Fujisaki's Compactness Lemma and corollaries:

 finiteness of class number, Dirichlet units theoremFujisaki's lemma: $\mathbb{J}^{1} / k^{\times}$is compact.
(via a measure-theory pigeon-hole principle)
Corollary: The class number of \mathfrak{o} is finite.
Let $k \otimes_{\mathbb{Q}} \mathbb{R} \approx \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}$. That is, k has r_{1} real archimedean completions, and r_{2} complex archimedean completions. The global degree is the sum of the local degrees: $[k: \mathbb{Q}]=r_{1}+2 r_{2}$.
Corollary: (Dirichlet's Units Theorem) The unit group \mathfrak{o}^{\times}, modulo roots of unity, is a free \mathbb{Z}-module of rank $r_{1}+r_{2}-1$.
Remark: It is amazing that these first two big theorems of general number theory, finiteness of class number, and the Units Theorem, follow from a compactness assertion.

Measure-theory pigeon-hole principle: On \mathbb{R} or \mathbb{R}^{n}, these ideas were highly developed by Minkowski 100 years ago. The adelic version should be viewed as the obvious extension of this.

Proposition: A set $E \subset \mathbb{R}$ with measure >1 contains $x \neq y$ such that $x-y \in \mathbb{Z}$.

Proof: Let f be the characteristic function of E, and

$$
F(x)=\sum_{n \in \mathbb{Z}} f(x+n)
$$

If no two points of E differ by an integer, then $f(x+m) \neq 0$ and $f(x+n) \neq 0$ for integers m, n implies $m=n$. With this assumption, $0 \leq F(x) \leq 1$.

We claim that

$$
\int_{0}^{1} F(x) d x=\int_{-\infty}^{\infty} f(x) d x
$$

The left-hand side is

$$
\int_{0}^{1} \sum_{n} f(x+n) d x=\sum_{n} \int_{0}^{1} f(x+n) d x=\sum_{n} \int_{n}^{n+1} f(x) d x
$$

by replacing x by $x-n$. And then this is indeed $\int_{-\infty}^{\infty} f(x) d x$.
Thus,

$$
1<\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{1} F(x) d x \leq 1
$$

Impossible. Thus, there are $x \neq y \in E$ with $x-y \in \mathbb{Z}$.
Remark: It might appear that we needed to find a subset $[0,1]$ of \mathbb{R} whose translates by \mathbb{Z} fill out \mathbb{R} with overlaps of measure 0 . Although the argument above took advantage of this possibility, it was unnecessary, and potentially misleading. This is clarified below.

Remark: Without prior experience, it may be hard to believe that the measure of a set is the sup of the compacts contained in it, since the set $E=[0,1]-(\mathbb{Q} \cap[0,1])$ obtained by removing all rational numbers from the unit interval $[0,1]$, which has measure 1 , might appear to contain no compacts of positive measure.

However, E does have compact subsets with measures arbitrarily close to 1 . For example, enumerate the rationals in the interval as r_{n} with $n=1,2, \ldots$, and for $j=1,2, \ldots$ consider the compact sets

$$
C_{j}=[0,1]-\left([0,1] \cap\left(r_{n}-\frac{1}{(n+j)!}, r_{n}+\frac{1}{(n+j)!}\right)\right)
$$

inside E. Certainly

$$
\operatorname{meas} C_{j} \geq 1-\left(\frac{1}{(1+j)!}+\frac{1}{(2+j)!}+\ldots\right) \longrightarrow 1
$$

Proof of Fujisaki: Haar measure on $\mathbb{A}=\mathbb{A}_{k}$ and Haar measure on the (topological group) quotient \mathbb{A} / k are inter-related by

$$
\int_{\mathbb{A}} f(x) d x=\int_{\mathbb{A} / k} \sum_{\gamma \in k} f(\gamma+x) d x
$$

Normalize the measure on \mathbb{A} so that, mediated by this relation, \mathbb{A} / k has measure 1 .
We have the Minkowski-like claim, a measure-theory pigeon-hole principle, that a compact subset C of \mathbb{A} with measure greater than 1 cannot inject to the quotient \mathbb{A} / k. Suppose, to the contrary, that C injects to the quotient. With f the characteristic function of C,

$$
1<\int_{\mathbb{A}} f(x) d x=\int_{\mathbb{A} / k} \sum_{\gamma \in k} f(\gamma+x) d x \leq \int_{\mathbb{A} / k} 1 d x=1
$$

with the last inequality by injectivity. Contradiction.

