Approximation and classification [recap]...

Fujisaki's Compactness Lemma and corollaries:

finiteness of class number, Dirichlet units theorem
Classification of completions (often attributed to Ostrowski) : The topologically incomparable (non-discrete) norms on \mathbb{Q} are the usual \mathbb{R} norm and the p-adic \mathbb{Q}_{p} 's.
Corollary: Up to topological equivalence, every norm on a number field is either \mathfrak{p}-adic or arises from \mathbb{R} and \mathbb{C}.

Additive (Weak) Approximation: (Artin-Whaples, Lang) Let v_{1}, \ldots, v_{n} index pairwise topologically inequivalent norms on a field k. The diagonal copy of k in $\prod_{j} k_{v_{j}}$ is dense.
Remark: When the norms are p-adic, arising from prime ideals in a Dedekind ring \mathfrak{o} inside k, this is Sun-Ze's theorem.

The ring of adeles $\mathbb{A}=\mathbb{A}_{k}$ of k is

$$
\mathbb{A}=\mathbb{A}_{k}=\operatorname{colim}_{S}\left(\prod_{v \in S} k_{v} \times \prod_{v \notin S} \mathfrak{o}_{v}\right)
$$

The group of ideles $\mathbb{J}=\mathbb{J}_{k}$ is

$$
\mathbb{J}=\mathbb{J}_{k}=\operatorname{colim}_{S}\left(\prod_{v \in S} k_{v}^{\times} \times \prod_{v \notin S} \mathfrak{o}_{v}^{\times}\right)
$$

Claim: Imbedding k diagonally in \mathbb{A}_{k}, by

$$
\alpha \longrightarrow(\ldots, \alpha, \ldots) \in \mathbb{A}_{k}
$$

the image of k is discrete, and the quotient \mathbb{A} / k is compact. ///
The idele norm is

$$
|x|=\prod_{v \leq \infty}\left|x_{v}\right|_{v}
$$

Let $\mathbb{J}^{1}=\{x \in \mathbb{J}:|x|=1\}$. The product formula shows $k^{\times} \subset \mathbb{J}^{1}$.

Fujisaki's lemma: $\mathbb{J}^{1} / k^{\times}$is compact.
Corollary: The class number of \mathfrak{o} is finite.
Let $k \otimes_{\mathbb{Q}} \mathbb{R} \approx \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}$. That is, k has r_{1} real archimedean completions, and r_{2} complex archimedean completions. These r_{1}, r_{2} are standard references.
Corollary: (Dirichlet's Units Theorem) The unit group \mathfrak{o}^{\times}, modulo torsion, is a free \mathbb{Z}-module of rank $r_{1}+r_{2}-1$.

Remark: It is striking that the first two big theorems of general number theory, finiteness of class number, and the Units Theorem, follow from an innocuous compactness assertion.

Also, note the contrast to additive approximation, which is essentially a reformulation of elementary things akin to Sun-Ze's theorem, and has no breath-taking corollaries.

Interlude: Pell's equation

Fermat considered the simplest non-trivial case of the Units Theorem, namely, real quadratic fields k, with $r_{1}=2$ and $r_{2}=0$. Note

$$
N_{\mathbb{Q}}^{k}(x+y \sqrt{D})=x^{2}-D y^{2} \quad(0<D \in \mathbb{Z} \text { squarefree })
$$

To solve Pell's equation $x^{2}-D y^{2}=1$ with $x, y \in \mathbb{Z}$ is to find units in $\mathbb{Z}[\sqrt{D}]^{\times}$with Galois norms 1. These are of index at most 2 in \mathfrak{o}^{\times}.

