
Region Tracking Over an Image Sequence

Jeff Calder, Dana Awamleh, Allan MacAulay

Supervisor: Professor Abdol-Reza Mansouri

April 2008

Many thanks to Professor Abdol-Reza Mansouri for his guidance and
support throughout the course of this project.

1

Abstract

The goal of this project was to design, implement on computer,
and test on real images a variety of computer vision algorithms for
region tracking over sequences of images. The region to be tracked is
specified only in the first frame, and the algorithm proceeds to track
the region through subsequent frames. Two different types of algo-
rithms were tested using certain image characteristics. The first, local
tracking, is concerned with comparing local structures of the region
between two frames. The second, global tracking, is concerned with
comparing the distributions of certain image characteristics in the re-
gion between two frames. Some very promising theoretical results have
been demonstrated by viewing the image a 3-D surface and using func-
tions of the principal curvatures as image characteristics for tracking.
When comparing local and global tracking, we conclude that in gen-
eral, they have complementary properties and properly combining the
two may yield superior tracking to either one alone. This, however,
has not been experimentally verified.

2

Contents

1 Introduction 6

2 Existing Algorithms 8

3 Problem Formulation 9

4 Background Mathematics 10
4.1 Calculus of Variations . 10

4.1.1 Minimizing Euclidean Length of a Closed Curve . . . 13
4.1.2 Minimizing Surface Integrals 14

4.2 Level Set Method . 16
4.2.1 Curvature in the Level Set Formulation 16

5 Design and Implementation 18
5.1 Local Tracking Descent Equations 18
5.2 Kullback-Leibler Descent Equations 18
5.3 Euler-Lagrange Descent Equations 20
5.4 Level Set Descent Equations 21
5.5 Discretization . 21
5.6 Characteristic Vector . 22

5.6.1 Principal Curvatures 22
5.6.2 Least Squares Theory 24
5.6.3 Least Squares Implementation 25
5.6.4 Principal Curvature Theory 25
5.6.5 FIR Filters . 26
5.6.6 Vector Quantization 26

5.7 Choice of Programming Environment 27
5.8 Code Description . 27

5.8.1 ’Image’ Class . 28
5.8.2 ’Discretization’ Class 28
5.8.3 ’Main’ Class . 29

5.9 Pseudocode . 29

6 Results and Observations 30
6.1 Car . 30
6.2 SNL . 31
6.3 Hockey . 32
6.4 Face . 34
6.5 Finger . 34
6.6 Bow . 38
6.7 Principle Curvatures . 40

7 Conclusions 41

3

8 Future Work 42

References 42

4

List of Figures

1 Camera Following Car . 6
2 Gradient Descent Illustration 12
3 Mean Curvature Flow . 14
4 Principle Curvature Illustration 23
5 Principle Curvature Demo . 23
6 Block Diagram of Code Hierarchy 28
7 Local Tracking on Car . 30
8 Local Tracking on SNL . 31
9 Global Tracking on SNL . 32
10 Local Tracking on Hockey . 33
11 Global Tracking on Hockey 34
12 Local Tracking on Face . 35
13 Local Tracking on Finger . 36
14 Global Tracking on Finger . 37
15 Local Tracking on Bow . 38
16 Global Tracking on Bow . 39
17 Principle Curvatures Test . 40

5

1 Introduction

The problem of region tracking over an image sequence falls under the um-
brella of computer vision. The ultimate goal of computer vision is to have
a computer ”understand” what it sees, allowing the computer to interpret
image data for the application intended.

There are many existing applications of computer vision, including but
not limited to areas such as optical character recognition, medical image
processing, automated traffic monitoring, automated video editing, video
surveillance, and of course military applications.

The specific goal of region tracking is to track a region of interest over
a sequence of images. In order to do this, we must ask and answer the
fundamental question:

What remains invariant...?

• Shape?

• Intensity Boundaries?

• Motion?

• Smoothness/Stationarity of the Background?

Figure 1: A camera filming a car as it passes by

If we consider the situation in Figure 1, we find that infact none of these
factors can be assumed to remain invariant in an image sequence. For exam-
ple, the shape of the car when projected into the 2-dimensional image space
completely changes shape as the camera pans and follows the car. Intensity
boundaries do not remain invariant, as the lighting, background, and other
factors may change throughout the sequence. The car can slow down, speed
up, or even stop, so clearly motion does not remain invariant. Also, we
clearly cannot assume anything about the smoothness or stationarity of the
background which is changing as the camera pans to follow the car.

6

There are many existing region tracking algorithms which make explicit
assumptions about the above images characteristics, however, they fail on
any image sequences for which these assumptions do not hold. The reduced
applicability of these algorithms is a major drawback as they only work in
very specialized cases.

The goal of this project is to design, implement, and test a general
purpose tracking algorithm that does not make any explicit assumptions
other than that the region of interest is distinguishable in some way between
frames. Such a general purpose algorithm will, for example, be able to track
equally well a hockey player, a car, or a boxing glove.

7

2 Existing Algorithms

Region tracking is a difficult problem which has been approached in many
different ways. Some depend on region information, others utilize boundary
information and some use both region and boundary information.

Some region based algorithms depend on feature points and edge seg-
ments of the region being tracked. Once region information is used, the
motion field can be computed over the region and used to compute the po-
sition of the region in the next frame. Using this method involves making
strong assumptions on the shape of the region and the motion of the points.
This algorithm is optimal if the motion field is translational and the shape
of the region is constant throughout the sequence, but this is not the case
for most tracking problems. The main downside to this algorithm is that
boundaries are not accurately computed [1].

Other approaches use boundary information through an active contours
approach. Here, no assumptions are made about the shape of the region
being tracked, as the algorithm only observes the boundaries and not the
region itself. It was assumed, however, that there is a high contrast between
the region being tracked and the background, which is not always the case
[2].

Thus combined region and boundary based algorithms were developed,
which are topology independent, and allow the region being tracked to merge
with other regions or split into several. These algorithms can only be applied
to a motion pattern where the displacement of the region being tracked is
small, depending on the quality of the motion field and given parameters [1].
Also, the object is assumed to be moving while the background is stationary.

In this project we propose an algorithm that performs region tracking
without any of the a priori assumptions mentioned above. No assumptions
are made about smoothness, shape, contrast, intensity or motion of the re-
gion. Also, we do not assume a fixed uniform background. Consequently,
computations of motion fields, parameters, and features points for motion
will not be needed, and the motion will not be restricted to small displace-
ments.

8

3 Problem Formulation

The problem formulation described as follows is taken from a problem de-
scription provided by Professor Abdol-Reza Mansouri in September of 2007[3].
The aim of this project is to implement and test a region tracking algorithm
based on a variational formulation. Consider then two images I0, I1 : Ω 7→ R
(where Ω ⊂ R2 is the image domain) corresponding to two frames of an im-
age sequence and assume we are given some region R0 ⊂ Ω. Typically R0

would correspond to some region of interest in image I0. We would like to
“track” R0 in the next frame, i.e. find the corresponding region in frame I1.
Furthermore, we wish to do so without making any constraining assumptions
regarding the shape of R0, its motion, or its contrast with the background.
To make the problem tractable, some assumptions must be made. We will
assume that R1 ⊂ Ω “corresponds” to R0 if certain characteristics of the
function I0|R0 agree with those of I1|R1 .

