Math 5490 - Homework 4: Due March 22 by 11:59pm

Instructions:

- Complete the problems below, and submit your solutions and Python code by uploading them to the Google form: https://forms.gle/k5HPD8UuPdSRbEtu8
- Submit all your Python code in a single .py file using the function templates given in each problem. I will import your functions from this file and test your code.
- If you use LaTeX to write up your solutions, upload them as a pdf file. Students who use LaTeX to write up their solutions will receive bonus points on the homework assignment (equivalent to $1 / 3$ of a letter grade bump).
- If you choose to handwrite your solutions and scan them, please either use a real scanner, or use a smartphone app that allows scanning with you smartphone camera. It is not acceptable to submit photos of your solutions, as these can be hard to read.

Problems:

1. Consider the weighted PCA energy

$$
E_{\mathbf{w}}\left(V ; \mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right)=\sum_{i=1}^{m} w_{i} \operatorname{dist}\left(\mathbf{x}_{i}, V\right)^{2}
$$

where $\mathbf{w}=\left(w_{1}, w_{2}, \ldots, w_{m}\right)$ are nonnegative numbers (weights), and V is a linear space.
(i) Show that the weighted energy $E_{\mathbf{w}}$ is minimized over k-dimensional subspaces $V \subset \mathbb{R}^{n}$ by setting

$$
V=\operatorname{span}\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{k}\right\}
$$

where $\mathbf{q}_{1}, \mathbf{q}_{2}, \ldots, \mathbf{q}_{n}$ are the orthonormal eigenvectors of the weighted covariance matrix

$$
M_{\mathbf{w}}=\sum_{i=1}^{m} w_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}
$$

with corresponding eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$.
(ii) Show that the weighted covariance matrix can also be expressed as

$$
M_{\mathrm{w}}=X^{T} W X
$$

where W is the $m \times m$ diagonal matrix with diagonal entries $w_{1}, w_{2}, \ldots, w_{m}$, and

$$
X=\left[\begin{array}{llll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{m}
\end{array}\right]^{T}
$$

(iii) Show that the optimal energy is given by

$$
E_{\mathbf{w}}\left(V ; \mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right)=\sum_{i=k+1}^{n} \lambda_{i} .
$$

(iv) Suppose we minimize $E_{\mathbf{w}}$ over affine spaces $A=\mathbf{a}+V$, so

$$
E_{\mathbf{w}}\left(A ; \mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right)=\sum_{i=1}^{m} w_{i} \operatorname{dist}\left(\mathbf{x}_{i}, A\right)^{2}
$$

Show that an optimal choice for \mathbf{a} is the weighted centroid

$$
\mathbf{a}=\frac{\sum_{i=1}^{m} w_{i} \mathbf{x}_{i}}{\sum_{i=1}^{m} w_{i}}
$$

2. We consider here the 2 -means clustering algorithm in dimension $n=1$. Let $x_{1}, x_{2}, \ldots, x_{m} \in$ \mathbb{R} and recall the 2-means energy is

$$
E\left(c_{1}, c_{2}\right)=\sum_{i=1}^{m} \min \left\{\left(x_{i}-c_{1}\right)^{2},\left(x_{i}-c_{2}\right)^{2}\right\}
$$

Throughout the question we assume that the x_{i} are ordered so that

$$
x_{1} \leq x_{2} \leq \cdots \leq x_{m}
$$

For $1 \leq j \leq m-1$ we define

$$
\mu^{-}(j)=\frac{1}{j} \sum_{i=1}^{j} x_{i}, \quad \mu^{+}(j)=\frac{1}{m-j} \sum_{i=j+1}^{m} x_{i}
$$

and

$$
F(j)=\sum_{i=1}^{j}\left(x_{i}-\mu^{-}(j)\right)^{2}+\sum_{i=j+1}^{m}\left(x_{i}-\mu^{+}(j)\right)^{2}
$$

(i) Explain how $F(j)$ differs from the 2-means energy $E\left(c_{1}, c_{2}\right)$, and why minimizing $F(j)$ over $j=1, \ldots, m-1$ and setting $c_{1}=\mu_{-}\left(j_{*}\right)$ and $c_{2}=\mu^{+}\left(j_{*}\right)$ will give a solution at least as good as the 2-means algorithm (here, j_{*} is a minimizer of $F(j)$).
(ii) By (i) we can replace the 2-means problem with minimizing $F(j)$. We will now show how to do this efficiently. In this part, show that

$$
F(j)=\sum_{i=1}^{m} x_{i}^{2}-j \mu^{-}(j)^{2}-(m-j) \mu^{+}(j)^{2}
$$

Thus, minimizing $F(j)$ is equivalent to maximizing

$$
G(j)=j \mu^{-}(j)^{2}+(m-j) \mu^{+}(j)^{2}
$$

(iii) Show that we can maximize G (i.e., find j_{*} with $G(j) \leq G\left(j_{*}\right)$ for all j) in $O(m \log m)$ computations. Hint: First show that

$$
\mu^{-}(j+1)=\frac{j}{j+1} \mu^{-}(j)+\frac{x_{j+1}}{j+1}
$$

and

$$
\mu^{+}(j+1)=\frac{m-j}{m-j-1} \mu^{+}(j)-\frac{x_{j+1}}{m-j-1} .
$$

and explain how these formulas allow you to compute all the values $G(1), G(2), \ldots, G(m-$ 1) recursively in $O(m \log m)$ operations, at which point the maximum is found by brute force.
(iv) [Challenge] Implement the method described in the previous three parts in Python. Test it out on some synthetic 1D data. For example, you can try a mixture of two Gaussians with different means. This part of the homework is optional.

