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(Amazon), Dejan Slepčev (CMU), Matthew Thorpe (Manchester), and Katrina
Yezzi-Woodley (UMN)

Research supported by NSF-DMS 1713691, 1944925, and the Alfred P. Sloan Foundation

Calder (UofM) PDEs and learning IMA DSS 1 / 110



Outline

1 Introduction

2 Graph-based semi-supervised learning
Laplacian regularization
The p-Laplacian
Lipschitz regularization
Re-weighted Laplacians
The Properly Weighted Laplacian
Poisson learning

3 Experimental results
GraphLearning Python Package
Volume constrained algorithms
Segmenting Broken Bones

4 Current/Future Work

5 References

Calder (UofM) PDEs and learning IMA DSS 2 / 110



Outline

1 Introduction

2 Graph-based semi-supervised learning
Laplacian regularization
The p-Laplacian
Lipschitz regularization
Re-weighted Laplacians
The Properly Weighted Laplacian
Poisson learning

3 Experimental results
GraphLearning Python Package
Volume constrained algorithms
Segmenting Broken Bones

4 Current/Future Work

5 References

Calder (UofM) PDEs and learning IMA DSS 3 / 110



Quick intro to learning

Fully supervised: In fully supervised learning, we are given training data (xi , yi) for
i = 1, . . . ,n, where xi ∈ X are the data points and yi ∈ Y are the known labels. The
goal is to learn a function

(1) u : X → Y for which u(xi) ≈ yi for i = 1, . . . ,n.

Semi-supervised learning: In semi-supervised learning, we are additionally given a
(usually large) amount of unlabeled data xn+1, . . . , xn+m for m ≥ 1. Goal is to use the
unlabeled data to aid the learning.

1 Inductive learning: Learn a function

u : X → Y for which u(xi) ≈ yi for i = 1, . . . ,n.

2 Transductive learning: Learn a function

u : {x1, x2, . . . , xn+m} → Y for which u(xi) ≈ yi for i = 1, . . . ,n
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Example: Automated image captioning

[Yann LeCun, Yoshua Bengio, Geoffrey Hinton. Deep learning. Nature, 2015.]
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Applications

Why is semi-supervised learning useful?

It is expensive to label data, and we have an abundance of unlabeled data.

Brief list of example applications:

1 Speech recognition

2 Webpage classification

3 Inferring protein structure from sequencing

A great introductory book [Chapelle et al., 2006].
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Why semi-supervised?
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Why semi-supervised?
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Graph-based semi-supervised learning

Model:

1 Data (labeled and unlabeled) is a graph (X ,W).

I X ⊂ Rd are the vertices and
I W = (wxy)x ,y∈X are the nonnegative edge weights.
I wxy ≈ 1 if x , y similar, and wxy ≈ 0 when dissimilar.

2 Labeled (or observed) vertices are a subset Γ ⊂ X .

3 We given a labelling function g : Γ→ R.

Task: Extend the labels from Γ to the entire graph X .

Semi-supervised smoothness assumption
Similar points x , y ∈ X in high density regions of the graph should have similar labels.
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Example graph
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MNIST (70,000 28× 28 pixel images of digits 0-9)

Each image is a datapoint

x ∈ R28×28 = R784.

Geometric weights:

wxy = Φ

(
|x − y |
ε

)

k -nearest neighbor graph:

wxy = Φ

(
|x − y |
εk (x)

)
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Clustering MNIST

https://divamgupta.com
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Laplacian regularization
Laplacian regularized semi-supervised learning solves the Laplace equation{Lu = 0 in X \ Γ,

u = g on Γ,

where u : X → Rk , and L is the graph Laplacian

Lu(x) =
∑
y∈X

wxy(u(x)− u(y)).

The label decision for vertex x ∈ X is determined by the largest component of u(x)

`(x) = argmax
j∈{1,...,k}

{uj (x)}.

References:

Original work [Zhu et al., 2003]

Learning [Zhou et al., 2005, Ando and Zhang, 2007]

Manifold ranking [He et al., 2006, Zhou et al., 2011, Xu et al., 2011]
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Label propagation

The solution of Laplace learning satisfies

Lu(x) =
∑
y∈X

wxy(u(x)− u(y)) = 0. (y ∈ X \ Γ)

Re-arranging, we see that u satisfies the mean-value property

u(x) =

∑
y∈X wxyu(y)∑

y∈X wxy
.

Label propagation [Zhu 2005] iterates

uk+1(x) =

∑
y∈X wxyu

k (y)∑
y∈X wxy

.

and at convergence is equivalent to Laplace learning.
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Variational interpretation

Laplace learning is equivalent to the variational problem

min
u:X→Rk

{ ∑
x ,y∈X

wxy |u(x)− u(y)|2 : u(x) = g(x) for all x ∈ Γ

}
.

Many soft-constrained versions have been proposed

min
u:X→Rk

{ ∑
x ,y∈X

wxy |u(x)− u(y)|2 + λ
∑
x∈Γ

`(u(x), g(x)))

}
.
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Random Walk Interpretation

Laplace learning also has a random walk interpretation

u(x) = E[g(Xτ )],

where X0 = x ,X1,X2,X3, . . . is a random walk on X and

τ = inf{k ≥ 0 : Xk ∈ Γ}.

The random walk satisfies

P(Xk+1 = y |Xk = x) =
wxy∑

z∈X wxz
.
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Ill-posed with small amount of labeled data
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Graph is n = 105 i.i.d. random variables uniformly drawn from [0, 1]2.

wxy = 1 if |x − y | < 0.01 and wxy = 0 otherwise.

Two labels: g(x) = 0 at the Red point and g(x) = 1 at the Green point.

[Nadler et al., 2009]
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MNIST (70,000 28× 28 pixel images of digits 0-9)

[Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to
document recognition.” Proceedings of the IEEE, 86(11):2278-2324, November 1998.]
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Laplace learning on MNIST at low label rates

# Labels per class 1 2 3 4 160

Laplace Learning 16.1 (6.2) 28.2 (10.3) 42.0 (12.4) 57.8 (12.3) 97.0 (0.1)
Nearest Neighbor 65.4 (5.2) 74.2 (3.3) 77.8 (2.6) 80.7 (2.0) 92.4 (0.2)

Average accuracy over 100 trials with standard deviation in brackets.