Denote by v(x, I) ∈ Rn a vector of characteristics (or features) of I at
the point x ∈ Ω. v(x, I) could be a simple as I(x) (hence a one-dimensional
vector), or a more complicated function of x and I obtained by applying
various operators to I in the neighborhood of x. In this way, v(x, I) could
contain information about the image not only at x but also in a neighbour-
hood of x. In section 5.6 we will describe the operators that we use for
v(x, I).

Consider the following functional:

R 7→ E[R] = λ1

∫
R

min
τ∈B(r):x+τ∈R0

‖v(x, I1)− v(x + τ, I0)‖ dx

+ λ1

∫
Rc

min
τ∈B(r):x+τ∈Rc0

‖v(x, I1)− v(x + τ, I0)‖ dx

+ λ2D(fI0,R0 ||fI1,R)
+ λ3D(fI0,Rc0 ||fI1,Rc)

+ λ4

∮
∂R
ds

where R is a region in frame I1, B(r) denotes the closed ball of radius
r centered at 0, || · || is some appropriate vector norm, fI,R denotes the
probability density function of v in region R of image I, and D(·||·) denotes
the Kullback-Leibler distance measure. λ1, λ2, λ3, and λ4 are parameters
that are determined experimentally. Estimating R1 can now be expressed as
finding a region R∗ that minimizes the functional E. This will be expressed
as the solution to a gradient descent partial differential equation. Before we
derive the PDE, we need to review some background mathematics.

9

4 Background Mathematics

We will first dive into the calculus of variations as it will give us the tools
required to properly discuss our solution. An excellent reference on this
subject is Fomine and Gelfand[4].

4.1 Calculus of Variations

The calculus of variations is an integral tool to our problem formulation.
It will allow us to devise an algorithm to minimize our tracking functional.
Before we begin with the theory, we will introduce some notation that will be
used throughout this paper. Let ζ([a, b];α, β) be the set of all C∞ functions
from [a, b] to R such that f(a) = α and f(b) = β. That is,

ζ ([a, b];α, β) = {f : [a, b] 7→ R|f ∈ C∞, f(a) = α, f(b) = β} (4.1)

Now, for L : R3 7→ R, L ∈ C∞ we define the functional
AL : ζ([a, b];α, β) 7→ R by

AL[f] =
∫ b

a
L(x, f(x), f ′(x))dx (4.2)

where f ∈ ζ([a, b];α, β). Hence, AL is a function of f and its first derivative.
As AL takes values on the real number line we can consider the problem
of minimizing AL over all f ∈ ζ([a, b];α, β). This fixed endpoint problem
can be thought of as trying to find a function that goes from f(a) = α to
f(b) = β while minimizing the cost function defined by (4.2). This leads us
naturally to the Euler-Lagrange necessary conditions[4] which are proved in
the following theorem.

Theorem 1. (Euler-Lagrange Necessary Conditions.) Let L : R3 7→ R be a
C∞ function. Then, if f ∈ ζ([a, b];α, β) is a local minimum of AL, it must
satisfy the following equation

∂L

∂f
− d

dx

(
∂L

∂f ′

)
= 0 (4.3)

Remark 1. ∂L
∂x ,

∂L
∂f and ∂L

∂f ′ denote the partial derivatives of L with respect
to each of its three variables

Proof. Assuming that f minimizes AL, let η ∈ ζ([a, b]; 0, 0) (ie: η(a) =
η(b) = 0). Hence, ∀t ∈ R, f + tη ∈ ζ([a, b];α, β). Now, consider the
function gη : (−ε, ε) 7→ R defined by t 7−→ AL[f + tη]. Since f is a minimum
of AL, t = 0 is a minimum of gη. From classical calculus, this implies that

10

g′η(0) = 0. Therefore, we can write

d
dt

∣∣∣∣
t=0

gη(t) =
d
dt

∣∣∣∣
t=0

AL[f + tη]

=
d
dt

∣∣∣∣
t=0

(∫ b

a
L(x, (f + tη)(x), (f + tη)′(x))dx

)
=

∫ b

a

d
dt

∣∣∣∣
t=0

(
L(x, (f + tη)(x), (f + tη)′(x))

)
dx

=
∫ b

a

∂L

∂f
η(x) +

∂L

∂f ′
η′(x)dx

=
∫ b

a

∂L

∂f
η(x)dx+

∫ b

a

∂L

∂f ′
η′(x)dx

=
∫ b

a

∂L

∂f
η(x)dx+

[
∂L

∂f ′
η(x)

]b
a

−
∫ b

a

d
dx

(
∂L

∂f ′

)
η(x)dx

=
∫ b

a

(
∂L

∂f
− d

dx

(
∂L

∂f ′

))
η(x)dx = 0

There is a slight abuse of notation throughout the proof. All the partial
derivatives are assumed to be evaluated at (x, f(x), f ′(x)) (ie: t = 0). The
second to last line is obtained through integration by parts and the middle
term is zero by the assumption that η(a) = η(b) = 0. The proof is completed
by noting that the final equation must hold for any η ∈ ζ([a, b]; 0, 0).

Although the Euler-Lagrange equation (4.3) is not a sufficient condition
for minimality, it is often useful in finding critical points of functionals of the
form in equation (4.2). We are now equipped to talk about gradient descent
in function space. This is best understood by first considering gradient
descent in classical calculus. Let F : Rn 7→ R be some function we wish to
minimize and consider the following differential equation

dx
dt

= −∇F (x(t)) (4.4)

If x(t) is a solution to equation 4.4 then we see that

d
dt

(F (x(t)) =
〈
∇F (x(t)),

dx
dt

〉
= 〈∇F (x(t)),−∇F (x(t))〉
= −‖∇F (x(t))‖2 ≤ 0

Therefore, F (x(t)) is a monotonically non-increasing function of t. Now,
depending on the initial condition x(0), as t → ∞ the function F (x(t))
will either be divergent, or converge to a local minimum or saddle point of

11

Figure 2: Gradient Descent Illustration

F . This is nicely illustrated in Figure 2. Starting at x0, the curve x(t) will
converge as t→∞ to the local minimum x. By combining this idea with the
Euler-Lagrange equation, we naturally arrive at the idea of gradient descent
in function space[4], which is the subject of the following proposition.

Proposition 1. (Euler-Lagrange Descent Equation) Let L : R3 7→ R be a
C∞ function. Now, take a family of functions, f , in ζ([a, b], α, β) parame-
terized by t (ie: f(·, t) ∈ ζ([a, b];α, β) ∀t ∈ R+). If f satisfies

∂f

∂t
= −

(
∂L

∂f
− d

dx

(
∂L

∂f ′

))
(4.5)

then ∀t ∈ R+,
d
dt

(AL[f(·, t)]) ≤ 0

Proof. Given that f is a solution to 4.5, we have

d
dt

(AL[f(x, t)]) =
d
dt

∫ b

a
L(x, f(x, t), f ′(x, t))dx

=
∫ b

a

d
dt
L(x, f(x, t), f ′(x, t))dx

=
∫ b

a

(
∂L

∂f

∂f

∂t
+
∂L

∂f ′
∂f ′

∂t

)
dx

=
∫ b

a

(
∂L

∂f

∂f

∂t
+
∂L

∂f ′
d

dx

(
∂f

∂t

))
dx

=
∫ b

a

∂L

∂f

∂f

∂t
dx+

[
∂L

∂f ′
∂f

∂t

]b
a

−
∫ b

a

d
dx

(
∂L

∂f ′

)
∂f

∂t
dx

=
∫ b

a

(
∂L

∂f
− d

dx

(
∂L

∂f ′

))
∂f

∂t
dx

=
∫ b

a
−
(
∂L

∂f
− d

dx

(
∂L

∂f ′

))2

dx ≤ 0

We will now see some applications of these theorems.

