition, two stochastic times important in cancer recurrence will be charac-
terized: (i) the time at which the total population size first begins to rebound
(i.e., become supercritical) during treatment, and (ii) the first time at which
the resistant cell population begins to dominate the tumor.

1. Introduction. We consider a situation arising from population genetics,
where a population with net negative growth rate can escape certain extinction via
creation of a new mutant type. This scenario arises in a variety of biological and
medical applications. In particular, we consider the following scenario in which a
population of drug-sensitive cancer cells is placed under therapy, leading to a sus-
tained overall decline in tumor size. However, drug-resistance mutations may arise
in the population, conferring a net positive growth rate to mutated cells and their
progeny under therapy. If a mutant arises prior to extinction of the original popula-
tion and forms a viable, growing subpopulation, then the population has “escaped”
extinction. These types of escape events due to acquired resistance cause the fail-
ure of many drugs including antibiotics, cancer therapies and anti-viral therapies.
In the cancer setting, the discovery of new molecularly targeted therapies has lead
to dramatic successes in tumor reduction in the past decade; however, the majority
of these therapies fail due to the development of drug resistance and subsequent in-
crease in tumor burden and progression of disease. Examples of targeted therapies
for which acquired resistance exists include erlotinib/gefitinib in EGFR-mutant
nonsmall cell lung cancer, imatinib, dasatinib or nilotinib in BCR–ABL driven
chronic myeloid leukemia and vemurafenib in BRAF-mutant melanoma.
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There has been a significant amount of previous work in the cancer modeling
literature on understanding the evolutionary dynamics of drug resistance in cancer.
For example, using stochastic processes with a differentiation hierarchy to repre-
sent the sensitive and resistant cells of a tumor, Coldman and Goldie studied the
emergence of resistance to one or two drugs [3, 5, 6]. In a different twist, Harnevo
and Agur studied drug resistance emerging due to oncogene amplification using
a stochastic branching process model [7, 8]. Others have used multi-type branch-
ing process models to study the probability of resistance emerging due to point
mutations in a variety of situations, for example, [9, 15]. Komarova and Wodarz
also utilized a multi-type branching model to investigate the general situation in
which k mutations are required to confer resistance against k drugs [12, 13]. Most
recently, in [4] the authors considered an inhomogeneous process wherein the birth
and death rates of both sensitive and resistant cells are dependent upon a tempo-
rally varying drug concentration profile, to accommodate the effects of pharma-
cokinetic dynamics as the drug is metabolized over time. The analysis in most of
these works has been focused on calculations of the eventual probability of devel-
oping resistance and the resistant population size, rather than the variable timing
of tumor recurrence.

In addition to work specifically related to mathematical modeling of cancer re-
currence, we also discuss some mathematical contributions to the study of extinc-
tion paths in subcritical branching processes and the dynamics of escape in this
context. In particular, in [10] Jagers and co-authors considered large population
approximations of “the path to extinction” in Markovian sub-critical branching
processes. In this work they established convergence of finite dimensional distribu-
tions of these paths viewed on the time scale of extinction. The follow-up work [11]
generalized these results to a broader class of inter-arrival times (i.e., distributions
more general than exponential). Sehl et al. investigated the limiting moments of ex-
tinction times of subcritical branching processes, and used this as a tool for inves-
tigating the effects of various cancer therapies on healthy tissue [20]. Last, Sagitov
and Serra characterized the asymptotic structure for BGW process with escape,
as mutation rate μ → 0, conditioned on successful escape, which is an important
asymptotic regime in many problems such as the evolution of new species [19].

A typical solid tumor has a density between 107 and 109 cancer cells per cubic
centimeter [14]. Therefore, in this work we are interested in deriving path approxi-
mations of the escape process that are uniform in time, in the regime of a very large
initial population. In the large population limit, it is tempting to assume that the
stochastic model can be approximated by a purely deterministic model. However,
a simple comparison of the mean behavior of the stochastic model with a determin-
istic model illustrates that it is important to consider the stochasticity of the extinc-
tion time. Here, we develop limiting stochastic approximations for the population
process that greatly simplify the population process model while maintaining the
stochastic extinction time behavior. Interesting earlier work by Jagers, Sagitov et
al. established convergence of the finite dimensional distributions for the declining
sensitive cell populations on the time scale of extinction, leaving open the question
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of tightness [10]. In the present work we first construct nearly-deterministic uni-
form in time limit approximations to both the declining sensitive population paths
as well as the supercritical resistant cell escape paths. Then, tightness of the joint
sensitive and resistant process can be established as a simple consequence of these
approximations, yielding the weak convergence result in simpler fashion than via
direct analysis of the joint process.

We then use these approximations to characterize the distribution of “turnaround
times,” at which the total population size switches from subcritical to supercritical.
In the clinical context, this represents the time at which progression of disease is
observed through serial tumor scans or bloodwork (in leukemias); thus the ability
to characterize and predict this time is of significant prognostic interest. In addi-
tion, we characterize the “crossover time” at which the resistant mutants first over-
take the original type in the population. Estimates of crossover times, and more
generally the times at which certain composition thresholds are reached, are ex-
tremely useful in clinical decision-making. For example, when simultaneous com-
bination therapies are considered, understanding these random times allows for
informed decisions on the optimal time to switch to another therapy and thus “tar-
get” a different subpopulation of cells within the tumor. Figure 1 illustrates these
times in a sample path simulation of the process, in addition to a sample distribu-
tion of turnaround times. Our results are derived in the framework where the time
scale of the processes is sped up by the extinction time of the original population,

FIG. 1. Sample simulation of escape dynamics (population size versus time). Dark black line: total
population size of the tumor, labeled grey lines: resistant and sensitive cell population size. The
circle marks the minimum of the total tumor size process (i.e., the turnaround time), and the point
at which red and blue lines cross is the crossover time. A histogram plotting the distribution of the
minimum turnaround time for each sample path is plotted in green in the background. Parameters:
starting population 1000 sensitive, 0 resistant. Net growth rate of sensitive and resistant birth–death
processes are −1.0 and 2.0, respectively, and the mutation rate μ = 0.01.
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a natural time scale since this time represents the maximum length of effective-
ness of the drug. We restrict our attention to binary branching processes which
are appropriate for modeling cancer cell populations undergoing binary division;
however, these results can be extended to study more general offspring distribu-
tions, and thus may be useful for studying escape dynamics in viral populations,
for instance.

The rest of the paper is organized as follows. In Section 2 we introduce the
model and discuss earlier results in the field. In Section 3 we present some results
on the mean of the resistant cell population at multiples of the extinction time. In
Section 4 we present a path approximation result where we show that the limit
process uniformly approximates both the sensitive and resistant cell process on
the time scale of the extinction time of the sensitive cells. We determine limiting
distributions of the crossover time when the resistant cell population first becomes
dominant, and the random time of disease progression or the “turnaround” time. In
Section 5 we briefly illustrate an application of these results to studying the time of
disease recurrence due to drug resistance in nonsmall cell lung cancer (NSCLC).
In Section 7 we present the proofs of our main results.

Throughout the paper we use the following standard Landau asymptotic nota-
tion for nonnegative functions f (·) and g(·): f (x) = O(g(x)) means that f (x) ≤
cg(x) for some c ∈ (0,∞), f (x) = �(g(x)) if and only if f (x) ≥ cg(x), f (x) =
o(g(x)) holds if and only if f (x)/g(x) → 0 as x → ∞ and last, f (x) ∼ g(x)

holds if and only if f (x)/g(x) → 1 as x → ∞.

2. Model and previous work. In this section we introduce the mathematical
model and notation, and review previous results on related problems. We start
with an initial population of drug sensitive cells with size x. This population Z0(t)

is modeled as a subcritical Markovian binary branching process which declines
during treatment with net growth rate λ0 < 0, birth rate r0 and death rate d0; we
will also use the notation |λ0| = r . Resistance mutations arise at rate μxZ0(t), and
each of these mutations gives rise to a supercritical Markovian binary branching
process initialized by one mutant cell with net growth rate λ1 > 0. We set μx =
μx−α for μ > 0 and α ∈ (0,1). The total population of mutants, which we will
call “resistant cells,” is denoted Z1(t). These processes are defined on a probability
space (�, F ,P). In addition, we define the filtration F i

t generated by Zj(s), for
s ≤ t and j ≤ i. Note that in this work, unless otherwise stated, the expectation
and probability operators are conditioned on the initial conditions Z0(0) = x and
Z1(0) = 0.

Since the net growth rate of the original population is negative, it will go extinct
eventually with probability 1. We will denote this time of extinction by Tx , where x

denotes the starting population. The following limit theorem from [17] will prove
useful throughout the rest of the paper:

Tx − 1

r
logx ⇒ 1

r
(η + log c) as x → ∞,(2.1)
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where η is a standard Gumbel random variable and c is the Yaglom constant for Z0.
For a binary branching process, the Yaglom constant has the form (d0 − r0)/r0.