Nearest neighbor is geodesic graph-nearest neighbor.
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Recent work

The low-label rate problem was originally identified in [Nadler 2009].

A lot of recent work has attempted to address this issue with new graph-based
classification algorithms at low label rates.

Higher-order regularization: [Zhou and Belkin, 2011], [Dunlop et al., 2019]

p-Laplace regularization: [Alaoui et al., 2016], [Calder 2018,2019], [Slepcev &
Thorpe 2019]

Re-weighted Laplacians: [Shi et al., 2017], [Calder & Slepcev, 2019]

Centered kernel method: [Mai & Couillet, 2018]

Poisson learning: [Calder, Cook, Thorpe, Slepcev, 2020]
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Continuum perspective

Random Geometric Graph: Assume the vertices of the graph are

Xn = {x1, . . . , xn}

where x1, . . . , xn are a sequence of i.i.d. random variables on Ω ⊂ Rd with positive
density ρ, and the weights are given by

(2) wxy = Φ

(
|x − y |
ε

)
,

where Φ : [0,∞)→ [0, 1] is smooth with compact support. In particular, we assume
Φ(t) ≥ 1, if 0 ≤ t ≤ 1

Φ(t) = 0, if t > 2

Φ(t) ≥ 0, for all t ≥ 0.
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Graph Connectivity

We say the graph Xn is connected if for every x , y ∈ Xn there is a path
y1, y2, . . . , ym ∈ Xn with y1 = x , ym = y and wyi ,yi−1 > 0 for all i = 2, . . . ,m.

Fact: The graph is connected with probability at least

1− n exp
(
−Cnεd

)
,

provided nεd ≥ c.

The Laplace learning problem

(3)

{Lu(x) = 0, if x ∈ Xn \ Γ

u(x) = g(x), if x ∈ Γ,

admits a unique solution when the graph is connected.

1 Uniqueness: Maximum principle (or strong convexity of graph Dirichlet energy).

2 Existence: The Perron method (or construct as minimizer of Dirichlet energy).
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Continuum limit of graph Laplacian

Recall

Lu(x) =
n∑

i=1

Φ

(
|xi − x |

ε

)
(u(xi)− u(x)).

Taking expectations we have

E[Lu(x)] = n

∫
B(x ,2ε)

Φ

(
|y − x |
ε

)
(u(y)− u(x))ρ(y) dy

= nεd
∫
B(0,2)

Φ (|z |) (u(x + εz )− u(x))ρ(x + εz ) dz

= CΦnε
d+2

(
ρ(x)

2
∆u(x) +∇ρ(x) · ∇u(x)

)
+ O(nεd+3)

= CΦnε
d+2ρ−1div(ρ2∇u) + O(nεd+3).
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Concentration of measure

Theorem (Bernstein’s inequality)

Let Y1, . . . ,Yn be i.i.d. with mean µ = E[Yi ] and variance σ2 = E[(Yi − E[Yi ])
2], and

assume |Yi | ≤ M almost surely for all i . Then for any t > 0

(4) P

(∣∣∣∣∣
n∑

i=1

Yi − nµ

∣∣∣∣∣ > nt

)
≤ 2 exp

(
− nt2

2σ2 + 4Mt/3

)
.

Here, Yi = Φ
(
|xi−x |
ε

)
(u(xi)− u(x)) so |Yi | ≤ C ε and

σ2 ≤
∫
B(x ,2ε)

Φ

(
|y − x |
ε

)2

(u(y)− u(x))2ρ(y)2 dy ≤ C εd+2.

Hence we have

P(|Lu(x)− E[Lu(x)]| > nεd+2λ) ≤ 2 exp
(
−cnεd+2λ2

)
provided 0 < λ ≤ ε−1.
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Pointwise consistency of graph Laplacian

Combining the asymptotic expansion of E[Lu] and the concentration of measure we have

P
(∣∣∣Lu(x)− CΦnε

d+2ρ−1div(ρ2∇u)
∣∣∣ > Cnεd+2(λ+ ε)

)
≤ 2 exp

(
−cnεd+2λ2

)
for any u ∈ C 3(Ω).

Essentially this says that

1

nεd+2
Lu(x) = CΦρ

−1div(ρ2∇u) + O(ε)

with very high probability.
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Continuum perspective

From this continuum perspective, Laplace learning is a discretization of

(5)


∆u + 2∇ log ρ · ∇u = 0 in Ω

u = g on Γ

∂u

∂ν
= 0 on ∂Ω,

where Ω is the support of ρ.

Laplace’s equation is ill-posed without some restrictions on the boundary Γ:

The Perron method requires Γ satisfy an exterior sphere condition.

Sobolev space methods require boundary regularity to define the trace on Γ.

Takeaway: Laplace learning performs poorly for low labeling rates because it is a
discretization of an ill-posed PDE.
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Spikes in Laplacian regularized learning

Label function: g(x) = cos(x1).

10 labels 100 labels 1000 labels

Q1 How many labels do we need to ensure that spikes do not form?

Q2 Why does Laplace learning perform poorly at low label rates?

I Are the spikes too localized? Do they propagate information globally?

Q3 How should we propagate labels in a stable and informative way?
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Model for labeled data

Model 1. Let β ∈ (0, 1] and Ω̃ ⊂⊂ Ω. Each xi ∈ Ω̃ is selected as training data
independently with probability β. Let Γn = training data.

The Laplacian learning problem is

(6)

{Lun(x) = 0, if x ∈ Xn \ Γn

un(x) = g(x), if x ∈ Γn ,

where g : Ω→ R is Lipschitz and

Xn = {x1, x2, . . . , xn}.
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Main result

The continuum PDE is

(7)


div(ρ2∇u) = 0 in Ω \ Ω̃

u = g on Ω̃

∇u · n = 0 on ∂Ω.

