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Abstract

We consider a large declining population of cells under an external selec-
tion pressure, modeled as a subcritical branching process. This population
has genetic variation introduced at a low rate which leads to the production
of exponentially expanding mutant populations, enabling population escape
from extinction. Here we consider two possible settings for the effects of the
mutation: Case (I) a deterministic mutational fitness advance and Case (II) a
random mutational fitness advance. We first establish a functional central limit
theorem for the renormalized and sped up version of the mutant cell process.
We establish that in Case (I) the limiting process is a trivial constant stochastic
process, while in Case (II) the limit process is a continuous Gaussian process
for which we identify the covariance kernel. Lastly we apply the functional
central limit theorem and some other auxiliary results to establish a central
limit theorem (in the large initial population limit) of the first time at which
the mutant cell population dominates the population. We find that the limiting
distribution is Gaussian in both Case (I) and (II), but a logarithmic correction
is needed in the scaling for Case (II). This problem is motivated by the question
of optimal timing for switching therapies to effectively control drug resistance
in biomedical applications.

1 Introduction

Genetic variation often drives the process of population escape from extinction. For
example, populations of bacteria or cancer cells declining under drug treatment can
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produce resistant variants capable of thriving under treatment, resulting in popula-
tion rebound. Although new therapies are constantly being developed to target these
drug-resistant mutants, one major question in the biomedical community today is:
when should these second-line drugs be administered? Motivated by this question,
here we consider a subcritical population of drug-sensitive cells in which a low rate
of random genetic variation drives the production of a (possibly heterogeneous) pop-
ulation of resistant mutants. We are interested in studying the temporal dynamics
of escape from extinction via this mechanism, and in particular here we obtain re-
fined estimates of the stochastic time at which the resistant population first becomes
dominant in the population. Characterization of this ‘crossover’ time, its variability,
and how it depends on fundamental parameters of the drug profile and cell type, is
useful in determining the optimal time to switch therapies and target different dis-
ease subpopulations. More generally, this work contributes to a growing literature
aimed at developing theoretical tools for the design of dynamic treatment strategies
that optimally utilize multiple drugs to control heterogeneous, evolving disease cell
populations [9, 10, 4].

Random mutational fitness landscapes. We will consider a general setting where
genetic variation can result in deterministic or random changes to the fitness of resis-
tant cells. Under this setting genetic variation may produce a spectrum of effects on
cellular fitness, resulting in a potentially highly heterogeneous population of resistant
escape mutants. This type of intrinsic stochasticity in drug resistant populations has
recently been a subject of intense biological interest and experimental investigations.
For example, in a recent study experimentalists observed variability in inter-mitotic
times in lung cancer cells with the T790M point mutation, which confers resistance
to anti-cancer drugs erlotinib and gefitinib [12]. Another investigation revealed that
within a clonal population of mycobacteria, there is significant heterogeneity among
cells due to asymmetric cell division which renders them differentially resistant to
several clinically important classes of antibiotics [1]. In light of these experimental
developments, in this work we study the stochastic time of interest under cases where
genetic variation produces both deterministic and random fitness effects in resistant
cells, drawn from a mutational fitness landscape.

We build upon several previous related works. In the current investigation, we
are interested in studying changes in the composition of the population which take
place on a logarithmic time scale. Thus we utilize a time scaling considered in the
works of Jagers, Sagitov, and Klebaner [8, 7], where the authors characterized process
dynamics on the time scale of extinction of a subcritical branching process. In a
previous work we established law of large numbers approximations of two escape
times under this time scaling in the case of deterministic fitness effects [6]. In a
joint work with Durrett, Mayberry and Michor [5], we also considered the impact
of random mutational fitness effects on total population growth rate in expanding
populations where multiple mutations are possible within the same cell. There it was
shown that the addition of random fitness effects resulted in a polynomial time delay
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in the growth of the total population. Here we observe a consistent phenomenon, in
that the addition of noise results in a decrease in the growth rate by a logarithmic
term in the current time scale.

The main results in this paper are as follows. Theorem 1 establishes a law of
large numbers approximation for the crossover time in the setting of random and
deterministic fitness effects. Next, we prove a functional central limit theorem for the
resistant cell population in Theorem 2. For the deterministic effect setting the limit
is a degenerate stochastic process, whereas in the random fitness effect setting the
limit is a continuous Gaussian process. Lastly, Theorem 3 establishes the weak limit
of the crossover time in both settings.

The outline of the paper is as follows. In section 2 we introduce the model and
define some quantities of interest. In section 3 the major results are stated, and the
proof of the weak convergence result for the crossover time is provided. In section 4
the proofs of the remaining results are given. Throughout the paper we will use the
following notation for the asymptotic behavior of positive functions.

f(t) ∼ g(t) if f(t)/g(t)→ 1 as t→∞
f(t) = O(g(t)) if f(t) ≤ Cg(t) for all t

f(t) = Θ(g(t)) if cg(t) ≤ |f(t)| ≤ Cg(t) for all t.

In addition, C denotes a positive constant that may change throughout the paper.

2 Model and preliminaries

Consider a subcritical birth-death process Z0 with birth rate r0 death rate d0 and
net growth rate λ0 = r0 − d0 < 0; this population represents the drug-sensitive cell
population and is comprised of n cells at time t = 0. Assume that drug-resistant
mutants are generated at time t at rate Z0(t)µn

−α for α ∈ (0, 1), and that each of
these mutations results in the creation of a supercritical birth-death process with
random birth rate d0 + X and death rate d0. Here, X is a possibly degenerate
non-negative random variable with distribution G, and an independent copy of X
is generated to determine the birth rate of each new mutant. Let us denote the
total population of mutants as Z1. Then, Z1 is a supercritical branching process
with immigration, which may be comprised of a spectrum of resistant types. We will
consider two distinct types of distributions G:

1. Case I (deterministic fitness effects):

G(dx) = δλ1(x)

2. Case II (random fitness effects):

G(dx) = g(x)dx,
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where g(x) has support in [0, λ1] and is bounded, continuous and positive (at
λ1).

To clarify the model, we note that Z1(t) is a Markov process in Case I but not in
Case II, since the population is heterogeneous.

For convenience we will also define r = −λ0. We are interested in the asymptotic
properties of the ‘crossover time’:

ξn = inf{t ≥ 0 : Z1(t) > Z0(t)},

i.e. the first time that the total population Z0 + Z1 is dominated by Z1. Note that
although Z0 and Z1 depend on n, we suppress the notation throughout the paper for
the sake of notational simplicity.

Remark 1. Note that we have used a mutation rate of µn−α to model the behavior
that each sensitive cell generates mutations at a very small rate (which may represent
the rate of substitution error per base pair in DNA replication, for example). How-
ever, the initial population of sensitive cells is quite large in most biologically relevant
settings. Therefore multiple simultaneous scalings are needed to allow for flexibility in
the relationship between the large population size and the small mutation rate. This
relationship can vary significantly between biological systems (e.g. variation between
cell types, drug types, resistance mechanisms), and thus we are particularly interested
in characterizing how the crossover time depends on the quantity α for biological
applications.

Remark 2. Here we consider α ∈ (0, 1). The setting of α = 0 is not biologically
relevant since mutations are no longer rare and here the crossover time occurs on a
time scale independent of n. The setting of α = 1 is interesting and will be considered
in future work. In this case only finitely many mutants are created and escape from
extinction is no longer guaranteed.

Remark 3. An important class of distributions G that we do not explicitly consider
are finite distributions, i.e., there is a finite set of points x1, . . . , xk and non-negative
weights p1, . . . , pk summing to 1 such that for any A ⊂ [0,∞), G(A) =

∑k
i=1 pi1A(xi).

In this case the large time behavior of Z1 will be largely determined by mutants with
the fitness advance xk. The dynamics of the crossover time in this case are similar
to the results of Case I.

In the remainder of this section we define some useful quantities that will be used
throughout the paper. Let us define for φi(t) = EZi(t) and ψi(t) = VarZi(t), for
i = 0, 1. One useful time scale in this problem is given by tn = 1

r
log n which roughly

approximates the time at which the Z0 population dies out. On this time scale we
have the following

φ0(utn) = n1−u

ψ0(utn) = n1−u
(
r0 + d0
r

)(
1− n−u

)
.
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For ease of the notation we will also introduce the following constants

κ1 =
2(d0 + λ1)µ

λ1(r + 2λ1)
and κ2 =

µr(λ1 + d0)g(λ1)

λ1(r + 2λ1)
.

For the type-1 population we have that

φ1(utn) ∼ m(n, u)

ψ1(utn) ∼ ν(n, u).

where

m(n, u) =

{
µn1−α+λ1u/r

λ1+r
, G(dx) = δλ1(x)

µrg(λ1)n1−α+λ1u/r

u(r+λ1) logn
, G(dx) = g(x)dx,

and

ν(n, u) =

{
κ1n

1−α+2λ1u/r, G(dx) = δλ1(x)
κ2n1−α+2λ1u/r

u logn
, G(dx) = g(x)dx.

The unique positive root of φ1(t)−φ0(t) = 0 will be used as an approximation for
ξn:

un ≡

{
log(1+nα(λ1+r)/µ)

(λ1+r)
, G(dx) = δλ1(x)

u∗(n)tn, G(dx) = g(x)dx,
.

Thus, u∗(n) is the unique positive root to the equation: φ1(utn) − φ0(utn) = 0. We
will see that the values of un/tn for the two cases in fact converge to the same value
as n→∞ in Proposition 1.

3 Results

We first establish the basic result of convergence in probability of the crossover time
ξn to the estimate un under Cases I and II.

Theorem 1 (Convergence in probability for crossover time). For every ε > 0 we
have that

lim
n→∞

P (|ξn − un| > ε) = 0.

Proof. See section 4.1.

It should be noted that Theorem 1 is only used in the proof of Theorem 3.
Our overall goal is to identify a scaling sn → ∞ and a random variable χ such

that sn(ξn − un)⇒ χ. Later we will demonstrate that the appropriate value for this
scaling is given by

sn =

{
n(1−α)/2, G(dx) = δλ1(x)√

n1−α

logn
, G(dx) = g(x)dx.

(1)
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In order to establish a weak convergence theorem for ξn, we need to first establish
some additional results related to the fluctuations of Z0 and Z1.

Consider the fluctuations of the Z1 process. To do this, define the centered and
normalized process for 0 < u < 1:

Yn(u) =
Z1(utn)− φ1(utn)√

ν(n, u)
, (2)

and the limiting covariance function for 0 < u ≤ v < 1

C(u, v) =

{
1, G(dx) = δλ1(x)
2
√
uv

u+v
, G(dx) = g(x)dx.

(3)

The next main result establishes a functional central limit theorem for the normalized
and centered paths of Z1.

Theorem 2 (FCLT for Z1). For any 0 < a < b ≤ 1, Yn ⇒ Y in the standard
Skorokhod topology on [a,b], where Y is a continuous centered Gaussian process on
[a, b] with covariance function C(u, v), and Y (a) ∼ N(0, 1).

Proof. See section 4.2.

Note that due to the large influx of resistance mutations at time u = 0 (in rescaled
time), we were not able to establish tightness in the standard Skorokhod topology of
the processes Yn on time intervals including 0. Since we are primarily interested in
‘crossover times’ which occur at positive values of u, the behavior of the limit process
at u = 0 is not important for this work; however we conjecture that there is a jump
with probability one in the limit process at u = 0.

Our method for studying the fluctuations in ξn about un is to study the scaled
maximum fluctuations of Z0 and Z1 about their means, and compare these quantities
with the scaled maximum difference between φ0 and φ1. Our means of studying the
difference in φ0 and φ1 is the expression

sup
u∈[a,u−n (y)]

ν(n, u)−1/2 (φ1(utn)− φ0(utn)) (4)

where y > 0, u−n (y) = (un − y/sn)/tn, and 0 < a < u−n (y) for n sufficiently large. We
also define u+n (y) = (un+y/sn)/tn, but to avoid repetition we will generally focus our
analysis on the supremum over [a, u−n (y)], since the analysis of the supremum over
[a, u+n (y)] is nearly identical. In particular we have the following result.