Previously, Jagers and colleagues [10] studied the paths to extinction in a sub-
critical Markovian branching process, which we will also call Z0 starting at size x.
They considered the process Z0 on the time scale of the extinction time and estab-
lished convergence in finite dimensional distributions as x → ∞.

THEOREM 1 (Jagers et al. [10]). For u ∈ [0,1),

xu−1Z0(uTx)
FD→ c−ue−uη.

Similar results on convergence in finite dimensional distribution of subcritical
branching processes with more general inter-arrival times were also shown in [11].
In addition, Kimmel and Wu generalized these results to consider the case of crit-
ical branching processes [22].

3. Mean of Z1(uTx). In this section we examine the growth rate of the mean
of Z1. In addition, we examine a common modeling assumption and note the im-
portance of considering the tails of the extinction time Tx in studies of escape
dynamics. We will first consider the expected resistant population at vTx for some
v > 0 (and temporarily assume α = 0),

E
[
Z1(vTx)

] = E

[
μTx

∫ v∧1

0
Z0(uTx) exp

(
λ1Tx(v − u)

)
du

]
.(3.1)

If we assume that sensitive cells follow a deterministic decay Z0(t) = xeλ0t and
approximate their extinction time as Tx ≈ − 1

λ0
logx, then we can heuristically

estimate the expected value as

E
[
Z1(vTx)

] = μ

r
logx

∫ v∧1

0
x1−ux(λ1/r)(v−u) du

= μ

r
x1−λ1v/λ0 logx

∫ v∧1

0
x−u(1+λ1/r) du

= μ

λ1 − λ0
x1+λ1v/r

(
1 − exp

[
−(v ∧ 1)

(
1 + λ1

r

)
logx

])
.

Thus we observe that this expected value is finite for all v > 0.
However, suppose that there is just a single sensitive cell at time t = 0 whose

birth rate is r0 = 0, and death rate r . Then, of course, the extinction time satisfies
T1 ∼ exp(r) and by conditioning on this time we have

E
[
Z1(vTx)

] = μ

∫ ∞
0

E
[
eλ1(vT1−s)1{T1≥v/s}

]
ds.

Due to the exponential tails of T1 we see that the above integral diverges to ∞
for λ1v ≥ r and we clearly see the importance of the randomness in the extinction
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time. The previous result easily applies to models with births and deaths in the
sensitive cell population. In particular, we have the following proposition.

PROPOSITION 1. Let v > 0 and λ1v
r

> 1, then for all x, E[Z1(vTx)] is infinite.

PROOF. By conditioning on Z0(s), s > 0 and then applying a change of mea-
sure we can write the integral of interest as

E
[
Z1(vTx)

] = E

[
μTx

∫ v∧1

0
Z0(uTx) exp

[
λ1Tx(v − u)

]
du

]

= μ

∫ v∧1

0

∫ ∞
0

teλ1t (v−u)
E

[
Z0(uTx)|Tx ∈ dt

]
gx(t) dt du,

where gx(t) dt = P(Tx ∈ dt).
Noting the fact that if u < 1 then E[Z0(uTx)|Tx ∈ dt] ≥ 1, we can bound this

from below by

E
[
Z1(vTx)

] ≥ μ

∫ v∧1

0

∫ ∞
0

teλ1t (v−u)gx(t) dt du

= μ

∫ v∧1

0

(
E[Tx] + λ1(v − u)

∫ ∞
0

eλ1s(v−u)
∫ ∞
s

tgx(t) dt ds

)
du

≥ μ

∫ v∧1

0

(
E[Tx] + λ1(v − u)

∫ ∞
0

eλ1s(v−u)s

∫ ∞
s

gx(t) dt ds

)
du

≥ μ

∫ v∧1

0

(
E[Tx] + cλ1(v − u)

∫ ∞
t0

eλ1s(v−u)se−rs ds

)
du.

The final inequality is based on the fact that for x ≥ 1, P(Tx > s) ≥ P(T1 > s)

and the asymptotic result that as t → ∞, P(T1 > t) ∼ ce−rt . Considering the final
equation in the previous display, we see that if λ1v > r then for u sufficiently
small, the inner integral diverges to ∞. �

We can easily find the asymptotic growth rate of E[Z1(vTx)] as x → ∞. Based
on the previous subsection, we know that this is only meaningful if we consider
v ≤ −λ0/λ1; for simplicity we will just assume that v ≤ 1 and r = |λ0| ≥ λ1. Ear-
lier heuristic calculations (where we set α = 0) indicate that the mean of Z1(vTx)

grows like x1+vλ1/r as x ↗ ∞. In particular we have the following theorem.

THEOREM 2. Assume that r ≥ λ1, then for v ∈ (0,1] and α ∈ (0,1) we have
that

E
[
Z1(vTx)

] ∼ x1+vλ1/r−α cλ1v/rμ�(1 − λ1v/r)

λ1 + r
.

We defer the proof of this result to Section 7.
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4. Paths of escape. We now establish an approximation theorem for the paths
of the joint process (Z0(uTx),Z1(uTx)). In the large x limit, scaled versions of
these paths can be approximated uniformly in time by a simple stochastic process
whose only source of randomness arises from the stochasticity of the limit theorem
for the extinction time.

Before beginning, we first establish some notation. We will work with scaled
versions of the sensitive and resistant populations sped up in time. Let us define
sx(t) = 1

r
logx + t . For u ∈ [0,1] and t ∈ R, define

Zx
0
(
usx(t)

) = xu−1Z0

(
u

(
1

r
logx + t

))
,

(4.1)

Zx
1
(
usx(t)

) = x−λ1u/r−1+αZ1

(
u

(
1

r
logx + t

))
.

Throughout the rest of the paper, the superscript x will denote scaling by the
appropriate function of x. For ease of notation we introduce the following notation:

φx
0 (u, t) = EZx

0
(
usx(t)

) = eλ0ut ,

φx
1 (u, t) = EZx

1
(
usx(t)

) = μeλ1ut

λ1 − λ0

(
1 − e(λ0−λ1)utx(λ0−λ1)u/r).

In addition, we will sometimes need to work with the population processes sped
up in time but not scaled in space, which are defined for Zi(usx(t)), for i = 0,1
and their means are denoted by

φi(u, t) = EZi

(
usx(t)

)
.

In the following, we establish the approximation result by first showing that
for any t ∈ R we can approximate the scaled joint process by its mean uniformly
in u. This is done by martingale arguments and showing relevant second moments
are uniformly bounded in x. We then prove that this approximation is uniform
for t in compact sets, and that one can approximate (Z0(uTx),Z1(uTx)) uniformly
in time by (φ0(u,Tx − 1

r
logx),φ1(u,Tx − 1

r
logx)), where the previous formula

is interpreted as the mean functions φx
i evaluated at the random parameter Tx −

1
r

logx. We begin with a result on the moments of Z0 and Z1.

LEMMA 1. Let Z̃1 be a binary branching process starting from size one with
birth rate r1 and death rate d1, then for 0 < s < sx(t),

(i)

E
[
Z1

(
sx(t)

)2] = μ2

x2α

∫ sx(t)

0

∫ sx(t)

0
E

[
Z0(s)Z0(y)

]
eλ1(sx(t)−s)eλ1(sx(t)−y) ds dy

+ μ

xα

∫ sx(t)

0
EZ0(s)E

[
Z̃1

(
sx(t) − s

)2]
ds.
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(ii)

E
[
Z0(s)Z1

(
sx(t)

)] = μ

xα

∫ sx(t)

0
E

[
Z0(y)Z0(s)

]
eλ1(sx(t)−y) dy.

(iii)

Var
[
Z1

(
sx(t)

)] = μ2

x2α

∫ sx(t)

0

∫ sx(t)

0
Cov

(
Z0(s),Z0(y)

)
eλ1(2sx(t)−(s+y)) ds dy

+ μ

xα

∫ sx(t)

0
EZ0(s)E

[
Z̃1

(
sx(t) − s

)2]
ds.

The proof of this result can be found in Section 7.
Lemma 1 allows us to establish the following result via the Doob’s maximal

inequality.

LEMMA 2. For a ∈ (0,1), ε > 0 and t ∈ R,

(i)

lim
x→∞P

(
sup

u∈[0,a]
∣∣Zx

0
(
usx(t)

) − φx
0 (u, t)

∣∣ > ε
)

= 0.

(ii)

lim
x→∞ P

(
sup

u∈[0,1]
∣∣Zx

1
(
usx(t)

) − φx
1 (u, t)

∣∣ > ε
)

= 0.

The proof of this result can be found in Section 7.
We can strengthen Lemma 2 by showing the convergence above is in fact uni-

form for t in a compact set.