12

4.1.1 Minimizing Euclidean Length of a Closed Curve

Let C = {~γ : [0, 1] 7→ R2 | ~γ(0) = ~γ(1)} and consider the functional
E : C 7→ R defined by E[~γ] =

∮
~γ dp. So, to find the curve ~γ∗ that minimizes

E, we embed ~γ in a one-parameter family (~γ(·, t))t≥0 such that as t → ∞,
~γ(·, t) converges to ~γ∗. Such a family is obtained by calculating the Euler-
Lagrange descent equations of Proposition 1. In our development thus far we
have only considered scalar valued functions but the generalization to vector
valued functions, such as ~γ, is simple once we note that we can express
~γ(s) as ~γ(s) = (x(s), y(s)) where x(s), y(s) ∈ ζ([0, 1]; 0, 0). So in writing
the Euler-Lagrange descent equation for ~γ(·, t) we will obtain a system of
coupled partial differential equations for x(s) and y(s). First, note that the
functional E can be expressed as

E[~γ] =
∮
~γ

dp =
∫ 1

0

∥∥∥~̇γ(s)
∥∥∥ds =

∫ 1

0

√
ẋ2(s) + ẏ2(s)ds

For simplicity we will often omit t, but one should keep in mind that ~γ, x,
and y are families of functions parameterized by t. The Euler-Lagrange
descent equation gives us the coupled partial differential equation

∂x

∂t
= −

(
∂L

∂x
− ∂

∂s

(
∂L

∂ẋ

))
∂y

∂t
= −

(
∂L

∂y
− ∂

∂s

(
∂L

∂ẏ

))

where L is given by the integrand of the functional. This is now a simple cal-
culation. Note that the dot notation for derivative indicates differentiation
in the s variable. We have

∂x

∂t
=

∂

∂s

(
ẋ√

ẋ2 + ẏ2

)

=
ẍ
(
ẋ2 + ẏ2

)
− ẋ (ẋẍ+ ẏÿ)

(ẋ2 + ẏ2)3/2

= ẏ
ẍẏ − ẋÿ

(ẋ2 + ẏ2)3/2

Similarly, for y(s, t) we have

∂y

∂t
= ẋ

ẋÿ − ẍẏ
(ẋ2 + ẏ2)3/2

Putting everything together we have

∂~γ

∂t
=
(
∂x

∂t
,
∂y

∂t

)
= κ (−ẏ, ẋ)

13

Figure 3: Mean Curvature Flow

where κ is the curvature of ~γ given by

κ =
ẋÿ − ẍẏ

(ẋ2 + ẏ2)3/2

Note that the vector (−ẏ, ẋ) is orthogonal to the tangent vector (ẋ, ẏ). If
we extend these vectors into R3, we see that the cross product (ẋ, ẏ, 0) ×
(−ẏ, ẋ, 0) = (0, 0, ẋ2 + ẏ2) is oriented in the positive z direction. If we
take the positive curve orientation and use the right-hand rule, we see that
(−ẏ, ẋ) is the inward pointing normal to the curve. By letting ~N = (−ẏ, ẋ),
we can write the Euler-Lagrange descent equation as

∂~γ

∂t
= κ ~N

This is commonly termed mean curvature flow or “curve shrinking”, and is
illustrated in Figure 3.

4.1.2 Minimizing Surface Integrals

We know how to use the Euler-Lagrange equations to minimize contour
integrals, but many important problems are posed with surface integrals,
so we will now show how to apply the Euler-Lagrange equations to surface
integrals. The main idea is that we use Green’s Theorem to convert the
surface integral to a contour integral and write the Euler-Lagrange equations
for the contour integral. For some F : R2 7→ R, we will consider functionals
AL of the form

AL[~γ] =
∫
R~γ

F (x, y)dA (4.6)

For some P : R2 7→ R and Q : R2 7→ R recall Green’s Theorem relating
surface integrals and contour integrals∮

~γ
Pdx+Qdy =

∫
R~γ

(
∂Q

∂x
− ∂P

∂y

)
dxdy (4.7)

14

Now, let (x0, y0) ∈ R2 and consider the functions P : R2 7→ R and Q : R2 7→
R defined by

P (x, y) = −1
2

∫ y

y0

F (x, z)dz

Q(x, y) =
1
2

∫ x

x0

F (z, y)dz

Note that this construction lets us express F as

F (x, y) =
∂Q

∂x
− ∂P

∂y

Now, using Green’s Theorem (4.7), we see that

AL[~γ] =
∫
R~γ

F (x, y)dA

=
∫
R~γ

(
∂Q

∂x
− ∂P

∂y

)
dxdy

=
∮
~γ
Pdx+Qdy

=
∫ 1

0

(
P (x(s), y(s))ẋ(s) +Q(x(s), y(s))ẏ(s)

)
ds

We can now apply the Euler-Lagrange equations noting that L = P (x(s), y(s))ẋ(s)+
Q(x(s), y(s))ẏ(s). We have

∂x

∂t
= −

(
∂L

∂x
− d

ds

(
∂L

∂ẋ

))
= −

(
∂P

∂x
ẋ+

∂Q

∂x
ẏ − d

ds
(P)
)

= −
(
∂P

∂x
ẋ+

∂Q

∂x
ẏ − ∂P

∂x
ẋ− ∂P

∂y
ẏ

)
= −

(
∂Q

∂x
− ∂P

∂y

)
ẏ

= −F ẏ

Similarly, for ∂y
∂t we have

∂y

∂t
= Fẋ

This gives us the gradient descent curve evolution equation

∂~γ

∂t
= F ~N (4.8)

15

4.2 Level Set Method

The mathematics developed so far allows us to write the Euler-Lagrange
descent equations as the equations of motion of a propagating curve. In order
to implement this curve evolution we will follow the methods of Sethian [5].
Recall the curve evolution equation from (4.8)

∂~γ

∂t
= F~n (4.9)

where ~n is the normalized inward unit normal and ~γ : [0, 1] 7→ R2. Instead of
using an explicit representation of ~γ, we consider an implicit representation
as the zero level set of some function u : R2 7→ R. We will now consider
the curve evolution equations for ~γ in this new representation. Recall that
we are considering ~γ as a family of curves parameterized by t. Likewise, we
take (u(·, ·, t))t∈R+ to be a family of surfaces parameterized by t. As ~γ is the
zero level set of u, we require that

u(~γ(s, t), t) = 0 ∀s ∈ [0, 1], t ∈ R+ (4.10)

We will use the convention that u > 0 on the interior of ~γ and u < 0 on the
exterior of ~γ. To simplify notation the rest of the calculations will assume
everything is evaluated at ~γ, the zero-level set of u, and that t ∈ R+. By
differentiating (4.10) with respect to t we get

∂u

∂t
+ ~∇u · ∂~γ

∂t
= 0 (4.11)

Now, substituting (4.9) into (4.11) we get

∂u

∂t
= −~∇u · ∂~γ

∂t
= −F

(
~∇u · ~n

)
(4.12)

Now, because ~γ is a level set of u we have that ~∇u is perpendicular to the
curve ~γ. Also, since we have chosen u to be positive on the interior of ~γ and
negative on the exterior, ~∇u is a non-negative scalar multiple of the unit
normal vector ~n. Therefore, we can write equation (4.12) as

∂u

∂t
= −F

∥∥∥~∇u∥∥∥ (4.13)

Equation (4.13) is the curve evolution equation for ~γ embedded in u.

