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Interlude/preview:

Fourier analysis on Qp, A, A/k

In complete parallel to the way Fourier transform on R and
Fourier series on R/Z give Poisson summation, which gives the
meromorphic continuation and functional equation of the zeta
function ζ(s), ...

... Fourier transform on archimedean and non-archimedean
completions kv, and on A = Ak, give adelic Poisson summation,
then giving the Iwasawa-Tate modernization of Hecke’s treatment
of the most general GL(1) L-functions and zeta functions.

It’s not just a rewrite: everything becomes an obvious parallel
to Riemann’s proof. This was a prototype for Gelfand-Piatetski-
Shapiro’s (1963) and Jacquet-Langlands’ (1971) modernization of
the classical theory of L-functions attached to GL(2).
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Some references:

[Gelfand-Graev-PS 1969] I. Gelfand, M. Graev, I. Piatetski-
Shapiro, Representation Theory and Automorphic Functions, W.B.
Saunders Co., Philadelphia, 1969.

The latter translation from the earlier Russian edition included
a then-novel discussion of adeles and of harmonic analysis and
representation theory connected to Qp, in addition to that
connected to R.

[Gelfand-PS 1963] I.M. Gelfand, I.I. Piatetski-Shapiro,
Automorphic functions and representation theory, Trudy Moskov.
Obshch. 8 (1963), 389-412 [Trans.: Trans. Moscow Math. Soc.
12 (1963), 438-464.]

The latter was the published research paper. Selberg’s 1956 paper
(below) was another input to both the book and the paper.
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[Iwasawa 1950/52] K. Iwasawa, [brief announcement],
in Proceedings of the 1950 International Congress of
Mathematicians, Vol. 1, Cambridge, MA, 1950, p. 322, Amer.
Math. Soc., Providence, RI, 1952.

The latter briefly announced treatment of zeta and L-functions
using the then-new ideas about representations of abelian
topological groups.

[Iwasawa 1952/92] K. Iwasawa, Letter to J. Dieudonné, dated
April 8, 1952, in Zeta Functions in Geometry, editors N. Kurokawa
and T. Sunada, Advanced Studies in Pure Mathematics 21 (1992),
445-450.

The latter, written at the urging of A. Weil, explained in greater
detail Iwasawa’s ideas.
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[Jacquet-Langlands 1971] H. Jacquet and R. P. Langlands,
Automorphic forms on GL2, Lecture Notes in Mathematics 114,
Springer-Verlag, Berlin and New York, 1971.

The latter systematically rewrote the classical GL(2) theory in
Iwasawa-Tate style.

[Selberg 1956] A. Selberg, Harmonic analysis and discontinuous
groups in weakly symmetric spaces, with applications to Dirichlet
series, J. Indian Math. Soc. 20 (1956), 47-87

The latter gave yet-another impetus to the emerging viewpoint
that the discussion of zeta functions and L-functions, which had
appeared from 1830’s through 1930’s to be a conglomeration
of ad hoc manipulations of integrals and sums, instead was
a manifestation of far more structure: harmonic analysis,
representation theory, and spectral theory of operators.
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[Tate 1950/67] J. Tate, Fourier analysis in number fields and
Hecke’s zeta functions, Ph.D. thesis, Princeton (1950), in Algebraic
Number Theory, J. Cassels and J. Frölich, editors, Thompson
Book Co., 1967.

The latter did not circulate publicly until 1967, although because
it was written out in great detail, received much more publicity
than Iwasawa’s ICM announcement. This has resulted in these
ideas often being labelled Tate’s thesis. It is probably better to
refer to these ideas as Iwasawa-Tate theory.

[Weil 1940/1965] A. Weil, L’intégration dans les groupes
topologiques, et ses applications, Hermann, Paris, 1940, second
edition 1965.