LEMMA 3. For a ∈ (0,1), ε > 0 and M > 0,

(i)

lim
x→∞ P

(
sup

t∈[−M,M]
sup

u∈[0,a]
∣∣Zx

0
(
usx(t)

) − φx
0 (u, t)

∣∣ > ε
)

= 0.

(ii)

lim
x→∞ P

(
sup

t∈[−M,M]
sup

u∈[0,1]
∣∣Zx

1
(
usx(t)

) − φx
1 (u, t)

∣∣ > ε
)

= 0.

The result is established by showing that the probabilities in the statement of
Lemma 2 are monotone in the parameter t . Again, we defer the full proof until
Section 7.

Using this uniform approximation result, we establish the following theorem for
the process paths evaluated at multiples of the Z0 extinction time.
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THEOREM 3. For a < 1, ε > 0 and μx = μx−α , where α ∈ (0,1),

(i)

lim
x→∞ P

(
sup

u∈[0,a]
xu−1

∣∣∣∣Z0(uTx) − φ0

(
u,Tx − 1

r
logx

)∣∣∣∣ > ε

)
= 0.

(ii)

lim
x→∞ P

(
sup

u∈[0,1]
xα−uλ1/r−1

∣∣∣∣Z1(uTx) − φ1

(
u,Tx − 1

r
logx

)∣∣∣∣ > ε

)
= 0.

PROOF. This result now follows directly from Lemma 3 and the result in (2.1).
�

We define the following stochastic processes: if u ∈ [0,1],
ψ0(u) = e−u(η+log c),

ψ1(u) =
⎧⎨
⎩

μ

λ1 + r
e(λ1u/r)(η+log c), u > 0,

0, u = 0.

These processes represent the limits of our scaled population processes. However,
note that ψ1 is not right-continuous at 0 and therefore it is not possible to establish
that the scaled population processes are tight on an interval of the form [0, b] in the
standard Skorokhod topology. This is a result of the massive influx of mutations
near t = 0 in the unscaled process.

Next, we utilize Theorem 3 to establish weak convergence in the Skorokhod
sense of the joint process.

COROLLARY 4. For α ∈ [0,1) and 0 < a < b < 1 the joint process{(
xu−1Z0(uTx), x

α−λ1u/r−1Z1(uTx)
)
, u ∈ [a, b]} ⇒ {(

ψ0(u),ψ1(u)
)
, u ∈ [a, b]}

as x → ∞ in the standard Skorokhod topology, D([a, b]).
PROOF. For ease of notation, throughout this proof we will use the following

notation:

φx(u) =
(
φx

0

(
u,Tx − 1

r
logx

)
, φx

1

(
u,Tx − 1

r
logx

))
.

Clearly, from the result in Theorem 3 it suffices to prove that as x → ∞(
φx

0

(
·, Tx − 1

r
logx

)
, φx

1

(
·, Tx − 1

r
logx

))
⇒ (

ψ0(·),ψ(·))
in D([a, b]). We will carry this out via Theorem 13.3 of [1]. First, we observe that
convergence in finite dimensional distributions follows from (2.1) and the contin-
uous mapping theorem. Thus it only remains to establish tightness. Since our limit
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functions are continuous at u = a and u = b, it suffices to establish that for every
ε > 0

lim
δ→0

lim sup
x→∞

P
(
ω′′

x(δ) ≥ ε
) = 0,(4.2)

where

ω′′
x(δ)

.= sup
{∥∥φx(u) − φx(u1)

∥∥ ∧ ∥∥φx(u2) − φx(u)
∥∥ :u1 ≤ u ≤ u2, u2 − u1 ≤ δ

}
and ‖x‖ ≡ |x1|+ |x2|. From the mean value theorem there exists a constant C such
that for u < v ∈ [a, b]

∥∥φx(u) − φx(v)
∥∥ ≤ C(v − u)

∣∣∣∣Tx − 1

r
logx

∣∣∣∣eλ1v|Tx−(1/r) logx|

≤ C(v − u)e(λ1+1)b|Tx−(1/r) logx|.

Thus, if ω′′
x(δ) ≥ ε, then

Cδe(λ1+1)b|Tx−(1/r) logx| ≥ ε,

and therefore,

P
(
ω′′

x(δ) ≥ ε
) ≤ P

(∣∣∣∣Tx − 1

r
logx

∣∣∣∣ ≥ b(λ + 1) log(ε/δ)

)
.

Condition (4.2) then follows by taking the limit as x → ∞ [using (2.1)] and then
sending δ to 0. �

4.1. Crossover time. We define the following stochastic time:

ξ ≡ inf
{
t > 0|Z1(t) ≥ Z0(t)

}
,

which we refer to as the “crossover” time, since it is the first time at which the Z0
and Z1 paths cross, and represents roughly the time at which the Z1 or resistant
cell population begins to dominate the tumor. In this section we investigate, using
the limit theorems proven in the previous section, the distribution of the crossover
time scaled by Tx . First we utilize the crossover time of the limit processes to
obtain an estimate of this time. In particular, we define ũ to be the solution to

φ0

(
ũ, Tx − 1

r
logx

)
= φ1

(
ũ, Tx − 1

r
logx

)
.

We obtain

ũ = log(μ + (λ1 + r)xα) − logμ

Tx(λ1 + r)

and establish the following result.
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THEOREM 5. The estimate ũ and the scaled crossover time, ξ/Tx , converge
to each other in probability as x → ∞, that is, for all ε > 0,

P

(∣∣∣∣ ξ

Tx

− ũ

∣∣∣∣ > ε

)
→ 0 as x → ∞.

See Section 7 for the proof of this result, which follows as an application of
Theorem 3.

4.2. Turnaround time: Progression of disease. In this section we characterize
the time at which the total tumor population stops declining and starts increas-
ing. Define the following set of random times associated with the unscaled escape
process:

τ = argmin
t≥0

{
Z0(t) + Z1(t)

}
.

Using the sample path approximations, we can approximate this set of times,
rescaled by the extinction time Tx , as the random variable

u∗ ≡ log(r/(λ1μ)) + log(xα(λ1 + r) − μ)

(λ1 + r)Tx

.(4.3)

This corresponds to the time at which the approximated path of the total population
size has derivative zero. Looking at the highest order terms in (4.3), we see that for
large x,

u∗ ≈ αr

λ1 + r
.(4.4)

Thus a higher mutation rate, or smaller α, leads to a quicker turnaround time (rel-
ative to the extinction time). In addition, as the decay rate r increases, the time of
progression relative to the time of extinction increases.

Throughout this section we work with the sped-up but unscaled joint population
processes, Zi(usx(t)). For simplicity, write the sum of the mean of Z0 and Z1 as

fx,t (u) ≡ EZ0
(
usx(t)

) + EZ1
(
usx(t)

)
= xeλ0u((1/r) logx+t)

(
1 − μ

xα(λ1 + r)

)
+ x1−αμeλ1u((1/r) logx+t)

λ1 + r
.

We will first show that with high probability, the critical point of fx,t ,

u∗(t) ≡ log(r/(λ1μ)) + log(xα(λ1 + r) − μ)

(λ1 + r)((1/r) logx + t)
(4.5)

is close to the minimum of Z0(usx(t)) + Z1(usx(t)). We then establish that this
statement is in fact true uniformly for t in compact sets, and that τ/Tx is well
approximated by u∗.
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Since u∗(t) is a critical point of fx,t we have the following representation that
will be useful:

fx,t

(
u∗(t)

) = xeλ0u
∗(t)((1/r) logx+t)

(
1 − μ

xα(λ1 + r)

)(
1 + r

λ1

)
,

and

fx,t

(
u∗(t) + y

) = xeλ0u
∗(t)((1/r) logx+t)

(
1 − μ

xα(λ1 + r)

)

×
(
eλ0y((1/r) logx+t) + r

λ1
eλ1y((1/r) logx+t)

)
.

Therefore,

fx,t

(
u∗(t) + y

) = fx,t

(
u∗(t)

)[(
λ1

λ1 + r

)(
x−yeλ0yt + r

λ1
xλ1y/reλ1yt

)]
.(4.6)

With this “steepness” at the minimum property we can establish that with high
probability (for x large) the minimum of the total population is achieved at u∗(t).

LEMMA 4. For ε > 0,

P

(
τ

(1/r) logx + t
∩ [

u∗(t) − ε,u∗(t) + ε
]c �= ∅

)
→ 0

as x → ∞.

The proof of this result is deferred to Section 7.
Similar to the approximation result in Lemma 2, it is then possible to establish

that an analogous result holds uniformly for t in compact sets.

LEMMA 5. For ε > 0 and a constant M > 0,

(i)

P

(
sup

t∈[−M,M]
inf

u∈[0,u∗(t)−ε)
Z0

(
usx(t)

) + Z1
(
usx(t)

)
< Z0

(
u∗Tx

) + Z1
(
u∗Tx

)) → 0.