4.2.1 Curvature in the Level Set Formulation

In the previous formulation, the function F was assumed to be independent
of ~γ(s) = (x(s), y(s)). In the case of mean curvature flow, we have the curve
evolution equations

∂~γ

∂t
= κ ~N

16

where κ is given by

κ =
ẋÿ − ẍẏ

(ẋ2 + ẏ2)3/2

Clearly, κ is dependent on the curve ~γ. In order to use the level set method,
we must express κ in terms of the level set function u. As ~∇u is perpendicular
to ~γ we can write

~∇u · ~̇γ =
∂u

∂x
ẋ+

∂u

∂y
ẏ = 0

Differentiating with respect to s, we can express this relation as(
∂2u

∂x2
ẋ+

∂2u

∂x∂y
ẏ

)
ẋ+

∂u

∂x
ẍ+

(
∂2u

∂x∂y
ẋ+

∂2u

∂y2
ẏ

)
ẏ +

∂u

∂y
ÿ = 0

By re-arranging terms in the above expression, we obtain

~∇u · ~̈γ = −~̇γTHu~̇γ (4.14)

where Hu is the Hessian of u defined by

Hu =

(
∂2u
∂x2

∂2u
∂x∂y

∂2u
∂x∂y

∂2u
∂y2

)
If we assume ~γ is parameterized at unit speed then by definition we have
~̈γ = κ~n. In addition, we have already shown that ~∇u ·~n =

∥∥∥~∇u∥∥∥ so we have

~∇u · ~̈γ = κ~∇u · ~n = κ
∥∥∥~∇u∥∥∥ (4.15)

Now, let ~∇u⊥ = (−uy, ux) so ~∇u⊥ is perpendicular to ~∇u, and thus a scalar
multiple of ~̇γ. Since we assumed ~γ is parameterized with unit speed, we
have

~̇γ =
±~∇u⊥∥∥∥~∇u∥∥∥ (4.16)

where the relative directions of ~γ and ~∇⊥ will be irrelevant in the following
steps. Substituting (4.16) and (4.15) into (4.14) and re-arranging we get

κ = −
~∇u⊥THu

~∇u⊥∥∥∥~∇u∥∥∥3 (4.17)

Multiplying out the expression above gives

κ =
uxxu

2
y − 2uxuyuxy + uyyu

2
x

(u2
x + u2

y)
3
2

(4.18)

This is the expression that will be used in our implementation.

17

5 Design and Implementation

Now that we have introduced the background mathematics, we are equipped
to discuss our design. We first derive the Euler-Lagrange descent equations
for each term in our tracking functional.

5.1 Local Tracking Descent Equations

The first two terms in our tracking functional (4.2) can be written as

E[R~γ] =
∫
R~γ

(
min

τ∈B(r):x+τ∈R0

‖v(x, I1)− v(x + τ, I0)‖

− min
τ∈B(r):x+τ∈Rc0

‖v(x, I1)− v(x + τ, I0)‖

)
dx

+
∫

Ω
min

τ∈B(r):x+τ∈Rc0
‖v(x, I1)− v(x + τ, I0)‖dx

where Ω is the domain of the image. Clearly the last term will not affect the
Euler-Lagrange descent equations as it is independent of ~γ. Using equation
(4.8) we can write down the Euler-Lagrange descent equations for the local
tracking term as

∂~γ

∂t
= −

(
min

τ∈B(r):x+τ∈Rc0
‖v(x, I1)− v(x + τ, I0)‖ (5.1)

− min
τ∈B(r):x+τ∈R0

‖v(x, I1)− v(x + τ, I0)‖
)
~N

5.2 Kullback-Leibler Descent Equations

We now consider the descent equations for the Kullback-Leibler distance
terms in our functional. This derivation borrows much of the notation and
methods from [6]. Let I be some image with domain Ω and range Z. Let q be
some probability density function over Z, and let p(·, ~γ) be the probability
density function associated with the region R~γ . We first need to express p in
terms of the curve ~γ. For x ∈ Ω and z ∈ Z, we can express the cumulative
density function as

P (I(x) ≤ z) =

∫
R~γ
u(z − I(x))dx∫

R~γ
dx

18

By differentiating with respect to z we obtain the probability density func-
tion

p(z;~γ) =
d
dz

(∫
R~γ
u (z − I(x)) dx∫

R~γ
dx

)

=

∫
R~γ
δ (z − I(x)) dx∫

R~γ
dx

=
N(R~γ , z)
A(R~γ)

where u is the unit step function, δ is the dirac distribution, and N and A
are defined as

N(R, z) =
∫
R
δ(z − I(x))dx

A(R) =
∫
R

dx

Now, the Kullback-Leibler distance, as a functional over the space of closed
curves, can be written as

E[~γ] = D(q(·)||p(·, ~γ)) =
∫
Z
q(z) ln

q(z)
p(z;~γ)

dz = −h(q)−
∫
Z
q(z) ln p(z;~γ)dz

where h(·) is differential entropy. Since the differential entropy of q does not
depend on ~γ we can restrict ourselves to the functional

K[~γ] = −
∫
Z
q(z) ln(p(z;~γ))dz

= ln(A(R~γ))
∫
Z
q(z)dz −

∫
Z
q(z) ln(N(R~γ , z))dz

= ln(A(R~γ))−
∫
Z
q(z) ln(N(R~γ , z))dz

Now, we have

δK

δ~γ
=

1
A(R~γ)

δA(R~γ)
δ~γ

−
∫
Z
q(z)

[
1

N(R~γ , z)
δN(R~γ , z)

δ~γ

]
dz

The next step can be understood by examining the Euler-Lagrange descent
equations for A(R~γ) and N(R~γ , z). Alternatively, there is a proposition that
yields the same result in [6]. What we get is

A(R~γ) =
∫
R~γ

dx⇒
δA(R~γ)
δ~γ

= ~N

N(R~γ , z) =
∫
R~γ

δ(z − I(x))dx⇒
δN(R~γ , z)

δ~γ
= δ(z − I(x)) ~N

19

By substituting these expressions, we get

δK

δ~γ
=

[
1

A(R~γ)
−
∫
Z
q(z)

δ(z − I(x))
N(R~γ , z)

dx
]
~N

=
[

1
A(R1)

− q(I(x))
N(R~γ , I(x))

]
~N

=
p(I(x))− q(I(x))
N(R~γ , I(x))

~N

Finally, the gradient descent equations for the Kullback-Leibler distance are

∂~γ

∂t
=
q(I(x))− p(I(x))
N(R~γ , I(x))

~N (5.2)

where N is the inward normal to the curve ~γ.