The latter of course portrays topological groups, especially the
representation theory of abelian topological groups, in the style of
those times, and gives extensive references. The basic duality of
compact and discrete abelian topological groups is Pontryagin or
Pontryagin-Weil duality.
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Unitary duals of abelian topological groups: For an abelian
topological group G, the unitary dual G∨ is the collection of
continuous group homomorphisms of G to the unit circle in C×.
For example, R∨ ≈ R, by ξ → (x→ eiξx).

Claim: Q∨p ≈ Qp and A∨ ≈ A.

Since C× contains no small subgroups [below], and since Qp is a
union of compact subgroups, every element of Q∨p has image in
roots of unity in C×, identified with Q/Z, so

Q∨p ≈ Homo(Qp, Q/Z) (continuous homomorphisms)

where Q/Z = colim 1
NZ/Z is discrete. As a topological group,

Zp = limZ/p`Z, and Zp is also a limit of the corresponding
quotients of itself, namely,

Zp ≈ limZp/p`Zp
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More generally, an abelian totally disconnected topological group
G is such a limit of quotients:

G ≈ lim
K
G/K (K compact open subgroup)

As a topological group,

Qp =
⋃ 1

p`
Zp = colim

1

p`
Zp

Because of the no small subgroups property of the unit circle in
C×, every continuous element of Z∨p factors through some limitand

Zp/p`Zp ≈ Z/p`Z
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Thus,

Z∨p = colim
(
Zp/p`Zp

)∨
= colim

1

p`
Zp/Zp

since 1
p`
Zp/Zp is the dual to Zp/p`Zp under the pairing

1

p`
Zp/Zp × Zp/p`Zp ≈

1

p`
Z/Z × Z/p`Z

by ( x
p`

+ Z
)
×
(
y + p`Z

)
−→ xy + Z ∈ Q/Z

The transition maps in the colimit expression for Z∨p are
inclusions, so

Z∨p = colim
1

p`
Zp/Zp ≈

(
colim

1

p`
Zp
)
/Zp ≈ Qp/Zp
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Thus,

Q∨p =
(

colim
1

p`
Zp
)∨

= lim
1

p`
Z∨p

As a topological group, 1
p`
Zp ≈ Zp by multiplying by p`, so

the dual of 1
p`
Zp is isomorphic to Z∨p ≈ Qp/Zp. However,

the inclusions for varying ` are not the identity map, so for
compatibility take ( 1

p`
Zp
)∨

= Qp/p`Zp
Thus,

Q∨p = limQp/p`Zp ≈ Qp

because, Qp is the projective limit of its quotients by compact
open subgroups. ///
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Claim: Both A∨ ≈ A and A∨fin ≈ Afin.

Proof: The same argument applies to Ẑ = limZ/NZ and finite

adeles Afin = colim 1
N Ẑ, proving the self-duality of Afin. Then the

self-duality of R gives the self-duality of A. ///

Remark: Ẑ does also refer to Homo(Z,Q/Z), but needs to be
topologized by the compact-open topology [later].

Remark: Nearly the same argument applies for an arbitrary
finite extension k of Q.

Corollary: Given non-trivial ψ ∈ Q∨p , every other element of
Q∨p is of the form x → ψ(ξ · x) for some ξ ∈ Qp. Similarly,
given non-trivial ψ ∈ A∨, every other element of A∨ is of the form
x→ ψ(ξ · x) for some ξ ∈ A. [Proof below]

Remark: This sort of result is already familiar from the analogue
for R, that x→ eiξx for ξ ∈ R are all the unitary characters of R.
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Compact-discrete duality

For abelian topological groups G, pointwise multiplication makes
Ĝ an abelian group. A reasonable topology on Ĝ is the compact-
open topology, with a sub-basis

U = UC,E = {f ∈ Ĝ : f(C) ⊂ E}
for compact C ⊂ G, open E ⊂ S1.

Remark: The reasonable-ness of this topology is functional.
For a compact topological space X, Co(X) with the sup-norm is
a Banach space . On non-compact X, the semi-norms given by
sups on compacts make Co(X) a Fréchet space. The compact-
open topology is the analogue for Co(X,Y ) where the target Y
is not normed. When X,Y are topological groups, the continuous
functions f : X → Y consisting of group homomorphisms is a
(locally compact, Hausdorff) topological group. [Later]
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Granting (for now) that the compact-open topology makes Ĝ an
abelian (locally-compact, Hausdorf) topological group,

Theorem: The unitary dual of a compact abelian group is
discrete. The unitary dual of a discrete abelian group is compact.