(ii)

P

(
sup

t∈[−M,M]
inf

u∈[0,u∗(t)+ε)
Z0

(
usx(t)

) + Z1
(
usx(t)

)
< Z0

(
u∗Tx

) + Z1
(
u∗Tx

)) → 0

as x → ∞.

See Section 7 for details of the proof.
We can now establish that the turnaround time of the scaled process τ normal-

ized by the extinction time Tx converges in probability to u∗.
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FIG. 2. Sample PDF of τ/Tx from simulation of (Z0,Z1) process compared with theoretical PDF
of u∗, for initial size x = 100,000 and two parameter sets. Top: x = 100,000, r0 = 1.0, d0 = 1.5,
r1 = 2.0, d1 = 1.0, μ = 0.01. Bottom: x = 100,000, r0 = 1.0, d0 = 1.75, r1 = 2.0, d1 = 1.0,
μ = 0.01.

THEOREM 6. For ε > 0,

P

(
τ

Tx

∩ [
u∗ − ε,u∗ + ε

]c �= ∅

)
→ 0

as x → ∞.

PROOF. Using similar techniques as in the proof of Theorem 3, the result fol-
lows easily from the previous two lemmas. �

In Figure 2 we compare the sample probability density function of τ/Tx from
simulations of the (Z0,Z1) process with the theoretical PDF of u∗. It is observed
that even with an initial starting population of size x = 100,000, the comparisons
are favorable. Thus, in the application of interest where x is on the order of 106

cells or greater, we expect these limiting approximations to be of use.

5. An example: Recurrence dynamics in nonsmall cell lung cancer. In this
section we apply the results to a simple model of drug resistance in nonsmall cell
lung cancer (NSCLC). Nonsmall cell lung cancer is a disease in which malignant
cells form in the tissues of the lung; it is the most common type of lung cancer,
which causes over 150,000 deaths per year in the U.S. In recent years, a new class
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FIG. 3. Growth and death rate data (hours−1) for erlotinib-sensitive (PC-9) and erlotinib-resistant
NSCLC cells as a function of drug concentration (data published in [2]).

of targeted anti-cancer drugs called tyrosine kinase inhibitors has been developed.
These inhibitors target molecules specifically within cancer cells and inhibit key
signaling pathways such as the epidermal growth factor receptor (EGFR). Two
such inhibitors, erlotinib and gefitinib, have been shown to be extremely success-
ful in reducing tumor burden in a substantial subset of NSCLC patients. However,
point mutations in the binding site of the drug have been identified that confer re-
sistance to both therapies, and thus lead to recurrence or progression of the disease.

In previous work [2] we characterized the in vitro growth rates of a pair of hu-
man NSCLC cell lines which were sensitive or resistant to the drug erlotinib (see
Figure 3). Here we utilize this experimental growth kinetic data and apply our
results on turnaround time distribution to study the properties of the time of dis-
ease progression. In particular, for a series of drug concentrations we characterize
the distribution of the random time u∗, using the experimental data to ascertain
r0, d0, r1 and d1. In addition, we use known estimates of the biological parame-
ter μx ≈ 10−8, which corresponds to the mutation probability per cell division per
base pair in the genome [16, 21]. We can then apply our estimates of the turnaround
time distribution to study how the time until progression varies as a function of
drug concentration. These distributions of u∗ are helpful in predicting the likely
success of the therapy. In particular, u∗ indicates the fraction of the total time that
the drug is effective (Tx) at which disease progression occurs. If the distribution of
u∗ for a particular drug at a specific concentration has most of its mass bounded
far below 1, the chance that the sensitive cell drug population is eradicated by
the time of progression is extremely low. On the other hand, drugs whose profiles
which place most of the u∗ distribution’s mass closer to 1 have better prospects of
eliminating the tumor. In Figure 4 we plot the u∗ distribution for a NSCLC tumor
starting with 109 sensitive cells treated with erlotinib at various concentrations.
Note that the current standard of care, the FDA approved dose elicits a concen-
tration of 3 μM in the plasma which corresponds to the upper right plot. As the
drug concentration increases, the distribution of u∗ moves accordingly to the right;
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FIG. 4. Distributions of the turnaround time, u∗, for a NSCLC tumor with initially 109 sensitive
cells, treated with erlotinib at 1 μM (top left), 3 μM (top right), 5 μM (bottom left) and 10 μM

(bottom right).

however, even at the highest concentration the majority of the mass is still bounded
well below 1 which indicates likely failure of the therapy. In clinical observations,
following an initial response in terms of tumor reduction, 100 percent of patients
develop resistance usually within 24 months of starting treatment [18].

One major clinical question in NSCLC treatment today is: once the disease has
progressed and the tumor size begins to increase, what course of therapy is op-
timal? In particular, should the drug be withdrawn or should the patient be kept
on erlotinib or gefitinib? If drug is maintained, how long should it be adminis-
tered beyond progression? Here, estimates of the u∗ distribution can be of use.
We note that τ is a clinically observable quantity since it represents the time until
disease progression from the start of treatment. Once τ is observed, using Theo-
rem 6 and the approximation in (4.4) we can approximate Tx , which represents the
time at which the entire drug-sensitive population is eradicated. This gives a clear
endpoint, Tx beyond which erlotinib therapy is unwarranted. Furthermore, we can
easily obtain the distribution of the population size of resistant cells at this time
Z1(Tx) to estimate the projected resistant tumor size at the time the sensitive cells
are eradicated. This information aids in determining whether erlotinib treatment
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should be maintained until Tx or a switch to alternative therapy should be made
prior to Tx .

6. Summary. In this work we have considered the stochastic dynamics of es-
cape from extinction in a binary branching process model. By considering the large
starting population limit, we approximate the birth–death process with a simpler
stochastic process whose only randomness is inherited from the weak limit of the
extinction time. Using this limit, we approximate the distribution of the time until
the total population begins to increase, and the time at which the escape mutants
first begin to dominate the population. One of many possible future extensions is
to consider the problems in this paper in a non-Markovian setting, that is, nonex-
ponential distribution between events. This work contributes to a growing body of
literature concerned with the mathematical understanding of cancer evolution, as
well as to the general understanding of extinction and escape paths in branching
process models. In future work we examine the setting α = 1, where O(1) muta-
tions arise before extinction and escape from extinction is not assured in the large x

limit.

7. Proof of main results.

7.1. Proof of Theorem 2. We first establish the scaling of the mean for large
initial population x.

By conditioning on the path of Z0 until Tx we get the formula (3.1); performing
a change of measure and flipping the order of integration (by Tonelli’s theorem)
we see

E
[
Z1(vTx)

] = μxE

[∫ ∞
0

1{Tx≥y/v}Z0(y) exp
(
λ1(vTx − y)

)
dy

]

= μx

∫ ∞
0

E
[
1{Tx≥y/v}Z0(y) exp

(
λ1(vTx − y)

)]
dy

= μx

∫ ∞
0

∫ ∞
y/v

∞∑
n=1

neλ1(vt−y)
P

(
Tx ∈ dt |Z0(y) = n

)
P

(
Z0(y) = n

)
dy.

Note that P(Tx ∈ dt |Z0(y) = n) = gn(t − y)dt , where gn is the density of the
extinction time for a population starting from a population of size n, and can be
written as gn(t) = n(G(t))n−1g(t), where g is the density of the extinction time
for a population starting from a single cell, and G is the c.d.f. Therefore, upon
rearranging the order of integration we get that

E
[
Z1(vTx)

]
= μx

∫ ∞
0

∫ ∞
y/v

eλ1(vt−y)g(t − y)

( ∞∑
n=1

n2(
G(t − y)

)n−1
P

(
Z0(y) = n

))
dt dy.
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Next define

Fx(s, t) = E
[
sZ0(t)

]
and F(s, t) = E

[
sZ0(t)|Z0(0) = 1,Z1(0) = 0

]
,

and observe that due to the independence of the branching structure Fx(s, t) =
(F (s, t))x . Therefore,

∞∑
n=1

n2sn−1
P

(
Z0(t) = n

)

= s
∂2

∂s2 Fx(s, t) + ∂

∂s
Fx(s, t)

(7.1)

= sx
(
F(s, t)

)x−1 ∂2

∂s2 F(s, t) + sx(x − 1)
(
F(s, t)

)x−2
(

∂

∂s
F (s, t)

)2

+ x
(
F(s, t)

)x−1 ∂

∂s
F (s, t).

For ease of notation we will simply write ∂
∂s

F (s, t) = F ′(s, t). Using (7.1) we
obtain

E
[
Z1(vTx)

]
= xμx

∫ ∞
0

∫ ∞
y/v

eλ1(vt−y)g(t − y)F
(
G(t − y), y

)x−2

× [
(x − 1)G(t − y)F ′(G(t − y), y

)2

+ G(t − y)F
(
G(t − y), y

)
F ′′(G(t − y), y

)
+ F

(
G(t − y), y

)
F ′(G(t − y), y

)]
dy dt.

