Fujisaki's Compactness Lemma and corollaries:

finiteness of class number, Dirichlet units theorem

Fujisaki's lemma: \mathbb{J}^1/k^{\times} is compact.

Corollary: The class number of \mathfrak{o} is finite.

Let $k \otimes_{\mathbb{Q}} \mathbb{R} \approx \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$. That is, k has r_1 real archimedean completions, and r_2 complex archimedean completions. The global degree is the sum of the local degrees: $[k : \mathbb{Q}] = r_1 + 2r_2$.

Corollary: (Dirichlet's Units Theorem) The unit group \mathfrak{o}^{\times} , modulo roots of unity, is a free Z-module of rank $r_1 + r_2 - 1$.

Remark: It is amazing that these first two big theorems of general number theory, finiteness of class number, and the Units Theorem, follow from a *compactness* assertion.

Proof: Haar measure on $A = A_k$ and Haar measure on the (topological group) quotient A/k are inter-related by

$$\int_{\mathbb{A}} f(x) \, dx = \int_{\mathbb{A}/k} \sum_{\gamma \in k} f(\gamma + x) \, dx$$

Normalize the measure on A so that, mediated by this relation, A/k has measure 1.

We have the Minkowski-like claim, a measure-theory *pigeon-hole principle*, that a compact subset C of A with measure greater than 1 cannot *inject* to the quotient A/k. Suppose, to the contrary, that C injects to the quotient. With f the characteristic function of C,

$$1 < \int_{\mathbb{A}} f(x) \, dx = \int_{\mathbb{A}/k} \sum_{\gamma \in k} f(\gamma + x) \, dx \le \int_{\mathbb{A}/k} 1 \, dx = 1$$

with the last inequality by injectivity. Contradiction.

For *idele* α , we will see later that the change-of-measure on A is given conveniently by

$$\frac{\operatorname{meas}\left(\alpha E\right)}{\operatorname{meas}\left(E\right)} = |\alpha| \qquad (\text{for measurable } E \subset \mathbb{A})$$

Given $\alpha \in \mathbb{J}^1$, we will adjust α by k^{\times} to lie in a compact subset of \mathbb{J}^1 . Fix compact $C \subset \mathbb{A}$ with measure > 1.

The topology on \mathbb{J} is *strictly finer* than the subspace topology with $\mathbb{J} \subset \mathbb{A}$: the genuine topology is by imbedding $\mathbb{J} \to \mathbb{A} \times \mathbb{A}$ by $\alpha \to (\alpha, \alpha^{-1})$.

For $\alpha \in \mathbb{J}^1$, both αC and $\alpha^{-1}C$ have measure > 1, neither injects to the quotient $k \setminus A$. So there are $x \neq y$ in k so that $x + \alpha C = y + \alpha C$. Subtracting,

$$0 \neq a = x - y \in \alpha(C - C) \cap k$$

That is,

$$a \cdot \alpha^{-1} \in C - C$$

Likewise, there is $0 \neq b \in \alpha^{-1}(C-C) \cap k$, and $b \cdot \alpha \in C - C$. There is an obvious constraint

 $ab = (a \cdot \alpha)(b \cdot \alpha^{-1}) \in (C - C)^2 \cap k^{\times} = \text{compact} \cap \text{discrete} = \text{finite}$

Let $\Xi = (C - C)^2 \cap k^{\times}$ be this finite set. Paraphrasing: given $\alpha \in \mathbb{J}^1$, there are $a \in k^{\times}$ and $\xi \in \Xi$ ($\xi = ab$ above) such that $(a \cdot \alpha^{-1}, (a \cdot \alpha^{-1})^{-1}) \in (C - C) \times \xi^{-1}(C - C)$.

That is, α^{-1} can be adjusted by $a \in k^{\times}$ to be in the compact C - C, and, simultaneously, for one of the finitely-many $\xi \in \Xi$, $(a \cdot \alpha^{-1})^{-1} \in \xi \cdot (C - C)$.

In the topology on \mathbb{J} , for each $\xi \in \Xi$,

$$\left((C-C) \times \xi^{-1}(C-C) \right) \cap \mathbb{J} = \text{compact in } \mathbb{J}$$

The continuous image in $\mathbb{J}/k \times$ of each of these finitely-many compacts is compact. Their union covers the *closed* subset \mathbb{J}^1/k^{\times} , so the latter is compact. ///

Proof of finiteness of class number: Let i be the *ideal map* from ideles to non-zero fractional ideals of the integers \mathfrak{o} of k. That is,

$$i(\alpha) = \prod_{v < \infty} \mathfrak{p}_v^{\operatorname{ord}_v \alpha} \quad (\text{for } \alpha \in \mathbb{J})$$

where \mathfrak{p}_v is the prime ideal in \mathfrak{o} attached to the place v. Certainly the subgroup \mathbb{J}^1 of \mathbb{J} still surjects to the group of non-zero fractional ideals. The kernel in \mathbb{J} of the ideal map is

$$G = \prod_{v|\infty} k_v^{\times} \times \prod_{v<\infty} \mathfrak{o}_v^{\times}$$

and the kernel on \mathbb{J}^1 is $G^1 = G \cap J^1$. The principal ideals are the image $i(k^{\times})$. The map of \mathbb{J}^1 to the ideal class group factors through the idele class group \mathbb{J}^1/k^{\times} , noting as usual that the product formula implies that $k^{\times} \subset \mathbb{J}^1$.

