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Fujisaki’s Compactness Lemma and corollaries:
finiteness of class number, Dirichlet units theorem

Fujisaki’s lemma: J1/k× is compact.

(via a measure-theory pigeon-hole principle)

Corollary: The class number of o is finite.

Let k ⊗Q R ≈ Rr1 × Cr2 . That is, k has r1 real archimedean
completions, and r2 complex archimedean completions. The global
degree is the sum of the local degrees: [k : Q] = r1 + 2r2.

Corollary: (Dirichlet’s Units Theorem) The unit group o×,
modulo roots of unity, is a free Z-module of rank r1 + r2 − 1.

Remark: It is amazing that these first two big theorems of
general number theory, finiteness of class number, and the Units
Theorem, follow from a compactness assertion.
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Measure-theory pigeon-hole principle: On R or Rn, these
ideas were highly developed by Minkowski 100 years ago. The
adelic version should be viewed as the obvious extension of this.

Proposition: A set E ⊂ R with measure > 1 contains x 6= y such
that x− y ∈ Z.

Proof: Let f be the characteristic function of E, and

F (x) =
∑
n∈Z

f(x+ n)

If no two points of E differ by an integer, then f(x + m) 6= 0
and f(x + n) 6= 0 for integers m,n implies m = n. With this
assumption, 0 ≤ F (x) ≤ 1.

We claim that ∫ 1

0

F (x) dx =

∫ ∞
−∞

f(x) dx
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The left-hand side is∫ 1

0

∑
n

f(x+ n) dx =
∑
n

∫ 1

0

f(x+ n) dx =
∑
n

∫ n+1

n

f(x) dx

by replacing x by x− n. And then this is indeed
∫∞
−∞ f(x) dx.

Thus,
1 <

∫ ∞
−∞

f(x) dx =

∫ 1

0

F (x) dx ≤ 1

Impossible. Thus, there are x 6= y ∈ E with x− y ∈ Z. ///

Remark: It might appear that we needed to find a subset [0, 1]
of R whose translates by Z fill out R with overlaps of measure 0.
Although the argument above took advantage of this possibility,
it was unnecessary, and potentially misleading. This is clarified
below.
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Remark: Without prior experience, it may be hard to believe
that the measure of a set is the sup of the compacts contained in
it, since the set E = [0, 1] − (Q ∩ [0, 1]) obtained by removing all
rational numbers from the unit interval [0, 1], which has measure
1, might appear to contain no compacts of positive measure.

However, E does have compact subsets with measures arbitrarily
close to 1. For example, enumerate the rationals in the interval as
rn with n = 1, 2, . . ., and for j = 1, 2, . . . consider the compact sets

Cj = [0, 1] −
(

[0, 1] ∩ (rn −
1

(n+ j)!
, rn +

1

(n+ j)!
)
)

inside E. Certainly

measCj ≥ 1 −
( 1

(1 + j)!
+

1

(2 + j)!
+ . . .

)
−→ 1
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Proof of Fujisaki: Haar measure on A = Ak and Haar measure on
the (topological group) quotient A/k are inter-related by∫

A
f(x) dx =

∫
A/k

∑
γ∈k

f(γ + x) dx

Normalize the measure on A so that, mediated by this relation,
A/k has measure 1.

We have the Minkowski-like claim, a measure-theory pigeon-hole
principle, that a compact subset C of A with measure greater than
1 cannot inject to the quotient A/k. Suppose, to the contrary,
that C injects to the quotient. With f the characteristic function
of C,

1 <

∫
A
f(x) dx =

∫
A/k

∑
γ∈k

f(γ + x) dx ≤
∫
A/k

1 dx = 1

with the last inequality by injectivity. Contradiction.
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For idele α, we will see later that the change-of-measure on A is
given conveniently by

meas (αE)

meas (E)
= |α| (for measurable E ⊂ A)

Given α ∈ J1, we will adjust α by k× to lie in a compact subset of
J1. Fix compact C ⊂ A with measure > 1.