This expression can be analyzed using techniques from [10]. In particular, if we
introduce the change of variable

t = 1

r
(z + log cx) = zx,

observe that

eλ1(vzx−y) = eλ1(vz/r−y)(cx)λ1v/r .

After the change of variables we have

E
[
Z1(vTx)

] = I1(x, v) + I2(x, v),

where

I1(x, v) = x(x − 1)(cx)λ1v/rμx

r

∫ ∞
0

∫
ry/v−log cx

�1(z, y) dz dy,

I2(x, v) = x(cx)λ1v/rμx

r

∫ ∞
0

∫ ∞
ry/v−log cx

�2(z, y) dz dy
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and

�1(z, y) = eλ1(vz/r−y)g(zx − y)G(zx − y)

× (
F

(
G(zx − y), y

))x−2(
F ′(G(zx − y), y

))2
,

�2(z, y) = eλ1(vz/r−y)g(zx − y)
(
F

(
G(zx − y), y

))x−1

× [
G(zx − y)F ′′(G(zx − y), y

) + F ′(G(zx − y), y
)]

.

We will now establish that for v ∈ (0,1], xα−1−λ1v/rI1(x, v) = Ĩ1(x, v) →
I1(v) and xα−1−λ1v/rI2(x, v) = Ĩ2(x, v) → 0 as x → ∞. The integrand of Ĩ1(x, v)

is

fx(z, y) = c0xg(zx − y)G(zx − y)

× (
F

(
G(zx − y), y

))x−2(
F ′(G(zx − y), y

))2
eλ1(vz/r−y),

where c0 = μcλ1v/r/r . From [10] we know that as z → ∞, g(z) ∼ rce−rz, and
therefore

g(zx − y) ∼ r

x
erye−z(7.2)

as x → ∞. Next note that there exists a ξx ∈ (G(zx − y),1) such that

F ′(G(zx − y), y
) = F ′(1, y) + (

1 − G(zx − y)
)
F ′′(ξx, y)

= e−ry + O
(
1 − G(zx − y)

)
,

and therefore

F ′(G(zx − y), y
) ∼ e−ry.(7.3)

Last, observe that

F
(
G(zx − y), y

) = 1 + e−ry(
G(zx − y) − 1

) + O
(
G(zx − y) − 1

)2
,

and therefore

logF
(
G(zx − y), y

) = −(
1 − G(zx − y)

)
e−ry + O

(
G(zx − y) − 1

)2
.

Observe that

1 − G(zx − y) ∼ erye−z

x
,

which gives that (
F

(
G(zx − y), y

))x−2 ∼ exp
[−e−z].(7.4)

Combining (7.2), (7.3) and (7.4) we see that

lim
x→∞fx(z, y) = c1e

−z(1−(λ1/r)v)e−y(r+λ1) exp
[−e−z],(7.5)
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where c1 = rc0. In order to evaluate the limit of Ĩ1 it thus remains to show that
the limit can be passed inside the integral; this will be done by finding an inte-
grable function h such that fx(z, y) ≤ h(z, y). First note that since G(z) ≤ 1 and
F ′(s, t) ≤ E1Z0(t) = e−rt , we have

fx(z, y) ≤ c0xeλ1(vz/r−y)g(zx − y)
(
F

(
G(zx − y), y

))x−2
e−2ry.

Then observe that there exists a constant k1 such that

g(zx − y) ≤ k1e
−r(zx−y) = k2

x
e−zery.(7.6)

Since logx ≤ x − 1 we have(
F

(
G(zx − y), y

))x−2 = exp
[
(x − 2) logF

(
G(zx − y), y

)]
≤ exp

[−(x − 2)
(
1 − F

(
G(zx − y), y

))]
.

Using results from the proofs of Proposition 1 and Lemma 1 of [10], we can es-
tablish that

1 − F
(
G(zx − y), y

) ≥ e−z

x
.(7.7)

Based on (7.6) and (7.7) we see that we can use the dominating function

h(z, y) = k3e
λ1(vz/r−y)e−ze−ry exp

[−k2e
−z].

With this result we see that

lim
x→∞ Ĩ1(x, v) = c0

∫ ∞
0

∫ ∞
−∞

lim
x→∞fx(z, y) dz dy

= c1

∫ ∞
0

∫ ∞
−∞

eλ1(vz/r−y)e−yre−z exp
[−e−z]dzdy

= μcλ1v/r�(1 − λ1v/r)

(λ1 + r)
.

We now consider Ĩ2. First observe that for (s, t) ∈ [0,1] × [0,∞) there exists
finite k4 such that F ′(s, t) ≤ k4 and F ′′(s, t) ≤ k4 and, of course, F(s, t) ≤ 1.
Therefore, if we consider Ĩ2 in terms of the original variables, there exists a finite
constant k5 such that

Ĩ2(x, v) ≤ k5x
−vλ1/r

∫ ∞
0

∫ ∞
y/v

eλ1(vt−y)g(t − y)dt dy

= k5x
−vλ1/r

∫ ∞
0

∫ ∞
y(1/v−1)

e−λ1yg(s)eλ1v(s+y) ds dy = k6x
−vλ1/r ,

where the first equality follows by using the change of variable s = t − y. Thus
Ĩ2(x, v) → 0 as x → ∞ for v ∈ (0,1].
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7.2. Proof of Lemma 1. We will start by establishing item (ii). Define F 0∞
to be the sigma algebra generated by the wave 0 population until their eventual
extinction, then

E
[
Z1

(
sx(t)

)|F 0∞
] = μx

∫ sx(t)

0
Z0(y)eλ1(sx(t)−y) dy

and therefore

E
[
Z0(s)Z1

(
sx(t)

)] = eλ1sx(t)μx

∫ sx(t)

0
E

[
Z0(y)Z0(s)

]
e−λ1y dy.

Now we establish the second moment result, item (i). For simplicity we evaluate
E[Z1(t)] for a positive t . For ease of notation we will use the following Ẽ[·] =
E[·|F 0∞]. Consider a partition of [0, t], 0 < � < 2� < · · · < t , where � = t/m for
a large integer m. Then we can write

E
[
Z1(t)

2|F 0∞
] = Ẽ

(
m∑

j=0

Nj∑
k=1

Bj,k(t − τj,k)

)2

=
m∑

j=0

Ẽ

( Nj∑
k=1

Bj,k(t − τj,k)

)2

+
m∑

j=0

∑
� �=j

Ẽ

( Nj∑
k=1

Bj,k(t − τj,k)

)
Ẽ

(
N�∑
k=1

B�,k(t − τ�,k)

)
,

where Nj is the number of type-1 mutants created in [j�, (j + 1)�), {Bj,k} is a
collection of i.i.d binary birth–death processes with birth rate a1 and death rate d1
and τj,k is the time of creation for the kth mutant created in [j�, (j + 1)�). In
the previous display we have used the independence of the branching process to
derive the second equality. For 0 ≤ j ≤ m,

ENj = �μxZ0(j�) + o(�),

EN2
j = �μxZ0(j�)

(
1 + �μxZ0(j�)

) + o(�).

Therefore,

Ẽ

( Nj∑
k=1

Bj,k(t − τj,k)

)2

= ẼNj ẼB(t − τj )
2 + Ẽ

[
Nj(Nj − 1)

](
ẼB(t − τj )

)2

= �μxZ0(j�)ẼB(t − τj )
2 + O

(
�2)

= �μxZ0(j�)

(
2r1

λ1
e2λ1(t−τj ) − r1 + d1

λ1
eλ1(t−τj )

)

+ O
(
�2)
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and

Ẽ

(
N�∑
k=1

B�,k(t − τ�,k)

)
= �μxZ0(j�)ẼB(t − τj )

= �μxZ0(j�)eλ1(t−τj ).

Using the previous two expressions we get

Ẽ
[
Z1(t)

2] = �μx

m∑
j=0

Z0(j�)

(
2r1

λ1
e2λ1(t−τj ) − r1 + d1

λ1
eλ1(t−τj )

)

+ (μx�)2
m∑

j=0

m∑
�=0,� �=j

Z0(j�)Z0(��)eλ1(t−τj )eλ1(t−τ�).

Sending � → 0, integrating over Z0 and replacing t with 1
r

logx + t gives us the
desired formula for item (i).

Item (iii) follows immediately from item (i).

7.3. Proof of Lemma 2. We will prove the more difficult second statement
first. We observe that it suffices to prove that as x → ∞,

P

(
sup

u∈[0,1]
e−λ1ut

∣∣Zx
1
(
usx(t)

) − φx
1 (u, t)

∣∣ > e−λ1t ε
)

→ 0.