Garrett 12-07-2011 6

 G^1 is open in \mathbb{J}^1 , so its image K in the quotient \mathbb{J}^1/k^{\times} is open, since quotient maps are open. The cosets of K cover \mathbb{J}^1/k^{\times} , and by compactness there is a finite subcover. Thus, $\mathbb{J}^1/k^{\times}K$ is finite, and this finite group is the ideal class group. ///

A continuation proves the units theorem!

Since K is open, its cosets are open. Thus, K is closed. Since \mathbb{J}^1/k^{\times} is Hausdorff and compact, K is compact. That is, we have compactness of

$$K = (G^1 \cdot k^{\times})/k^{\times} \approx G^1/(k^{\times} \cap G^1) = G^1/\mathfrak{o}^{\times}$$

with the global units \mathfrak{o}^{\times} imbedded on the diagonal.

Since $\prod_{v < \infty} \mathfrak{o}_v^{\times}$ is compact, its image U under the continuous map to $G^1/\mathfrak{o}^{\times}$ is compact. By Hausdorff-ness, the image U is closed. Thus, we can take a further (Hausdorff) quotient by U,

 $G^1/(U \cdot \mathfrak{o}^{\times}) = \text{compact}$

With $k_{\infty}^1 = \{ \alpha \in \prod_{v \mid \infty} k_v^{\times} : \prod_v |\alpha_v|_v = 1 \},\$

$$k_{\infty}^1/\mathfrak{o}^{\times} \approx G^1/(U \cdot \mathfrak{o}^{\times}) = (\text{compact})$$

This compactness is essentially the units theorem! (See below...) $/\!//$

Remark: To compare with the classical formulation, one wants the accompanying result that a *discrete* subgroup L of \mathbb{R}^n with \mathbb{R}^n/L is *compact* is a free \mathbb{Z} -module on n generators.

Generalized ideal class numbers:

The class number above is the *absolute* class number.

An element $\alpha \in k$ is totally positive when $\sigma(\alpha) > 0$ for every real imbedding $\sigma : k \to \mathbb{R}$. For example, $2 + \sqrt{2}$ is totally positive, while $1 + \sqrt{2}$ is not.

The *narrow* class number is ideals modulo principal ideals generated by *totally positive* elements.

Congruence conditions can be imposed at *finite* places: given an ideal \mathfrak{a} , we can form an ideal class group of ideals modulo principal ideals possessing generators $\alpha = 1 \mod \mathfrak{a}$, for example.

Positivity conditions can be combined with congruence conditions: generalized ideal class groups are quotients of (fractional) ideals by principal ideals meeting the positivity and congruence constraints. The ideal class groups corresponding to conditions $\alpha = 1 \mod \mathfrak{a}$ are called ray class groups.

Proposition: Generalized ideal class groups are presentable as *idele* class groups, specifically, as quotients of \mathbb{J}^1/k^{\times} by *open* subgroups. [Proof later]

Corollary/Theorem: Generalized ideal class groups are *finite*.

Proof: First, note that an *open* subgroup of a topological group is also *closed*, because it the *complement* of the union of its cosets *not* containing the identity.

For U be an open subgroup of a *compact* abelian topological group K (such as \mathbb{J}^1/k^{\times}), K/U is *finite*, because the cover of K by (disjoint!) cosets of U has a *finite* subcover. Thus, K/U is *finite*. It is Hausdorff because U is also *closed*. ///

Remark: The ray class groups with total-positivity thrown in are visibly *cofinal* in the collection of all generalized ideal class groups.

Generalized units:

Let S be a finite collection of places of k, including all archimedean places. The S-integers \mathfrak{o}_S in k are

$$\mathfrak{o}_S = k \cap \left(\prod_{v \in S} k_v \times \prod_{v \notin S} \mathfrak{o}_v\right) = \{\alpha \in k : \alpha \text{ is } v \text{-integral for } v \notin S\}$$

The group of S-units is $\mathfrak{o}_S^{\times} = k^{\times} \cap \left(\prod_{v \in S} k_v^{\times} \times \prod_{v \notin S} \mathfrak{o}_v^{\times}\right)$

Theorem: (Generalized Units Theorem) \mathfrak{o}_S^{\times} modulo roots of unity is free of rank |S| - 1.

[Proof...]