5.3 Euler-Lagrange Descent Equations

We are now in a position to write down the Euler-Lagrange descent equations
for our tracking functional which is reproduced here.

R~γ 7→ E[R~γ] = λ1

∫
R~γ

min
τ∈B(r):x+τ∈R0

‖v(x, I1)− v(x + τ, I0)‖ dx

+ λ1

∫
Rc
~γ

min
τ∈B(r):x+τ∈Rc0

‖v(x, I1)− v(x + τ, I0)‖ dx

+ λ2D(fI0,R0 ||fI1,R~γ)

+ λ3D(fI0,Rc0 ||fI1,Rc~γ)

+ λ4

∮
~γ
ds

The Euler-Lagrange Descent Equations are given by

∂~γ

∂t
= −

(
λ1 min

τ∈B(r):x+τ∈Rc0
‖v(x, I1)− v(x + τ, I0)‖ (5.3)

−λ1 min
τ∈B(r):x+τ∈R0

‖v(x, I1)− v(x + τ, I0)‖

+λ2

fI0,R0(I1(x))− fI1,R~γ (I1(x))
N(R~γ , I1(x))

−λ3

fI0,Rc0(I1(x))− fI1,Rc~γ (I1(x))

N(Rc~γ , I1(x))
− λ4κ(x)

)
~N

where ~N is the inward pointing normal vector to ~γ.

20

5.4 Level Set Descent Equations

The level set gradient descent equations for our tracking functional can be
written directly from equations (5.3) and (4.13)

∂u

∂t
=
(
λ1 min

τ∈B(r):x+τ∈Rc0
‖v(x, I1)− v(x + τ, I0)‖ (5.4)

−λ1 min
τ∈B(r):x+τ∈R0

‖v(x, I1)− v(x + τ, I0)‖

+λ2

fI0,R0(I1(x))− fI1,R~γ (I1(x))
N(R~γ , I1(x))

−λ3

fI0,Rc0(I1(x))− fI1,Rc~γ (I1(x))

N(Rc~γ , I1(x))
− λ4κ(x)

)∥∥∥~∇u∥∥∥
where the curvature κ is given by equation (4.18).

5.5 Discretization

Recall equation (4.18) for the curvature of ~γ in the level set formulation

κ =
uxxu

2
y − 2uxuyuxy + uyyu

2
x

(u2
x + u2

y)
3
2

(5.5)

To discretize equation (4.18), we use the central difference approximation of
the partial derivatives which are shown here.

ux =
ui+1,j − ui−1,j

2

uy =
ui,j+1 − ui,j−1

2
uxx = ui+1,j − 2ui,j + ui−1,j

uyy = ui,j+1 − 2ui,j + ui,j−1

uxy =
ui+,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1

4

For the discretization of the gradient of u, we use the methods of Sethian
in [5]. In order to have the numerical domain of dependence align with the
mathematical domain of dependence, the following numerical scheme from
[5] is used. If our functional at a point (i, j) is given by Fi,j , then we write
the gradient at that point as∥∥∥~∇u∥∥∥ =

{
∇+, if Fi,j > 0
∇−, if Fi,j ≤ 0

where ∇+ uses the forward difference approximation when the derivative is
negative and the backwards difference approximation when the derivative

21

is positive. ∇− is defined exactly opposite of ∇+. ∇+ and ∇− are easily
computed in terms of the level set function u. The reader is referred to [5]
for more details on this topic.

5.6 Characteristic Vector

The characteristic vector holds invariant image characteristics. Tracking
performance can be improved if the characteristic vector is expanded to
include more invariant image characteristics, allowing for a more accurate
matching of regions between frames.

During our initial testing phase the characteristic vector simply consisted
of 0th order terms, namely the RGB pixel intensity values. Although tracking
with only these 0th order invariants was often quite successful, in order to
improve tracking performace, higher order invariant image characteristics
are desired. During a project meeting in January 2008, Professor Mansouri
suggested viewing the image as a 3-dimensional surface [7], and including
the principal cirvatures and directions of the surface in the characteristic
vector. This idea is based on the assumption that the region of interest
undergoes (locally) Euclidean transformations between subsequent frames,
and hence the principal curvature values will be preserved.

5.6.1 Principal Curvatures

In order to calculate principal directions and principal curvatures, the image
must first be converted into a 3-dimensional surface. This can be done via
a least squares fitting on the graph of the image. This was done by first
converting the image from RGB to YCbCr, considering only the Y intensity
values, and locally performing least squares fittings on the graph of these
intensities. Using these surfaces the corresponding principal curvatures and
directions can be calculated for each pixel in the image. As the principal
directions at any given point on a surface are always orthogonal[8], we now
include three additional invariants in the characteristic vector: principal
direction, maximum principal curvature, and minimum principal curvature.
Note that it is not assumed in general that the principal directions remain
invariant, however under certain circumstances this measure can be useful.

Although the mathematics behind principal curvature is summarized in
Section 5.6.4, it is beneficial to first provide a visual explanation of the con-
cept. Consider the image in Figure 4.a. Zoom in on the image and focus
on the specified 3-by-3 window. Let the graph in Figure 4.b correspond to
the Y intensities in this window. Finally, let the 3-dimensional surface in
Figure 4.c correspond to a least squares fitting of the graph in Figure 4.b.
The principal directions for the middle pixel are shown on the surface in
Figure 4.c. The directions are necessarily orthogonal[8], and correspond to
the directions of maximum and minimum curvature. For each pixel in the

22

Figure 4: a) Input Image. b) Local structure of pixel intensities. c) Least
squares surface approximation.

image we will calculate and store one principal direction (due to orthogonal-
ity), and the maximum and minimum curvatures. These values can then be
used in the characteristic vector for tracking purposes. Figure 5 displays the
an image together with a gray-scale image of the maximum curvature value
at each pixel. By inspection, it is clear that much of the image structure
is maintained in the maximum curvature output. Hence, such an invariant
measure may be used to supplement the 0th order measures. Note that we

Figure 5: Gray-scale of maximum principal value at each pixel

can view the principal direction as a 1st order image characteristic, and the
principal curvature values as 2nd order image characteristics. Before we dis-
cuss the mathematics, we will introduce least squares theory and how we
have implemented the least squares approximation.

23

5.6.2 Least Squares Theory

Viewing an image as a 3-dimensional surface, where the height at each point
is a function of the brightness at that point, is a useful technique to extcan-
canract local properties from the image. The idea of viewing an image as
a surface was first discussed in [7]. The theory of least squares will enable
us to quickly and efficiently fit a polynomial surface locally around a given
pixel. From this point, we can use the coefficients of this fitting to extract
meaningful local properties from the image that may improve our tracking
algorithm. This section provides a brief overview of some relevant elements
of least squares theory.