For idele α, we will see later that the change-of-measure on \mathbb{A} is given conveniently by

$$
\frac{\operatorname{meas}(\alpha E)}{\text { meas }(E)}=|\alpha| \quad(\text { for measurable } E \subset \mathbb{A})
$$

Given $\alpha \in \mathbb{J}^{1}$, we will adjust α by k^{\times}to lie in a compact subset of \mathbb{J}^{1}. Fix compact $C \subset \mathbb{A}$ with measure >1.

The topology on \mathbb{J} is strictly finer than the subspace topology with $\mathbb{J} \subset \mathbb{A}$: the genuine topology is by imbedding $\mathbb{J} \rightarrow \mathbb{A} \times \mathbb{A}$ by $\alpha \rightarrow\left(\alpha, \alpha^{-1}\right)$.
For $\alpha \in \mathbb{J}^{1}$, both αC and $\alpha^{-1} C$ have measure >1, neither injects to the quotient $k \backslash \mathbb{A}$. So there are $x \neq y$ in k so that $x+\alpha C=y+\alpha C$. Subtracting,

$$
0 \neq a=x-y \in \alpha(C-C) \cap k
$$

That is,

$$
a \cdot \alpha^{-1} \in C-C
$$

Likewise, there is $0 \neq b \in \alpha^{-1}(C-C) \cap k$, and $b \cdot \alpha \in C-C$. There is an obvious constraint
$a b=\left(a \cdot \alpha^{-1}\right)(b \cdot \alpha) \in(C-C)^{2} \cap k^{\times}=$compact \cap discrete $=$ finite
Let $\Xi=(C-C)^{2} \cap k^{\times}$be this finite set. Paraphrasing: given $\alpha \in \mathbb{J}^{1}$, there are $a \in k^{\times}$and $\xi \in \Xi(\xi=a b$ above $)$ such that $\left(a \cdot \alpha^{-1},\left(a \cdot \alpha^{-1}\right)^{-1}\right) \in(C-C) \times \xi^{-1}(C-C)$.
That is, α^{-1} can be adjusted by $a \in k^{\times}$to be in the compact $C-C$, and, simultaneously, for one of the finitely-many $\xi \in \Xi$, $\left(a \cdot \alpha^{-1}\right)^{-1} \in \xi^{-1} \cdot(C-C)$.
In the topology on \mathbb{J}, for each $\xi \in \Xi$,

$$
\left((C-C) \times \xi^{-1}(C-C)\right) \cap \mathbb{J}=\text { compact in } \mathbb{J}
$$

The continuous image in \mathbb{J} / k^{\times}of each of these finitely-many compacts is compact. Their union covers the closed subset $\mathbb{J}^{1} / k^{\times}$, so the latter is compact.

Proof of finiteness of class number: Let i be the ideal map from ideles to non-zero fractional ideals of the integers \mathfrak{o} of k. That is,

$$
i(\alpha)=\prod_{v<\infty} \mathfrak{p}_{v}^{\operatorname{ord}_{v} \alpha} \quad(\text { for } \alpha \in \mathbb{J})
$$

where \mathfrak{p}_{v} is the prime ideal in \mathfrak{o} attached to the place v. Certainly the subgroup \mathbb{J}^{1} of \mathbb{J} still surjects to the group of non-zero fractional ideals. The kernel in \mathbb{J} of the ideal map is

$$
G=\prod_{v \mid \infty} k_{v}^{\times} \times \prod_{v<\infty} \mathfrak{o}_{v}^{\times}
$$

and the kernel on \mathbb{J}^{1} is $G^{1}=G \cap J^{1}$. The principal ideals are the image $i\left(k^{\times}\right)$. The map of \mathbb{J}^{1} to the ideal class group factors through the idele class group $\mathbb{J}^{1} / k^{\times}$, noting as usual that the product formula implies that $k^{\times} \subset \mathbb{J}^{1}$.
G^{1} is open in \mathbb{J}^{1}, so its image K in the quotient $\mathbb{J}^{1} / k^{\times}$is open, since quotient maps are open. The cosets of K cover $\mathbb{J}^{1} / k^{\times}$, and by compactness there is a finite subcover. Thus, $\mathbb{J}^{1} / k^{\times} K$ is finite, and this finite group is the ideal class group. ///
A continuation proves the units theorem!
Since K is open, its cosets are open. Thus, K is closed. Since $\mathbb{J}^{1} / k^{\times}$is Hausdorff and compact, K is compact. That is, we have compactness of