Proof: Let G be compact. Let E be a small-enough open in
S1 so that E contains no non-trivial subgroups of G. Using the
compactness of G itself, let U ⊂ Ĝ be the open

U = {f ∈ Ĝ : f(G) ⊂ E}

Since E is small, f(G) = {1}. That is, f is the trivial

homomorphism. This proves discreteness of Ĝ for compact G.
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For G discrete, every group homomorphism to S1 is continuous.
The space of all functions G → S1 is the cartesian product of
copies of S1 indexed by G. By Tychonoff’s theorem, this product
is compact. For discrete X, the compact-open topology on the
space Co(X,Y ) of continuous functions from X → Y is the
product topology on copies of Y indexed by X.

The set of functions f satisfying the group homomorphism
condition

f(gh) = f(g) · f(h) (for g, h ∈ G)

is closed, since the group multiplication f(g) × f(h) → f(g) · f(h)

in S1 is continuous. Since the product is also Hausdorff, Ĝ is also
compact. ///
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Theorem: (A/k)̂ ≈ k In particular, given any non-trivial
character ψ on A/k, all characters on A/k are of the form x →
ψ(α · x) for some α ∈ k.

Proof: For a (discretely topologized) number field k with adeles A,
A/k is compact, and A is self-dual.

Because A/k is compact, (A/k)̂ is discrete. Since multiplication
by elements of k respects cosets x+ k in A/k, the unitary dual has
a k-vectorspace structure given by

(α · ψ)(x) = ψ(α · x) (for α ∈ k, x ∈ A/k)

There is no topological issue in this k-vectorspace structure,
because (A/k)̂ is discrete. The quotient map A → A/k gives a

natural injection (A/k)̂→ Â.
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Given non-trivial ψ ∈ (A/k)̂, the k-vectorspace k ·ψ inside (A/k)̂
injects to a copy of k · ψ inside Â ≈ A. Assuming for a moment
that the image in A is essentially the same as the diagonal copy of
k, (A/k)̂/k injects to A/k. The topology of (A/k)̂ is discrete,
and the quotient (A/k)̂/k is still discrete. These maps are
continuous group homs, so the image of (A/k)̂/k in A/k is a
discrete subgroup of a compact group, so is finite. Since (A/k)̂
is a k-vectorspace, (A/k)̂/k is a singleton. Thus, (A/k)̂ ≈ k, if

the image of k · ψ in A ≈ Â is the usual diagonal copy.

To see how k · ψ is imbedded in A ≈ Â, fix non-trivial ψ on
A/k, and let ψ be the induced character on A. The self-duality

of A is that the action of A on Â by (x · ψ)(y) = ψ(xy) gives an
isomorphism. The subgroup x · ψ with x ∈ k is certainly the usual
diagonal copy. ///
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Appendix: no small subgroups:

The circle group S1 has no small subgroups, in the sense that
there is a neighborhood U of the identity 1 ∈ S1 such that the
only subgroup of S1 inside U is the trivial group {1}.
Essentially the same proof works for real Lie groups.

Use the copy of S1 inside the complex plane. We claim that
taking

U = S1 ∩ {z ∈ C : Re(z) > 0}

suffices: the only subgroup G of S1 inside this U is G = {1}.
Indeed, suppose not. Let 1 6= eiθ ∈ G ∩ U . We can take
0 < θ < π/2, since both ±θ must appear. Let 0 < ` ∈ Z be
the smallest such that ` · θ > π/2. Then, since (`− 1) · θ < π/2 and
0 < θ < π/2,

π

2
< ` · θ = (`− 1) · θ + θ <

π

2
+
π

2
= π

Thus, ` · θ falls outside U , contradiction. ///


