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Fujisaki’s Compactness Lemma and corollaries:
finiteness of class number, Dirichlet units theorem

Fujisaki’s lemma: J'/k* is compact.
(via a measure-theory pigeon-hole principle)
Corollary: The class number of o is finite.

Let k ®p R =~ R™ x C™. That is, k has 1 real archimedean
completions, and ry complex archimedean completions. The global
degree is the sum of the local degrees: [k : Q] = 71 + 279.

Corollary: (Dirichlet’s Units Theorem) The unit group 0*,
modulo roots of unity, is a free Z-module of rank r; +ry — 1.

Remark: It is amazing that these first two big theorems of
general number theory, finiteness of class number, and the Units
Theorem, follow from a compactness assertion.
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Measure-theory pigeon-hole principle: On R or R"”, these
ideas were highly developed by Minkowski 100 years ago. The
adelic version should be viewed as the obvious extension of this.

Proposition: A set £ C R with measure > 1 contains x # y such
that r —y € Z.

Proof: Let f be the characteristic function of E, and

F(z) = ) flz+mn)
nez
If no two points of E differ by an integer, then f(x + m) # 0
and f(x + n) # 0 for integers m,n implies m = n. With this
assumption, 0 < F(z) < 1.

We claim that ,
/ F(x)dz = / f(z)dx
0 —00
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The left-hand side is

/Olzn:f(x+n)da: = En:/()lf(m+n)dx = zn:/nnﬂf(x)dﬂf

by replacing z by # —n. And then this is indeed [~ f(z)dz.
Thus,

1
0

1 < /_O:Of(x)da: = / F(r)dx < 1

Impossible. Thus, there are x # y € E with  — y € Z. ///

Remark: It might appear that we needed to find a subset [0, 1]
of R whose translates by Z fill out R with overlaps of measure 0.
Although the argument above took advantage of this possibility,
it was unnecessary, and potentially misleading. This is clarified
below.
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Remark: Without prior experience, it may be hard to believe
that the measure of a set is the sup of the compacts contained in
it, since the set £ = [0,1] — (Q N [0, 1]) obtained by removing all
rational numbers from the unit interval [0, 1], which has measure
1, might appear to contain no compacts of positive measure.

However, E/ does have compact subsets with measures arbitrarily
close to 1. For example, enumerate the rationals in the interval as

rn, withn =1,2,..., and for j = 1,2,... consider the compact sets
;= 10,1 = (.10 : b))
= ) T ) 'm — 77— "n o\
! (n+j)! (n+j)!

inside E. Certainly

1 1
TETRECE]

measC; > 1 — (
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Proof of Fujisaki: Haar measure on A = A and Haar measure on
the (topological group) quotient A /k are inter-related by

/Af(fv /A/kaer:v

Normalize the measure on A so that, mediated by this relation,
A/k has measure 1.

We have the Minkowski-like claim, a measure-theory pigeon-hole
principle, that a compact subset C' of A with measure greater than
1 cannot inject to the quotient A/k. Suppose, to the contrary,
that C' injects to the quotient. With f the characteristic function
of C,

1</Af(:c)da::/A/ka(fy+x)da:§/ ldx =1

~ek Ak

with the last inequality by injectivity. Contradiction.
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For idele o, we will see later that the change-of-measure on A is
given conveniently by
meas (o F)

mcas () = |a (for measurable £ C A)

Given a € J', we will adjust a by k* to lie in a compact subset of
J'. Fix compact C' C A with measure > 1.

The topology on J is strictly finer than the subspace topology with
J C A: the genuine topology is by imbedding J — A x A by
a— (a,a™1).

For « € J', both aC and o~ !C have measure > 1, neither
injects to the quotient k\A. So there are x # y in k so that
xr + aC =y + aC. Subtracting,

0#a=x—y € a(C-C)Nk

That is,
a-a ' e C-C
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Likewise, there is 0 #b € a~1(C —C)Nk, and b-a € C —C. There
is an obvious constraint

ab= (a-a 1) (b-a) € (C—C)*NEk* = compact N discrete = finite

Let & = (C — C)% N k* be this finite set. Paraphrasing: given
a € J!, there are a € kX and £ € Z (£ = ab above) such that
(a-a (a-a”t)™) € (C-C)xeHCO-O).

That is, ! can be adjusted by a € k* to be in the compact
C' — C, and, simultaneously, for one of the finitely-many &£ € =,

(a-a")"leg . (C-0).
In the topology on J, for each £ € =,
((C’ —C)x e - C)) N J = compact in J

The continuous image in J/k* of each of these finitely-many
compacts is compact. Their union covers the closed subset J'/k*,
so the latter is compact. ///
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Proof of finiteness of class number: Let ¢ be the ideal map from
ideles to non-zero fractional ideals of the integers o of k. That is,

i(a) = H pordve (for v € J)

V<O

where p,, is the prime ideal in o attached to the place v. Certainly
the subgroup J* of J still surjects to the group of non-zero
fractional ideals. The kernel in J of the ideal map is

G = kX x 0~

v v

vloo V<00

and the kernel on J! is G! = G N J!'. The principal ideals are
the image i(k>). The map of J! to the ideal class group factors
through the idele class group J!/k*, noting as usual that the
product formula implies that k> C J!.
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G is open in J!, so its image K in the quotient J! /k* is open,
since quotient maps are open. The cosets of K cover J!/k*, and
by compactness there is a finite subcover. Thus, J!/k* K is finite,
and this finite group is the ideal class group. ///

A continuation proves the units theorem!

