Math 5490 - Homework 3: Due Feb 22 by 11:59pm

Instructions:

- Complete the problems below, and submit your solutions and Python code by uploading them to the Google form: https://forms.gle/29WfqTaEGYi31NiJ7
- Submit all your Python code in a single .py file using the function templates given in each problem. I will import your functions from this file and test your code.
- If you use LaTeX to write up your solutions, upload them as a pdf file. Students who use LaTeX to write up their solutions will receive bonus points on the homework assignment (equivalent to $1 / 3$ of a letter grade bump).
- If you choose to handwrite your solutions and scan them, please either use a real scanner, or use a smartphone app that allows scanning with you smartphone camera. It is not acceptable to submit photos of your solutions, as these can be hard to read.

Problems:

1. Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{n}$. Recall that the least squares problem

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\|A \mathbf{x}-\mathbf{b}\|^{2}
$$

has a unique solution \mathbf{x}^{*} belonging to $\operatorname{img} A^{T}$ (this is the minimal norm solution). Show that when $A A^{T}$ is invertible we can express \mathbf{x}^{*} as

$$
\mathbf{x}^{*}=A^{T}\left(A A^{T}\right)^{-1} b
$$

2. Complete the following parts.
(i) Show that the linear function $F(\mathbf{x})=\mathbf{x} \cdot \mathbf{w}+b$ is a convex function.
(ii) Show that the Euclidean norm $F(\mathbf{x})=\|\mathbf{x}\|$ is a convex function. [Hint: Use the triangle inequality and the definition of convexity.]
(iii) Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $G: \mathbb{R} \rightarrow \mathbb{R}$ be convex functions. Assume G is non-decreasing (i.e., $G(x) \leq G(y)$ whenever $x \leq y$). Show that the composition $G \circ F$, defined by

$$
(G \circ F)(x)=G(F(x))
$$

is a convex function. [Hint: Use the definition of a convex function directly.]
3. For $\beta>0$ define

$$
\psi_{\beta}(x)=\frac{1}{\beta} \log \left(1+e^{\beta x}\right) .
$$

(i) Show that

$$
\lim _{\beta \rightarrow \infty} \psi_{\beta}(x)=x_{+}:=\max \{x, 0\} .
$$

(ii) Show that

$$
\psi_{\beta}^{\prime}(x)=\frac{1}{1+e^{-\beta x}} .
$$

(iii) Show that

$$
\lim _{\beta \rightarrow \infty} \psi_{\beta}^{\prime}(x)= \begin{cases}1, & \text { if } x>0 \\ \frac{1}{2}, & \text { if } x=0 \\ 0, & \text { if } x<0\end{cases}
$$

This problem shows that the positive part x_{+}can be well-approximated by the smooth function ψ_{β}.
4. In light of problem 3, we consider the smooth approximation of the soft-margin SVM problem given by

$$
\min _{\mathbf{w}, b} E(\mathbf{w}, b),
$$

where $\mathbf{w} \in \mathbb{R}^{n}, b \in \mathbb{R}$ and

$$
\begin{equation*}
E(\mathbf{w}, b)=\lambda\|\mathbf{w}\|^{2}+\frac{1}{m} \sum_{i=1}^{m} \psi_{\beta}\left(1-y_{i}\left(\mathbf{x}_{i} \cdot \mathbf{w}-b\right)\right) . \tag{1}
\end{equation*}
$$

(i) Explain why E is a convex function of \mathbf{w} and b [Hint: Use problem 2].
(ii) Show that

$$
\nabla_{\mathbf{w}} E(\mathbf{w}, b)=2 \lambda \mathbf{w}-\frac{1}{m} \sum_{i=1}^{m} \frac{y_{i} \mathbf{x}_{i}}{1+e^{-\beta\left(1-y_{i}\left(\mathbf{x}_{i} \cdot \mathbf{w}-b\right)\right)}},
$$

and

$$
\nabla_{b} E(\mathbf{w}, b)=\frac{1}{m} \sum_{i=1}^{m} \frac{y_{i}}{1+e^{-\beta\left(1-y_{i}\left(\mathbf{x}_{i} \cdot \mathbf{w}-b\right)\right)}} .
$$

(iii) Write a Python program to train an SVM by minimizing E via gradient descent

$$
\begin{aligned}
\mathbf{w}_{k+1} & =\mathbf{w}_{k}-\alpha \nabla_{\mathbf{w}} E\left(\mathbf{w}_{k}, b_{k}\right) \\
b_{k+1} & =b_{k}-\alpha \nabla_{b} E\left(\mathbf{w}_{k}, b_{k}\right) .
\end{aligned}
$$

Test your program at first on some synthetic data, like the two-point example from class and the course textbook (where $\mathbf{x}_{1}=\mathbf{z}$ and $\mathbf{x}_{2}=-\mathbf{z}$). Then test your algorithm on pairs of MNIST digits. Try different pairs of MNIST digits. Which are easiest to separate? You can use this notebook as a starting place.