Next observe that

e−λ1ut

x−α+1+λ1u/r

(
Z1

(
usx(t)

) − φ1(u, t)
)

=
(

e−λ1ut

x1+λ1u/r
Z1

(
usx(t)

) − μ

x1+α

∫ usx(t)

0
Z0(s)e

−λ1s ds

)
xα

+ μ

x

∫ usx(t)

0

(
Z0(s) − xeλ0s

)
e−λ1s ds,

and therefore

P

(
sup

u∈[0,1]
e−λ1ut

∣∣Zx
1
(
usx(t)

) − φx
1 (u, t)

∣∣ > e−λ1t ε
)

≤ P

(
sup

u∈[0,1]
xα

∣∣∣∣ e−λ1ut

x1+λ1u/r
Z1

(
usx(t)

) − μ

x1+α

∫ usx(t)

0
Z0(s)e

−λ1s ds

∣∣∣∣ > ε/2
)

+ P

(
sup

u∈[0,1]
μ

x

∫ usx(t)

0

∣∣Z0(s) − xeλ0s
∣∣e−λ1s ds > ε/2

)
.

However, we can observe that the process considered in the second expression in
the sum is monotonic in u, and the process considered in the first expression is a
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martingale in u, which allows us to arrive at the following simpler inequality:

P

(
sup

u∈[0,1]
e−λ1ut

∣∣Zx
1
(
usx(t)

) − φx
1 (u, t)

∣∣ > e−λ1t ε
)

≤ 4x2α

ε2 E

[(
e−λ1t

xλ1/r+1 Z1
(
sx(t)

) − μ

x1+α

∫ sx(t)

0
Z0(s)e

−λ1s ds

)2]
(7.8)

+ P

(
μ

x

∫ sx(t)

0

∣∣Z0(s) − xeλ0s
∣∣e−λ1s ds > ε/2

)
.

Consider the latter quantity first, where it suffices to show that as x → ∞,

μ

x

∫ sx(t)

0
E

[∣∣Z0(s) − xeλ0s
∣∣]e−λ1s ds → 0.

Next observe that

Var
(
Z0(s)

) = x

(
r0 + d0

λ0

)(
e2λ0s − eλ0s

)
.

It follows from the Cauchy–Schwarz inequality that

μ

x

∫ sx(t)

0
E

[∣∣Z0(s) − xeλ0s
∣∣]e−λ1s ds = O

(
x−1/2)

.

Moving on to the first term in (7.8),

x2α
E

[(
e−λ1t

xλ1/r+1 Z1
(
sx(t)

) − μ

x1+α

∫ sx(t)

0
Z0(s)e

−λ1s ds

)2]

=
(

e−λ1t xα

x1+λ1/r

)2

E
[
Z1

(
sx(t)

)2]
(7.9)

− 2
x2αμe−λ1t

x2+λ1/r+α

∫ sx(t)

0
e−λ1sE

[
Z0(s)Z1

(
sx(t)

)]
ds

+
(

μ

x

)2 ∫ sx(t)

0

∫ sx(t)

0
E

[
Z0(s)Z0(y)

]
e−λ1se−λ1y ds dy.

Using Lemma 1 we see that (7.9) can be written as

2r1x
α−1μ

λ1

∫ sx(t)

0
es(λ0−2λ1) ds − (r1 + d1)μe−λ1t

λ1x1−α+λ1/r

∫ sx(t)

0
es(λ0−λ1) ds = O

(
xα−1)

,

thus establishing the result (ii).
We now move on to the proof of item (i). First observe that

sup
u∈[0,a]

∣∣Zx
0
(
usx(t)

) − φx
0 (u, t)

∣∣ ≤ e−λ0at− sup
u∈[0,a]

e−λ0ut
∣∣Zx

0
(
usx(t)

) − φx
0 (u, t)

∣∣,
where t− = −min(t,0). We will show that as x → ∞,

P

(
sup

u∈[0,a]
∣∣e−λ0utZx

0
(
usx(t)

) − 1
∣∣ ≥ εeλ0at−

)
→ 0.
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Observe that e−λ0utxu−1Z0(usx(t)) − 1 is a martingale with respect to u. There-
fore, it suffices to show that as x → ∞,

E
[
e−λ0atZx

0

(
asx(t)

) − 1
]2 = x2a−1e−2aλ0t Var1 Z0

(
asx(t)

) → 0,

where Var1 Z0(t) represents the variance of Z0(t) starting with an initial popula-
tion size 1. The previous expression reduces to

xa−1e−aλ0t
(
x−ae−λ0at − 1

)
(r0 + d0)/λ0,

and since we have assumed that a < 1, the result is established.

7.4. Proof of Lemma 3. Throughout the proof assume that x > erM . We first
establish the result for the Z1 population by showing the following monotonicity
property in t :

sup
u∈[0,1]

∣∣∣∣Zx
1

(
u

(
1

r
logx + t0

))
− φx

1 (u, t0)

∣∣∣∣
(7.10)

≤ sup
u∈[0,1]

∣∣∣∣Zx
1

(
u

(
1

r
logx + t1

))
− φx

1 (u, t1)

∣∣∣∣
for t0 ≤ t1. For any u ∈ [0,1] set

ū ≡ u((1/r) logx + t0)

(1/r) logx + t1
,

which, of course, implies that ū(1
r

logx+ t1) = u(1
r

logx+ t0). In addition, observe
that ū ≤ u and thus x−λ1u/r ≤ x−λ1ū/r . Therefore,

x−λ1u/r

∣∣∣∣Z1

(
u

(
1

r
logx + t0

))
− φ1(u, t0)

∣∣∣∣
≤ x−λ1ū/r

∣∣∣∣Z1

(
ū

(
1

r
logx + t1

))
− φ1(ū, t1)

∣∣∣∣.
Since u ∈ [0,1] was arbitrary we have that

sup
t∈[−M,M]

sup
u∈[0,1]

xα−1−λ1u/r
∣∣Z1

(
usx(t)

) − φ1(u, t)
∣∣

≤ sup
u∈[0,1]

xα−1−λ1u/r

∣∣∣∣Z1

(
u

(
1

r
logx + M

))
− φ1(u,M)

∣∣∣∣.
Result (ii) now follows by an application of Lemma 2.

The proof of result (i) will follow a similar approach. In particular, for t ≤ M

and u ∈ [0, a], define

û = u

(
(1/r) logx + t

(1/r) logx + M

)
.
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Notice that

u − û = u

(
M − t

(1/r) logx + M

)
≤ a

(
M − t

(1/r) logx + M

)
= n(x,M).

Using the definition of n(x,M) it follows that n(x,M) logx ≤ 2arM which im-
plies that xu−û ≤ e2arM . Based on the definition of û and the upper bound on xu−û

xu
∣∣Z0

(
usx(t)

) − φ0(u, t)
∣∣

= xu−ûxû

∣∣∣∣Zx
0

(
û

(
1

r
logx + M

))
− φ0(ũ,M)

∣∣∣∣
≤ e2arMxû

∣∣∣∣Z0

(
û

(
1

r
logx + M

))
− φ0(û,M)

∣∣∣∣.
Since the previous inequality holds for any u, we know that for any t ∈ [−M,M],

sup
u∈[0,a]

xu
∣∣Z0

(
usx(t)

) − φ0(u, t)
∣∣

≤ e2arM sup
u∈[0,a]

xu

∣∣∣∣Z0

(
u

(
1

r
logx + M

))
− φ0(u,M)

∣∣∣∣.
Thus the result of (i) is established by using the result of Lemma 2 for t = M .

7.5. Proof of Theorem 5. First we prove that P(ξ/Tx ≤ ũ−ε) → 0 as x → ∞.
In particular, recall that

φ0(u, t) = x1−ueλ0ut ,

φ1(u, t) = μx1−α+λ1u/reλ1ut

λ1 + r

(
1 − eu(λ0−λ1)t x(λ0−λ1)u/r).

Then let us utilize the notation d(Tx) ≡ Tx − 1
r

logx to represent the deviation
of Tx from its scaling,

P

(
sup

u≤ũ−ε

(
Z1(uTx) − Z0(uTx)

)
> 0

)

≤ P

(
sup

u≤ũ−ε

xu−1(Z1(uTx) − φ1
(
u,d(Tx)

) + (
φ1

(
u,d(Tx)

) − φ0
(
u,d(Tx)

))

+ (
φ0

(
u,d(Tx)

) − Zx
0 (uTx)

)
> 0,

∣∣d(Tx)
∣∣ ≤ 1

r
logx

)

+ P

(∣∣d(Tx)
∣∣ >

1

r
logx

)

≤ P

(
sup

u≤ũ−ε

xu−1(
Z1(uTx) − φ1

(
u,d(Tx)

))
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+ sup
u≤ũ−ε

xu−1(
φ1

(
u,d(Tx)

) − φ0
(
u,d(Tx)

))

+ sup
u≤ũ−ε

xu−1(
φ0

(
u,d(Tx)

) − Zx
0 (uTx)

)
> 0,

∣∣d(Tx)
∣∣ ≤ 1

r
logx

)

+ P

(∣∣d(Tx)
∣∣> 1

r
logx

)
.