Theorem (C.-Slepcev-Thorpe, 2020)

Let un : Xn → R be the solution of (6), and let u ∈ C 3(Ω) be the solution of (7). If
β ≥ ε2 and ε ≤ λ ≤ c then

(8) max
x∈Xn

|un(x)− u(x)| ≤ C

(
ε√
β

log

(√
β

ε

)
+ λ

)
holds with probability at least 1− Cn exp

(
−cnεd+2λ2

)
.
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The negative result

Theorem (C.-Slepcev-Thorpe, 2020)

Assume that β = βn → 0+ and ε = εn → 0+ satisfy

(9) βn � ε2n , and nεdn � log(n).

Then, with probability one, the sequence un is pre-compact in TL2 and any convergent
subsequence converges to a constant.

Summary: Laplace learning propagates labels well when

Label rate = β � ε2.

Below this label rate, spikes form and the solution is degenerate.
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`p-based Laplacian regularization

For any p <∞:

(10) min
u:X→R

∑
x ,y∈X

wp
xy |u(x)− u(y)|p subject to u(x) = g(x) for all x ∈ Γ.

We can send p →∞ :

(11) min
u:X→R

max
x ,y∈X

{wxy |u(x)− u(y)|} subject to u(x) = g(x) for all x ∈ Γ.

References:

Finite p:
[Bridle and Zhu, 2013][Alamgir and Luxburg, 2011][El Alaoui et al., 2016]

p =∞: [Kyng et al., 2015] [Luxburg and Bousquet, 2004]

Absolutely minimal Lipschitz extensions: Aronsson et al., 2004

Calder (UofM) PDEs and learning IMA DSS 33 / 110



p-Laplacian learning: n = 105 points, h = 10−2
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p-Laplacian learning: n = 105 points, h = 10−2
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p-Laplacian learning: n = 105 points, h = 10−2
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p-Laplacian learning: n = 105 points, h = 10−2
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p-Laplacian learning: n = 105 points, h = 10−2
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p-Laplacian learning: n = 105 points, h = 10−2
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p =∞ minimizers nonunique
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p =∞ minimizers nonunique
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p =∞ minimizers nonunique

For p =∞ we take the minimizer that is smallest in the lexicographic ordering.

For x , y ∈ Rn with

x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · ≤ yn

we say x � y in the lexicographic ordering if x = y or

∃j , xj < yj and ∀i < j , xi = yi .

For general x , y ∈ Rn we sort components from smallest to largest before comparing.
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Graph Laplacians

p-Laplacian learning:

min
u:Xn→R

Jp(u) =
∑

x ,y∈Xn

wp
xy |u(x)− u(y)|p subject to u(x) = g(x) for x ∈ Γ ⊂ Xn

The minimizer u : Xn → R satisfies∑
y∈Xn

wp
xy |u(y)− u(x)|p−2(u(y)− u(x)) = 0 for x ∈ Xn \ Γ

and u(x) = g(x) for x ∈ Γ.

References on graph p-Laplacian:

[Zhou and Schölkopf, 2005] [Amghibech, 2003] [Bühler and Hein, 2009]
[Luo et al., 2010]
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Graph Laplacian as p →∞
Note that solutions of ∑

y∈Xn

wp
xy |u(y)− u(x)|p−2(u(y)− u(x)) = 0

satisfy ∑
y∈Xn

u(y)≥u(x)

wp
xy(u(y)− u(x))p−1


1/p

=

 ∑
y∈Xn

u(y)<u(x)

wp
xy(u(x)− u(y))p−1


1/p

.

Send p →∞ to get

max
y∈Xn

wxy(u(y)− u(x)) = max
y∈Xn

wxy(u(x)− u(y)).

or
L∞u(x) := max

y∈Xn

wxy(u(y)− u(x)) + min
y∈Xn

wxy(u(y)− u(x)) = 0.
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Graph Laplacians

Lipschitz learning

min
u:Xn→R

J∞(u) = max
x ,y∈Xn

wxy |u(x)− u(y)| subject to u(x) = g(x) for x ∈ Γ ⊂ Xn

The lex-minimizer u : Xn → R satisfies{L∞u = 0 in Xn \ Γ

u = g in Γ,

where
L∞u(x) := max

y∈Xn

wxy(u(y)− u(x)) + min
y∈Xn

wxy(u(y)− u(x)) = 0.

Reference:

1 [Kyng et al., 2015], [Calder, 2019]
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Game theoretic p-Laplacian

Another natural way to regularize the 2-Laplacian is to add a small ∞-Laplace term:

Lu + εL∞u = 0.

At the continuum, we can expand the p-Laplacian

∆pu := div(|∇u|p−2∇u) = |∇u|p−2(∆u + (p − 2)∆∞u).

So p-harmonic functions also satisfy

∆u + (p − 2)∆∞u = 0.

which is called the game-theoretic, or homogeneous, p-Laplace equation.
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Game theoretic p-Laplacian

We define the graph game theoretic p-Laplacian

Lpu =
1

dn
Lu + λ(p − 2)L∞u

where dn(x) =
∑

y∈Xn
wxy and λ = λ(Φ).

A similar, but different, definition appears in [Manfredi et al, 2015.]

The game theoretic p-Laplacian for semi-supervised learning{Lpu = 0 in Xn \ Γ

u = g in Γ,

Here,
Xn = Γ ∪ {x1, x2, . . . , xn}

where x1, x2, . . . , xn i.i.d.∼ ρ on Td and Γ ⊂ Td is a fixed collection of label points.
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Game theoretic p-Laplacian

Theorem ([Calder, 2018])

Let d < p <∞, and suppose that εn → 0 such that

(12) lim
n→∞

nεqn
log(n)

=∞,

where q = max{d + 4, 3d/2}. Then with probability one

(13) un −→ u uniformly as n →∞,

where u ∈ C
0, p−d

p−1 (Td) is the unique viscosity solution of the weighted p-Laplace
equation

(14)

{
div
(
ρ2|∇u|p−2∇u

)
= 0 in Td \ Γ

u = g on Γ.