$$
K=\left(G^{1} \cdot k^{\times}\right) / k^{\times} \approx G^{1} /\left(k^{\times} \cap G^{1}\right)=G^{1} / \mathfrak{o}^{\times}
$$

with the global units \mathfrak{o}^{\times}imbedded on the diagonal.

Since $\prod_{v<\infty} \mathfrak{o}_{v}^{\times}$is compact, its image U under the continuous map to $G^{1} / \mathfrak{o}^{\times}$is compact. By Hausdorff-ness, the image U is closed. Thus, we can take a further (Hausdorff) quotient by U,

$$
G^{1} /\left(U \cdot \mathfrak{o}^{\times}\right)=\text {compact }
$$

With $k_{\infty}^{1}=\left\{\alpha \in \prod_{v \mid \infty} k_{v}^{\times}: \prod_{v}\left|\alpha_{v}\right|_{v}=1\right\}$,

$$
k_{\infty}^{1} / \mathfrak{o}^{\times} \approx G^{1} /\left(U \cdot \mathfrak{o}^{\times}\right)=(\text {compact })
$$

This compactness is essentially the units theorem! (See below...)

Remark: To compare with the classical formulation, one wants the accompanying result that a discrete subgroup L of \mathbb{R}^{n} with \mathbb{R}^{n} / L is compact is a free \mathbb{Z}-module on n generators.

Generalized ideal class numbers:

The class number above is the absolute class number.
An element $\alpha \in k$ is totally positive when $\sigma(\alpha)>0$ for every real imbedding $\sigma: k \rightarrow \mathbb{R}$. For example, $2+\sqrt{2}$ is totally positive, while $1+\sqrt{2}$ is not.

The narrow class number is ideals modulo principal ideals generated by totally positive elements.

Congruence conditions can be imposed at finite places: given an ideal \mathfrak{a}, we can form an ideal class group of ideals modulo principal ideals possessing generators $\alpha=1 \bmod \mathfrak{a}$, for example. Positivity conditions can be combined with congruence conditions: generalized ideal class groups are quotients of (fractional) ideals by principal ideals meeting the positivity and congruence constraints. The ideal class groups corresponding to conditions $\alpha=1 \bmod \mathfrak{a}$ are called ray class groups.

Proposition: Generalized ideal class groups are presentable as idele class groups, specifically, as quotients of $\mathbb{J}^{1} / k^{\times}$by open subgroups. [Proof later]
Corollary/Theorem: Generalized ideal class groups are finite.
Proof: First, note that an open subgroup of a topological group is also closed, because it the complement of the union of its cosets not containing the identity.
For U be an open subgroup of a compact abelian topological group K (such as $\left.\mathbb{J}^{1} / k^{\times}\right), K / U$ is finite, because the cover of K by (disjoint!) cosets of U has a finite subcover. Thus, K / U is finite. It is Hausdorff because U is also closed.

Remark: The ray class groups with total-positivity thrown in are visibly cofinal in the collection of all generalized ideal class groups.

Generalized units:

Let S be a finite collection of places of k, including all archimedean places. The S-integers \mathfrak{o}_{S} in k are

$$
\mathfrak{o}_{S}=k \cap\left(\prod_{v \in S} k_{v} \times \prod_{v \notin S} \mathfrak{o}_{v}\right)=\{\alpha \in k: \alpha \text { is } v \text {-integral for } v \notin S\}
$$

The group of S-units is $\mathfrak{o}_{S}^{\times}=k^{\times} \cap\left(\prod_{v \in S} k_{v}^{\times} \times \prod_{v \notin S} \mathfrak{o}_{v}^{\times}\right)$
Theorem: (Generalized Units Theorem) $\mathfrak{o}_{S}^{\times}$modulo roots of unity is free of rank $|S|-1$.

