Product formula, approximation, ... [cont'd]

For function fields $k=\mathbb{F}_{q}(x)$, for p-adic v associated to nonzero prime $\mathfrak{p}=\varpi \mathbb{F}_{q}[x]$, the same sort of definition of norm is appropriate:

$$
|f|_{v}=N \mathfrak{p}^{-\operatorname{ord}_{\mathfrak{p}} f}=q^{-\operatorname{deg} \varpi \cdot \operatorname{ord}_{\mathfrak{p}} f}
$$

The infinite norm $|*|_{\infty}$ corresponding to the prime ideal \mathfrak{q} generated by $1 / x$ in $\mathfrak{o}_{\infty}=\mathbb{F}_{q}[1 / x]$, is

$$
|f|_{v}=q^{+\operatorname{deg} f}=\left|\mathfrak{o}_{\infty} / \mathfrak{q}\right|^{-\operatorname{ord}_{\mathfrak{q}} f}
$$

since $a_{n} x^{n}+\ldots+a_{o}=\left(\frac{1}{x}\right)^{-n}\left(a_{n}+\ldots+a_{o}\left(\frac{1}{x}\right)^{n}\right)$

Theorem: (Product formula for number fields)
$\prod_{\text {places } w \text { of } k}|x|_{w}=\prod_{\text {places } v \text { of } \mathbb{Q}} \prod_{w \mid v}\left|N_{\mathbb{Q}_{v}}^{k_{w}}(x)\right|_{v}=1 \quad\left(\right.$ for $\left.x \in k^{\times}\right)$
because, for K / k an extension of number fields, the global norm is the product of the local norms:

$$
\prod_{w \mid v} N_{k_{v}}^{K_{w}}(x)=N_{k}^{K}(x) \quad(\text { for } x \in K, \text { abs value } v \text { of } k)
$$

Corollaries of proof: The global degree is the sum of the local degrees:

$$
\sum_{w \mid v}\left[K_{w}: k_{v}\right]=[K: k]
$$

The global trace is the sum of the local traces:

$$
\operatorname{tr}_{k}^{K}(x)=\operatorname{tr}_{k_{v}}^{K_{w}}(x) \quad(\text { for } x \in K)
$$

Classification of completions (often attributed to Ostrowski) : The topologically inequivalent (non-discrete) norms on \mathbb{Q} are the usual \mathbb{R} norm and the p-adic \mathbb{Q}_{p} 's.
Proof: Let $|*|$ be a norm on \mathbb{Q}. It turns out (intelligibly, if we guess the answer) that the watershed is whether $|*|$ is bounded or unbounded on \mathbb{Z}. That is, the statement of the theorem could be sharpened to say: norms on \mathbb{Q} bounded on \mathbb{Z} are topologically equivalent to p-adic norms, and norms unbounded on \mathbb{Z} are topologically equivalent to the norm from \mathbb{R}.

For $|*|$ bounded on \mathbb{Z}, in fact $|x| \leq 1$ for $x \in \mathbb{Z}$, since otherwise $\left|x^{n}\right|=|x|^{n} \rightarrow+\infty$ as $n \rightarrow+\infty$.
To say that $|*|$ is bounded on \mathbb{Z}, but not discrete, implies $|x|<1$ for some $x \in \mathbb{Z}$, since otherwise $d(x, y)=|x-y|=1$ for $x \neq y$, giving the discrete topology.

Then, by unique factorization, $|p|<1$ for some prime number p. If there were a second prime q with $|q|<1$, with $a, b \in \mathbb{Z}$ such that $a p^{m}+b q^{n}=1$ for positive integers m, n, then

$$
1=|1|=\left|a p^{m}+b q^{n}\right| \leq|a| \cdot|p|^{m}+|b| \cdot|q|^{n} \leq|p|^{m}+|q|^{n}
$$

This is impossible if both $|p|<1$ and $|q|<1$, by taking m, n large. Thus, for $|*|$ bounded on \mathbb{Z}, there is a unique prime p such that $|p|<1$. Up to normalization, such a norm is the p-adic norm.
Next, claim that if $|a| \leq 1$ for some $1<a \in \mathbb{Z}$, then $|*|$ is bounded on \mathbb{Z}. Given $1<b \in \mathbb{Z}$, write b^{n} in an a-ary expansion

$$
b^{n}=c_{o}+c_{1} a+c_{2} a^{2}+\ldots+c_{\ell} a^{\ell} \quad\left(\text { with } 0 \leq c_{i}<a\right)
$$

and apply the triangle inequality,

$$
|b|^{n} \leq(\ell+1) \cdot \underbrace{(1+\ldots+1)}_{a} \leq\left(n \log _{a} b+1\right) \cdot a
$$

Taking $n^{t h}$ roots and letting $n \rightarrow+\infty$ gives $|b| \leq 1$, and $|*|$ is bounded on \mathbb{Z}.