Calder, J. (2018). The game theoretic p-Laplacian and semi-supervised learning
with few labels. Nonlinearity, 32(1).
Flores, M., Calder, J., and Lerman, G. (2019). Algorithms for Lp-based
semi-supervised learning on graphs. arXiv:1901.05031.
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Lipschitz learning

Lipschitz learning solves

(15) min
u:X→R

max
x ,y∈X

{wxy |u(x)− u(y)|} subject to u(x) = g(x) for all x ∈ Γ.

In the continuum this is consistent with the ∞-Laplace equation

∆∞u :=
d∑

i,j=1

uxixj uxiuxj = 0

which is well-posed for any boundary Γ.

Lipschitz learning proposed in [Kyng et al., 2015, Luxburg and Bousquet, 2004]
and studied in [El Alaoui et al., 2016].

Discrete to continuum convergence was proved in [Calder, 2019].

Continuum PDE does not depend on ρ!
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Lipschitz learning

Lipschitz learning can be re-tuned to be sensitive to ρ:

(16) min
u:X→R

max
x ,y∈X

{wxyd(x)αd(y)α|u(x)−u(y)|} subject to u(x) = g(x) for all x ∈ Γ,

where d(x) =
∑

y∈X wxy is the degree (i.e., kernel density estimator)

In the continuum this is consistent with the ∞-Laplace equation

∆∞u + 2α∇ log ρ · ∇u = 0.

The additional term ∇ log ρ · ∇u is an advection term that propagates labels along
the gradient of the distribution.

Continuum PDE is sensitive to distribution for α 6= 0.

Calder, J. (2019). Consistency of Lipschitz learning with infinite unlabeled data and
finite labeled data. SIAM Journal on Mathematics of Data Science 1(4):780–812.
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Synthetic classification demo
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Synthetic classification demo
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Synthetic classification demo
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Synthetic classification demo
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Weighted Non-Local Laplacian (WNLL)

The Weighted Non-Local Laplacian (WNLL) [Shi et al., 2017] solves

(17) min
u:X→R

∑
x∈X\Γ

∑
y∈X

wxy(u(x)− u(y))2 + µ
∑
x∈Γ

∑
y∈X

wxy(g(x)− u(y))2,

subject to u = g on Γ, where

µ = Ratio of unlabeled to labeled data.
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Weighted Non-Local Laplacian (WNLL)

The Weighted Non-Local Laplacian (WNLL) [Shi et al., 2017] solves

(18) min
u:X→R

∑
x∈X\Γ

∑
y∈X

wxy(u(x)− u(y))2 + µ
∑
x∈Γ

∑
y∈X

wxy(g(x)− u(y))2,

subject to u = g on Γ, where

µ = Ratio of unlabeled to labeled data.

Gives better performance for few labels.

However, still consistent with Laplace’s equation in the continuum.

[Calder and Slepčev, 2018] showed WNLL ill-posed for very low label rate
problems.
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Properly weighted Laplacian

Define

(19) γ(x) = 1 +

(
r0

dist(x , Γ)

)α
,

where dist(x , Γ) denotes the Euclidean distance from x to the closest point in Γ.

For ζ > 1 we set

(20) γ(x) = min{γ(x), ζ}.

The Properly-Weighted learning problem is

(21) min
u:X→R

∑
x ,y∈Xn

γ(x)wxy |u(x)− u(y)|2 subject to u(x) = g(x) for all x ∈ Γ.

Calder, J. and Slepčev, D. (2019). Properly-weighted graph Laplacian for
semi-supervised learning. Applied Mathematics and Optimization: Special Issue on
Optimization in Data Science, 82:1111–1159.
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Singularly-Weighted Sobolev Spaces
Recall

(22) γ(x) = 1 +

(
r0

dist(x , Γ)

)α
,

For u ∈ H 1(Ω) we define

(23) [u]2H1
γ (Ω) =

∫
Ω

γ|∇u|2 dx ,

and

(24) ‖u‖2H1
γ (Ω) = ‖u‖2L2(Ω) + [u]2H1

γ (Ω).

We define

(25) H 1
γ (Ω) =

{
u ∈ H 1(Ω) : ‖u‖H1

γ (Ω) <∞
}
.

We also denote by H 1
γ,0(Ω) the closure of C∞c (Ω \ Γ) in H 1

γ (Ω).
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Traces at points

Theorem (Trace Theorem [Calder and Slepčev, 2018])

Assume α > d − 2. Then the trace operator Tr : H 1
γ (Ω)→ RΓ is bounded, and satisfies

Tr[u](x) = u(x) whenever u is continuous at x ∈ Γ. Furthermore, for every

u, v ∈ H 1
γ (Ω) with ‖u − v‖2/(α+2)

L2(Ω)
≤ R/2 we have

(26) |Tr[u]− Tr[v ]| ≤ C (1 + [u]H1
γ (Ω) + [v ]H1

γ (Ω))‖u − v‖1−d/(α+2)

L2(Ω)
.

It follows from the trace theorem that the continuum problem

(27) minimize
1

2

∫
Ω

γ|∇u|2ρ2 dx over
{
u ∈ H 1

γ (Ω) and u = g on Γ
}
.

is well-posed.
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Lemma (Trace estimate)

Write Br = B(0, r). If α > d − 2 then for any u ∈ C∞(B1)

|u(0)− (u)r |2 ≤ Crα+2−d

∫
Br

|x |−α|∇u|2 dx ,

where (u)r := −
∫
Br

u dx .

Sketch of proof.
By the Poincaré inequality

−
∫
Br

(u − (u)r )2 dx ≤ Cr2−
∫
Br

|∇u|2 dx

≤ Cr2−
∫
Br

|x |−αrα|∇u|2 dx

= Crα+2−d

∫
Br

|x |−α|∇u|2 dx . . .
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Euler-Lagrange Equation

The Euler-Lagrange equation satisfied by minimizers of the continuum problem is

(28)


−div(γρ2∇u) = 0 in Ω \ Γ

u = g on Γ

∂u

∂ν
= 0 on ∂Ω.