Clearly P(|d(Tx)| > 1
r

logx) → 0 as x → ∞, and it thus remains to analyze the
first expression on the right-hand side of previous display. First notice that if
|d(Tx)| ≤ 1

r
logx, then

sup
u≤ũ−ε

xu−1(
φ1

(
u,d(Tx)

) − φ0
(
u,d(Tx)

))

= xũ−ε−1(
φ1

(
ũ − ε, d(Tx)

) − φ0
(
ũ − ε, d(Tx)

))
.

Therefore, it suffices to show that the following converges to 0:

P

(
sup

u≤ũ−ε

xu−1(
Z1(uTx) − φ1

(
u,d(Tx)

))

+ xũ−ε−1(
φ1

(
ũ − ε, d(Tx)

) − φ0
(
ũ − ε, d(Tx)

))
(7.11)

+ sup
u≤ũ−ε

xu−1(
φ0

(
u,d(Tx)

) − Zx
0 (uTx)

)
> 0

)
.

To study this let us start by considering the first term in the sum above:

sup
u≤ũ−ε

∣∣xu−1(
Z1(uTx) − φ1

(
u,d(Tx)

))∣∣
(7.12)

≤ sup
u≤ũ−ε

xu(1+λ1/r)−α sup
u≤ũ−ε

∣∣xα−λ1u/r−1(
Z1(uTx) − φ1

(
u,d(Tx)

))∣∣.
The second term in the product converges to zero in probability via Theorem 3.
The first term tends to zero by the following argument:

log
[

sup
u≤ũ−ε

xu(1+λ1/r)−α
]

= log
[
x(ũ−ε)(1+λ1/r)−α]

= log
[
x−(1+λ1/r)ε−α exp

[
ũ

(
1 + λ1

r

)
logx

]]

=
(
−α −

(
1 + λ1

r

)
ε

)
logx + logx

rTx

log
[
1 + xα

(
λ1 + r

μ

)]

≤
(
−α −

(
1 + λ1

r

)
ε

)
logx + logx

rTx

log
[
2xα

(
λ1 + r

μ

)]

= α
logx

rTx

(logx − rTx) −
(

λ1

r
+ 1

)
ε logx + logx

rTx

log
[

2(λ1 + 1)

μ

]
,
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where in the third equality we have utilized the fact that

ũ

(
λ1 + r

r

)
= 1

rTx

log
[
(λ1 + r)xα

μ
+ 1

]

due to the definition of ũ. Observe that −(λ1
r

+ 1)ε logx diverges to negative in-
finity, while the first and third terms approach finite limits. This can be seen by
observing that

logx

rTx

→ 1

in probability. Thus, we conclude that (7.12) goes to zero in probability.
The second term in (7.11) is considered next. Via the definition of φ0(u, d(Tx))

and the limit result on the extinction time (2.1), we have that as x → ∞,

xũ−ε−1φ0
(
ũ − ε, d(Tx)

) ⇒ c−(ũ−ε)e−(ũ−ε)η,

where η is a standard Gumbel random variable and c is the positive Yaglom con-
stant. Importantly, this limit random variable is positive with probability one. The
first term can be shown to approach zero by noting that

xũ−ε−1φ1
(
ũ − ε, d(Tx)

) = x(ũ−ε)(1+λ1/r)−αxα−(ũ−ε)λ1/r−1φ1
(
ũ − ε, d(Tx)

)
,

where the first term approaches zero, as argued previously since its log approaches
negative infinity, and the product of the remaining terms approaches a constant
times the exponential of a Gumbel, which is again a result of (2.1). The third term
in (7.11),

sup
u≤ũ−ε

xu−1(
φ0

(
u,d(Tx)

) − Zx
0 (uTx)

)
,

converges to zero in probability by Theorem 3. Therefore,

lim sup
x→∞

P(ξ/Tx ≤ ũ − ε) ≤ P
(
c−(ũ−ε)e−(ũ−ε)η ≤ 0

) = 0.

Next, we need to show that P(ξ/Tx ≥ ũ + ε) → 0. We have by definition of ξ

that

P(ξ/Tx > ũ + ε) ≤ P
(
Z0

(
(ũ + ε)Tx

) − Z1
(
(ũ + ε)Tx

)
> 0

)
= P

(
xα−(ũ+ε)(λ1/r)−1(

Z0
(
(ũ + ε)Tx

) − Z1
(
(ũ + ε)Tx

))
> 0

)
= P

(
xα−(ũ+ε)(λ1/r)−1(

Z0
(
(ũ + ε)Tx

) − φ0
(
ũ + ε, d(Tx)

))
+ xα−(ũ+ε)(λ1/r)−1(

φ0
(
ũ + ε, d(Tx)

) − φ1
(
ũ + ε, d(Tx)

))
+ xα−(ũ+ε)(λ1/r)−1(

φ1
(
ũ + ε, d(Tx)

) − Z1
(
(ũ + ε)Tx

))
> 0

)
.

It is easily shown that the right-hand side of the previous display goes to 0 using
analogous arguments from the analysis of (7.11).
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7.6. Proof of Lemma 4. Here we establish Lemma 4, namely, that u∗(t) ap-
proximates τ/(1

r
logx + t).

PROOF. We will prove first that

P

(
inf

u∈[u∗(t)+ε,∞]Z1
(
usx(t)

)
< Z0

(
u∗(t)sx(t)

) + Z1
(
u∗(t)sx(t)

)) → 0.(7.13)

Consider the following decomposition of the event of interest,

P

(
inf

u∈[u∗(t)+ε,∞]Z1
(
usx(t)

)
< Z0

(
u∗(t)sx(t)

) + Z1
(
u∗(t)sx(t)

))

≤ P

(
inf

u∈[u∗(t)+ε,∞]Z1
(
usx(t)

)
< f

(
u∗(t) + ε/2

))

+ P
(
Z0

(
u∗(t)sx(t)

) + Z1
(
u∗(t)sx(t)

)
> fx,t

(
u∗(t) + ε/2

))
.

We can apply Markov’s inequality to the last probability to see

P
(
Z0

(
u∗(t)sx(t)

) + Z1
(
u∗(t)sx(t)

)
> fx,t

(
u∗(t) + ε/2

))
≤ E[Z0(u

∗(t)sx(t)) + Z1(u
∗(t)sx(t))]

fx,t (u∗(t) + ε/2)

= fx,t (u
∗(t), t)

fx,t (u∗(t) + ε/2)

= O
(
x−λ1ε/2r),

where the last equality follows from the “steepness” at the minimum prop-
erty (4.6).

Define the event

Aε(x, t) = inf
{
Z1

(
usx(t)

)
:u ∈ [u∗(t) + ε,∞)

}
< f

(
u∗(t) + ε/2

)
.

Then,

P
(
Aε(x, t)

) = P
(
Aε(x, t),Z1

((
u∗(t) + ε

)
sx(t)

)
< fx,t

(
u∗(t) + 3ε/4

))
+ P

(
Aε(x, t),Z1

((
u∗(t) + ε

)
sx(t)

)
> fx,t

(
u∗(t) + 3ε/4

))
(7.14)

≤ P
(
Z1

((
u∗(t) + ε

)
sx(t)

)
< fx,t

(
u∗(t) + 3ε/4

))
+ P

(
Aε(x, t),Z1

((
u∗(t) + ε

)
sx(t)

)
> fx,t

(
u∗(t) + 3ε/4

))
.

Using Chebyshev’s inequality and the result in (4.6) again, we see that

P
(
Z1

((
u∗(t) + ε

)
sx(t)

)
< fx,t

(
u∗(t) + 3ε/4

))
= P

(
Z1

((
u∗(t) + ε

)
sx(t)

) − E
[
Z1

((
u∗(t) + ε

)
sx(t)

)]
(7.15)

< fx,t

(
u∗(t) + 3ε/4

) − E
[
Z1

((
u∗(t) + ε

)
sx(t)

)])
≤ E[|Z1((u

∗(t) + ε)sx(t)) − EZ1((u
∗(t) + ε)sx(t))|2]

|fx,t (u∗(t) + 3ε/4) − EZ1((u∗(t) + ε)sx(t))|2 .
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Let us consider first the denominator in the above expression, and note that since
u∗(t) minimizes EZ0(usx(t)) + EZ1(usx(t)), we have that

r

λ1
xeλ0u

∗(t)((1/r) logx+t)

(
1 − μ

xα(λ1 + r)

)
= x1−αμ

λ1 + r
eλ1u

∗(t)((1/r) logx+t).

Thus,

E
[
Z1

((
u∗(t) + ε

)
sx(t)

)]
= xeλ0u

∗(t)((1/r) logx+t)

[
− μ

xα(λ1 + r)
eλ0ε((1/r) logx+t)

+ r

λ1

(
1 − μ

xα(λ1 + r)

)
eλ1ε((1/r) logx+t)

]
.

