
Math 5587 – Homework 8 (Due Thursday Nov 10)

In each problem, D ⊂ Rn is open and bounded, and n = 3 unless otherwise specified.

1. Let u ∈ C2(D) be a solution of

u−∆u = f in D
u = 0 on ∂D.

}
(1)

Use energy methods to show that∫∫∫
D
u2 + ‖∇u‖2 dx ≤

∫∫∫
D
f2 dx. (2)

Indicate how this is a stability estimate for (1). [Hint: Multiple the PDE by u, integrate
both sides over D, and then use Green’s first identity. Use Cauchy’s inequality 2ab ≤
a2 + b2 on the right hand side.]

2. Use energy methods to prove uniqueness of solutions u ∈ C2(D) of the Robin problem

−∆u(x) = f(x) if x ∈ D
∂u

∂n
(x) + a(x)u(x) = h(x) if x ∈ ∂D,


provided a > 0.

3. Consider the heat equation
ut −∆u = f in D × (0, T ]

u = g on D × {t = 0}
u = h on ∂D × (0, T ].

Prove uniqueness using energy methods. [Hint: Let u and v be two solutions and set
w = u− v. Define the energy

e(t) =

∫∫∫
D
w(x, t)2 dx.

Show that e′(t) ≤ 0 and e(0) = 0. Conclude that e(t) = 0 for all t. You will need to use
Green’s identities.]

4. Let u, v ∈ C2(D) satisfy

−∆u+ F (u) ≤ −∆v + F (v) in D,

where F : R → R is increasing, that is, F (s) ≤ F (t) whenever s ≤ t. Prove the
comparison principle:

If u ≤ v on ∂D then u ≤ v everywhere in D.



[Hint: Assume to the contrary that u(x) > v(x) for some x ∈ D, and define the open
set D′ = {x ∈ D | u(x) > v(x)}. Set w := u − v and show that ∆w ≥ 0 on D′ and
w ≤ 0 on ∂D′. Use the weak maximum principle on D′ to get a contradiction.]

5. Give an example in n = 1 dimension to show that the comparison principle from Problem
4 may not hold if F is not increasing. [Hint: Consider the eigenvalue problem u′′(x) +
u(x) = 0 with u(0) = u(π) = 0 that we encountered in separation of variables.]

6. Use the comparison principle from Problem 4 to prove uniqueness of solutions u ∈ C2(D)
of

−∆u+ F (u) = f in D
u = g on ∂D,

}
(3)

where F : R→ R is increasing.

7. A function u ∈ C2(D) is subharmonic in D if −∆u ≤ 0 in D. Let u(x, y) be subhar-
monic in an open set D ⊂ R2.

(a) Show that

u(x, y) ≤ 1

2π

∫ 2π

0
u(x+ a cos θ, y + a sin θ) dθ,

for all a > 0 such that the ball of radius a centered at (x, y) belongs to D. [Hint: It
is enough to prove the result for x = y = 0, by translation invariance. Use Poisson’s
integral formula to construct a harmonic function v on the disk x2 + y2 ≤ a2 with
boundary values v = u for x2 + y2 = a2. Then use the comparison principle from
Problem 4 to show that u ≤ v in the disk.]

(b) Integrate the expression above in polar coordinates to show that

u(x, y) ≤ 1

πa2

∫ 2π

0

∫ a

0
u(x+ r cos θ, y + r sin θ) rdrdθ,

whenever the ball B(x, a) is contained in D.

8. Let {αn}∞n=1 denote the positive solutions of the equation α tan(α) = 1. Find the solution
u(x, y) of the boundary-value problem

∆u = 0, 0 < x < 1, y > 0

ux(0, y) = 0, y > 0

u(1, y) + ux(1, y) = 0, y > 0

u(x, 0) = 1, 0 < x < 1

that is bounded as y → ∞. [Hint: Use separation of variables and look for a series
solution. Use the problems from HW7 to show that the eigenvalues are nonnegative and
the eigenfunctions are orthogonal. You do not need to prove that the eigenfunctions are
a complete orthonormal system, but do give formulas for the coefficients of the series.]
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