Multiplicativity of the Galois norm also shows that solutions of Pell's equation form a group. This can also be verified directly and cryptically: the secret multiplication

$$
(x+y \sqrt{D}) \cdot(z+w \sqrt{D})=(x z-D y w)+(x w+y z) \sqrt{D}
$$

suggests showing by elementary algebra that with $x^{2}-D y^{2}=1$ and $z^{2}-D w^{2}=1$,

$$
(x z-D y w)^{2}-D(x w+y z)^{2}=\ldots=1
$$

Rational solutions $x, y \in \mathbb{Q}$ to $x^{2}-D y^{2}=1$ are elementary to find. Namely, because $x^{2}-D y^{2}=1$ is a quadratic curve with at least one rational point $(1,0)$, the straight line $y=-t(x-1)$ through $(1,0)$ and $(0, t)$ meets the curve at a rational point for rational t : replacing y by $-t(x-1)$ in the quadratic,

$$
x^{2}\left(1-D t^{2}\right)+2 D t^{2} x-\left(1+D t^{2}\right)=0
$$

By arrangement, $x=1$ is a solution, and

$$
x^{2}+\frac{2 D t^{2}}{1-D t^{2}} x-\frac{1+D t^{2}}{1-D t^{2}}=(x-1)\left(x-\frac{D t^{2}+1}{D t^{2}-1}\right)
$$

Thus, $x=\left(D t^{2}+1\right) /\left(D t^{2}-1\right)$ and $y=t /\left(D t^{2}-1\right)$ are rational solutions to Pell's equation. Integer solutions are harder to find.

A sort of upper bound on integer solutions to $x^{2}-D y^{2}=1$ follows from topological considerations: for example, the collection of positive-integer solutions x, y is a free group on either 1 or 0 generators.
Proof: Imbed $\mathbb{Z}[\sqrt{D}] \rightarrow \mathbb{R}^{2}$ by $x+y \sqrt{D} \rightarrow(x+y \sqrt{D}, x-y \sqrt{D})$. The image of \mathfrak{o} is discrete. The units $x+y \sqrt{D}$ with $0<x, y \in \mathbb{Z}$ lie on the hyperbola $u \cdot v=1$, and are discrete there. Map the first-quadrant piece of that hyperbola to \mathbb{R} by $(u, 1 / u) \rightarrow \log u$. The units map to a discrete subgroup of \mathbb{R}.

The discrete subgroups Γ of \mathbb{R} are the trivial $\{0\}$ and free groups on a single generator. This may be intuitively plausible, but also is readily provable, as follows.

Claim: The discrete subgroups Γ of \mathbb{R} are $\{0\}$ and free groups on a single generator.
Proof: For $\Gamma \neq\{0\}$, since it is closed under additive inverses, it contains positive elements. In the case that there is a least positive element γ_{o}, claim that $\Gamma=\mathbb{Z} \cdot$ gam $_{o}$. Indeed, given $0<\gamma \in \Gamma$, by the archimedean property of \mathbb{R}, there is an integer ℓ such that $\ell \cdot \gamma_{o} \leq \gamma<(\ell+1) \cdot \gamma_{o}$. Either $\gamma=\ell \cdot \gamma_{o}$ and $\gamma \in \mathbb{Z} \cdot \gamma_{o}$, or else $0<\gamma-\ell \cdot \gamma_{o}<\gamma_{o}$, contradiction.
Now suppose that there are $\gamma_{1}>\gamma_{2}>\ldots>0$ in Γ, and show that $\Gamma=\mathbb{R}$. Since Γ is closed (!), the infimum γ_{o} of the γ_{j} is in Γ. Since Γ is a group, $0<\gamma_{j}-\gamma_{o} \in \Gamma$. Replacing γ_{j} by $\gamma_{j}-\gamma_{o}$, we can suppose that $\gamma_{j} \rightarrow 0$. The collection of integer multiples of $\gamma_{j}>0$ contains elements within distance γ_{j} of any real number, by the archimedean property of \mathbb{R}. Since $\gamma_{j} \rightarrow 0$, every real number is in the closure of Γ. Since Γ is closed (!), $\Gamma=\mathbb{R}$, which is not discrete.

There are two classical proof mechanisms for existence of solutions to Pell's equation, one by a pigeon-hole principle argument, the other by continued fractions. Neither obviously generalizes, although the measure-theory in the proof of Fujisaki's lemma should be construed as a vastly-more-powerful version of a pigeonhole principle.

The proof of Fujisaki's lemma uses existence and essential uniqueness of Haar measure on \mathbb{A}, that is, a translation-invariant positive regular Borel measure. In fact, we will not integrate anything, but will only use some structural properties of Haar measure...

The simplicity and brevity of the proof, and the easy derivation of the two big corollaries, are powerful advertisements for the helpfulness of Haar measure. We discuss Haar measure afterward.

