
Math 5490 – Homework 6: Due May 10 by 11:59pm

Instructions:

• Complete the problems below, and submit your solutions and Python code by uploading
them to the Google form: https://forms.gle/B3EfYpSU8jQPYhiS9

• Submit all your Python code in a single .py file using the function templates given in
each problem. I will import your functions from this file and test your code.

• If you use LaTeX to write up your solutions, upload them as a pdf file. Students who use
LaTeX to write up their solutions will receive bonus points on the homework assignment
(equivalent to 1/3 of a letter grade bump).

• If you choose to handwrite your solutions and scan them, please either use a real scanner,
or use a smartphone app that allows scanning with you smartphone camera. It is not
acceptable to submit photos of your solutions, as these can be hard to read.

Problems:

1. Complete the following exercises.

(i) Let g(x) = Ax+ b, where x ∈ Rn and A ∈ Rn×n. Show that the Jacobian matrix
of g is Jg(x) = A.

(ii) Let h(x) = σ(x), where σ : R → R acts componentwise on x, so that σ(x)i = σ(xi).
Show that Jh(x) is the diagonal matrix D = diag σ′(x).

(iii) Use the first two parts and the chain rule to show that the Jacobian of g(x) =
Aσ(Bx+ b) is Jg(x) = ADB, where D = diag σ′(Bx+ b).

2. The traditional neural network architecture

Fk = σk(WkFk−1 + bk), k = 1, . . . , L,

often yields worse performance for deeper networks with more layers compared to shal-
lower networks. The main issue it that training is difficult, due to vanishing gradients
or gradient blowup (where the gradients either become very small and training does not
progress, or become very large and training is unstable). To understand why, consider
the case where σk(t) = t is the identity and the biases bk = 0 all vanish. Then

FL(x) = WLWL−1 · · ·W2W1x.

The L-fold product is very sensitive to the spectral norms of the matrices; when the
eigenvalues are larger than one in magnitude it blows up exponentially with L, while
when they are less than one it will decay exponentially.
The Residual Neural Network (ResNet) architecture solves this problem by changing the
architecture to

Fk = Fk−1 + Vkσk(zk), where zk = WkFk−1 + bk, k = 1, . . . , L. (1)

https://forms.gle/B3EfYpSU8jQPYhiS9


The idea is to have each layer learn the residual Fk − Fk−1, which allows the network
to easily skip layers, by setting Fk = Fk−1. Thus, a deeper network with ResNet
architecture should not perform worse than a shallower network. Note that in ResNet
the dimensions of each layer must be the same.
Follow an argument similar to that in the proof of Theorem 10.1 to establish the ResNet
back propagation equations

∇Fk−1
L = ∇Fk

L+W T
k DkV

T
k ∇Fk

L
∇Vk

L = (∇Fk
L) σ(zk)T

∇zkL = DkV
T
k ∇Fk

L

and as in Theorem 10.1 ∇Wk
L = (∇zkL) FT

k−1 and ∇bk
L = ∇zkL. Hint: For the first

identity, let hk : Rn → R denote the loss L as a function Fk, so that hk(Fk) = L and
∇hk(Fk) = ∇Fk

L. Then show that

hk−1(Fk−1) = hk(Fk−1 + Vkσk(WkFk−1 + bk)),

and use the chain rule.

2