Theorem ([Calder and Slepčev, 2018])

Let α > d − 2. The elliptic equation (28) has a unique weak solution u ∈ H 1
γ (Ω).

Furthermore, u ∈ C (Ω) ∩ C 2,σ
loc (Ω \ Γ) and satisfies for every 0 < β < α+ 2− d

(29) |u(x)− u(y)| ≤ C (β)|x − y |β (x ∈ Ω, y ∈ Γ).

Proof uses the barrier u(x) = |x |α+2−d , which solves div
(
|x |−α∇u

)
= 0.
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Continuity near labels

Let un be the unique solution of

(30) min
u:Xn→R

∑
x ,y∈Xn

γn(x)wxy |u(x)− u(y)|2 subject to u(x) = g(x) for all x ∈ Γ.

where we recall γn(x) = min{γ(x), ζn}.

Theorem (Hölder estimate [Calder and Slepčev, 2018])

Assume α > d − 2, ζn ≥ 1 + ε−αn and fix 0 < β < α+ 2− d . For each z ∈ Γ the event
that

(31) |un(x)− un(z )| ≤ C |x − z |β + Cn1/2ε1+α/2
n

holds for all x ∈ Xn occurs with probability at least 1− C exp
(
−cnεd+4

n + log(n)
)
.

Proof uses barrier |x |2+α−d adapted to graph.
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Continuum limit

Theorem ([Calder and Slepčev, 2018])

Let α > d − 2, d ≥ 3 and εn → 0, ζn →∞ such that

lim
n→∞

nεdn
log(n)

=∞ and lim
n→∞

ζn
nε2n

=∞.

Then almost surely un → u (in TL2) where u is the solution of the continuum problem

minimize
1

2

∫
Ω

γ|∇u|2ρ2 dx over
{
u ∈ H 1

γ (Ω) and u = g on Γ
}
.

Proof uses Gamma-convergence and TL2 spaces developed by Slepčev and Trillos

Can use PDE-arguments to upgrade to uniform convergence provided

(32)

(
log(n)

n

)1/(d+4)

� εn �
(
1

n

)1/(α+2)

.

Calder, J. and Slepčev, D. (2019). Properly-weighted graph Laplacian for
semi-supervised learning. Applied Mathematics and Optimization: Special Issue on
Optimization in Data Science, 82:1111–1159.
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Solution profiles

(a) α = 0 (b) α = 0.5, ζ = 50nε2 (c) α = 1, ζ = 50nε2

(d) α = 2, ζ = 50nε2 (e) α = 5, ζ = 103nε2 (f) α = 10, ζ = 105nε2

Calder (UofM) PDEs and learning IMA DSS 60 / 110



Comparison with WNLL

(g) WNLL [Shi et al., 2017] (h) PW Laplacian (α = 2)
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Classification: p = 2 Laplacian, n = 50, 000 points
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Classification: WNLL [Shi et al., 2017], n = 50, 000 points
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Classification: PW-Laplacian, n = 50, 000 points
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Classification: p = 2 Laplacian, n = 105 points
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Classification: WNLL [Shi et al., 2017], n = 105 points
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Classification: PW-Laplacian, n = 105 points
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Poisson learning

We propose to replace Laplace learning{Lu = 0, in X ,
u = g , on Γ,

with Poisson learning

Lu(x) =
∑
y∈Γ

(g(y)− g)δxy ,

subject to
∑

x∈X d(x)u(x) = 0, where g = 1
|Γ|
∑

y∈Γ g(y).

In both cases, the label decision is the same:

`(x) = argmax
j∈{1,...,k}

{uj (x)}.
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Poisson learning

We propose to replace Laplace learning{Lu = 0, in X ,
u = g , on Γ,

with Poisson learning

Lu(x) =
∑
y∈Γ

(g(y)− g)δxy ,

subject to
∑

x∈X d(x)u(x) = 0, where g = 1
|Γ|
∑

y∈Γ g(y).

For Poisson learning, unbalanced class sizes can be incorporated:

`(x) = argmax
j∈{1,...,k}

{
pj
nj

uj (x)

}
, pj = Fraction of data in class j

nj = Fraction of training data from class j .
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The random walk interpretation
Let X x

0 ,X
x
1 ,X

x
2 be a random walk on X starting from x ∈ X , and define

uT (x) := E

 T∑
k=0

1

d(x)

∑
y∈Γ

(g(y)− g)1{X y
k

=x}

 , where g =
1

|Γ|
∑
y∈Γ

g(y).

Theorem (C.-Cook-Thorpe-Slepcev, 2020)

For every T ≥ 0 we have

uT+1(x) = uT (x) +
1

d(x)

∑
y∈Γ

(g(y)− g)δxy − LuT (x)

 .

If the graph G is connected and the Markov chain induced by the random walk is
aperiodic, then uT → u as T →∞, where u : X → R is the solution of

Lu(x) =
∑
y∈Γ

(g(y)− g)δxy ,

satisfying
∑

x∈X d(x)u(x) = 0.
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The variational interpretation

Consider the variational problem

(33) min
u∈`20(X )

{ ∑
x ,y∈X

wxy |u(x)− u(y)|2 −
∑
x∈Γ

(g(x)− g) · u(x)

}
,

where g = 1
|Γ|
∑

x∈Γ g(x).

Theorem (C.-Cook-Thorpe-Slepcev, 2020)

Assume G is connected. Then there exists a unique minimizer u ∈ `20(X ) of (33), and
furthermore, u satisfies the Poisson equation

Lu(x) =
∑
y∈Γ

(g(y)− g)δxy .

J. Calder, B. Cook, M. Thorpe, and D. Slepčev. Poisson Learning: Graph based
semi-supervised learning at very low label rates. International Conference on Machine
Learning (ICML), PMLR 119:1306–1316, 2020.
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The continuum perspective
Manifold assumption: Let x1, . . . , xn be a sequence of i.i.d. random variables with
density ρ supported on a d-dimensional compact, closed, and connected Riemannian
manifold M embedded in RD , where d � D . Fix a finite set of points Γ ⊂M and set

Xn := {x1, . . . , xn}︸ ︷︷ ︸
Unlabeled

∪ Γ︸︷︷︸
Labeled

.