Since K is open, its cosets are open. Thus, K is closed. Since
J1/k* is Hausdorff and compact, K is compact. That is, we have
compactness of

K = (GFk)/k ~ GY(E*NGY) = G0

with the global units 0™ imbedded on the diagonal.
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Since [, oo 0.¢ is compact, its image U under the continuous map

to G1 /0% is compact. By Hausdorff-ness, the image U is closed.
Thus, we can take a further (Hausdorff) quotient by U,

G'/(U -0*) = compact
With k1, = {a € [l kot 11, lawle = 1},

kl /Jo* ~ G'/(U-0*) = (compact)

This compactness is essentially the units theorem! (See below...)

///

Remark: To compare with the classical formulation, one wants
the accompanying result that a discrete subgroup L of R" with
R™/L is compact is a free Z-module on n generators.
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Generalized ideal class numbers:
The class number above is the absolute class number.

An element o € k is totally positive when o(«) > 0 for every real
imbedding o : k — R. For example, 2 + v/2 is totally positive,
while 1 + /2 is not.

The narrow class number is ideals modulo principal ideals
generated by totally positive elements.

Congruence conditions can be imposed at finite places: given
an ideal a, we can form an ideal class group of ideals modulo
principal ideals possessing generators a = 1 mod a, for example.

Positivity conditions can be combined with congruence conditions:
generalized ideal class groups are quotients of (fractional) ideals by
principal ideals meeting the positivity and congruence constraints.
The ideal class groups corresponding to conditions &« = 1 mod a
are called ray class groups.
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Proposition: Generalized ideal class groups are presentable
as idele class groups, specifically, as quotients of J!/k* by open
subgroups. [Proof later]

Corollary /Theorem: Generalized ideal class groups are finite.

Proof: First, note that an open subgroup of a topological group
is also closed, because it the complement of the union of its cosets
not containing the identity.

For U be an open subgroup of a compact abelian topological group
K (such as J'/k>*), K/U is finite, because the cover of K by
(disjoint!) cosets of U has a finite subcover. Thus, K/U is finite.
It is Hausdorff because U is also closed. ///

Remark: The ray class groups with total-positivity thrown in are
visibly cofinal in the collection of all generalized ideal class groups.
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Generalized units:

Let S be a finite collection of places of k, including all
archimedean places. The S-integers og in k are

05 = kﬂ(Hkvx H%) = {a € k: « is v-integral for v € S}
veS ve€S

The group of S-units is 05 = k* N ([],cq kX X [logs 0)

Theorem: (Generalized Units Theorem) 05 modulo roots of unity
is free of rank |S| — 1.

Proof: As in the proof of the classical Units Theorem, let
G =1lesks x1l,gs0s CJ, and G =J'NnG. G is open.

Quotient maps are open maps, so G1/(k* N G1) is open in J'/k*.
By compactness of J'/k*, G1/(k* N G') is of finite index. Since
it is open, it is also closed. Closed subsets of compact Hausdorff
spaces are compact, so G'/(k* NG') = G /o is compact.
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To treat the non-archimedean places in S, proceed slightly
differently than for the classic units theorem: let So, = {v|oco},
S, the non-archimedean places in S, and for a € J

L(a) = {log|ay|y : v € S} @ {ordyay, : v € S,} € RIS g 7150]
The image L(G?!) is
L(G) = {{z} eRE=I @20y 2y = 0}

L

From
C

oL L(GY)

| |

G'/og — L(G")/L(og)

R|Sc>o| EB Z|So|

L(GY)/L(0%) is compact. Classification of discrete subgroups I' of
groups R @ Z™ with compact quotients (R™ @ Z")/T" gives the

result. ///
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The numerous remaining details:

Apart from generalities about Haar measure and subgroups of
R™ @ Z", ... to know that the torsion subgroups of 0 and o3
consist only of roots of unity, we need to know that if a € k has
|a|, = 1 for all places v < oo, then « is a root of unity. In fact, a
sharper result is easy to prove:

Theorem: (Kronecker) For o € o, if |a|, = 1 for all places v|oco
then «a is a root of unity.

Remark: The condition |a|, < 1 at all v < oo for a € k implies
« € o0, since o is Dedekind.

Proof: Of course: a™ =1 gives 1 = |1, = |a™|, = |a]}}. Since | * |,
is non-negative-real-valued, ||, = 1.

The converse is the non-trivial part...
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For |a|, = 1 at all archimedean places, the same is true of its
Galois conjugates, since Galois permutes archimedean imbeddings
among themselves. Thus, the elementary symmetric functions of «
and its conjugates are bounded. Also |a"|, = 1 for all n € Z, and
the degree of o™ over QQ is no greater than that of .

The coefficients of the minimal polynomial of o over QQ are
rational integers. The same is true of o™ for n > 1. There

are only finitely-many monic polynomials in Z[x] with bounded
coefficients and of bounded degree. Thus, for some m < n,
necessarily o™ = a”. ///

Remark: There is no analogous result replacing S, by all places
lying over a rational prime p, because there are infinitely-many
rational integers meeting the conditions of integrality and being
p-adically bounded.

Next: About Haar measure... and other missing details...