Proposition 1 (Difference in means of Z0 and Z1). As n→∞,

sup
u∈[a,u−n (y)]

ν(n, u)−1/2 (φ1(utn)− φ0(utn))→

−
yµ√
κ1
, G(dx) = δλ1(x)

−µyg(λ1)
√

r(λ1+r)
ακ2

, G(dx) = g(x)dx.

In addition we have that u∗(n)→ αr/(λ1 + r).
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Remark 4. In the proof of Theorem 3 we need the observation that in Case II
v(n, u)−1/2|φ1(utn) − φ0(utn)| grows rapidly as u moves away from u∗(n). In par-
ticular following the proof of Proposition 1 (and in particular using display (48)), if
εn = 1/ log n it is possible to establish that

sup
u∈[a,u−n (y)−εn]

φ1(utn)− φ0(utn)√
v(n, u)

(5)

= −rµey(λ1+r)/sn
√

(u−n (y)− εn)n1−α

κ2 log n

∫ 1+y/sn

0

e−x(λ1+r)hn (u∗(n)− x/tn)

u∗(n)− x/tn
dx

where hn is bounded above 0 and defined in (47). Although Y will vary with u in Case
II, this property will ensure that we only need to be concerned with its distribution at
the limit of the crossover time, i.e., u = (αr)/(λ1 + r).

If time is sufficiently removed from the origin (on the logarithmic time scale), then
we can safely ignore the fluctuations in the Z0 population. In particular we have the
following result

Proposition 2 (Fluctuations of Z0). For a > ( αr
λ1+r

)( λ1+2r
2(λ1+r)

) we have that as n→∞

sup
u∈[a,u−n (y)]

ν(n, u)−1/2(φ0(utn)− Z0(utn))→ 0

in probability.

The proofs of the two propositions above are provided in sections 4.3 and 4.4. Us-
ing these results we can next establish the main result regarding the weak convergence
limit of ξn.

Theorem 3 (Weak Convergence of ξn). If

σ2 =

{
2(d0+λ1)
λ1(r+2λ1)µ

, G(dx) = δλ1(x)
α(λ1+d0)

λ1µg(λ1)(λ1+r)(2λ1+r)
, G(dx) = g(x)dx

and χ ∼ N(0, σ2), then as n→∞,

sn(ξn − un)⇒ χ

Proof. We will do this by studying the limits of the following probabilities

lim
n→∞

P (sn(ξn − un) < −y) ,

and
lim
n→∞

P (sn(ξn − un) > y) ,
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for y > 0.
Now consider

P (ξn < un − y/sn) = P
(
ξn
tn
< u−n (y)

)
= P

(
sup

u≤u−n (y)

(Z1(utn)− Z0(utn)) > 0

)
, (6)

and similarly

P (ξn > un + y/sn) = P

(
sup

u≤u+n (y)
(Z1(utn)− Z0(utn)) < 0

)
.

First for 0 < a < u−n (y) we have the following inequalities

P

(
sup

u∈[a,u−n (y)]

(Z1(utn)− Z0(utn)) > 0

)
≤ P

(
sup

u∈[0,u−n (y)]

(Z1(utn)− Z0(utn)) > 0

)

≤ P

(
sup
u∈[0,a]

(Z1(utn)− Z0(utn)) > 0

)
+ P

(
sup

u∈[a,u−n (y)]

(Z1(utn)− Z0(utn)) > 0

)
,

and

P

(
sup

u∈[a,u+n (y)]
(Z1(utn)− Z0(utn)) < 0

)
− P

(
sup
u∈[0,a]

(Z1(utn)− Z0(utn)) > 0

)

≤ P

(
sup

u∈[0,u+n (y)]
(Z1(utn)− Z0(utn)) < 0

)
≤ P

(
sup

u∈[a,u+n (y)]
(Z1(utn)− Z0(utn)) < 0

)
.

From Theorem 1 we know that P (supu∈[0,a](Z1(utn)− Z0(utn)) > 0)→ 0 as n→∞,
and therefore it suffices to study the supremum over u ∈ [a, u−n (y)] or u ∈ [a, u+n (y)].

From now on we restrict ourselves to the analysis of the lower deviations, (6).
The analysis of the upper deviations is nearly identical, and is thus omitted. First
consider the bounds

P
(
Z1(u

−
n (y)tn)− Z0(u

−
n (y)tn) > 0

)
≤ P

(
sup

u∈[a,u−n (y)]

(Z1(utn)− Z0(utn)) > 0

)
≤ P (A1(n, y) + A2(n, y) + A3(n, y) > 0) , (7)
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where

A1(n, y) = sup
u∈[a,u−n (y)]

ν(n, u)−1/2 (Z1(utn)− φ1(utn))

A2(n, y) = sup
u∈[a,u−n (y)]

ν(n, u)−1/2 (φ1(utn)− φ0(utn))

A3(n, y) = sup
u∈[a,u−n (y)]

ν(n, u)−1/2 (φ0(utn)− Z0(utn)) .

For Case I, we can apply Theorem 2, Proposition 1, and Proposition 2 to see that

Z1 (u−n (y))− Z0 (u−n (y))

ν(n, u)1/2
⇒ V − yµ/

√
κ1

A1(n, y) + A2(n, y) + A3(n, y)⇒ V − yµ/
√
κ1,

where V ∼ N(0, 1). Therefore the upper and lower bounds in (7) match and we see
that

P

(
sup

u∈[a,u−n (y)]

(Z1(utn)− Z0(utn)) > 0

)
→ P

(
V >

yµ
√
κ1

)
which establishes the limit theorem. Note that this argument works in Case I since the
limiting process, Y , is a single random variable and the distribution of the supremum
is still Gaussian.

Case II requires a little more work. Here the upper and lower bounds from (7)
no longer match since, supu∈[a,b] Y (u) and Y (b) are no longer guaranteed to have
the same distribution (since in Case II the covariance kernel is not identically 1).
In the following we will evaluate the lower bound from (7) but obtain an improved
matching upper bound. For the lower bound, we obtain once again from Theorem 2,
Proposition 1, and Proposition 2 that

P
(
Z1(u

−
n (y)tn)− Z0(u

−
n (y)tn) > 0

)
→ P

V > yµg(λ1)

√
r(λ1 + r)

ακ2


To obtain a matching upper bound, define εn = 1/ log n, the random variables

A1(y, εn;n) = sup
u∈[u−n (y)−εn,u−n (y)]

ν(n, u)−1/2 (Z1(utn)− φ1(utn))

A2(y, εn;n) = sup
u∈[u−n (y)−εn,u−n (y)]

ν(n, u)−1/2 (φ1(utn)− φ0(utn))

A3(y, εn;n) = sup
u∈[u−n (y)−εn,u−n (y)]

ν(n, u)−1/2 (φ0(utn)− Z0(utn)) ,
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and the corresponding supremum over the remainder of the set [a, u−n (y)],

Ac1(y, εn;n) = sup
u∈[a,u−n (y)−εn]

ν(n, u)−1/2 (Z1(utn)− φ1(utn))

Ac2(y, εn;n) = sup
u∈[a,u−n (y)−εn]

ν(n, u)−1/2 (φ1(utn)− φ0(utn))

Ac3(y, εn;n) = sup
u∈[a,u−n (y)−εn]

ν(n, u)−1/2 (φ0(utn)− Z0(utn)) .

Then

P

(
sup

u∈[a,u−n (y)]

(Z1(utn)− Z0(utn)) > 0

)

≤ P

(
3∑
i=1

Aci(y, εn;n) > 0

)
+ P

(
3∑
i=1

Ai(y, εn;n) > 0

)
.

From the analysis of A3(y;n) we know that A3(y, εn;n) and Ac3(y, εn;n) both converge
to 0 in probability. Furthermore following the analysis of A2(y;n) we can see that

lim
n→∞

A2(y, εn;n) = −yµg(λ1)

√
r(λ1 + r)

ακ2
.

Similarly, based on Remark 4 and display (5) we see that there is a positive constant
c such that

Ac2(y, εn;n) ≤ −c

√
n1−α

log n
. (8)

From the tightness of the sequence of processes Yn we also have the stochastic bound-
edness property

lim
K→∞

sup
n

P

(
sup

u∈[a,u−n (y)−εn]
Yn(u) > K

)
= 0,

which combined with the result (8) and the asymptotic negligibility of Ac3 gives that

lim
n→∞

P

(
3∑
i=1

Aci(y, εn;n) > 0

)
= 0.

It then remains to study A1(y, εn;n), in particular to achieve a tight upper bound we
need to establish that

A1(y, εn;n)⇒ Y (αr/(λ1 + r)). (9)

First observe that the limit process Y is continuous with probability 1 on [a, b] ⊂ (0, 1],
due to the smoothness of the covariance function C(·, ·) on [a, b] × [a, b]. From (45)
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we observe that u−n (y) → αr/(λ1 + r) and since the limit process is continuous we
then have that as n→∞

Yn(u−n (y))⇒ Y (αr/(λ1 + r)).

Next for

δ ≥ 3r log log n

2(λ1 + r) log n
+

1

sntn
+ εn,

observe that due to (45) we have that

[u−n (y)− εn, u−n (y)] ⊂ [αr/(λ1 + r)− δ, αr/(λ1 + r) + δ].

Therefore we have the inequalities for x ∈ R

P
(
Yn(u−n (y)) > x

)
≤ P

(
sup

u∈[u−n (y)−εn,u−n (y)]

Yn(u) > x

)
(10)

≤ P

(
sup

u∈[ αr
λ1+r

−δ, αr
λ1+r

+δ]

Yn(u) > x

)
.

Since the process Y is continuous we have that

lim
δ→0

sup
u∈[ αr

λ1+r
−δ, αr

λ1+r
+δ]

Y (u) = Y (αr/(λ1 + r)) ,

with probability 1, and therefore

lim
δ→0

sup
x

∣∣∣∣∣P
(

sup
u∈[ αr

λ1+r
−δ, αr

λ1+r
+δ]

Y (u) > x

)
− P (Y (αr/(λ1 + r)) > x)

∣∣∣∣∣ = 0. (11)

If we send n → ∞ in (10) we can apply Theorem 2 to the leftmost and rightmost
terms of (10) to get

P
(
Y

(
αr

λ1 + r

)
> x

)
≤ lim inf

n→∞
P

(
sup

u∈[u−n (y)−εn,u−n (y)]

Yn(u) > x

)

≤ lim sup
n→∞

P

(
sup

u∈[u−n (y)−εn,u−n (y)]

Yn(u) > x

)
≤ P

(
sup

u∈[ αr
λ1+r

−δ, αr
λ1+r

+δ]

Y (u) > x

)
,

we then get the desired result by sending δ → 0 and applying (11).
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4 Proofs

4.1 Proof of Theorem 1

Proof. For ε > 0 define

û−n (ε) =
un − ε
tn

and û+n (ε) =
un + ε

tn
,

and note that

P (ξn < un − ε) = P
(
ξn
tn
< û−n (ε)

)
= P

(
sup

u≤û−n (ε)

(Z1(utn)− Z0(utn)) > 0

)
≤ P

(
Â1(n, ε) + Â2(n, ε) + Â3(n, ε) > 0

)
,

where

Â1(n, ε) = sup
u≤û−n (ε)

nu−1 (Z1(utn)− φ1(utn))

Â2(n, ε) = sup
u≤û−n (ε)

nu−1 (φ1(utn)− φ0(utn))

Â3(n, ε) = sup
u≤û−n (ε)

nu−1 (φ0(utn)− Z0(utn)) .

