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1 Energy methods for the wave equation

Consider a finite string of length l > 0, density ρ > 0, and tension κ > 0. As usual, let
u(x, t) denote the displacement from equilibrium, and suppose we fix the ends of the string at
x = 0 and x = l. This would model a piano or guitar string, for instance. This corresponds
to homogeneous Dirichlet boundary conditions u(0, t) = u(l, t) = 0 for all t ≥ 0. Then the
displacement u(x, t) satisfies the wave equation{

ρutt − κuxx = 0, for 0 < x < l

u(0, t) = u(l, t) = 0, for t ≥ 0.
(1)

From physics, we know that the total energy in the string is made up of two terms: kinetic
energy and potential energy. The total kinetic energy of the string at time t is

KE(t) =
1

2
ρ

∫ l

0
ut(x, t)

2 dx,

while the total potential energy of the string is

PE(t) =
1

2
κ

∫ l

0
ux(x, t)

2 dx.

The total energy of the string is

E(t) = KE(t) + PE(t) =
1

2

∫ l

0
(ρu2t + κu2x) dx.

While the kinetic and potential energy may vary over time, we should expect by conservation
of energy that the total energy should be constant in time.

To check this, we differentiate E(t) in t:

dE
dt

=

∫ l

0
(ρututt + κuxuxt) dx

=

∫ l

0
ρututt dx+

∫ l

0
κuxuxt dx

=

∫ l

0
ρututt dx+ κuxut

∣∣∣l
0
−
∫ l

0
κuxxut dx

=

∫ l

0
ut(ρutt − κuxx) dx+ κux(l, t)ut(l, t)− κux(0, t)ut(0, t)

= 0.
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Notice we performed integration by parts in the third line. The first term in the last line is
zero because u satisfies the wave equation (1). The Dirichlet boundary conditions u(0, t) =
u(l, t) = 0 imply that ut(0, t) = ut(l, t) = 0, which makes the second term in the final line
vanish. Since dE/dt = 0, the total energy E(t) is constant in time, as expected.

Exercise 1. Suppose you did not know the exact formulas for kinetic and potential energy,
but that you suspect that

KE(t) = a

∫ l

0
ut(x, t)

2 dx and PE(t) = b

∫ l

0
ux(x, t)

2 dx,

for some constants a and b. Show that

dE
dt

= 0 if and only if
b

a
=
κ

ρ
.

Thus, the wave equation can help us deduce formulas for physical quantities, like energy. A
common technique in PDE theory is to look for a quantity, like energy, that is conserved or
decreased by the PDE.

Exercise 2. Suppose the string is subject to homogeneous Neumann boundary conditions,
thus u satisfies {

ρutt − κuxx = 0, for 0 < x < l

ux(0, t) = ux(l, t) = 0, for t ≥ 0.
(2)

Recall this corresponds to allowing the ends of the string to move freely along a frictionless
vertical track. Show that the total energy

E(t) =
1

2

∫ l

0
(ρu2t + κu2x) dx

is conserved.

2 Uniqueness and stability via energy methods

Energy methods are very powerful tools for showing uniqueness and stability of solutions of
PDE. We illustrate energy methods for the wave equation below, but we will see that similar
ideas hold for the heat equation shortly.

Let u1(x, t) and u2(x, t) be two solutions of the wave equation (1). For simplicity, let us
take ρ = κ = 1. Since the wave equation is linear, w(x, t) := u1(x, t) − u2(x, t) is also a
solution of the same wave equation (1). Since the energy for w is constant in time, we have∫ l

0
wt(x, t)

2 + wx(x, t)
2 dx =

∫ l

0
wt(x, 0)

2 + wx(x, 0)
2 dx (3)

for all t. Suppose we have the initial conditions

ui(x, 0) = fi(x), u
i
t(x, 0) = gi(x) for i = 1, 2.

2



Integrating both sides of (3) from t = 0 to t = T and substituting the initial conditions gives

A :=

∫ T

0

∫ l

0
(u1t − u2t )

2 + (u1x − u2x)
2 dx dt = T

∫ l

0
(g1 − g2)

2 + (f ′1 − f ′2)
2 dx =: B. (4)

The equation above proves both stability and uniqueness for the wave equation (1). To see
this, notice that if the initial conditions for u1 and u2 agree at t = 0, i.e., g1 = g2 and f1 = f2,
then B = 0 and so A = 0 as well. Thus u1t = u2t and u1x = u2x, and so u1 = u2. This proves
that there is at most one solution with fixed initial conditions (i.e. uniqueness).

Equation (4) can also be viewed as a stability result. If g1 is close to g2 and f1 is close to f2,
then B is small, and so A is small as well. The quantity A is a measure of how close u1 and u2

are, so when A is small, u1 and u2 are close as well (more precisely, their derivatives are close
in the square integrable sense). So small changes in the initial conditions yield correspondingly
small changes in the solutions.

The final piece of information we need to establish well-posedness of the wave equation is
existence of a solution. We will return to this later in the course after studying Fourier series.
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