The remaining scenario is $|a| \geq 1$ for $a \in \mathbb{Z}$. For $a>1, b>1$, the a-ary expansion

$$
b^{n}=c_{o}+c_{1} a+c_{2} a^{2}+\ldots+c_{\ell} a^{\ell} \quad\left(\text { with } 0 \leq c_{i}<a\right)
$$

with $|a| \geq 1$ gives

$$
|b|^{n} \leq(\ell+1) \cdot \underbrace{(1+\ldots+1)}_{a} \cdot|a|^{\ell} \leq\left(n \log _{a} b+1\right) \cdot a \cdot|a|^{n \log _{a} b+1}
$$

Taking $n^{t h}$ roots and letting $n \rightarrow+\infty$ gives $|b| \leq|a|^{\log _{a} b}$. Similarly, $|a| \leq|b|^{\log _{b} a}$. Since $|*|$ is not bounded on \mathbb{Z}, there is $C>1$ such that $|a|=C^{\log |a|}$ for all $0 \neq a \in \mathbb{Z}$. Up to normalization, this is the usual absolute value for \mathbb{R}.

Remark: A similar argument classifies non-discrete norms on $\mathbb{F}_{q}(x)$ up to topological equivalence.

Corollary: Up to topological equivalence, every norm on a number field is either \mathfrak{p}-adic or arises from \mathbb{R} and \mathbb{C}.

Remark: Note that the product-formula norms K_{w} on an extension K of k are not the extensions of the norm k_{v} with $w \mid v$. This is visible on the bottom completion k_{v} :

$$
|x|_{w}=\left|N_{k_{v}}^{K_{w}}(x)\right|_{v}=\left|x^{[K: k]}\right|_{v}=|x|_{v}^{[K: k]} \quad\left(\text { for } x \in k_{v}\right)
$$

Indeed, on other occasions, the extension is the appropriate object, instead of composing with Galois norm.

Context should clarify what norm is appropriate. Typically, multiplicative computations/discussions use the product-formula norm, while genuine metric computations/discussions use the extension.

Additive (Weak) Approximation: (Artin-Whaples, Lang) Let v_{1}, \ldots, v_{n} index pairwise topologically inequivalent norms on a field k. Given $x_{1}, \ldots, x_{n} \in k$ and $\varepsilon>0$, there exists $x \in k$ such that

$$
\left|x-x_{j}\right|_{v_{j}}<\varepsilon \quad(\text { for } j=1, \ldots, n)
$$

Remark: When the norms are p-adic, arising from prime ideals in a Dedekind ring \mathfrak{o} inside k, this is Sun-Ze's theorem.
Proof: First, we need to refine the notion of topological inequivalence, to exclude the possibility that the $|*|_{1}$ topology τ_{1} is strictly finer than the $|*|_{2}$-topology τ_{2}. This uses the same proof mechanism as the earlier result showing that with two norms giving the same topology, each is a power of the other.

Suppose that the identity $\left(k, \tau_{1}\right) \rightarrow\left(k, \tau_{2}\right)$ is continuous. Then $|x|_{1}<1$ implies $x^{n} \rightarrow 0$ in the $|*|_{1}$ topology. Thus, $x^{n} \rightarrow 0$ in the $|*|_{2}$ topology, so $|x|_{2}<1$. Similarly, if $|x|_{1}>1$, then $\left|x^{-1}\right|_{1}<1$, so $|x|_{2}>1$.
Fix y with $|y|_{1}>1$. Given $|x|_{1} \geq 1$, there is $t \in \mathbb{R}$ such that $|x|_{1}=|y|_{1}^{t}$. For rational $a / b>t,|x|_{1}<|y|_{1}^{a / b}$, so $\left|x^{b} / y^{a}\right|_{1}<1$. Then $\left|x^{b} / y^{a}\right|_{2}<1$, and $|x|_{2}<|y|_{2}^{a / b}$.
Similarly, $|x|_{2}>|y|_{2}^{a / b}$ for $a / b<t$. Thus, $|x|_{2}=|y|_{2}^{t}$, and

$$
|x|_{2}=|y|_{2}^{t}=\left(|y|_{1}^{\frac{\log |y|_{2}}{\left.\log |y|\right|_{1}}}\right)^{t}=\left(|y|_{1}^{t}\right)^{\frac{\log |y|_{2}}{\log |y|_{1}}}=|x|_{1}^{\frac{\log |y|_{2}}{\left.\log |y|\right|_{1}}} / / /
$$

Thus, as a corollary, for $|*|_{1}$ and $|*|_{2}$ topologically inequivalent, there exists $x \in k$ with $|x|_{1} \geq 1$ and $|x|_{2}<1$.