Lemma 2 of [6] shows that Â3(n, ε)→ 0 in probability. For G of Case I we have that
Â1(n, ε) → 0 via a simplification of the argument in Theorem 5 of [6]. In Case II
consider the bound

Â1(n, ε) ≤ sup
u≤û−n (ε)

nu(1+λ1/r)−α sup
u≤û−n (ε)

nα−λ1u/r−1|Z1(utn)− φ1(utn)|

≤ nu∗(n)(λ1+r)/r−α sup
u≤û−n (ε)

nα−λ1u/r−1|Z1(utn)− φ1(utn)|.

From Proposition 1 we know that u∗(n)(λ1 + r)/r − α → 0, and thus for any η < 0
we have that

nηnu∗(n)(λ1+r)/r−α → 0 (12)

as n→∞. Next observe that

sup
u≤û−n (ε)

nα−λ1u/r−1|Z1(utn)− φ1(utn)|

=

√
nα−1

log n
sup

u≤û−n (ε)

√
log n

n1−α+2λ1u/r
|Z1(utn)− φ1(utn)|.
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Recall the centered, rescaled process Yn from equation (2). From Theorem 2 we know
that the sequence Yn is relatively compact. Therefore Theorem 13.2 of [3] implies
that for 0 < a < b < 1

sup
n

P

(
sup
u∈[a,b]

√
log n

n1−α+2λ1u/r
|Z1(utn)− φ1(utn)| > K

)
→ 0

as K →∞. Then combining the previous display with (12), we get that

Â1(n, ε) ≤ nu∗(n)(λ1+r)/r−α

√
nα−1

log n
sup

u≤û−n (ε)

√
log n

n1−α+2λ1u/r
|Z1(utn)− φ1(utn)|

converges to 0 in probability.
It now remains to establish that Â2(n, ε) is a negative number bounded away from

zero. First note that via monotonicity and the result φ0(utn) = n1−u, Â2(n, ε) can be
simplified to

Â2(n, ε) = nû
−
n (ε)−1 (φ1

(
û−n (ε)tn

)
− φ0

(
û−n (ε)tn

))
= nû

−
n (ε)−1φ1

(
û−n (ε)tn

)
− 1.

The desired result will then follow by establishing that nû
−
n (ε)−1φ1 (û−n (ε)tn) < 1. Thus

consider

nû
−
n (ε)−1φ1

(
û−n (ε)tn

)
= nû

−
n (ε)−1 (φ1(u∗(n)tn) + φ1

(
û−n (ε)tn

)
− φ1(u∗(n)tn)

)
= nu∗(n)−1φ0(u∗(n)tn)nû

−
n (ε)−u∗(n)

+ nû
−
n (ε)−1 (φ1

(
û−n (ε)tn

)
− φ1(u∗(n)tn)

)
= e−εr + nû

−
n (ε)−1 (φ1

(
û−n (ε)tn

)
− φ1(u∗(n)tn)

)
≤ e−εr,

where the second equality is from the definition of u∗(n), the third equality from the
formula φ0(utn) = n1−u and the definition of û−n (ε), and the final inequality is due to
the monotone increasing property of φ1.

It now remains to study

P (ξn > un + ε) = P

(
sup

u≤û+n (ε)
(Z1(utn)− Z0(utn)) < 0

)
≤ P

(
Z1

(
û+n (ε)tn

)
− Z0

(
û+n (ε)tn

)
< 0
)

= P (B1(n, ε) +B2(n, ε) +B3(n, ε) < 0) ,

where

B1(n, ε) = nû
+
n (ε)−1

(
Z1(û

+
n (ε)tn)− φ1(û

+
n (ε)tn)

)
B2(n, ε) = nû

+
n (ε)−1

(
φ1(û

+
n (ε)tn)− φ0(û

+
n (ε)tn)

)
B3(n, ε) = nû

+
n (ε)−1

(
φ0(û

+
n (ε)tn)− Z0(û

+
n (ε)tn)

)
.

13



Again using Lemma 2 and Theorem 5 from [6] we can show that as n→∞ B3(n, ε)→
0 and B1(n, ε) → 0. Also similar to our analysis of Â2(n, ε) we can show that for
sufficiently large n, B2(n, ε) > 0. The result then follows.

4.2 Proof of Theorem 2

We first establish the weak convergence of the finite dimensional distributions of Yn.

Lemma 1 (Limiting correlation). For any k ∈ N and a ≤ u1 < · · · < uk ≤ b,

(Yn(u1), . . . , Yn(uk))⇒ (Y (u1), . . . , Y (uk)) ,

where Y is a Gaussian process on [a, b] with covariance function C(u, v) given in (3)
and Y (a) ∼ N(0, 1).

In Case I we have the following result

Lemma 2 (Tightness Case I). In Case I, for any 0 < a < b < 1 the sequence of
processes {Yn} is tight in the standard Skorokhod topology for càdlàg functions on
[a, b].

The previous two lemmas then establish Theorem 2 in Case I. To establish the
result for Case II, it remains to establish tightness of the processes {Yn}. For conve-
nience we will work with the process

Ỹn(u) =
(
nα−1tn

)1/2(
e−λ1utnZ1(utn)− µn1−α

∫ λ1

0

eutn(x−λ1)
∫ utn

0

e−s(r+x)g(x)dsdx

)
,

(13)
which is a constant multiple of Yn(u)/

√
u; thus establishing tightness for the processes

{Ỹn} is sufficient.
Due to the non-Markovian nature of Ỹn, in order to study tightness it is nec-

essary to introduce an approximating process. Specifically for {4n}, a sequence of
positive numbers decreasing to zero, define λ1(4n) = ceil(λ1/4n), xj = j4n and

gj =
∫ xj
xj−1

g(x)dx for j ∈ {0, 1, . . . , λ1(4n)}. In addition define Ẑ1,j to be a branching

process with birth rate d0 + xj, death rate d0, initial size 0, and immigration rate
at time s given by µn−αZ0(s)gj. With these definitions in place we now define an
approximating process

Jn(u) =
(
nα−1tn

)1/2 λ1(4n)∑
j=1

eutn(xj−λ1)
(
Ẑ1,j(utn)e−utnxj − µgj

nα

∫ utn

0

e−sxjZ0(s)ds

)
.

(14)

We will create a coupling between Jn and Ỹn to establish the following Lemma.
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Lemma 3 (Approximating Process for Case II). Fix 0 < a < b < 1. If 4n =
o
(
nα−1e−λ1btn/tn

)
then for any ε > 0 we have that

lim
n→∞

P

(
sup
u∈[a,b]

|Ỹn(u)− Jn(u)| > ε

)
= 0.

With the previous lemma we can work with the simpler processes {Jn} and es-
tablish that

Lemma 4 (Tightness Case II). If 4n = O(n2(α−1)/3/t
4/3
n ) then for any 0 < a < b ≤ 1

the sequence {Jn} is tight in the standard Skorokhod topology for càdlàg functions on
[a, b]

We lastly need the following Lemma which is quite standard, but we could not
find a proof in the literature so we provide one here.

Lemma 5. Let B(t) be Markovian continuous time branching process with offspring
generating function f(s), B(0) = 1, birth events occur at rate a, and define λ =
a(f ′(1)− 1). If for non-negative integer k, f (k)(1) <∞ then we have that

E[B(t)k] =

{
Θ(eλkt), λ > 0

Θ(eλt), λ < 0

With this result we are now ready to complete the proof of the functional central
limit theorem.

Proof of Theorem 2. As mentioned above, in Case I the proof is complete by com-
bining Lemmas 1 and 2. For Case II it suffices to establish weak convergence of
{Ỹn}. From Lemma 1 we get finite dimensional distribution (FDD) convergence of
{Ỹn}. Then via Slutsky’s theorem and Lemma 3 we have FDD convergence of {Jn}.
We then get weak convergence of {Jn} via Lemma 4, which of course implies weak
convergence of {Ỹn} via Slutsky’s theorem and Lemma 3.

4.2.1 Proof of Lemma 1

Proof. We first identify the limit of the following correlation function

Cn(u, v)
.
=
E [(Z1(utn)− φ1(utn)) (Z1(vtn)− φ1(vtn))]

(ν(n, u)ν(n, v))1/2
, (15)

i.e., to identify limn→∞Cn(u, v) = C(u, v). We will first consider this in the case
G(dx) = δλ1(x), and in this setting observe that if we define Ft = σ ((Z0(s), Z1(s)), s ≤ t)
then for u ≤ v

E[Z1(vtn)|Futn ] = eλ1tn(v−u)Z1(utn) +
eλ1vtnµ

nα

∫ vtn

utn

e−λ1sE[Z0(s)|Futn ]ds.

15



By conditioning we have

E[Z1(utn)Z1(vtn)] = eλ1tn(v−u)E[Z1(utn)2] +
eλ1vtnµ

nα

∫ vtn

utn

e−λ1sE[Z0(s)Z1(utn)]ds,

then applying the first part of Lemma 1 of [6]

E[Z1(utn)Z1(vtn)] =
eλ1tn(v+u)µ2

n2α

∫ utn

0

∫ utn

0

e−λ1(s+y)E[Z0(s)Z0(y)]dsdy

+ µn1−αeλ1tn(v−u)
∫ utn

0

e−rsE[Z̃1(utn − s)2]ds

+
eλ1vtnµ

nα

∫ vtn

utn

e−λ1sE[Z0(s)Z1(utn)]ds,

and then applying the second part of Lemma 1 of [6] we have

E[Z1(utn)Z1(vtn)] =
eλ1tn(v+u)µ2

n2α

∫ utn

0

∫ utn

0

e−λ1(s+y)E[Z0(s)Z0(y)]dsdy

+ µn1−αeλ1tn(v−u)
∫ utn

0

e−rsE[Z̃1(utn − s)2]ds

+
µ2eλ1tn(u+v)

n2α

∫ vtn

utn

∫ utn

0

e−λ1(y+s)E[Z0(y)Z0(s)]dyds,

where Z̃1 is binary branching process with birth rate d0 + λ1, death rate d0, and
Z̃1(0) = 1. Next observe that

φ1(utn)φ1(vtn) =
µ2eλ1tn(u+v)

n2α

∫ utn

0

∫ utn

0

E[Z0(s)]E[Z0(y)]e−λ1(s+y)dsdy

+
µ2eλ1tn(u+v)

n2α

∫ vtn

utn

∫ utn

0

E[Z0(s)]E[Z0(y)]e−λ1(s+y)dyds,

and therefore

E [(Z1(utn)− φ1(utn)) (Z1(vtn)− φ1(vtn))]

=
eλ1tn(v+u)µ2

n2α

∫ utn

0

∫ utn

0

e−λ1(s+y)Cov[Z0(s)Z0(y)]dsdy

+
µ2eλ1tn(u+v)

n2α

∫ vtn

utn

∫ utn

0

e−λ1(y+s)Cov[Z0(y)Z0(s)]dyds

+ µn1−αeλ1tn(v−u)
∫ utn

0

e−rsE[Z̃1(utn − s)2]ds.

Since Cov[Z0(s)Z0(y)] = O(n) and E[Z̃1(utn−s)2] = O(e2λ1(utn−s)) (see Lemma 5) we
see that the first two terms in the previous expression are O(n1−2αeλ1tn(u+v)), while the
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latter expression is O(n1−αeλ1tn(u+v)). Therefore when analyzing the limit of Cn(u, v)
it follows that the only the final term will impact the limit. Thus it remains to analyze
the limit below, which is a straightforward calculation

lim
n→∞

µn1−αeλ1tn(v−u)

(ν(n, u)ν(n, v))1/2

∫ utn

0

e−rsE[Z̃1(utn − s)2]ds = 1.

Thus we see that in the case of deterministic advances that the limiting correlation
function is C(u, v) = 1.