Let Ω ⊂ R2 and f : Ω 7→ R be a function with domain Ω. Let D =
{(xk, yk)}Nk=0 be a finite set of points contained in Ω. We are interested in
approximating f as

f(x, y) ≈
n∑
i=0

n∑
j=0

aijx
iyj

while minimizing the sum of the squared error of all points in D. Thus we
are trying to minimize

R =
N∑
k=0

f(xk, yk)−
n∑
i=0

n∑
j=0

aijx
i
ky
j
k

2

over all sets of coefficients {aij}0≤i,j≤n. Since R is a continuously differen-
tiable function of the coefficients, any set of minimal coefficients, {a∗ij}0≤i,j≤n,
must satisfy

∂R

∂ars
=

∂

∂ars

N∑
k=0

f(xk, yk)−
n∑
i=0

n∑
j=0

aijx
i
ky
j
k

2

=
N∑
k=0

−2f(xk, yk)xrky
s
k + 2

 n∑
i=0

n∑
j=0

a∗ijx
i
ky
j
k

xrky
s
k

 = 0

for every coefficient ars. Rearranging this expression gives us

n∑
i=0

n∑
j=0

a∗ij

N∑
k=0

xr+ik ys+jk =
N∑
k=0

f(xk, yk)xrky
s
k

which is a linear equation over the set of coefficients {a∗ij}0≤i,j≤n. Since this
equation must hold for 0 ≤ r, s ≤ n, we have a linear system of (n + 1)2

equations and (n + 1)2 unknowns. Let M(D,n) be the matrix associated
with this linear system. The least squares approximation is performed by
solving this linear system for the coefficients.

24

5.6.3 Least Squares Implementation

As M(D,n) does not depend on the values f takes on, we have pre-computed
M(D,n) and M−1(D,n) for all values of D and n that are deemed reason-
able. Then, only the right side of equation 5.6.2 needs to be computed at
run-time which greatly improves efficiency. As we are trying to approximate
images, we have taken the set of sample points D to be the grid of pixels
centered at the pixel of interest. Thus for a pixel at position (x, y), D is
given by

D = {(x+ i, y + j) | i, j ∈ {−N,−N + 1, · · · , N − 1, N}}

Thus, the window of pixels that are considered in the least squares fitting is
2N×2N centered at the pixel of interest. We have pre-computed M−1(D,n)
for 2 ≤ n ≤ 5 and n ≤ 2N ≤ 15.

5.6.4 Principal Curvature Theory

For a parameterized surface x = (x1(u, v), x2(u, v), x3(u, v)) it can be shown
[8] that independent of parameterization , the normal curvature at a point
on the surface, κ, in direction dv/du, is given by the equation

κ =
II

I
=

(xu · ~Nu)du2 + (xu · ~Nv + xv · ~Nu)dudv + (xv ·Nv)dv2

(xu · xu)du2 + 2(xu · xv)dudv + (xv · xv)dv2

where I and II are the first and second fundamental forms of the surface,
respectively [8]. Now, consider the surface given by the equation

f(u, v) =
n∑
i=0

n∑
j=0

aiju
ivj

which corresponds to a least squares fitting of an image. For surfaces of this
form x = (u, v, f(u, v)), we can express the normal curvature in direction
dv/du as

κ =
edu2 + 2fdudv + gdv2

Edu2 + 2Fdudv +Gdv2

where

e =
1
ρ
fuu f =

1
ρ
fuv g =

1
ρ
fvv

E = 1 + f2
u F = fufv G = 1 + f2

v

ρ =
√
f2
u + f2

v + 1

Now, by letting λ = dv/du, we can rewrite κ as

κ = κ(λ) =
e+ 2fλ+ gλ2

E + 2Fλ+Gλ2

25

The extreme values of κ can be characterized by dκ
dλ = 0 [8]. Using properties

of κ we find the following quadratic equation in λ with real roots

(eF − fE) + (eG− gE)λ+ (fG− gF)λ2 = 0

This equation determines the two directions dv/du in which κ obtains its
extrema. Unless II vanishes or II and I are proportional, one value must
be a minimum and the other a maximum. Thus, the roots λ1, λ2 of the
quadratic equation are the directions of principal curvature.

The normal curvatures in the directions of principal curvature are called
the principal curvatures, denoted κ1 and κ2, and are found by the equations

κ1 =
e+ 2fλ1 + gλ2

1

E + 2Fλ1 +Gλ2
1

(5.6)

κ2 =
e+ 2fλ2 + gλ2

2

E + 2Fλ2 +Gλ2
2

5.6.5 FIR Filters

A very natural way to extract local structure from an image is to apply
a finite impulse response (FIR) filter to the pixel samples. We have im-
plemented within our code support for appending non-separable FIR filters
outputs to our characteristic vector v. The width and height of the filtering
window is limited to 5 by 5. Thus the output of the filter for pixel (x, y) is
given by,

F (x, y) =
5∑
i=1

5∑
j=1

cijI(x+ i− 3, y + j − 3)

where the cij ’s are the filter coefficients and I(x, y) is the pixel intensity
at position (x, y). Depending on the processing mode, the filter outputs
are calculated for either the luminance component only, or all three RGB
values. Clearly the challenging problem here is to decide what properties the
filter should have in order to provide a good invariant measure of local image
structure. Although this has been implemented, it has not been thouroughly
experimented with.

5.6.6 Vector Quantization

In our code, the probability density functions are implemented as histograms
of the characteristic vector v. Since we cannot assume anything about the
dependence between the random variables corresponding to the entries in
v, we need one bin in the histogram for every combination of values that
v can take on. Clearly, the number of bins required grows exponentially
with the length of v. Given that each entry in v is represented by an 8-bit
integer, we will require 256n bins for a vector v of length n. This quickly

26

becomes ridiculous if n > 3 or 4, which leads us to consider some form of
quantization.

Let ∆ = 2q be the step size of our quantizer, where q is a user-controllable
parameter in our code. Let the components of v be given by (v1, v2, · · · , vn).
We will quantize the vector v by performing uniform scalar quantization on
each element,

Q(v) = (Q(v1), Q(v2), · · · , Q(v3))

where the scalar quantizer Q(·) is defined by

Q(vj) =
⌊ vj

28−q

⌋
The idea here is that now only 8 − q bits are required to represent each
element of v thereby reducing the number of bins required. So, for example,
if q = 5, then we are essentially representing each element of v by 3 bits.

5.7 Choice of Programming Environment

The two logical choices for our software implementation were C and MAT-
LAB. We have chosen C because of its performance advantage over MAT-
LAB. Since the algorithm is very processing intensive it is able to run much
faster in C. The main advantage MATLAB has over C is easy image I/O,
however we have acquired open-source C libraries which read and write
TIFF and BMP images so image I/O is not a problem. We have chosen to
implement our algorithm using floating-point arithmetic.

We setup multiple Linux server environments which we used as a shared
programming environment, code repository, and algorithm test environment.
The Linux environment has provided many advantages, such as centralized
code management, improved efficiency, and ease of scripting useful tools to
help run, test, and debug code. The server was remotely accessible via a
VNC session. Each group member has their own dedicated user account
with the ability to work concurrently in the environment.

5.8 Code Description

The region tracking algorithm has been implemented via three major classes:
an image class, a discretization class, and a main class. The main class

27

Figure 6: Block Diagram of Code Hierarchy

performs iterations in order to solve the PDE. The image and discretization
classes provide the main class with the machinery required to numerically
solve the PDE during the iteration process.