Conjecture

Let n →∞ and ε = εn → 0 so that limn→∞
nεd+2

n
log n

=∞. Let un be the solution of the

Poisson learning problem(
2

σηnε
d+2
n

)
Lun(x) =

∑
y∈Γ

(g(y)− g)(nδxy) for x ∈ Xn .

Then with probability one un → u locally uniformly on M\ Γ as n →∞, where
u ∈ C∞(M\ Γ) is the solution of the Poisson equation

− divM
(
ρ2∇Mu

)
=
∑
y∈Γ

(g(y)− g)δy on M.
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Spectral representation

Theorem

The solution of the Poisson learning equation

Lu(x) =
∑
y∈Γ

(g(y)− g)δxy

is given by

u(x) =
∑
y∈Γ

n∑
k=2

(g(y)− g)λ−1
k vk (x)vk (y),

where v1, v2, . . . , vn are the normalized eigenvectors of L, with corresponding
eigenvalues 0 = λ1 < λ2 ≤ · · · ≤ λn .

Proof of the conjecture reduces to spectral convergence. We proved O(ε) spectral
convergence rates in the C 0,1 sense:

J. Calder, N. Garcia Trillos, and M. Lewicka, Lipschitz regularity of graph Laplacians
on random data clouds, arXiv:2007.06679, 2020.
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GraphLearning Python Package

https://github.com/jwcalder/GraphLearning
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Algorithmic details

Algorithm 1 Poisson Learning

1: Input: W,F = [y1, y2, . . . , ym ],T
2: D← diag(W1)
3: L← D−W
4: c← 1

mF1
5: B← [F− c, zeros(k ,n −m)]
6: U← zeros(n, k)
7: for i = 1 to T do
8: U← U + D−1(BT − LU)
9: end for

10: `i ← argmax
1≤j≤k

Uij

11: return: ` := [`1, `2, . . . , `n ]

We only need about T = 100 iterations on MNIST, FashionMNIST, CIFAR-10, to get
good results. CPU Time: 4 seconds on CPU, 1 second on GPU.
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MNIST (70,000 28× 28 pixel images of digits 0-9)

[Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to
document recognition.” Proceedings of the IEEE, 86(11):2278-2324, November 1998.]
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FashionMNIST (70,000 28× 28 images of fashion items)

[Xiao, Han, Kashif Rasul, and Roland Vollgraf. ”Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms.” arXiv:1708.07747 (2017).]
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CIFAR-10

[Krizhevsky, Alex, and Geoffrey Hinton. ”Learning multiple layers of features from tiny
images.” (2009).]
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Autoencoders

For each dataset, we build the graph by training autoencoders.

www.compthree.com
Autoencoders are “Nonlinear versions of PCA”

Calder (UofM) PDEs and learning IMA DSS 82 / 110
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Building graphs from autoencoders

For MNIST and FashionMNIST, we use a 4-layer variational autoencoder with 30 latent
variables:

[Kingma and Welling. Auto-encoding variational Bayes. ICML 2014]

For CIFAR-10, we use the autoencoding framework from [Zhang et al. AutoEncoding
Transformations (AET), CVPR 2019] with 12,288 latent variables.
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First comparison

We compared against many other graph-based learning algorithms

Laplace/Label propagation: [Zhu et al., 2003]

Graph nearest neighbor (using Dijkstra)

Lazy random walks: [Zhou et al., 2004]

Mutli-class MBO: [Garcia-Cardona et al., 2014]

Centered kernel method: [Mai & Couillet, 2018]

Sparse Label Propagation: [Jung et al., 2016]

Weighted Nonlocal Laplacian (WNLL): [Shi et al., 2017]

p-Laplace regularization: [Flores et al. 2019]
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MNIST results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 16.1 (6.2) 28.2 (10.3) 42.0 (12.4) 57.8 (12.3) 69.5 (12.2)
Nearest Neighbor 65.4 (5.2) 74.2 (3.3) 77.8 (2.6) 80.7 (2.0) 82.1 (2.0)
Random Walk 66.4 (5.3) 76.2 (3.3) 80.0 (2.7) 82.8 (2.3) 84.5 (2.0)
MBO 19.4 (6.2) 29.3 (6.9) 40.2 (7.4) 50.7 (6.0) 59.2 (6.0)
Centered Kernel 19.1 (1.9) 24.2 (2.3) 28.8 (3.4) 32.6 (4.1) 35.6 (4.6)
Sparse Label Prop. 14.0 (5.5) 14.0 (4.0) 14.5 (4.0) 18.0 (5.9) 16.2 (4.2)
WNLL 55.8 (15.2) 82.8 (7.6) 90.5 (3.3) 93.6 (1.5) 94.6 (1.1)
p-Laplace 72.3 (9.1) 86.5 (3.9) 89.7 (1.6) 90.3 (1.6) 91.9 (1.0)
Poisson 90.2 (4.0) 93.6 (1.6) 94.5 (1.1) 94.9 (0.8) 95.3 (0.7)
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FashionMNIST results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 18.4 (7.3) 32.5 (8.2) 44.0 (8.6) 52.2 (6.2) 57.9 (6.7)
Nearest Neighbor 46.6 (4.7) 53.5 (3.6) 57.2 (3.0) 59.3 (2.6) 61.1 (2.8)
Random Walk 49.0 (4.4) 55.6 (3.8) 59.4 (3.0) 61.6 (2.5) 63.4 (2.5)
MBO 15.7 (4.1) 20.1 (4.6) 25.7 (4.9) 30.7 (4.9) 34.8 (4.3)
Centered Kernel 11.8 (0.4) 13.1 (0.7) 14.3 (0.8) 15.2 (0.9) 16.3 (1.1)
Sparse Label Prop. 14.1 (3.8) 16.5 (2.0) 13.7 (3.3) 13.8 (3.3) 16.1 (2.5)
WNLL 44.6 (7.1) 59.1 (4.7) 64.7 (3.5) 67.4 (3.3) 70.0 (2.8)
p-Laplace 54.6 (4.0) 57.4 (3.8) 65.4 (2.8) 68.0 (2.9) 68.4 (0.5)
Poisson 60.8 (4.6) 66.1 (3.9) 69.6 (2.6) 71.2 (2.2) 72.4 (2.3)