We now consider the case of random mutational advances, i.e., G(dx) = g(x)dx.
Following a similar development as in the deterministic advance we calculate the
covariance for 0 < u ≤ v ≤ 1. In particular, by discretizing the fitness space and time
and using the independence of distinct cell lines we obtain:

Cov(Z1(utn), Z1(vtn))

= 2µn1−α
∫ λ1

0

g(x)(d0 + x)exvtn

x(r + 2x)

[
exutn − (2d0 + x)(r + 2x)

2(d0 + x)(r + x)

]
dx(1 + o(1)).

We will show that

2µn1−α

(ν(n, u)ν(n, v))1/2

∫ λ1/2

0

g(x)(d0 + x)exvtn

x(r + 2x)

[
exutn − (2d0 + x)(r + 2x)

2(d0 + x)(r + x)

]
dx, (16)

goes to 0 as n→∞. First note that

exutn − (2d0 + x)(r + 2x)

2(d0 + x)(r + x)
= exutn − 1− x(2d0 − r)

2(d0 + x)(r + x)
,

so by the mean value theorem

1

x

∣∣∣∣exutn − (2d0 + x)(r + 2x)

2(d0 + x)(r + x)

∣∣∣∣ ≤ utne
xutn +

|2d0 − r|
2d0r

≤ Cutne
xutn

for a positive constant C. With this bound we can bound (16) by

2Cutnµn
1−α

(ν(n, u)ν(n, v))1/2

∫ λ1/2

0

g(x)(d0 + x)extn(u+v)

x(r + 2x)
dx = O

(
tnn

1−αeλ1tn(u+v)/2

(ν(n, u)ν(n, v))1/2

)
,

which goes to 0 as n→∞.
Thus it suffices to consider

2µn1−α

(ν(n, u)ν(n, v))1/2

∫ λ1

λ1/2

g(x)(d0 + x)exvtn

x(r + 2x)

[
exutn − (2d0 + x)(r + 2x)

2(d0 + x)(r + x)

]
dx,
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and observe that the second term in the integral clearly goes to 0. Using the change
of variable y = tn(u+ v)(λ1− x) and plugging in the definition of ν(n, u) we see that

lim
n→∞

2µn1−α

(ν(n, u)ν(n, v))1/2

∫ λ1

λ1/2

g(x)(d0 + x)extn(v+u)

x(r + 2x)
dx =

2
√
uv

(u+ v)
.

We now establish the asymptotic normality of the large n limit of (Yn(u), Yn(v))
for 0 < u ≤ v ≤ 1. The proof for more than two time points will be identical thus we
only consider the setting of two time points. By the Cramer-Wold device it suffices
to study weak limit of

θ1Yn(u) + θ2Yn(v)

for arbitrary (θ1, θ2) ∈ R2. Recall that Z0(0) = n, and use the label Z0(t) =∑n
j=1 Z

(j)
0 (t) where Z

(j)
0 are the un-mutated offspring of cell j from the original pop-

ulation. Further write Z1(t) =
∑n

j=1 Z
(j)
1 (t), where Z

(j)
1 are the mutated offspring of

cell j, in addition define φ
(j)
1 (utn) = φ1(utn)/n. If we then define

Y (j)
n (u) =

Z
(j)
1 (utn)− φ(j)

1 (utn)

ν(n, u)1/2

then it follows that

θ1Yn(u) + θ2Yn(v) =
n∑
j=1

(
θ1Y

(j)
n (u) + θ2Y

(j)
n (v)

)
.

Then
C(u, v) = lim

n→∞
nCov

(
Y (j)
n (u), Y (j)

n (v)
)
,

whose value we calculated earlier within this proof. If we establish the following
Lindeberg condition

lim
n→∞

nE
[(
θ1Y

(j)
n (u) + θ2Y

(j)
n (v)

)2
; |θ1Y (j)

n (u) + θ2Y
(j)
n (v)| > ε

]
= 0, (17)

then
θ1Yn(u) + θ2Yn(v)⇒ Z(u, v; θ1, θ2),

where Z(u, v; θ1, θ2) ∼ N(0, ω2) with ω2 = θ21 + θ22 + 2θ1θ2C(u, v). Since the following
analysis applies to arbitrary (θ1, θ2) ∈ R2 it follows that (Yn(u), Yn(v)) converges in
distribution to a mean-zero Gaussian with covariance matrix given by

Σ =

(
1 C(u, v)

C(u, v) 1

)
Thus it remains to establish (17). By expanding the square applying the Cauchy-
Schwarz inequality, and the inequality

1{|θ1Y (j)
n (u)+θ2Y

(j)
n (v)|>ε} ≤ 1{|θ1Y (j)

n (u)|≥ε/2} + 1{|θ2Y (j)
n (v)|≥ε/2}
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we see that (17) will be implied by establishing

lim
n→∞

nE
[
Y (j)
n (u)2; |Y (j)

n (v)| > ε
]

= 0 (18)

for arbitrary (u, v) ∈ (0, 1)×(0, 1). We will only do this for the settingG(dx) = g(x)dx
since the deterministic advance case is a simpler version of the same arguments.
Observe that in this setting

nY (j)
n (u)2 =

u log n

κ2n2λ1u/r−α

(
Z

(j)
1 (utn)− φ(j)

1 (utn)
)2
.

Denote the number of mutations created by cell j by time utn by Nj(utn) which is

a Poisson process with intensity at time s given by µn−αZ
(j)
0 (s). Further denote the

time of creation of the ith mutant by cell j by τij and the net growth rate of this cell
by Xij. Lastly denote the Markovian branching process representing the descendants

of the ith mutant of initial cell j by B
(j)
i , note that this population will have death

rate d0 and birth rate d0 +Xij. Based on the above notation we have

Z
(j)
1 (utn) =

Nj(utn)∑
i=1

B
(j)
i (utn − τij). (19)

Now choose η ∈ (0, λ1), and form the quantities

Z
(j)
1,η(utn) =

Nj(utn)∑
i=1

B
(j)
i (utn − τij)1{Xij≤η}

φ
(j)
1,η(utn) =

µ

nα

∫ η

0

g(x)

∫ utn

0

ex(utn−s)Z
(j)
0 (s)dsdx

Y (j)
n,η (u) =

Z
(j)
1,η(utn)− φ(j)

1,η(utn)

ν(n, u)1/2
.

It is then immediate that nE[Y
(j)
n,η (u)2]→ 0 since Var(Z

(j)
1,η(ut)) = O(e2ηutnn−α/ log n)

and ν(n, u) = Θ(e2λ1utnn1−α/ log n). Thus we assume that without loss of generality
that all mutational advances confer a fitness advance greater than η.

Note that for any Markov branching process B with mean growth rate λ > 0
and offspring generating function f with f ′′(1) < ∞ there exists a square integrable
random variable W such that E[(W − e−λtB(t))2]→ 0 as t→∞ (e.g., see Theorem
2 of I.6 in [2]). This of course implies that E[W 2] = f ′′(1)/(f ′(1)− 1). Further note
that since supt≥0 e

−2λtE[B(t)2] < ∞, we see that e−λtB(t) is a uniformly integrable
martingale, and in particular if Gt = σ(B(s), s ≤ t), then E[W |Gt] = B(t)e−λt.
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Therefore

E[(B(t)e−λt −W )2] = E[W 2]− e−2λtE[B(t)2] (20)

=
f ′′(1)

f ′(1)− 1
− e−2λt

(
f ′′(1)

f ′(1)− 1
e2λt − f ′′(1)− (f ′(1)− 1)

f ′(1)− 1
eλt
)

=
f ′′(1)− (f ′(1)− 1)

f ′(1)− 1
e−λt = κ(λ)e−λt.

Observe that supx∈[η,λ1] κ(x) = K <∞. Thus for each process B
(j)
i let Wij be the L2

limiting random variable. Then

u log n

κ2n2λ1u/r−α

(
Z

(j)
1 (utn)− φ(j)

1 (utn)
)2

≤ 2nαu log n

κ2

Nj(utn)∑
i=1

eutn(Xij−λ1)e−XijτijWij − φ(j)
1 (utn)n−λ1u/r

2

+
2nαu log n

κ2

Nj(utn)∑
i=1

eutn(Xij−λ1)e−Xijτij
(
Wij −B(j)

i (utn − τij)e−Xij(utn−τij)
)2

= T1(n) + T2(n).

We will analyze the latter term first. Since the summands are mean zero and inde-
pendent it suffices to study the mean of the squares, i.e.

E
[
e2utn(X1j−λ1)e−2X1jτ1j

(
W1j −B(j)

1 (utn − τ1j)e−X1j(utn−τij)
)2]

= E
[
e2utn(X1j−λ1)e−2X1jτ1jE

[(
W1j −B(j)

1 (utn − τ1j)e−X1j(utn−τij)
)2
|τ1j, X1j

]]
≤ E

[
e2utn(X1j−λ1)e−2X1jτ1jκ(X1j)e

−X1j(utn−τ1j)
]

≤ Ke−λ1utn ,

where the first inequality is due to (20). Since E[Nj(utn)] = O(n−α) it follows that
limn→∞E[T2(n)] = 0.

Now consider E[T1(n); |Y (j)
n (v)| > ε], and recalling that E[Nj(utn)] = O(n−α)

observe that it suffices to show that each of the following goes to zero

E[W 2
1j; |Y (j)

n (v)| > ε] log n(
n−λ1u/rφ

(j)
1 (utn)

)2
P (|Y (j)

n (v)| > ε) log n.

For the analysis of both of these terms it is useful to observe that P (|Y (j)
n (v)| > ε) ≤

1/(εn). Next recall that W1j inherits all of the moments of the offspring distribution,
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in particular E[W 4
1j] <∞ in the case that the offspring distribution has a finite fourth

moment (see e.g. the functional equation in (5) of I.6 of [2]). Therefore

E[W 2
1j; |Y (j)

n (v)| > ε] log n ≤ (E[W 4
1j])

1/2 log n

εn1/2
,

which clearly goes to zero in the large n limit. Since

n−λ1u/rφ
(j)
1 (utn) = n−α

∫ λ1

0

g(x)eutn(x−λ1)
∫ utn

0

e−s(r+x)dsdx = O

(
1

nα log n

)
it follows immediately that

lim
n→∞

(
n−λ1u/rφ

(j)
1 (utn)

)2
P (|Y (j)

n (v)| > ε) log2 n = 0.

4.2.2 Proof of Lemma 2

Proof. First observe that for all u ∈ [a, b] we have that supn≥1E[Yn(u)2] < ∞, and
hence for each u {Yn(u)} is a uniformly integrable sequence. Then consider the
decomposition

Yn(u) = n(α−1)/2
(
e−λ1utnZ1(utn)− u

nα

∫ utn

0

Z0(s)e
−λ1sds

)
(21)

+ n−(1+α)/2µ

∫ utn

0

e−λ1s(Z0(s)− ne−rs)ds

= Mn(u) + En(u).

Recalling that Cov(Z0(s), Z0(y)) = O(ne−rs), we have that

E[En(u)2] =
µ

n1+α

∫ utn

0

∫ utn

0

e−λ1sCov(Z0(s), Z0(y))dsdy = O(n−α),

which implies that supn≥1 E[Mn(u)2] <∞. Furthermore the previous display implies
that supu∈[a,b] En(u)→ 0 in probability, and hence it suffices to prove weak convergence
for the sequence {Mn}.

Since for each n, Mn is a martingale it is possible to use the result of [11] to
establish weak convergence. Specifically in order to establish this we need the FDD
convergence and uniform integrability of {Mn}, as well as establish that the limit
process Y satisfies property A from [11]. Since in Case I, Y is a constant process it
is trivial to establish that the property holds.
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4.2.3 Proof of Lemma 3

Proof. For t > 0 define Z1,j(t) to be all cells in population Z1(t) that are descended
from mutations with fitness in [xj−1, xj), which gives

Z1(t) =

λ1(4n)∑
j=1

Z1,j(t).