The topology on J is strictly finer than the subspace topology with
J ⊂ A: the genuine topology is by imbedding J → A × A by
α→ (α, α−1).

For α ∈ J1, both αC and α−1C have measure > 1, neither
injects to the quotient k\A. So there are x 6= y in k so that
x+ αC = y + αC. Subtracting,

0 6= a = x− y ∈ α(C − C) ∩ k

That is,
a · α−1 ∈ C − C
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Likewise, there is 0 6= b ∈ α−1(C−C)∩k, and b ·α ∈ C−C. There
is an obvious constraint

ab = (a ·α−1)(b ·α) ∈ (C−C)2∩k× = compact ∩ discrete = finite

Let Ξ = (C − C)2 ∩ k× be this finite set. Paraphrasing: given
α ∈ J1, there are a ∈ k× and ξ ∈ Ξ (ξ = ab above) such that
(a · α−1, (a · α−1)−1) ∈ (C − C)× ξ−1(C − C).

That is, α−1 can be adjusted by a ∈ k× to be in the compact
C − C, and, simultaneously, for one of the finitely-many ξ ∈ Ξ,
(a · α−1)−1 ∈ ξ−1 · (C − C).

In the topology on J, for each ξ ∈ Ξ,(
(C − C)× ξ−1(C − C)

)
∩ J = compact in J

The continuous image in J/k× of each of these finitely-many
compacts is compact. Their union covers the closed subset J1/k×,
so the latter is compact. ///
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Proof of finiteness of class number: Let i be the ideal map from
ideles to non-zero fractional ideals of the integers o of k. That is,

i(α) =
∏
v<∞

pordvα
v (for α ∈ J)

where pv is the prime ideal in o attached to the place v. Certainly
the subgroup J1 of J still surjects to the group of non-zero
fractional ideals. The kernel in J of the ideal map is

G =
∏
v|∞

k×v ×
∏
v<∞

o×v

and the kernel on J1 is G1 = G ∩ J1. The principal ideals are
the image i(k×). The map of J1 to the ideal class group factors
through the idele class group J1/k×, noting as usual that the
product formula implies that k× ⊂ J1.



Garrett 12-09-2011 9

G1 is open in J1, so its image K in the quotient J1/k× is open,
since quotient maps are open. The cosets of K cover J1/k×, and
by compactness there is a finite subcover. Thus, J1/k×K is finite,
and this finite group is the ideal class group. ///

A continuation proves the units theorem!

Since K is open, its cosets are open. Thus, K is closed. Since
J1/k× is Hausdorff and compact, K is compact. That is, we have
compactness of

K = (G1 · k×)/k× ≈ G1/(k× ∩G1) = G1/o×

with the global units o× imbedded on the diagonal.
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Since
∏
v<∞ o×v is compact, its image U under the continuous map

to G1/o× is compact. By Hausdorff-ness, the image U is closed.
Thus, we can take a further (Hausdorff) quotient by U ,

G1/(U · o×) = compact

With k1∞ = {α ∈
∏
v|∞ k×v :

∏
v |αv|v = 1},

k1∞/o
× ≈ G1/(U · o×) = (compact)

This compactness is essentially the units theorem! (See below...)
///

Remark: To compare with the classical formulation, one wants
the accompanying result that a discrete subgroup L of Rn with
Rn/L is compact is a free Z-module on n generators.
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Generalized ideal class numbers:

The class number above is the absolute class number.

An element α ∈ k is totally positive when σ(α) > 0 for every real
imbedding σ : k → R. For example, 2 +

√
2 is totally positive,

while 1 +
√

2 is not.

The narrow class number is ideals modulo principal ideals
generated by totally positive elements.

Congruence conditions can be imposed at finite places: given
an ideal a, we can form an ideal class group of ideals modulo
principal ideals possessing generators α = 1 mod a, for example.

Positivity conditions can be combined with congruence conditions:
generalized ideal class groups are quotients of (fractional) ideals by
principal ideals meeting the positivity and congruence constraints.
The ideal class groups corresponding to conditions α = 1 mod a
are called ray class groups.
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Proposition: Generalized ideal class groups are presentable
as idele class groups, specifically, as quotients of J1/k× by open
subgroups. [Proof later]

Corollary/Theorem: Generalized ideal class groups are finite.

