Math 5490 - Homework 5: Due April 5 by 11:59pm

Instructions:

- Complete the problems below, and submit your solutions and Python code by uploading them to the Google form: https://forms.gle/5PELk1XogtFrDYFD6
- Submit all your Python code in a single .py file using the function templates given in each problem. I will import your functions from this file and test your code.
- If you use LaTeX to write up your solutions, upload them as a pdf file. Students who use LaTeX to write up their solutions will receive bonus points on the homework assignment (equivalent to $1 / 3$ of a letter grade bump).
- If you choose to handwrite your solutions and scan them, please either use a real scanner, or use a smartphone app that allows scanning with you smartphone camera. It is not acceptable to submit photos of your solutions, as these can be hard to read.

Problems:

1. Consider diffusion with a source term $\mathbf{f} \in \mathbb{R}^{m}$:

$$
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{x}_{k}-L_{\mathrm{rw}}^{T} \mathbf{x}_{k}+\mathbf{f} \tag{1}
\end{equation*}
$$

The interpretation is that we are adding or removing (based on the sign of \mathbf{f}) mass at each iteration. Throughout this problem you should assume the graph is connected.
(i) Show that

$$
\mathbf{1}^{T} \mathbf{x}_{k+1}=\mathbf{1}^{T} \mathbf{x}_{k}+\mathbf{1}^{T} \mathbf{f}
$$

For the rest of the exercise assume that $\mathbf{1}^{T} \mathbf{f}=0$, so that (1) conserves mass.
(ii) Show that the the mean zero condition $\mathbf{1}^{T} \mathbf{f}=0$ implies that $\mathbf{f} \in \operatorname{img} L_{\mathrm{rw}}^{T}$, and so there exists $\mathbf{x} \in \mathbb{R}^{m}$ such that $L_{\mathrm{rw}}^{T} \mathbf{x}=\mathbf{f}$.
(iii) Set $\mathbf{u}_{k}=\mathbf{x}_{k}-\mathbf{x}$ and show that \mathbf{u}_{k} satisfies the diffusion equation

$$
\mathbf{u}_{k+1}=\mathbf{u}_{k}-L_{\mathrm{rw}}^{T} \mathbf{u}_{k}
$$

(iv) Suppose that $\mathbf{x}_{0}=0$. Use Theorem 8.27 to solve for \mathbf{u}_{k}, and then use that $\mathbf{x}_{k}=\mathbf{x}+\mathbf{u}_{k}$ to show that

$$
\mathbf{x}_{k}=\mathbf{x}-D \sum_{i=1}^{m}\left(1-\lambda_{i}\right)^{k}\left(\mathbf{x} \cdot \mathbf{p}_{i}\right) \mathbf{p}_{i}
$$

where \mathbf{p}_{i} and λ_{i} are the eigenvectors and eigenvalues of the random walk graph Laplacian L_{rw}.
(v) Assume the graph is aperiodic (in addtion the the assumption that the graph is connected). Show that if $\mathbf{x} \cdot \mathbf{1}=0$ then $\mathbf{x}_{k} \rightarrow \mathbf{x}$ as $k \rightarrow \infty$. What happens if $\mathrm{x} \cdot \mathbf{1} \neq 0$?
2. In this exercise you'll prove convergence of the PageRank iteration for a nonsymmetric graph. In particular, in this exercise we do not assume that $W=W^{T}$. Let us define $P=W^{T} D^{-1}$.
(i) Show that P is nonexpansive in the 1 norm, that is, show that

$$
\|P \mathbf{x}\|_{1} \leq\|\mathbf{x}\|_{1} .
$$

(ii) Show that when $0 \leq \alpha<1$ there is a unique solution \mathbf{x} of the PageRank equation

$$
\begin{equation*}
\mathbf{x}=(1-\alpha) \mathbf{v}+\alpha P \mathbf{x} \tag{2}
\end{equation*}
$$

[Hint: Show that (2) is equivalent to $A \mathbf{x}=\mathbf{v}$ where

$$
A=(1-\alpha)^{-1}(I-\alpha P),
$$

and then use part (i) to show that $\operatorname{ker} A=\{0\}$.]
(iii) Let \mathbf{x}_{k} solve the PageRank iteration

$$
\begin{equation*}
\mathbf{x}_{k+1}=(1-\alpha) \mathbf{v}+\alpha P \mathbf{x}_{k}, \tag{3}
\end{equation*}
$$

and let \mathbf{x} be the PageRank vector, which satisfies (2). Show that

$$
\begin{equation*}
\left\|\mathbf{x}_{k}-\mathbf{x}\right\|_{1} \leq \alpha^{k}\left\|\mathbf{x}_{0}-\mathbf{x}\right\|_{1} \tag{4}
\end{equation*}
$$

[Hint: Subtract (2) from (3) and use part (i) to get that

$$
\left\|\mathbf{x}_{k+1}-\mathbf{x}\right\|_{1} \leq \alpha\left\|\mathbf{x}_{k}-\mathbf{x}\right\|_{1} .
$$

Then complete the proof by induction.]
(iv) Assume that the entries of \mathbf{v} are nonnegative (i.e, $v_{i} \geq 0$). Show that the PageRank vector \mathbf{x} also has nonnegative entries. [Hint: Choose $\mathbf{x}_{0}=0$ in the PageRank iteration (3), show that \mathbf{x}_{k} has nonnegative entries, and use from part (iii) that $\mathbf{x}_{k} \rightarrow \mathbf{x}$ as $k \rightarrow \infty$.]