Next consider the decomposition

Ỹn(u) =
(
nα−1tn

)1/2
e−λ1utn

λ1(4n)∑
j=1

(
Z1,j(utn)− µn1−αgj

∫ utn

0

e−rsexj(utn−s)ds

)

+ µ
(
n1−αtn

)1/2 λ1(4n)∑
j=1

∫ xj

xj−1

∫ utn

0

g(x)e−λ1utn−rs
(
ex(utn−s) − exj(utn−s)

)
dsdx

.
= In,1(u) + In,2(u).

Note that by continuity we have that supu∈[a,b] |In,2(u)| = O(4nn
(1−α)/2t

1/2
n ), which

goes to zero by our choice of 4n.
For what follows it is convenient to re-organize In,1(u) as follows

In,1(u) =
(
nα−1tn

)1/2 λ1(4n)∑
j=1

eutn(xj−λ1)
(
Z1,j(utn)e−utnxj − µgj

nα−1

∫ utn

0

e−s(r+xj)ds

)
.

(22)
Note that Z1,j(·) is a binary branching process whose cells have birth rate in

[d0 + xj−1, d0 + xj], death rate d0 and immigration rate µn−αZ0(t)
∫ xj
xj−1

g(x)dx. We

will now create a family of coupled processes {Ẑ1,j(·)}λ1(4n)j=1 such that for each j and

t ≥ 0, the inequality Z1,j(t) ≤ Ẑ1,j(t) holds a.s.
For a new resistant cell A created in the Z1,j population with birth rate d0 + x,

create a matched cell A∗ with birth rate d0 + xj. Each birth and death by A and
its descendants is matched by a birth or death by A∗ or its descendants. In addition
to matching A and its descendants, the A∗ cells will have additional births at rate
xj − x. One offspring from this event will continue tracking the behavior of the A
cell. The other offspring initiates a new branching process with death rate d0 and
birth rate d0 + xj. The total population of A∗ cells and their descendants comprise

the population of the process Ẑ1,j. Note that Ẑ1,j is a branching process with birth
rate d0 + xj, death rate d0, and immigration rate at time s, Z0(s)µn

−α ∫ xj
xj−1

g(x)dx.

For t ≥ 0 let Nj(t) be the number of mutations with fitness in [xj−1, xj) that have

occurred by time t. Enumerate the fitness of the mutants by {x(i)j }i≥1. Note then
that

Ẑ1,j(t)− Z1,j(t) =

Nj(t)∑
i=1

B
(i)
j (t),
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where B
(i)
j is a branching process with net growth rate xj and immigration at rate

(xj−x(i)j )Z
(i)
1,j(s), where Z

(i)
1,j is the contribution of the ith mutation to Z1,j. Note that

we can create another family of coupled processes Wj such that for each t ≥ 0

Nj(t)∑
i=1

B
(i)
j (t) ≤ Wj

where Wj is a binary branching process with birth rate d1 + xj, death rate d1 and

immigration at rate 4nẐ1,j. Thus for t ≥ 0 and each j ∈ {0, . . . , λ1(4)}

0 ≤ Ẑ1,j(t)− Z1,j(t) ≤ Wj(t).

Returning to In,1(u) we have that

In,1(u) =
(
nα−1tn

)1/2 λ1(4n)∑
j=1

eutn(xj−λ1)
(
Ẑ1,j(utn)e−utnxj − µgj

nα−1

∫ utn

0

e−s(r+xj)ds

)

+
(
nα−1tn

)1/2 λ1(4n)∑
j=1

e−λ1utn
(
Z1,j(utn)− Ẑ1,j(utn)

)
= În,1(u) + In,3(u).

We would like to convert the summands in În,1(u) into martingales. In order to do
this we need to replace ne−rs with Z0(s), which gives

În,1(u) =
(
nα−1tn

)1/2 λ1(4n)∑
j=1

eutn(xj−λ1)
(
Ẑ1,j(utn)e−utnxj − µgj

nα

∫ utn

0

e−sxjZ0(s)ds

)

+ µ

(
tn
nα+1

)1/2 λ1(4n)∑
j=1

eutn(xj−λ1)gj

∫ utn

0

e−sxj
(
Z0(s)− ne−rs

)
ds

= Jn(u) + In,4(u).

We will now show that for our choice of 4n for any ε > 0

lim
n→∞

P

(
sup
u∈[a,b]

|In,k(u)| > ε

)
= 0

for k = 2, 3, 4. The result for In,2 has already been established, so now consider In,3:

sup
u∈[a,b]

|In,3(u)| ≤
(
nα−1tn

)1/2
sup
u∈[a,b]

e−λ1utn
λ1(4n)∑
j=1

∣∣∣Ẑ1,j(utn)− Z1,j(utn)
∣∣∣

≤
(
nα−1tn

)1/2
e−λ1atn sup

u∈[a,b]

λ1(4n)∑
j=1

Wj(utn).
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Note that
∑λ1(4n)

j=1 Wj(utn) is a non-negative submartingale with respect to the fil-

tration generated by {Wj, Ẑ1,j}λ1(4n)j=1 . Thus from Doob’s inequality we have that

P

 sup
u∈[a,b]

λ1(4n)∑
j=1

Wj(utn) > ε

 ≤ 1

ε

λ1(4n)∑
j=1

E[Wj(btn)]

=
4n

ε

λ1(4n)∑
j=1

∫ btn

0

exj(btn−s)E[Ẑ1,j(s)]ds.

For s ≥ 0 we have that

E[Ẑ1,j(s)] =
µgj
nα

∫ s

0

E[Z0(y)]exj(s−y)dy ≤ exjsµgjn
1−α

r + xj
,

and therefore
λ1(4n)∑
j=1

E[Wj(utn)] = O
(
4nn

1−αeλ1btntn
)
.

Thus the desired result will follow by our choice of 4n.
We next consider

sup
u∈[a,b]

|In,4(u)| ≤
(

tn
n1+α

)1/2 λ1(4n)∑
j=1

eatn(xj−λ1)gj

∫ btn

0

|Z0(s)− ne−rs|ds

≤
(

tn
n1+α

)1/2 ∫ btn

0

|Z0(s)− ne−rs|ds,

where we get the inequality via eatn(xj−λ1) ≤ 1. Since Var(Z0(s)) = O(e−rsn) it follows
from the Chebyshev and Cauchy-Schwarz inequality that

P

(
sup
u∈[a,b]

|In,4(u)| > ε

)
≤ 1

ε
O(tn/n

α)1/2.

4.2.4 Proof of Lemma 4

Proof. For each j ∈ {1, . . . , λ1(4n)} define for u ∈ [a, b]

Mj(utn) =
(
nα−1tn

)1/2(
Ẑ1,j(utn)e−utnxj − µgj

nα

∫ utn

0

Z0(s)e
−sxjds

)
,

note that Mj(utn) is a martingale (in u) with respect to the filtration

F̂t = σ
(
Ẑ1,1(t), . . . , Ẑ1,λ1(4n)(t), Z0(t), t ≤ utn

)
,
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and that

Jn(u) =

λ1(4n)∑
j=1

eutn(xj−λ1)Mj(utn).

In order to establish the tightness of Jn we will establish that there exists a C > 0
and β > 1 such that for u ∈ [a, b] and 0 ≤ h ≤ u− a

E
[
(Jn(u+ h)− Jn(u))2 (Jn(u)− Jn(u− h))2

]
≤ Chβ, (23)

see e.g. Theorem 10.4 or 13.5 of [3]. First calculate

(Jn(u+ h)− Jn(u))2 =

λ1(4n)∑
j=1

(
e(u+h)(xj−λ1)tnMj ((u+ h)tn)− eutn(xj−λ1)Mj(utn)

)2
+

λ1(4n)∑
j=1

∑
i 6=j

eutn(xi+xj−2λ1)
(
ehtn(xi−λ1)Mi ((u+ h)tn)−Mi(utn)

) (
ehtn(xj−λ1)Mj ((u+ h)tn)−Mj(utn)

)
.

Next consider the sigma algebra F0
∞ = σ (Z0(s), s ≥ 0) and the enlarged filtration

F̃utn = σ
(
F̂utn ∪ F0

∞

)
. Since Mj is still a martingale with respect to F̃utn , and

the processes Mj and Mi are independent conditional on F0
∞ we can use the tower

property to see that

E
[
Mi ((u+ h)tn)Mj ((u+ h)tn) |F̂utn

]
= Mi(utn)Mj(utn).

Then based on the previous display we have that

E
[
(Jn(u+ h)− Jn(u))2 |F̂utn

]
(24)

=

λ1(4n)∑
j=1

E
[(
e(u+h)(xj−λ1)tnMj ((u+ h)tn)− eutn(xj−λ1)Mj(utn)

)2 |F̂utn]

+

λ1(4n)∑
j=1

∑
i 6=j

Mi(utn)Mj(utn)eutn(xi+xj−2λ1)
(
ehtn(xi−λ1) − 1

) (
ehtn(xj−λ1) − 1

)
.

We can use the martingale property to see that

E
[(
e(u+h)(xj−λ1)tnMj ((u+ h)tn)− eutn(xj−λ1)Mj(utn)

)2 |F̂utn] (25)

= Mj(utn)2e2utn(xj−λ1)
(
ehtn(xj−λ1) − 1

)2
+ e2(u+h)(xj−λ1)tn

(
E
[
Mj ((u+ h)tn)2 |F̂utn

]
−Mj(utn)2

)
.
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We can then calculate that

n1−α

tn

(
E
[
Mj ((u+ h)tn)2 |F̂utn

]
−Mj(utn)2

)
= e−2tnxj(u+h)E

[
Ẑ1,j ((u+ h)tn)2 |F̂utn

]
− e−2uxjtnẐ1,j(utn)2 + 2

(µgj
nα

)2 ∫ (u+h)tn

utn

∫ (u+h)tn

0

e−xj(s+y)E[Z0(s)Z0(y)|F̂utn ]dsdy

−
(µgj
nα

)2 ∫ (u+h)tn

utn

∫ (u+h)tn

utn

e−xj(s+y)E[Z0(s)Z0(y)|F̂utn ]dsdy

+
2µgje

−uxjtn

nα

∫ utn

0

e−sxj
(
Z0(s)Ẑ1,j(utn)− e−xjhtnE[Z0(s)Ẑ1,j ((u+ h)tn) |F̂utn ]

)
ds

− 2µgje
−(u+h)xjtn

nα

∫ (u+h)tn

utn

e−sxjE[Z0(s)Ẑ1,j ((u+ h)tn) |F̂utn ]ds,

we can evaluate the penultimate term in the previous display and simplify to get that

n1−α

tn

(
E
[
Mj ((u+ h)tn)2 |F̂utn

]
−Mj(utn)2

)
= e−2tnxj(u+h)E

[
Ẑ1,j ((u+ h)tn)2 |F̂utn

]
− e−2uxjtnẐ1,j(utn)2 − 2µgje

−uxjtn

nα
Ẑ1,j(utn)

∫ (u+h)tn

utn

E[Z0(s)|F̂utn ]ds

−
(µgj
nα

)2 ∫ (u+h)tn

utn

∫ (u+h)tn

utn

e−xj(s+y)E[Z0(s)Z0(y)|F̂utn ]dsdy. (26)

For each j, let Z̃1,j denote a binary branching process with birth rate d0 + xj and
death rate xj and initial condition 1. We can now calculate that

e−2tnxj(u+h)E
[
Ẑ1,j ((u+ h)tn)2 |F̂utn

]
= e−2utnxj

(
Ẑ1,j(utn)2 + e−2htnxj Ẑ1,j(utn)Var

(
Z̃1,j(htn)

))
+

2µgjẐ1,j(utn)

nαeutnxj

∫ (u+h)tn

utn

e−xjsE[Z0(s)|F̂utn ]ds

+
µ

nαe−2tnxj(u+h)

∫ (u+h)tn

utn

E[Z0(s)|F̂utn ]E
[
Z̃1,j ((u+ h)tn − s)2

]
ds

+
(µgj
nα

)2 ∫ (u+h)tn

utn

∫ (u+h)tn

utn

E[Z0(s)Z0(y)|F̂utn ]e−xj(s+y)dsdy.