Similarly, let $|y|_{1}<1$ and $|y|_{2} \geq 1$. Then $z=y / x$ has $|z|_{1}<1$ and $|z|_{2}>1$.
Inductively, much as in Sun-Ze's theorem, suppose $|z|_{1}>1$ and $|z|_{j}<1$ for $2 \leq j \leq n$, and find z^{\prime} such that $\left|z^{\prime}\right|_{1}>1$ and $\left|z^{\prime}\right|_{j}<1$ for $2 \leq j \leq n+1$. Let $|w|_{1}>1$ and $|w|_{n+1}<1$. There are two cases: for $|z|_{n+1} \leq 1$, then $z^{\prime}=w \cdot z^{\ell}$ is as desired, for large ℓ. For $|z|_{n+1}>1, z^{\prime}=w \cdot z^{\ell} /\left(1+z^{\ell}\right)$ is as desired, for large ℓ.
So there exist z_{1}, \ldots, z_{n} with $\left|z_{j}\right|>1$ while $\left|z_{j}\right|_{j^{\prime}} \leq 1$ for $j^{\prime} \neq j$. Then $z_{j}^{\ell} /\left(1+z_{j}^{\ell}\right)$ goes to 1 at $|*|_{j}$, and to 0 in the other topologies. Thus, for large-enough ℓ,
$x_{1} \cdot \frac{z_{1}^{\ell}}{1+z_{1}^{\ell}}+\ldots+x_{n} \cdot \frac{z_{n}^{\ell}}{1+z_{n}^{\ell}} \longrightarrow x_{j} \quad$ (in the $j^{t h}$ topology)
This proves the (weak) approximation theorem.

Recall that the ring of adeles $\mathbb{A}=\mathbb{A}_{k}$ of k is

$$
\mathbb{A}=\mathbb{A}_{k}=\operatorname{colim}_{S}\left(\prod_{v \in S} k_{v} \times \prod_{v \notin S} \mathfrak{o}_{v}\right)
$$

Claim: Imbedding k diagonally in \mathbb{A}_{k}, by

$$
\alpha \longrightarrow(\ldots, \alpha, \ldots) \in \mathbb{A}_{k}
$$

the image of k is discrete, and the quotient \mathbb{A} / k is compact.
Proof: Recall that a topological group is a group with a locallycompact Hausdorff topology in which the group operation and inverse are continuous. (Perhaps counter-intuitively, this disqualifies infinite-dimensional topological vectorspaces!) Usually a topological group will have a countable basis.
For abelian topological group G and (topologically) closed subgroup H, the quotient G / H is a topological group. If H were not closed, the quotient would fail to be Hausdorff.

In topological groups G (as in topological vector spaces), to describe a topology it suffices to give a local basis of neighborhoods at the identity $e \in G$: for all $g \in G$, the map $h \rightarrow g h$ is continuous (by definition), and has continuous inverse $h \rightarrow g^{-1} h$, so is a homeomorphism. Thus, for basis $\left\{N_{j}\right\}$ of neighborhoods of $e,\left\{g N_{j}\right\}$ is a basis of neighborhoods at g.
A subset Y of a topological space X is discrete when every point $y \in Y$ has a neighborhood N in X such that $N \cap Y=\{y\}$.
Claim: A subgroup Γ of a topological group G is discrete as a subset if and only if the identity e has a neighborhood N in G such that $N \cap \Gamma=\{e\}$.
Proof of Claim: Discreteness certainly implies that e has such a neighborhood. For any other $\gamma \in \Gamma$,

$$
\gamma N \cap \Gamma=\gamma \cdot\left(N \cap \gamma^{-1} \Gamma\right)=\gamma \cdot(N \cap \Gamma)=\gamma \cdot\{e\}=\{\gamma\}
$$

Thus, every point of Γ is isolated when e is.

Claim: A discrete subgroup Γ of G is closed.
Note: A discrete subset need not be closed: $\left\{\frac{1}{n}: 1 \leq n \in \mathbb{Z}\right\}$ is discrete in \mathbb{R} but is not closed.