Proof: First, note that an open subgroup of a topological group
is also closed, because it the complement of the union of its cosets
not containing the identity.

For U be an open subgroup of a compact abelian topological group
K (such as J1/k×), K/U is finite, because the cover of K by
(disjoint!) cosets of U has a finite subcover. Thus, K/U is finite.
It is Hausdorff because U is also closed. ///

Remark: The ray class groups with total-positivity thrown in are
visibly cofinal in the collection of all generalized ideal class groups.
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Generalized units:

Let S be a finite collection of places of k, including all
archimedean places. The S-integers oS in k are

oS = k ∩
(∏
v∈S

kv ×
∏
v 6∈S

ov

)
= {α ∈ k : α is v-integral for v 6∈ S}

The group of S-units is o×S = k× ∩
(∏

v∈S k
×
v ×

∏
v 6∈S o

×
v

)
Theorem: (Generalized Units Theorem) o×S modulo roots of unity
is free of rank |S| − 1.

Proof: As in the proof of the classical Units Theorem, let
G =

∏
v∈S k

×
v ×

∏
v 6∈S o

×
v ⊂ J, and G1 = J1 ∩G. G1 is open.

Quotient maps are open maps, so G1/(k× ∩ G1) is open in J1/k×.
By compactness of J1/k×, G1/(k× ∩ G1) is of finite index. Since
it is open, it is also closed. Closed subsets of compact Hausdorff
spaces are compact, so G1/(k× ∩G1) = G1/o×S is compact.
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To treat the non-archimedean places in S, proceed slightly
differently than for the classic units theorem: let S∞ = {v|∞},
So the non-archimedean places in S, and for α ∈ J

L(α) = {log |αv|v : v ∈ S∞} ⊕ {ordvαv : v ∈ So} ∈ R|S∞| ⊕ Z|So|

The image L(G1) is

L(G1) = {{xv} ∈ R|S∞| ⊕ Z|So| :
∑
v

xv = 0}
From

G1

��

L // L(G1)
⊂

��

R|S∞| ⊕ Z|So|

G1/o×S
// L(G1)/L(o×S )

L(G1)/L(o×S ) is compact. Classification of discrete subgroups Γ of
groups Rm ⊕ Zn with compact quotients (Rm ⊕ Zn)/Γ gives the
result. ///
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The numerous remaining details:

Apart from generalities about Haar measure and subgroups of
Rm ⊕ Zn, ... to know that the torsion subgroups of o× and o×S
consist only of roots of unity, we need to know that if α ∈ k has
|α|v = 1 for all places v ≤ ∞, then α is a root of unity. In fact, a
sharper result is easy to prove:

Theorem: (Kronecker) For α ∈ o, if |α|v = 1 for all places v|∞
then α is a root of unity.

Remark: The condition |α|v ≤ 1 at all v < ∞ for α ∈ k implies
α ∈ o, since o is Dedekind.

Proof: Of course: αn = 1 gives 1 = |1|v = |αn|v = |α|nv . Since | ∗ |v
is non-negative-real-valued, |α|v = 1.

The converse is the non-trivial part...
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For |α|v = 1 at all archimedean places, the same is true of its
Galois conjugates, since Galois permutes archimedean imbeddings
among themselves. Thus, the elementary symmetric functions of α
and its conjugates are bounded. Also |αn|v = 1 for all n ∈ Z, and
the degree of αn over Q is no greater than that of α.

The coefficients of the minimal polynomial of α over Q are
rational integers. The same is true of αn for n ≥ 1. There
are only finitely-many monic polynomials in Z[x] with bounded
coefficients and of bounded degree. Thus, for some m < n,
necessarily αm = αn. ///

Remark: There is no analogous result replacing S∞ by all places
lying over a rational prime p, because there are infinitely-many
rational integers meeting the conditions of integrality and being
p-adically bounded.

Next: About Haar measure... and other missing details...