Using the previous display we can simplify (26) to the following form

E
[
Mj ((u+ h)tn)2 |F̂utn

]
−Mj(utn)2 = e−2tnxj(u+h)nα−1tnẐ1,j(utn)Var

(
Z̃1,j(htn)

)
+

µgjtn
ne2tnxj(u+h)

∫ (u+h)tn

utn

E[Z0(s)|F̂utn ]E
[
Z̃1,j((u+ h)tn − s)2

]
ds.

26



For ease of notation we define

Hj(u, h;n) = E
[
Mj ((u+ h)tn)2 |F̂utn

]
−Mj(utn)2 (27)

We can then plug (25) into (24) to get that

E
[
(Jn(u+ h)− Jn(u))2 |F̂utn

]
(28)

≤
λ1(4n)∑
j=1

Mj(utn)2e2utn(xj−λ1)
(
ehtn(xj−λ1) − 1

)2
+

λ1(4n)∑
j=1

e2(u+h)(xj−λ1)tnHj(u, h;n).

+

λ1(4n)∑
j=1

∑
i 6=j

Mi(utn)Mj(utn)eutn(xi+xj−2λ1)
(
ehtn(xi−λ1) − 1

) (
ehtn(xj−λ1) − 1

)
.

Noting that if i 6= j and k = 1 or ` = 1 then E[Mi(utn)kMj(vtn)`|F0
∞] = 0, we can

write

E
[
(J(u)− J(u− h))2E

[
(J(u+ h)− J(u))2 |F̂utn

]]
=

λ1(4n)∑
i=1

∑
j 6=i

e2utn(xj+xi−2λ1)E
[
Mi(utn)Mj(utn)

(
Mj(utn)− e−htn(xj−λ1)Mj((u− h)tn)

)
×
(
Mi(utn)− e−htn(xi−λ1)Mi((u− h)tn)

)] (
ehtn(xj−λ1) − 1

) (
ehtn(xi−λ1) − 1

)
+

λ1(4n)∑
j=1

e4utn(xj−λ1)
(
ehtn(xj−λ1) − 1

)2
E
[
Mj(utn)2

(
Mj(utn)− e−htn(xj−λ1)Mj((u− h)tn)

)2]

+

λ1(4n)∑
i=1

∑
j 6=i

e2utn(xj+xi−2λ1)
(
ehtn(xj−λ1) − 1

)2
E
[
Mj(utn)2

(
Mi(utn)− e−htn(xi−λ1)Mi((u− h)tn)

)2]

+

λ1(4n)∑
j=1

e2tn(2u+h)(xj−λ1)E
[
Hj(u, h;n)

(
Mj(utn)− e−htn(xj−λ1)Mj((u− h)tn)

)2]

+

λ1(4n)∑
i=1

∑
j 6=i

e2(u+h)(xi−λ1)tne2utn(xj−λ1)E
[
Hi(u, h;n)

(
Mj(utn)− e−htn(xj−λ1)Mj((u− h)tn)

)2]
= L1(u, h;n) + L2(u, h;n) + L3(u, h;n) + L4(u, h;n) + L5(u, h;n).

Thus if we establish that there is a C > 0 and β > 1 such that for all 1 ≤ m ≤ 5,
u ∈ [a, b] and 0 ≤ h ≤ u − a we have Lm(u, h;n) ≤ Chβ then we will establish the
tightness condition (23). Each of the terms Lm can be written as either a single sum
of the form

Sm(u, h;n) =

λ1(4n)∑
j=1

ekmutn(xj−λ1)E[Ψj,m(u, h;n)],
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for appropriate random variable Ψj,m and non-negative integer km or alternatively as
the double sum

Dm(u, h;n) =

λ1(4n)∑
j=1

∑
i 6=j

ekmutn(xj−λ1)e`mutn(xi−λ1)E[Ψj,m(u, h;n)Φi,m(u, h;n)].

Claim A: Suppose that for each j ∈ {1, . . . , λ1(4n)} there exists a function ρj(h;n)
such that

ekmutn(xj−λ1)ρj(h;n) ≤ K1e
vtn(xj−λ1) (A)

for positive constants K1, v independent of j, h and n. If the following bound is
satisfied

E[Ψj,m(u, h;n)] ≤ C0h
βgjtn (tn(λ1 − xj))κm ρj(h;n) (29)

for non-negative integer κm, then Sm(u, h;n) ≤ Chβ.
Proof: We prove the claim for the single sum. Thus consider

Sm(u, h;n) ≤ C0h
βtn

λ1(4n)∑
j=1

ekmutn(xj−λ1)gj (tn(λ1 − xj))κm ρj(h;n)

≤ C0h
βtn

λ1(4n)∑
j=1

evtn(xj−λ1)
∫ xj

xj−1

(tn(λ1 − x))κm g(x)dx

≤ C0h
βtne

utn4n
∫ λ1

0

evtn(x−λ1) (tn(λ1 − x))κm g(x)dx

≤ C1h
β

∫ λ1tn

0

e−vyyκmg(λ1 − y/tn)dy ≤ Chβ,

where the penultimate inequality follows by the requirement that supn tn4n < ∞,
and an application of the change of variable y = tn(λ1 − x), and the final inequality
follows from the assumption that the density g is bounded. �

In order to establish a corresponding result for the double sum terms note that
conditioned on F0

∞ = σ(Z0(s), s ≥ 0) the random variables Ψj and Φi will be in-
dependent. Thus for the double sum it suffices to show that there there exist two
functions ρ1j(h;n), ρ2j(h;n) for each j ∈ {1, . . . , λ1(4n)} satisfying (A) from Claim A,
and such that

E[Ψj,m(u, h;n)|F0
∞] ≤ C0h

γ1gjtn (tn(λ1 − xj))κm ρ1j(h;n)

(
c1Z0(utn)

n
+ c2

∫ utn

0

Z0(s)

n
ds

)
(30)

E[Φj,m(u, h;n)|F0
∞] ≤ C0h

γ2gjtn (tn(λ1 − xj))`m ρ2j(h;n)

(
c3Z0(utn)

n
+ c4

∫ utn

0

Z0(s)

n
ds

)
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for non-negative integers κm, `m, non-negative constants c1, c2, c3, c4, and γ1 + γ2 =
β. If the above holds, we can establish that Dm(u, h;n) ≤ Chβ by noting that
E[(Z0(utn)/n)2] = O(1) and that

(1/n)2
∫ utn

0

∫ utn

0

E[Z0(s)Z0(y)]dsdy = O(1).

We now will verify (29) or (30) for each 1 ≤ m ≤ 5.
First consider L1, which is a double sum with Ψj,1 = Φj,1 and

Ψj,1(u, h;n) =
(
ehtn(λ1−xj) − 1

) (
Mj(utn)2 − ehtn(λ1−xj)Mj(utn)Mj((u− h)tn)

)
≤ htn(λ1 − xj)

(
Mj(utn)2 − ehtn(λ1−xj)Mj(utn)Mj((u− h)tn)

)
.

If we define

H̃j(u, h;n) = E
[
Mj ((u+ h)tn)2 |F̃utn

]
−Mj(utn)2 (31)

= e−2tnxj(u+h)nα−1tnẐ1,j(utn)Var
(
Z̃1,j(htn)

)
+

µgjtn
ne2tnxj(u+h)

∫ (u+h)tn

utn

Z0(s)E
[
Z̃1,j((u+ h)tn − s)2

]
ds.

it then follows from the martingale property that

E[Ψj,1(u, h;n)|F0
∞] ≤ htn(λ1 − xj)E

[
E
[
Mj(utn)2|F̃(u−h)tn

]
− ehtn(λ1−xj)Mj((u− h)tn)2|F0

∞

]
= htn(λ1 − xj)E

[
H̃j(u− h, h;n) +Mj((u− h)tn)2(1− ehtn(λ1−xj))|F0

∞

]
≤ htn(λ1 − xj)E

[
H̃j(u− h, h;n)|F0

∞

]
Using the formulas for first and second moments of Markovian branching processes
one can establish that there are constants a1, a2 such that

E[H̃j(u− h, h;n)|F0
∞] ≤ a1µgjtne

−tnxj(u−h)

n

∫ htn

0

e−xjsds

∫ (u−h)tn

0

Z0(s)e
−xjsds (32)

+
a2µgjtn

n

∫ utn

(u−h)tn
Z0(s)ds

≤ a3gjtnmj(h;n)

n

∫ utn

0

Z0(s)ds

where a3 = 2µ∗max(a1, a2) andmj(h;n) = 2 max(1, (1−e−xjhtn)/xj) ≤ 2 max(1,min(htn, 1/xj)).
Thus to verify the conditions of Claim A we must verify that mj(h;n) satisfies con-
dition (A). Note that if j ≥ λ1(4n)/2 then mj(h;n) ≤ 2 max(1, 2/λ1), while for
j ≤ λ1(4n)/2 and n sufficiently large mj(h;n) ≤ htn, and eutn(λ1−xj)/2 ≥ eλ1utn/4.
Thus we have mj(h;n) ≤ (4/λ1)e

utn(λ1−xj)/4, satisfying condition (A) of Claim A.
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We now consider the L2 term, which is a single sum with

Ψj,2(u, h;n) =
(
ehtn(xj−λ1) − 1

)2
E
[
Mj(utn)2

(
Mj(utn)− e−htn(xj−λ1)Mj((u− h)tn)

)2]
≤ (htn(λ1 − xj))2E

[
Mj(utn)2

(
Mj(utn)− e−htn(xj−λ1)Mj((u− h)tn)

)2]
.

Applying Hölder’s inequality and observing that M4
j is a submartingale we observe

that

E
[
Mj(utn)2

(
Mj(utn)− e−htn(xj−λ1)Mj((u− h)tn)

)2] ≤ 3e2htn(λ1−xj)E[Mj(utn)4].

Thus in the language of Claim A we have that ρj(h;n) = e2htn(λ1−xj). Since k2 = 4,
and by definition h ≤ u we see that e2htn(λ1−xj) ≤ e2utn(λ1−xj), and hence e2htn(λ1−xj)

satisfies condition (A) of Claim A. In order to verify that Claim A is applicable we
thus need to establish that E[Mj(utn)4] ≤ cgjtn. Then observe that

E[Mj(utn)4] ≤ c(nα−1tn)2

(
e−4utnxjE[Ẑ1,j(utn)4] +

( gj
nα

)4
E

(∫ utn

0

Z0(s)ds

)4
)
.

(33)
Apply Jensen’s inequality to see that

E

(∫ utn

0

Z0(s)ds

)4

≤ (utn)3
∫ utn

0

E[Z0(s)
4]ds = O(n4t3n), (34)

and therefore the latter term in (33) is O(g4jn
2(1−α)t5n) and recalling that g(x) ≤ G

for all x we see that if 43
n = O(n2(α−1)/t4n) the latter term in (33) is O(gjtn). Observe

that

Ẑ1,j(t) =

Nj(t)∑
i=1

B̂i,j(t− τi),

where Nj is a Poisson process with intensity at time s given by λ(s) = µgjn
−αZ0(s),

τi is the time of creation of the ith mutant and B̂i,j is a binary branching process with
birth rate d0 + xj and death rate d0 (note we denote a generic copy of the branching

process by B̂j) Therefore if we define Λ(t) =
∫ t
0
λ(s)ds and observe that E[B̂j(t)

k] is
increasing in t for positive integer k

E[Ẑ1,j(utn)4] ≤ E[Λ(utn)]E[B̂j(utn)4] + 3E[Λ(utn)2](E[B̂j(utn)2])2

+ E[Λ(utn)4](E[B̂j(utn)])4 + 4E[Λ(utn)2]E[B̂j(utn)3]E[B̂j(utn)]

+ 6E[Λ(utn)2]E[B̂j(utn)2](E[B̂j(utn)])2.