Proof: As in the proof of the classical Units Theorem, let $G=\prod_{v \in S} k_{v}^{\times} \times \prod_{v \notin S} \mathfrak{o}_{v}^{\times} \subset \mathbb{J}$, and $G^{1}=\mathbb{J}^{1} \cap G . G^{1}$ is open.
Quotient maps are open maps, so $G^{1} /\left(k^{\times} \cap G^{1}\right)$ is open in $\mathbb{J}^{1} / k^{\times}$. By compactness of $\mathbb{J}^{1} / k^{\times}, G^{1} /\left(k^{\times} \cap G^{1}\right)$ is of finite index. Since it is open, it is also closed. Closed subsets of compact Hausdorff spaces are compact, so $G^{1} /\left(k^{\times} \cap G^{1}\right)=G^{1} / \mathfrak{o}_{S}^{\times}$is compact.

To treat the non-archimedean places in S, proceed slightly differently than for the classic units theorem: let $S_{\infty}=\{v \mid \infty\}$, S_{o} the non-archimedean places in S, and for $\alpha \in \mathbb{J}$

$$
L(\alpha)=\left\{\log \left|\alpha_{v}\right|_{v}: v \in S_{\infty}\right\} \oplus\left\{\operatorname{ord}_{v} \alpha_{v}: v \in S_{o}\right\} \in \mathbb{R}^{\left|S_{\infty}\right|} \oplus \mathbb{Z}^{\left|S_{o}\right|}
$$

The image $L\left(G^{1}\right)$ is

From

$$
L\left(G^{1}\right)=\left\{\left\{x_{v}\right\} \in \mathbb{R}^{\left|S_{\infty}\right|} \oplus \mathbb{Z}^{\left|S_{o}\right|}: \sum_{v} x_{v}=0\right\}
$$

$L\left(G^{1}\right) / L\left(\mathfrak{o}_{S}^{\times}\right)$is compact. Classification of discrete subgroups Γ of groups $\mathbb{R}^{m} \oplus \mathbb{Z}^{n}$ with compact quotients $\left(\mathbb{R}^{m} \oplus \mathbb{Z}^{n}\right) / \Gamma$ gives the result.

The numerous remaining details:

Apart from generalities about Haar measure and subgroups of $\mathbb{R}^{m} \oplus \mathbb{Z}^{n}, \ldots$ to know that the torsion subgroups of \mathfrak{o}^{\times}and $\mathfrak{o}_{S}^{\times}$ consist only of roots of unity, we need to know that if $\alpha \in k$ has $|\alpha|_{v}=1$ for all places $v \leq \infty$, then α is a root of unity. In fact, a sharper result is easy to prove:
Theorem: (Kronecker) For $\alpha \in \mathfrak{o}$, if $|\alpha|_{v}=1$ for all places $v \mid \infty$ then α is a root of unity.

Remark: The condition $|\alpha|_{v} \leq 1$ at all $v<\infty$ for $\alpha \in k$ implies $\alpha \in \mathfrak{o}$, since \mathfrak{o} is Dedekind.

Proof: Of course: $\alpha^{n}=1$ gives $1=|1|_{v}=\left|\alpha^{n}\right|_{v}=|\alpha|_{v}^{n}$. Since $|*|_{v}$ is non-negative-real-valued, $|\alpha|_{v}=1$.

The converse is the non-trivial part...

For $|\alpha|_{v}=1$ at all archimedean places, the same is true of its Galois conjugates, since Galois permutes archimedean imbeddings among themselves. Thus, the elementary symmetric functions of α and its conjugates are bounded. Also $\left|\alpha^{n}\right|_{v}=1$ for all $n \in \mathbb{Z}$, and the degree of α^{n} over \mathbb{Q} is no greater than that of α.

The coefficients of the minimal polynomial of α over \mathbb{Q} are rational integers. The same is true of α^{n} for $n \geq 1$. There are only finitely-many monic polynomials in $\mathbb{Z}[x]$ with bounded coefficients and of bounded degree. Thus, for some $m<n$, necessarily $\alpha^{m}=\alpha^{n}$.

Remark: There is no analogous result replacing S_{∞} by all places lying over a rational prime p, because there are infinitely-many rational integers meeting the conditions of integrality and being p-adically bounded.
Next: About Haar measure... and other missing details...