A hierarchical representation of the code is displayed in Figure 6. Each
of the three classes have been broken down and summarized in detail below.

5.8.1 ’Image’ Class

The image class is essentially a library of functions required to work with
the image files which are taken as input to the program. We have chosen to
work exclusively with TIFF and BMP format image files. Thus, any image
file taken as input to the algorithm is read via a function which stores all the
image data into an image object. The image object holds the various image
characteristics, such as image height and width, as well as RGB and/or
YCbCr intensity values associated with each pixel. An image object can be
written to an output file in either TIFF or BMP format.

On top of providing I/O functionality, the image class also contains var-
ious functions for extracting and updating the image characteristics held
by the image object. The region tracking algorithm requires the RGB and
YCbCr intensity values associated with each pixel in an image, as well as
the ability to update these intensity values if necessary. The image class
makes use of open source libraries to read and write TIFF images.

5.8.2 ’Discretization’ Class

The discretization class contains all functions required to calculate our func-
tional, the level set function, and its gradient. These functions are called by
the main algorithm on each iteration in order to numerically solve the PDE.

28

5.8.3 ’Main’ Class

The main class executes the region tracking algorithm. It makes use of the
many functions provided by the image and discretization classes.

When the code is executed, the main program first takes care of any ini-
tializations required by the algorithm. The first image input to the program
is a mask which allows the region curve to be initialized. This allows the
program to initialize the level-set which discriminates between the region
and the background.

Following the initialization phase, the main program performs iterations
in order to numerically solve the PDE. The number of iterations is chosen
large enough to ensure convergence.

The iterative process of numerically solving the level-set PDE is repeated
for each frame in the image sequence. The program terminates following the
iteration on the final input frame.

“Tracked” frames are output from the main program so a tracking se-
quence can be analyzed to determine how successful the algorithm was.

5.9 Pseudocode

The following pseudo-code outlines the general procedure which is followed
by the main program when executing the region tracking algorithm.

Main program
{

Initialize Input Images();
Initialize Level Set ();
Initialize Local Tracking ();
Initialize Global Tracking ();

for (each input frame in image sequence)
{

Reset Level Set to +1(-1) inside(outside) the region ();
Initialize Global Tracking For Current Frame ();
Initialize Local Tracking For Current Frame ();
for (n iterations and every pixel)
{

Gradient Calculation ();
Global Tracking Calculations ();
Local Tracking Calculations ();
Regularization Calculations ();
Update Level Set (using above calculations);

}
Output Resulting Tracked Image Sequence ();

}

29

6 Results and Observations

We tested our algorithm with the following real video sequences: car, SNL,
hockey, face, finger, and bow. In each case, the region of interest is manually
specified in the first frame and the algorithm tracks the region throughout
the subsequent frames. All sequences are tested with the characteristic
vector v(x) = (R(x), G(x), B(x)) unless otherwise noted. R,G, and B are
the red, green, and blue components of the image.

6.1 Car

Figure 7 shows the results with only local tracking enabled (ie: λ2 = λ3 = 0)
with a search window of δ = 15. The algorithm successfully tracks the car

Figure 7: Tracking output of every 15th frame of the car sequence (local
tracking)

through the entire sequence of 75 frames. When we first experimented with
this sequence, the tracking was quite poor as the back left wheel is very
similar in colour to the ground. This would cause the algorithm to take the
ground into the region and lose the back edge of the car. This issue was
resolved by excluding the back wheel from the region in the first frame. This

30

Figure 8: Tracking output of every 6th frame of the SNL sequence (local
tracking)

demonstrates how the algorithm can be very sensitive to the initial position
of the contour.

6.2 SNL

We have experimented with the SNL sequence using both local and global
tracking separately. Figure 8 shows the tracking results for local tracking
with a search window of δ = 40. We can see that the region splits into
two regions as the boxing glove passes by the red balloon. This illustrates
the flexibility of the level set method which allows splitting and merging
of regions. Our algorithm successfully tracks the glove through 90 frames
until the motion of the glove exceeds the search window between two frames
and the algorithm loses track. This demonstrates a limitation of the al-
gorithm; although the motion pattern is not constrained, the distance of
motion between frames is assumed to be within the defined search window
δ.

We have also experimented with global tracking on the SNL sequence (ie:
λ1 = 0). The results are shown in Figure 9. Global tracking is less successful
on this sequence. We can see that from frame to frame the left boxing glove
is moving behind Janet’s body. This implies that the proportion of red
pixels in the background is decreasing. Since the algorithm is attempting

31

Figure 9: Tracking output of frames 4,5,6,7 and 8 from the SNL sequence
(global tracking)

to match the probability density functions representing the foreground and
background, it is trying to compensate for this loss by shifting red pixels
from the tracked glove into the background. Note that this does not change
the probability density function of the region (by very much) and therefore
does not affect the foreground matching term. This is a drawback of the
global tracking algorithm not present in local tracking.

6.3 Hockey

We have experimented with both local and global tracking separately on the
hockey sequence. Figure 10 shows the results for local tracking. We can see
that after 10 frames, the algorithm has lost part of the player’s leg. This
is likely because the ice is very similar in colour to the white stripe on the
player’s socks. Also, the curvature of the contour is high around the player’s
skates, so the regularization term overpowers the other terms.

Next, note that in frame 20, the algorithm includes the puck as part of
the region. This is likely because the puck “emerged” from the left side of
the player a few frames earlier and part of the contour split off from the
main region. As the curvature is extremely high on such a small region, the
contour immediately shrinks away.

Finally, in frame 90, the algorithm takes the goalie’s left pad into the
region. Since the local tracking algorithm has no idea of the global statistics
of the region, as long as the background looks locally the same, it will be
included in the region. We can conclude that local tracking is not very
successful on this sequence.

The same hockey sequence was tested with global tracking yielding better
results. Here, we used the characteristic vector v(x) = Y (x), where Y (x) is

32

Figure 10: Tracking output of every 10th frame of the hockey sequence (local
tracking)

the luminance value at pixel x. Figure 11 shows the tracking output for this
sequence. Note that the algorithm has a general idea of where the player is,
but does not have a “tight fit” on the player. This is a general property of
the global density matching method. Due to the fact that the density of the
region encapsulated by the the “loose fit” contour is approximately equal
to the density of the player, the algorithm chooses the loose fit because the
cost of the regularization term is minimized for this fit.

Also, the global tracking algorithm has the same problem as local track-
ing at the end of the sequence; the density of the goalie’s pad is similar
to the player and hence the algorithm cannot distinguish between the two.
This problem could be resolved for both local and global tracking by includ-
ing other measures in the characteristic vector (ie: FIR filter or Principal
Curvature), but this was not tested.

33

Figure 11: Tracking output of every 10th frame of the hockey sequence
(global tracking)

6.4 Face

We have experimented with the local tracking on the face sequence and the
results are shown in Figure 12. We used a search window δ = 10. We
can see that although the size and intensity boundaries of the region vary
throughout the sequence, our algorithm successfully tracks the face through
150 frames.. This demonstrates the general flexibility of our solution.