From Lemma 5, we know that E[B̂j(utn)k] = O(exjutnk) for k ≤ 4. Using the same
argument as we used above in (34) we see thatE[Λ(utn)k] = O(gjn

k(1−α)tk−1n 4k−1
n )
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and thus there exists a K > 0 such that

e−4utnxjn2(α−1)t2nE[Ẑ1,j(utn)4]

≤ Kn2(α−1)t2n
(
E[Λ(utn)] + 3E[Λ(utn)2] + E[Λ(utn)4] + 4E[Λ(utn)2] + 6E[Λ(utn)2]

)
≤ Kgjt

2
n

(
nα−1 + tn4n + n2(1−α)t3n43

n

)
= O(gjtn),

where the final equality follows from our choice of 4n.
We now consider the L3 term, which is a double sum with

Ψj,3(u, h;n) =
(
ehtn(xj−λ1) − 1

)2
Mj(utn)2

Φi,3(u, h;n) =
(
Mi(utn)− ehtn(λ1−xj)Mi ((u− h)tn)

)2
.

We first use the martingale property of Mi to calculate that

E[Φi,3(u, h;n)|F0
∞] = E

[
E[Mi(utn)2|F̃(u−h)tn ]−Mi((u− h)tn)2|F0

∞

]
(35)

+ E[Mi((u− h)tn)2|F0
∞]
(
ehtn(λ1−xi) − 1

)2
= E[H̃i(u− h, h;n)|F0

∞] + E[Mi((u− h)tn)2|F0
∞]
(
ehtn(λ1−xi) − 1

)2
.

It is easy to see that e−2htnxjVar(Z̃1,j(htn)) = O(htn) and that there exists a constant
C > 0 such that for all j we have

e−2tnxj(u+h)E
[
Z̃1,j ((u+ h)tn − s)

]
≤ Ce−xjs,

and thus there exists positive constants C1, C2 such that

E
[
H̃i(u− h, h;n)|F0

∞

]
≤ C1t

2
ngih

netnxi(u−h)

∫ (u−h)tn

0

Z0(s)e
−xisds

+
C2gitn
n

∫ utn

(u−h)tn
Z0(s)e

−xisds.

Furthermore we can then calculate that

E[Mi((u− h)tn)2|F0
∞] ≤ C3gitn

n

∫ (u−h)tn

0

Z0(s)ds. (36)

Summarizing, we have that

E[Φi,3(u, h;n)|F0
∞] ≤ C1t

2
ngih

netnxi(u−h)

∫ (u−h)tn

0

Z0(s)e
−xisds+

C2gitn
n

∫ utn

(u−h)tn
Z0(s)e

−xisds

+ e2htn(λ1−xi) (htn(λ1 − xi))2
C3gitn
n

∫ (u−h)tn

0

Z0(s)e
−2xisds.
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Equation (36) implies that Claim A can be applied to the Ψj,3 term (with γ1 = 2).
It thus remains to establish an appropriate bound for Φi,3, which requires showing
that condition (A) applies to tne

−xitn(u−h) and e2htn(λ1−xi). Since

tne
−xitn(u−h)e2utn(λ1−xi) ≤

(
tne
−axiteutn(λ1−xi)

)
∗ eutn(xi−λ1)

and the first term on the RHS of the inequality is bounded in i and n we see that we
can apply condition (A). In addition, condition (A) applies to e2htn(λ1−xi) due to the
constraint h ≤ u− a and that `3 = 2.

For L4 we have a single sum with

E[Ψj,4(u, h;n)] = e2htn(xj−λ1)E
[
Hj(u, h;n)

(
Mj(utn)− ehtn(λ1−xj)Mj ((u− h)tn)

)2]
.

If we define

Xj(u;n) = nα−1e−xjutnẐ1,j(utn) +
gjZ0(utn)

n
(37)

and then using the expressions for Var(Z̃1,j(t)) and E[Z̃1,j(t)
2] we can establish that

there is C > 0 such that

Hj(u, h;n) ≤ Cht2ne
−xjutnXj(u, n). (38)

We can apply bound (38) to see that

E[Ψj,4(u, h;n)] ≤ Cht2ne
−xjutne2htn(xj−λ1)E

[
Xj(u;n)

(
Mj(utn)− ehtn(λ1−xj)Mj ((u− h)tn)

)2]
.

(39)
We now analyze the expected value in the preceding display

E
[
Xj(u;n)

(
Mj(utn)− ehtn(λ1−xj)Mj ((u− h)tn)

)2]
,

= E
[
Xj(u;n)

(
Mj(utn)− ehtn(λ1−xj)Mj ((u− h)tn)

)2
;Xj(u, n) ≤ 1/

√
h
]

+ E
[
Xj(u;n)

(
Mj(utn)− ehtn(λ1−xj)Mj ((u− h)tn)

)2
;Xj(u, n) > 1/

√
h
]

≤ h−1/2E
[(
Mj(utn)− ehtn(λ1−xj)Mj ((u− h)tn)

)2]
+ h1/2

(
E
[(
Mj(utn)− ehtn(λ1−xj)Mj ((u− h)tn)

)4]
E
[
Xj(u;n)4

])1/2
where the inequality follows from two applications of the Cauchy-Schwarz inequality
and one application of the Chebyshev inequality. We will now establish the following
bounds

E
[(
Mj(utn)− ehtn(λ1−xj)Mj ((u− h)tn)

)2]
= O(gjht

3
ne

2htn(λ1−xj)), (40)

and

E
[(
Mj(utn)− ehtn(λ1−xj)Mj ((u− h)tn)

)4]
E
[
Xj(u;n)4

]
= O(g2j t

3
ne

4htn(λ1−xj)).

(41)
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Note that if we establish these bounds then (39) will imply that we have a function
ρj of order t4ne

−xjutn . Since k4 = 2, we see that condition (A) applies to this function,
i.e., t4ne

−xjutneutn(xj−λ1) = O(1). Using the martingale property we can see that

E
[(
Mj(utn)− ehtn(λ1−xj)Mj ((u− h)tn)

)2]
= E[Hj(u− h, h;n)] +

(
ehtn(λ1−xj) − 1

)2
E
[
Mj ((u− h)tn)2

]
≤ Cht2ne

−xjutnE[Xj(u;n)] + (htn(λ1 − xj))2 e2htn(λ1−xj)E
[
Mj ((u− h)tn)2

]
.

The result in (40) now follows by observing that E[Xj(u;n)] = O(gj) and E[M((u−
h)tn)2] = O(gjtn). We can use the same 4th moment analysis as in the study of L2

to conclude that

E
[(
Mj(utn)− ehtn(λ1−xj)Mj ((u− h)tn)

)4]
= O(gjtne

4htn(λ1−xj)),

and E[Xj(u;n)4] = O(gj), thus establishing (41).
The last remaining term, L5, which is a double sum with

Ψj,5(u, h;n) =
(
Mj(utn)− ehtn(λ1−xj)Mj ((u− h)tn)

)2
Φi,5(u, h;n) = e2htn(xi−λ1)Hi(u, h;n).

We first consider Φi,5

eutn(xi−λ1)E[Hi(u, h;n)|F0
∞] ≤ Cht2ne

−λ1utnE[Xi(u;n)|F0
∞]

=
Cht2ne

−λ1utngi
n

(∫ utn

0

Z0(s)e
−xisds+ Z0(utn)

)
,

to which we can clearly apply Claim A.
We next follow the analysis of the L3 term to calculate that

E[Ψj,5(u, h;n)|F0
∞] ≤ E[H̃j(u− h, n)|F0

∞]

+ e2htn(λ1−xj) (htn(λ1 − xj))2E
[
Mj((u− h)tn)2|F0

∞
]

≤ c1t
2
ngjh

netnxi(u−h)

∫ (u−h)tn

0

Z0(s)e
−xjsds+

c2gjtn
n

∫ utn

(u−h)tn
Z0(s)e

−xjsds

+ e2htn(λ1−xj) (htn(λ1 − xj))2
c3gjtn
n

∫ (u−h)tn

0

Z0(s)e
−2xjsds.

The analysis of the first and third term follow exactly as in the study of the L3

term. For the middle term we are missing a power of h, but this follows by considering
the expected value of the product with Φi,5. In particular, it is easily established that
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there exists constants δn → 0 such that

1

n2
E

[(∫ utn

0

Z0(s)e
−xisds+ Z0(utn)

)∫ utn

(u−h)tn
Z0(s)e

−xjsds

]
=

1

n2

∫ utn

0

∫ utn

(u−h)tn
E[Z0(s)Z0(y)]e−xiy−xjsdsdy +

1

n2

∫ utn

(u−h)tn
E[Z0(s)Z0(utn)]e−xjsds

= δnh.

This result combined with the result of Claim A implies that there exists a positive
constant C > 0 such that

L5(u, h;n) =

λ1(4n)∑
i=1

∑
j 6=i

e2utn(xj−λ1)e2utn(xi−λ1)E [Φi,5(u, h;n)Ψj,5(u, h;n)]

≤ Ch2.

4.2.5 Proof of Lemma 5

Proof. We prove the lower bound first. Recall that e−λtB(t) is a non-negative mar-
tingale and thus e−kλtB(t)k is a submartingale. Therefore E[B(t)k] ≥ ekλt, which
establishes the appropriate lower bound for the supercritical case. For the sub-
critical case recall that B is a non-negative integer valued process and therefore
E[B(t)k] ≥ E[B(t)] = eλt.

To prove the upper bound first define the function u(s) = a(f(s) − s), and the
generating function for s ∈ (0, 1)

F (s, t) =
∞∑
n=0

snP (B(t) = n).

Next define

`k(t) =
∂k

∂sk
F (s, t)

∣∣
s=1

=
∞∑
n=0

n(n− 1) · · · (n− k + 1)P (B(t) = n). (42)

Recall that f (k)(1) <∞ implies E[B(t)k] <∞ by Corollary III.6.2 of [2] and therefore
`k(t) < E[B(t)k] <∞.

Based on (42) we know that for each k ≥ 1 there exists C ′k > 0 such that

`k(t) ≥ C ′k

∞∑
n=k

nkP (B(t) = n)

= C ′kE[B(t)k]− C ′kE[B(t)k;B(t) < k].
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Since the branching process goes to infinity or extinct with probability 1 we know
that E[B(t)k;B(t) < k]→ 0 as t→∞, and in particular in the supercritical case we
then have that

lim
t→∞

E[B(t)k;B(t) ≤ k]

E[B(t)k]
= 0,

and thus there exists Ck such that `k(t) ≥ CkE[B(t)k]. In the subcritical case we
can use Yaglom’s theorem to see that P (Z(t) > 0) ∼ eλt/b for a positive constant b.
Therefore there exist Ck and Ĉk such that

CkE[B(t)k] ≤ `k(t) + Ĉke
λt.

Thus, in order to prove the desired upper bound on E[B(t)k] it suffices to establish
the upper bound on `k(t). In both the super and subcritical cases the proof for the
upper bound on `k is carried out via induction on k, with the induction step proven
via the forward equation

∂

∂t
F (s, t) = u(s)

∂

∂s
F (s, t). (43)

We first assume that λ > 0, and will prove that for non-negative integer k, `k(t) =
O(eλkt). Since E[B(t)] = eλt, the base case for the induction follows. Next assume
that for k > 1 and j ≤ k − 1, `j(t) = O(eλjt). Then via (43) we have that

`′k(t) =
k∑
j=0

(
k

j

)
`k−j+1(t)u

(j)(1) =
k∑
j=1

(
k

j

)
`k−j+1(t)u

(j)(1)

= λk`k(t) +
k∑
j=2

(
k

j

)
`k−j+1(t)u

(j)(1),

where the first equality follows from u(1) = 0. Combining the previous display with
the initial condition `k(0) = 0 and then applying the induction hypothesis we have
that there exists non-negative constants αk,j such that

e−λkt`k(t) =
k∑
j=2

u(j)(1)

(
k

j

)∫ t

0

e−λks`k−j+1(s)ds

≤
k∑
j=2

αk,j

∫ t

0

e−λs(j−1)ds =
k∑
j=2

αk,j
λ(j − 1)

(
1− e−λt(j−1)

)
,

thus establishing the induction hypothesis and the desired result. The subcritical
case is analyzed via the same methods.
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4.3 Proof of Proposition 1

We consider the quantity

A2(n, y) ≡ sup
u∈[a,u−n (y)]

v(n, u)−1/2 (φ1(utn)− φ0(utn)) ,

which will be slightly different in Cases I and II. First consider Case I. Observe that
due to monotonicity in u we have that

A2(n, y) = v(n, u−n (y))−1/2(φ1(u
−
n (y)tn)− φ0(u

−
n (y)tn)).