Proof of claim: Let N be a neighborhood of e in G meeting Γ just at e. By continuity of the group operation and inversion in G, there is a neighborhood U of e such that $U^{-1} \cdot U \subset N$. Suppose $g \notin \Gamma$ were in the closure of Γ in G. Then $g U$ contains two distinct elements γ, δ of Γ. But

$$
\gamma^{-1} \cdot \delta \in(g U)^{-1} \cdot(g U)=N^{-1} \cdot N \subset N
$$

contradiction. Thus, Γ is closed in G.
Returning to proving k is discrete in $\mathbb{A}=\mathbb{A}_{k}$, it suffices to find a neighborhood N of $0 \in \mathbb{A}$ meeting k just at 0 .

To begin, let

$$
N_{\mathrm{fin}}=\prod_{v \mid \infty} k_{v} \times \prod_{v<\infty} \mathfrak{o}_{v}=\text { open neighborhood of } 0 \text { in } \mathbb{A}
$$

$N_{\text {fin }} \cap k=\mathfrak{o}$, since requiring local integrality everywhere implies global integrality (\mathfrak{o} is Dedekind). Then it suffices to show that the projection of \mathfrak{o} to $\prod_{v \mid \infty} k_{v}=k \otimes_{\mathbb{Q}} \mathbb{R}$ is discrete there.
We showed that \mathfrak{o} is a free \mathbb{Z}-module of $\operatorname{rank}[k: \mathbb{Q}]$, and that a \mathbb{Z}-basis $\left\{e_{1}, \ldots, e_{n}\right\}$ is a \mathbb{Q}-basis of k. Because extending scalars preserves free-ness, $\left\{e_{1}, \ldots, e_{n}\right\}$ is an \mathbb{R}-basis of $k \otimes_{\mathbb{Q}} \mathbb{R}$.

This reduces the question to a more classical one: given an \mathbb{R} basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of an \mathbb{R} vector space V, show that the lattice $\Lambda=\bigoplus_{j} \mathbb{Z} e_{j}$ is discrete in V.
Conveniently, by now we know that a finite-dimensional \mathbb{R} vectorspace has a unique (appropriate) topology, so, by changing coordinates, we can suppose the e_{j} are the standard basis of \mathbb{R}^{n}, so $\Lambda=\mathbb{Z}^{n}$, and \mathbb{R}^{n} is given the usual metric topology. Any ball of radius <1 at 0 meets \mathbb{Z}^{n} just at 0 , proving discreteness.

To show compactness of \mathbb{A} / k, in a similar fashion: first, show that, given $\alpha \in \mathbb{A}$, there is $x \in k$ such that $\alpha-x \in \prod_{v \mid \infty} k_{v} \times$ $\prod_{v<\infty} \mathfrak{o}_{v}$. Let $0 \neq \ell \in \mathbb{Z}$ such that $\ell \alpha \in \mathfrak{o}_{v}$ at all $v<\infty$. With $\ell \mathfrak{o}=\prod_{j} \mathfrak{p}_{j}^{e_{j}}$ with $0<e_{j} \in \mathbb{Z}$. By Sun-Ze, there is $y \in \mathfrak{o}$ such that $y-\ell \alpha_{\mathfrak{p}_{j}} \in \mathfrak{p}_{j}^{e_{j}} \cdot \mathfrak{o}_{\mathfrak{p}_{j}}$ for all j. Then $\ell^{-1} y-\alpha$ is locally integral at all finite places, so $x=\ell^{-1} y \in k$ is the desired element.
That is, \mathbb{A} / k has representatives in $\prod_{v \mid \infty} k_{v} \times \prod_{v<\infty} \mathfrak{o}_{v}$. By Tychonoff, the latter is compact.
Again, a \mathbb{Z}-basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of \mathfrak{o} is an \mathbb{R}-basis of the real vector space $k_{\infty}=\prod_{v \mid \infty} k_{v}$. Every element of k_{∞} has a representative $\sum_{j} c_{j} e_{j}$ with $0 \leq c_{j} \leq 1$. The collection of such elements is a continuous image (by scalar multiplication and vector addition) of the compact set $[0,1]^{n}$, so is compact.

Remark: Recall that \mathbb{A}_{k} / k is also the solenoid $\lim _{\mathfrak{a}} k_{\infty} / \mathfrak{a}$, the limit taken over non-zero ideals \mathfrak{a} of \mathfrak{o}. This gives another proof of the compactness, again by Tychonoff.