6.5 Finger

We experimented with local and global tracking on the finger sequence. The
results for local tracking with a search window of δ = 15 are shown in Figure
13. We see the same issues with colour similarities between the region and
the background as we saw in the hockey sequence. This is the main reason
why the algorithm cannot maintain a tight fit on the upper portion of the

34

Figure 12: Tracking output of every 15th frame of the face sequence (local
tracking)

finger while tracking is accurate on the lower portions of the finger which
are in high contrast with his black jacket. The same sequence has also
been tested with global tracking and the results are shown in Figure 14.
We can see that neither local nor global on their own resulted in successful
tracking. However, the local algorithm performs better on this sequence as
it keeps track of one edge of the finger. Again, tracking could be improved
for either algorithm by intelligently selecting another measure to include in
the characteristic vector, but this has not been tested yet.

35

Figure 13: Tracking output of every 10th frame of the finger sequence (local
tracking)

36

Figure 14: Tracking output of every 10th frame of the finger sequence (global
tracking)

37

6.6 Bow

We experimented with both local and global tracking on the bow sequence.
This sequence is difficult to track because of the size of the bow. In general,
the regularization term needs to be strong enough to enforce smoothness
but not dramatically change the shape of the region. This is very difficult
when the region is small as there is already very high curvature along the
contour. As we see in Figure 15, the contour shrinks away around frame 40
due to the regularization term. We relaxed the regularization term when
using the global tracking algorithm and the results are shown in Figure 16.
We can see that the contour no longer shrinks away, however, at frame 50
the region splits into two and takes part of the gift into the region.

Figure 15: Tracking output of every 10th frame of the bow sequence (local
tracking)

38

Figure 16: Tracking output of every 10th frame of the bow sequence (global
tracking)

39

6.7 Principle Curvatures

We have engineered a test sequence, shown in Figure 17, on which both the
local and global tracking algorithms will fail. Due to the high resolution of
the sequence it is not accurately reproduced here, so we will briefly describe
it. The region of interest is a ball with alternating black and white horizontal
lines whereas the background has alternating vertical lines. We can see that
within any small window around a pixel, there are both white and black
pixels, hence local tracking will fail. Furthermore, the intensity distributions
of the foreground and background are identical and hence global tracking
will fail. We can see that throughout the sequence, the directions of principal
curvatures are invariant, and hence we use them in our characteristic vector.
To be specific, let θ ∈ [0, π] be one principle direction. To ensure that the
principal directions defined by θ = 0 and θ = π are considered the “same”
direction, we use the term 2 cos θ in our characteristic vector. Using only
this term in our characteristic vector, we tracked the sequence using the
global tracking algorithm and the results are shown in Figure 17

Figure 17: Tracking output of every 15th frame of the synthetic sequence
(global tracking)

40

7 Conclusions

Although we have not been able to fully test every one of our ideas, we
can draw some conclusions about the strengths and weaknesses of both the
global and local tracking algorithms. As seen in the results section, the
local tracking algorithm often provides a tighter fit around the region, but
requires the background to be significantly different than the region. This
does not mean that there needs to be a strong contrast between the region
and the background, but local tracking performs better when colours in the
region are not present in the background near the region.

In situations where there are similar colours in the region and the back-
ground, global tracking performs better than local tracking. However, as
the Kullback-Leibler divergence does not capture the local structure in the
image, the contour does not follow the edge of the object accurately. The
respective strengths and weaknesses of global and local tracking naturally
lead us to try combining the two algorithms. Unfortunately, it was difficult
to properly set the parameters with both local and global terms enabled,
and we have no successful results. In Section 8, we discuss our alternative
ideas for combining the two terms.

We have some very promising theoretical results using principal curva-
ture directions for tracking. As seen in section 6, we are able to track a
synthetic sequence using principal directions where tracking by pixel inten-
sities would fail. With further testing, we believe it may turn out that
principal values are good higher-order invariant measures of the objects we
wish to track.

41

8 Future Work

Due to the inherent time limitations of a 4th year thesis project, we were
unable to pursue many ideas that may have lead to improved tracking. This
section is dedicated to future work that could be done if this project were
to be continued.

Although we did a significant amount of testing, more testing would pro-
vide a better understanding the functional parameters. We were unable to
successfully combine local and global tracking, and believe this is primarily
due to the fact that we could not effectively combine the global and local
functional parameters. Most of the parameters were set based on trial and
error. A better understanding of the roles these parameters play througout
the gradient descent flow would enable us to make more intelligent param-
eter selections.

Another method for combining local and global tracking that was dis-
cussed involves iteratively switching between the global and local tracking
terms during the curve evolution iterations within the processing of a single
frame. This could be done in many ways, for example, you could switch
between local and global upon each iteration, or run global for the first half
of the processing of the frame and local for the second half (or vice versa), or
implement a “coin-flipping” process where the algorithm randomly chooses
local or global for each iteration. It is believed that by combining local
and global tracking in this way it may be possible to find local or global
minimums that would otherwise be unreachable.

Principal curvature provided some promising theoretical results, how-
ever we were only able to test it on engineered sequences. Hence, more
research and testing into this area must be done in order to gain a better
understanding of its applicability and effectiveness in real image sequences.

Although code was implemented for FIR filter testing, which would en-
able the expansion of the characteristic vector with higher order terms for
image characteristic, we did not make use of this code during testing. With
more time we certainly would have explored the impact of using FIR filters
on tracking.

Finally, our group implemented but did not test extensively an idea
that that was posed by Professor Mansouri regarding local tracking using
local pixel densities rather than single pixel intensity values. Essentially,
a PDF is determined for a given window around a pixel, which is used
as a local tracking invariant rather than simply the pixel intensities. This
can be thought of as another way to combine the local and global tracking
algorithms.

It is clear that there are still many areas to explore within the scope of
this region tracking project. With a better understanding of each of these
areas, and an appropriate amount of testing, the performance of the tracking
algorithm may be increased.

42

References

[1] A-R Mansouri. Region tracking via level set pdes without motion com-
putation. IEEE Transations on Pattern Analysis and Machine Intelli-
gence, July 2002.

[2] A-R Mansouri and A. Mitiche. Region tracking via local statistics and
level set pdes. International Conference on Image Processing, 2002.

[3] A-R Mansouri Problem Description, 2007.

[4] S. V. Fomin I. M. Gelfand. Calculus of Variations. Dover Publications,
INC., 2000.

[5] J.A. Sethian. Level Set Methods: Evolving Interfaces in Geometry,
Fluid Mechanics, Computer Vision and Materials Sciences. Cambridge
University Press, 1996.

[6] D. Freedman and T. Zhang. Active contours for tracking distributions.
IEEE Transations on Image Processing, April 2004.

[7] Jr. Anthony Yezzi. Modified curvature motion for image smoothing and
enhancement. IEEE Transations on Image Processing, 1998.

[8] Dirk J. Struik. Lectures on Classical Differential Geometry. Dover
Publications, INC., 1988.

[9] R. Kimmel. Numerical Geometry of Images: Theory, Algorithms, and
Applications. Springer, 2003.

[10] D. Freedman and T. Zhang. Improving performance of distribution
tracking through background mismatch. IEEE Transations on Pattern
Analysis and Machine Intelligence, February 2005.

[11] A-R Mansouri Tutorial Notes, 2007.

43