We can calculate that

A2(n, y) =
n(α−1)/2−u−n (y)(λ1/r+1)+1

√
κ1

(
µ

nα(λ1 + r)
n(1+λ1/r)u

−
n (y) − 1− µ

nα(λ1 + r)

)
.

Referring to the definition of un we see that

eun(λ1+r) = 1 +
nα(λ1 + r)

µ

and therefore

µ

nα(λ1 + r)
nu

−
n (y)(1+λ1/r) =

(
µ+ nα(λ1 + r)

nα(λ1 + r)

)
e−y(λ1+r)/sn . (44)

Based on this we can rewrite A2(n, y) as follows

µn(1−α)/2ey(λ1+r)/sn
√
κ1(λ1 + r)

(
e−y(λ1+r)/sn − 1

)
.

We see that if we choose sn = n(1−α)/2 then

A2(n, y)→ − yµ
√
κ1
.

In case II the situation is a bit more complicated. We have that

v(n, u)−1/2 (φ1(utn)− φ0(utn))

=

(
unα−1 log n

κ2

)1/2

n−λ1u/r
[
µn1−α

∫ λ1

0

∫ utn

0

g(x)eutnx−s(r+x)dsdx− n1−u
]

=

(
unα−1 log n

κ2

)1/2

n1−u(λ1+r)/r
[
µ

nα

∫ λ1

0

g(x)

r + x

(
eutn(r+x) − 1

)
dx− 1

]
=

(
unα−1 log n

κ2

)1/2

n1−u(λ1+r)/rfn(u).

36



We first establish that the function fn has a unique root in u∗(n) ∈ (0, 1), and then
approximate the root. First observe that, fn(0) = −1 and that for sufficiently large
n, fn(1) > 0, the monotonicity of fn establishes the uniqueness. A better localization
of the root is obtained by considering

fn

(
αr

λ1 + r

)
=

µ

nα

∫ λ1

0

g(x)

r + x

(
n
α(r+x)
r+λ1 − 1

)
dx− 1

= µ

∫ λ1

0

g(x)

r + x

(
exp

[
α

(
x− λ1
r + λ1

)
log n

]
− n−α

)
dx− 1 < 0,

where the final inequality follows by applying the change of variable z = tn(λ1 − x)
to the first integral. This gives an improved lower bound on u∗(n), and an improved
upper bound is achieved by considering

fn

(
αr

λ1 + r

(
1 +

3 log log n

2α log n

))
=

µ

nα

∫ λ1

0

g(x)

r + x

(
exp

[
α(r + x)

λ1 + r

(
log n+

3 log log n

2α

)]
− 1

)
dx− 1

= µ (log n)3/2
∫ λ1

0

g(x)

r + x

(
exp

[
α(x− λ1)
λ1 + r

(
log n+

3 log log n

2α

)]
− 1

nα(log n)3/2

)
dx− 1.

Then define zn = log n + 3
2α

log log n and use the change of measure y = αzn(λ1 −
x)/(λ1 + r) to see that

fn

(
αr

λ1 + r

(
1 +

3 log log n

2α log n

))

=
µ(log n)3/2

zn

∫ αzn
λ1+r

0

g
(
λ1 − y(λ1+r)

αzn

)
r + λ1 − y(λ1+r)

zn

e−zdz − 1− µ

nα

∫ λ1

0

g(x)

r + x
dx

=
2αµ (log n)1/2

2α + 3 log log n/ log n

(
g(λ1)

r + λ1
+ o(1)

)
− 1− µ

nα

∫ λ1

0

g(x)

r + x
dx,

which is clearly positive for n sufficiently large. The final equality in the previous
display follows from the dominated convergence theorem. We can now conclude that
for n sufficiently large

u∗(n) ∈
(

αr

λ1 + r
,

αr

λ1 + r

(
1 +

3 log log n

2α log n

))
. (45)

Therefore u∗(n)→ αr
λ1+r

as n→∞. We define

ψ(u) = u1/2n−u(λ1+r)/r
(
µ

nα

∫ λ1

0

g(x)

r + x

(
eutn(r+x) − 1

)
dx− 1

)
,
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and establish the claim

arg max
u∈[a,u+n (y)]

ψ(u) = u+n (y). (46)

This claim will of course follow by establishing that ψ′ > 0 for u ∈ [a, u+n (y)]. Thus
consider

ψ′(u) =
µ

nαtn

∫ λ1tn

0

g (λ1 − y/tn) e−uy

r + λ1 − y/tn

(
1

2
√
u
− y
√
u

)
dy + e−utn(λ1+r)

(
tn
√
u− 1

2
√
u

)
+
µe−utn(λ1+r)

nα

(
tn
√
u− 1

2
√
u

)∫ λ1

0

g(x)

r + x
dx

≥ −µ
√
u

nαtn

∫ λ1tn

0

g (λ1 − y/tn)

r + λ1 − y/tn
ye−uydy + e−utn(λ1+r)

(
tn
√
a− 1

2
√
a

)
+
µe−utn(λ1+r)

nα

(
tn
√
a− 1

2
√
a

)∫ λ1

0

g(x)

r + x
dx

Using that maxx∈[0,λ1] g(x) = G <∞ and u ≥ a, we have that

µ
√
u

nαtn

∫ λ1tn

0

g (λ1 − y/tn)

r + λ1 − y/tn
ye−uydy ≤ µ

√
uG

rnαtn

∫ ∞
0

ye−uydy ≤ µG

a3/2nα log n
.

Next we use that u ≤ αr
λ1+r

(1 + 3 log log n/(2α log n)) + y/sn to see

e−utn(λ1+r)
(
tn
√
a− 1

2
√
a

)
≥
( √

a

rnα(log n)1/2
− n−α

2
√
a(log n)3/2

)
exp

[
−y(λ1 + r) log n

sn

]
.

for sufficiently large n. Thus for sufficiently large n, ψ′(u) > 0 for u ∈ [a, u+n (y)].
Define the function

hn(u) =

∫ λ1utn

0

g

(
λ1 −

x

utn

)
e−xdx,

and then observe that

f ′n(u) =
µnu(λ1+r)/r−α

u
hn(u). (47)
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Based on this and the monotonicity result for ψ we have that

sup
u∈[a,u−n (y)]

(
unα−1 log n

κ2

)1/2

n1−u(λ1+r)/rfn(u)

=

(
u−n (y)nα−1 log n

κ2

)1/2

n1−u−n (y)(λ1+r)/rfn
(
u−n (y)

)
= −

√
u−n (y)nα+1 log n

κ2
n−u

−
n (y)(λ1+r)/r

∫ u∗(n)

u−n (y)

µnz(λ1+r)/r

znα
hn(z)dz

= −µey(λ1+r)/sn
√
u−n (y)n1−α log n

κ2

∫ u∗(n)

u−n (y)

etn(λ1+r)(z−u∗(n))

z
hn(z)dz

= −µrey(λ1+r)/sn
√
u−n (y)n1−α

κ2 log n

∫ y/sn

0

e−x(λ1+r)hn

(
u∗(n)− x

tn

)
u∗(n)− x

tn

dx (48)

Next note that

g(λ1)−
∫ λ1utn

0

e−xg

(
λ1 −

x

utn

)
dx

= g(λ1)e
−λ1utn +

∫ λ1utn

0

e−x
(
g(λ1)− g

(
λ1 −

x

utn

))
dx

≤ g(λ1)e
−λ1atn +

∫ λ1tn

0

e−ux
(
g(λ1)− g

(
λ1 −

x

tn

))
dx

≤ g(λ1)e
−λ1atn +

∫ λ1tn

0

e−ax
(
g(λ1)− g

(
λ1 −

x

tn

))
dx,

and therefore hn(z) → g(λ1) uniformly for z ∈ [a, 1]. We can thus apply the funda-
mental theorem of calculus and the bounds in (45) to (48) to conclude that

lim
n→∞

sup
u∈[a,u−n (y)]

(
unα−1 log n

κ2

)1/2

n1−u(λ1+r)/rfn(u) = −µyg(λ1)

√
r(λ1 + r)

ακ2
.

4.4 Proof of Proposition 2

We first consider the term

C3(n, y) = sup
u∈[a,u−n (y)]

n(α−1)/2−λ1u/r (Z0(utn)− φ0(utn)) ,

which satisfies C3(n, y) = Θ(A3(n, y)) in Case I, and is off by a factor of
√

log n in
Case II. We claim that C3(n, y) converges to 0 as n→∞ if a is chosen appropriately.
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Consider the square

(C3(n, y))2 ≤ nα−1 sup
u∈[a,u−n (y)]

n−2λ1u/r (Z0(utn)− φ0(utn))2

= nα−1 sup
u∈[a,u−n (y)]

n2u (Z0(utn)− φ0(utn))2 n−2u(λ1/r+1)

≤ nα−1−2a(λ1/r+1) sup
u∈[a,u−n (y)]

n2u (Z0(utn)− φ0(utn))2 .

Now observe that n2u (Z0(utn)− φ0(utn))2 is a submartingale in the parameter u and
therefore for ε > 0

P

(
nα−1−2a(λ1/r+1) sup

u∈[a,u−n (y)]

n2u (Z0(utn)− φ0(utn))2 > ε

)
(49)

≤ nα−1−2a(λ1/r+1)

ε
n2u−n (y)Var(Z0(u

−
n (y)tn)) = O

(
nu

−
n (y)+α−2a(λ1/r+1)

)
, (50)

where the final equality follows from the result VarZ0(utn) = O(n1−u). From the
definition of u−n (y) we know that in the setting G(dx) = δλ1

u−n (y) + α− 2a(1 + λ1/r)

=
r log (1 + nα(λ1 + r)/µ)

(λ1 + r) log n
− y

sn
+ α− 2a(1 + λ1/r)

≤ r log (cnα(λ1 + r))

(λ1 + r) log n
+ α− 2a(1 + λ1/r)

= α

(
λ1 + 2r

λ1 + r

)
− 2a(1 + λ1/r) +

cr log(λ+ r)

(λ1 + r) log n
. (51)

where c > (λ1 + r)/µ+ 1. In the setting G(dx) = g(x)dx we just have an extra term
of the form log log n/ log n and thus the result holds in this case as well. Based on
(49), showing that A3(n) → 0 in probability we must show that the expression on
the RHS of the previous display is bounded below zero for n sufficiently large. This
requires that

α

(
λ1 + 2r

λ1 + r

)
<

2a(λ1 + r)

r

or after rearranging terms

a >
αr(λ1 + 2r)

2(λ1 + r)2
=

(
αr

λ1 + r

)(
λ1 + 2r

2(λ1 + r)

)
.

Since (
αr

λ1 + r

)(
λ1 + 2r

2(λ1 + r)

)
< u−n (y)

for sufficiently large n the result follows by choosing a ∈ [
(

αr
λ1+r

)(
λ1+2r
2(λ1+r)

)
, u−n (y)].

Note that this also implies that
√

log nC3(n, y) → 0 as n → ∞. Thus the term A3

goes to 0 in both Cases I and II.
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