Compare to clustering result of 67.2% [McConville et al., 2019]
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CIFAR-10 results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 10.4 (1.3) 11.0 (2.1) 11.6 (2.7) 12.9 (3.9) 14.1 (5.0)
Nearest Neighbor 33.1 (4.3) 37.3 (4.1) 39.7 (3.0) 41.7 (2.8) 43.0 (2.5)
Random Walk 36.4 (4.9) 42.0 (4.4) 45.1 (3.3) 47.5 (2.9) 49.0 (2.6)
MBO 14.2 (4.1) 19.3 (5.2) 24.3 (5.6) 28.5 (5.6) 33.5 (5.7)
Centered Kernel 15.4 (1.6) 16.9 (2.0) 18.8 (2.1) 19.9 (2.0) 21.7 (2.2)
Sparse Label Prop. 11.8 (2.4) 12.3 (2.4) 11.1 (3.3) 14.4 (3.5) 11.0 (2.9)
WNLL 16.6 (5.2) 26.2 (6.8) 33.2 (7.0) 39.0 (6.2) 44.0 (5.5)
p-Laplace 26.0 (6.7) 35.0 (5.4) 42.1 (3.1) 48.1 (2.6) 49.7 (3.8)
Poisson 40.7 (5.5) 46.5 (5.1) 49.9 (3.4) 52.3 (3.1) 53.8 (2.6)

Compare to clustering result of 41.2% [Mukherjee et al., ClusterGAN, CVPR 2019].
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Volume constrained semi-supervised learning

Classification results can be improved by incorporating prior knowledge of class sizes
through volume constraints.
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PoissonMBO: Volume constrained Poisson learning

Observation 1: The Poisson learning iteration with a fixed time step

uT+1(x) = uT (x) + dt

∑
y∈Γ

(g(y)− g)δij − LuT (x)


is volume preserving. That is

∑
x∈X uT+1(x) =

∑
x∈X uT (x).

Observation 2: We can easily perform a volume constrained label projection

`(xi) = argmax
j∈{1,...,k}

{sjuj (x)} .

We adjust the weights sj to grow/shrink each region to achieve the correct class sizes.

Named after the Merriman-Bence-Osher (MBO) scheme for curvature motion, which has
been used before in graph-based learning [Garcia, et al., 2014, Jacobs et al., 2018].
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MNIST results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 16.1 (6.2) 28.2 (10.3) 42.0 (12.4) 57.8 (12.3) 69.5 (12.2)
WNLL 55.8 (15.2) 82.8 (7.6) 90.5 (3.3) 93.6 (1.5) 94.6 (1.1)
p-Laplace 72.3 (9.1) 86.5 (3.9) 89.7 (1.6) 90.3 (1.6) 91.9 (1.0)
VolumeMBO 89.9 (7.3) 95.6 (1.9) 96.2 (1.2) 96.6 (0.6) 96.7 (0.6)
Poisson 90.2 (4.0) 93.6 (1.6) 94.5 (1.1) 94.9 (0.8) 95.3 (0.7)
PoissonMBO 96.5 (2.6) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1)

# Labels per class 10 20 40 80 160

Laplace/LP 91.3 (3.7) 95.8 (0.6) 96.5 (0.2) 96.8 (0.1) 97.0 (0.1)
WNLL 95.6 (0.5) 96.1 (0.3) 96.3 (0.2) 96.4 (0.1) 96.3 (0.1)
p-Laplace 94.0 (0.8) 95.1 (0.4) 95.5 (0.1) 96.0 (0.2) 96.2 (0.1)
VolumeMBO 96.9 (0.2) 97.0 (0.1) 97.1 (0.1) 97.2 (0.1) 97.3 (0.1)
Poisson 95.9 (0.4) 96.3 (0.3) 96.6 (0.2) 96.8 (0.1) 96.9 (0.1)
PoissonMBO 97.2 (0.1) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1)
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FashionMNIST results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 18.4 (7.3) 32.5 (8.2) 44.0 (8.6) 52.2 (6.2) 57.9 (6.7)
WNLL 44.6 (7.1) 59.1 (4.7) 64.7 (3.5) 67.4 (3.3) 70.0 (2.8)
p-Laplace 54.6 (4.0) 57.4 (3.8) 65.4 (2.8) 68.0 (2.9) 68.4 (0.5)
VolumeMBO 54.7 (5.2) 61.7 (4.4) 66.1 (3.3) 68.5 (2.8) 70.1 (2.8)
Poisson 60.8 (4.6) 66.1 (3.9) 69.6 (2.6) 71.2 (2.2) 72.4 (2.3)
PoissonMBO 62.0 (5.7) 67.2 (4.8) 70.4 (2.9) 72.1 (2.5) 73.1 (2.7)

# Labels per class 10 20 40 80 160

Laplace/LP 70.6 (3.1) 76.5 (1.4) 79.2 (0.7) 80.9 (0.5) 82.3 (0.3)
WNLL 74.4 (1.6) 77.6 (1.1) 79.4 (0.6) 80.6 (0.4) 81.5 (0.3)
p-Laplace 73.0 (0.9) 76.2 (0.8) 78.0 (0.3) 79.7 (0.5) 80.9 (0.3)
VolumeMBO 74.4 (1.5) 77.4 (1.0) 79.5 (0.7) 81.0 (0.5) 82.1 (0.3)
Poisson 75.2 (1.5) 77.3 (1.1) 78.8 (0.7) 79.9 (0.6) 80.7 (0.5)
PoissonMBO 76.1 (1.4) 78.2 (1.1) 79.5 (0.7) 80.7 (0.6) 81.6 (0.5)
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CIFAR-10 results

Table: Average (standard deviation) classification accuracy over 100 trials.