Also,

fx,t

(
u∗(t) + 3ε/4

)
= xeλ0u

∗(t)((1/r) logx+t)

(
1 − μ

xα(λ1 + r)

)(
eλ03ε/4((1/r) logx+t)

+ (r/λ1)e
λ13ε/4((1/r) logx+t)),

and therefore∣∣∣∣fx,t

(
u∗(t) + 3ε

4

)
− EZ1

((
u∗(t) + ε

)
sx(t)

)∣∣∣∣
2

=
∣∣∣∣x1−u∗(t)eλ0u

∗(t)t

×
[(

1 − μ

xα(λ1 + r)

)(
x−3ε/4e3λ0εt/4 + r

λ1
x3λ1ε/4re3λ1εt/4

)

+ μ

xα(λ1 + r)
x−εe−εt − r

λ1

(
1 − μ

xα(λ1 + r)

)
xλ1ε/reλ1εt

]∣∣∣∣
2

= �
(
x2(λ1ε/r+1−u∗(t))).

Next we consider the variance term. For ease of notation define θ(t) ≡ (u∗(t) +
ε)(1

r
logx + t), then from item (iii) of Lemma 1,

Var
[
Z1

((
u∗(t) + ε

)
sx(t)

)]
=

(
μ

xα

)2 ∫ θ(t)

0

∫ θ(t)

0
Cov

(
Z0(s),Z0(y)

)
eλ1(2θ(t)−s−y) ds dy

+
(

μ

xα

)∫ θ(t)

0
EZ0(s)

(
2r1e

2λ1(θ(t)−s) − (r1 + d1)e
λ1(θ(t)−s))ds.
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We now establish that Cov(Z0(s),Z0(y)) is an O(x) quantity. Since the population
Z0 starts with x independent cells, we can write the covariance as

Cov
(
Z0(s),Z0(y)

) = E

[
x∑

j=1

Z
(j)
0 (y)

x∑
i=1

Z
(i)
0 (s)

]
− E

[
Z0(s)

]
E

[
Z0(y)

]

= xE1
[
Z0(s)Z0(y)

] + x(x − 1)E1
[
Z0(s)

]
E1

[
Z0(y)

]
− E

[
Z0(s)

]
E

[
Z0(y)

]
= x Cov1

(
Z0(s),Z0(y)

) = O(x).

Based on this we know that the second term in the definition of VarZ1 is the
dominant term and therefore Var[Z1((u

∗(t) + ε)sx(t))] = O(x1−α+2λ1(u
∗(t)+ε)/r ).

Then, in order to establish that (7.15) goes to zero it suffices to show that(
1 − α + 2λ1

u∗(t) + ε

r
− 2

(
λ1ε

r
+ 1 − u∗(t)

))
logx → −∞.

The result in the previous display follows from the definition of u∗(t) in (4.5), and
therefore we can conclude that

lim
x→∞ P

(
Z1

((
u∗(t) + ε

)
sx(t)

)
< fx,t

(
u∗(t) + 3ε/4

)) = 0.

It remains to show that the final probability in display (7.14) is negligible for
large x. Observe that if we start out with a collection of n independent cells, each
following branching processes with net-growth rate λ1 > 0, then by the law of
large numbers the fraction, fn, of those cells whose lineage eventually dies out
satisfies the following limit: limn→∞ fn = pE(λ1) < 1, where pE(λ1) is the prob-
ability of a single cell’s descendants going extinct and is strictly less than 1 because
λ1 > 0. Therefore, define ρx(u, t) to be the fraction of type-1 cells present at time
u(1

r
logx + t) that eventually die out. Notice then that in order for the event de-

scribed in the last line of display (7.14) to occur it is necessary that

ρx

(
u∗(t) + ε, t

) ≥ 1 − fx,t (u
∗(t) + ε/2)

fx,t (u∗(t) + 3ε/4)
.

Then from the “steepness” property we have that, for x sufficiently large,
ρx(u

∗(t) + ε, t) > pE(λ1) + η, for some η > 0. Of course, from the law of large
numbers we have that

P
(
ρx

(
u∗(t) + ε, t

)
> pE(λ1) + η,Z1

((
u∗(t) + ε

)
sx(t)

)
> fx,t

(
u∗(t) + 3ε/4

))
converges to 0 as x → ∞, thus establishing (7.13).

Moving on we next establish that

P

(
inf

u∈[0,u∗(t)−ε]Z0
(
usx(t)

)
< Z0

(
u∗(t)sx(t)

) + Z1
(
u∗(t)sx(t)

)) → 0(7.16)
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as x → ∞. Note that based on arguments from the above case it suffices to estab-
lish that the following probability converges to 0 as x → ∞:

P

(
inf

u∈[0,u∗(t)−ε]Z0
(
usx(t)

)
< fx,t

(
u∗(t) − ε/2

))

≤ 1

(c0 − 1)fx,t (u∗(t) − ε/2)

× E
[(

c0fx,t

(
u∗(t) − ε/2

) − Z0
((

u∗(t) − ε
)
sx(t)

))+]
≤ c0fx,t (u

∗(t) − ε/2)

(c0 − 1)fx,t (u∗(t) − ε/2)

× P
(
Z0

((
u∗(t) − ε

)
sx(t)

)
< c0fx,t

(
u∗(t) − ε/2

))
,

where we chose c0 > 1, and the penultimate inequality follows from Doob’s in-
equality and that −Z0(·sx(t)) is a submartingale. The final probability can be
rewritten as

P
(
Z0

((
u∗(t) − ε

)
sx(t)

) − EZ0
((

u∗(t) − ε
)
sx(t)

)
< c0fx,t

(
u∗(t) − ε/2

) − EZ0
((

u∗(t) − ε
)
sx(t)

))
.

Note since EZ0((u
∗(t) − ε)sx(t)) = x1+ε−u∗(t)eλ0t (u

∗(t)−ε) and fx,t (u
∗(t) −

ε/2) = x1+ε/2−u∗(t)(1 + o(1)), we know that there exists a positive constant C0

such that for x sufficiently large

EZ0
((

u∗(t) − ε
)
sx(t)

) − cfx,t

(
u∗(t) − ε/2

) ≥ C0x
1+ε−u∗(t),

and therefore for x sufficiently large

P
(
Z0

((
u∗(t) − ε

)
sx(t)

) − EZ0
((

u∗(t) − ε
)
sx(t)

)
< cfx,t

(
u∗(t) − ε/2

) − EZ0
((

u∗(t) − ε
)
sx(t)

))
≤ P

(∣∣Z0
((

u∗(t) − ε
)
sx(t)

) − EZ0
((

u∗(t) − ε
)
sx(t)

)∣∣ > C0x
1+ε−u∗(t)).

Thus, via Chebyshev’s inequality we have

P
(∣∣Z0

((
u∗(t) − ε

)
sx(t)

) − EZ0
((

u∗(t) − ε
)
sx(t)

)∣∣ > C0x
1+ε−u∗(t))

≤ x1/2(Var1 Z0((u
∗(t) − ε)sx(t)))

1/2

C0x1+ε−u∗(t)

= O
(
x−(1+ε−u∗)/2)

,

where the final equality follows by evaluating the variance of Z0(u
∗(t)sx(t)). �
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7.7. Proof of Lemma 5. As in the proof of the previous lemma, we consider
the deviations to the left and right of u∗(t) separately. First, note that if t0 > t1,
then

inf
u∈[0,u∗(t0)−ε)

Z0

(
u

(
1

r
logx + t0

))
+ Z1

(
u

(
1

r
logx + t0

))

= inf
{
Z0(s) + Z1(s) : s ≤ (

u∗(t0) − ε
)(1

r
logx + t0

)}

≥ inf
{
Z0(s) + Z1(s) : s ≤ (

u∗(t1) − ε
)(1

r
logx + t1

)}

= inf
u∈[0,u∗(t1)−ε)

Z0

(
u

(
1

r
logx + t1

))
+ Z1

(
u

(
1

r
logx + t1

))
.

Furthermore, it follows from the definition of u∗(t) that Zi(u
∗(t)(1

r
logx + t)) =

Zi(u
∗(s)(1

r
logx+s)) for all s, t . In particular, Zi(u

∗(s)(1
r

logx+s)) = Zi(u
∗Tx).

Then via Lemma (4),

P

(
sup

t∈[−M,M]
inf

u∈[0,u∗(t)−ε)
Z0

(
usx(t)

) + Z1
(
usx(t)

)
< Z0

(
u∗Tx

) + Z1
(
u∗Tx

))

converges to zero as x → ∞. A similar argument can be used for deviations to the
right of u∗(t) to show that

P

(
sup

t∈[−M,M]
inf

u∈[u∗(t)+ε,∞)
Z0

(
usx(t)

) + Z1
(
usx(t)

)
< Z0

(
u∗Tx

) + Z1
(
u∗Tx

))

also converges to zero as x → ∞, establishing the lemma.
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