# Labels per class 1 2 3 4 5

Laplace/LP 10.4 (1.3) 11.0 (2.1) 11.6 (2.7) 12.9 (3.9) 14.1 (5.0)
WNLL 16.6 (5.2) 26.2 (6.8) 33.2 (7.0) 39.0 (6.2) 44.0 (5.5)
p-Laplace 26.0 (6.7) 35.0 (5.4) 42.1 (3.1) 48.1 (2.6) 49.7 (3.8)
VolumeMBO 38.0 (7.2) 46.4 (7.2) 50.1 (5.7) 53.3 (4.4) 55.3 (3.8)
Poisson 40.7 (5.5) 46.5 (5.1) 49.9 (3.4) 52.3 (3.1) 53.8 (2.6)
PoissonMBO 41.8 (6.5) 50.2 (6.0) 53.5 (4.4) 56.5 (3.5) 57.9 (3.2)

# Labels per class 10 20 40 80 160

Laplace/LP 21.8 (7.4) 38.6 (8.2) 54.8 (4.4) 62.7 (1.4) 66.6 (0.7)
WNLL 54.0 (2.8) 60.3 (1.6) 64.2 (0.7) 66.6 (0.6) 68.2 (0.4)
p-Laplace 56.4 (1.8) 60.4 (1.2) 63.8 (0.6) 66.3 (0.6) 68.7 (0.3)
VolumeMBO 59.2 (3.2) 61.8 (2.0) 63.6 (1.4) 64.5 (1.3) 65.8 (0.9)
Poisson 58.3 (1.7) 61.5 (1.3) 63.8 (0.8) 65.6 (0.6) 67.3 (0.4)
PoissonMBO 61.8 (2.2) 64.5 (1.6) 66.9 (0.8) 68.7 (0.6) 70.3 (0.4)
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Application: Segmenting broken bone fragments

AMAAZE consortium for mathematics and anthropology: https://amaaze.umn.edu/

Main collaborators: Peter J. Olver and Katrina Yezzi-Woodley (Anthropology)

REU students: Math: David Floeder, Anthropology: Paige Cody, Chloe Siewert
Math Graduate students: Riley O’Neill, Brendan Cook
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Application: Segmenting broken bone fragments

Graph-based clustering with weights

wij = exp (−C |ni − nj |p) .

between nearby points on the mesh, where ni is the outward normal vector at vertex i .
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Mesh Segmentation via Poisson Learning
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Mesh Segmentation via Poisson Learning
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Mesh Segmentation via Poisson Learning
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AMAAZE MeshLab plugins

https://amaaze.umn.edu/software
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Current/Future Work

1 Poisson learning

I Directed graphs, clustering

I Continuum limit

I Asymptotic consistency

2 Rates of convergence for p-Laplacian regularization

I Including other graphs, like stochastic block models

3 Graph convolutional networks for semi-supervised learning

I [Kipf & Welling, ICLR 2017]

4 Few-shot semi-supervised learning

I H. Huang, J. Zhang, J. Zhang, Q. Wu, C. Xu. PTN: A Poisson
Transfer Network for Semi-supervised Few-shot Learning. To
appear in proceedings of AAAI 2021 (arXiv preprint:2012.10844).

Calder (UofM) PDEs and learning IMA DSS 102 / 110



References

References:

1 Calder, J. (2018). The game theoretic p-Laplacian and semi-supervised
learning with few labels. Nonlinearity, 32(1).

2 Calder, J. (2019). Consistency of Lipschitz learning with infinite unlabeled
data and finite labeled data. SIAM Journal on Mathematics of Data Science
1(4):780–812.

3 Flores, M., Calder, J., and Lerman, G. (2019). Algorithms for Lp-based
semi-supervised learning on graphs. arXiv:1901.05031.
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Slepčev, D. and Thorpe, M. (2019).
Analysis of p-Laplacian regularization in semisupervised learning.
SIAM Journal on Mathematical Analysis, 51(3):2085–2120.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014).
Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958.

Wang, Y., Cheema, M. A., Lin, X., and Zhang, Q. (2013).
Multi-manifold ranking: Using multiple features for better image retrieval.
In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages
449–460. Springer.

Calder (UofM) PDEs and learning IMA DSS 108 / 110



Xu, B., Bu, J., Chen, C., Cai, D., He, X., Liu, W., and Luo, J. (2011).
Efficient manifold ranking for image retrieval.
In Proceedings of the 34th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 525–534. ACM.

Yang, C., Zhang, L., Lu, H., Ruan, X., and Yang, M.-H. (2013).
Saliency detection via graph-based manifold ranking.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3166–3173.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2017).
Understanding deep learning requires rethinking generalization.
ICLR.

Zhou, D., Huang, J., and Schölkopf, B. (2005).
Learning from labeled and unlabeled data on a directed graph.
In Proceedings of the 22nd International Conference on Machine Learning, pages
1036–1043. ACM.

Zhou, D. and Schölkopf, B. (2005).
Regularization on discrete spaces.
In Joint Pattern Recognition Symposium, pages 361–368. Springer.

Zhou, X., Belkin, M., and Srebro, N. (2011).
An iterated graph Laplacian approach for ranking on manifolds.
In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 877–885. ACM.

Calder (UofM) PDEs and learning IMA DSS 109 / 110



Zhu, X., Ghahramani, Z., and Lafferty, J. D. (2003).
Semi-supervised learning using Gaussian fields and harmonic functions.
In Proceedings of the 20th International Conference on Machine learning
(ICML-03), pages 912–919.

Calder (UofM) PDEs and learning IMA DSS 110 / 110


	Introduction
	Graph-based semi-supervised learning
	Laplacian regularization
	The p-Laplacian
	Lipschitz regularization
	Re-weighted Laplacians
	The Properly Weighted Laplacian
	Poisson learning

	Experimental results
	GraphLearning Python Package
	Volume constrained algorithms
	Segmenting Broken Bones

	Current/Future Work
	References

