Product formula, approximation, ... [cont'd]

For function fields $k = \mathbb{F}_q(x)$, for *p*-adic *v* associated to nonzero prime $\mathfrak{p} = \varpi \mathbb{F}_q[x]$, the same sort of definition of norm is appropriate:

$$|f|_v = N \mathfrak{p}^{-\operatorname{ord}_{\mathfrak{p}} f} = q^{-\operatorname{deg} \varpi \cdot \operatorname{ord}_{\mathfrak{p}} f}$$

The *infinite* norm $|*|_{\infty}$ corresponding to the prime ideal \mathfrak{q} generated by 1/x in $\mathfrak{o}_{\infty} = \mathbb{F}_q[1/x]$, is

$$|f|_v = q^{+\deg f} = |\mathfrak{o}_\infty/\mathfrak{q}|^{-\operatorname{ord}_\mathfrak{q} f}$$

since $a_n x^n + \ldots + a_o = (\frac{1}{x})^{-n} (a_n + \ldots + a_o (\frac{1}{x})^n)$

Theorem: (Product formula for number fields)

$$\prod_{\text{aces } w \text{ of } k} |x|_w = \prod_{\text{places } v \text{ of } \mathbb{Q}} \prod_{w|v} |N_{\mathbb{Q}_v}^{k_w}(x)|_v = 1 \quad (\text{for } x \in k^{\times})$$

pla

because, for K/k an extension of number fields, the *global* norm is the product of the *local* norms:

$$\prod_{w|v} N_{k_v}^{K_w}(x) = N_k^K(x) \quad (\text{for } x \in K, \text{ abs value } v \text{ of } k)$$

Corollaries of proof: The *global* degree is the sum of the *local* degrees:

$$\sum_{w|v} [K_w : k_v] = [K : k]$$

The global trace is the sum of the local traces:

$$\operatorname{tr}_{k}^{K}(x) = \operatorname{tr}_{k_{v}}^{K_{w}}(x) \qquad (\text{for } x \in K)$$

Classification of completions (often attributed to Ostrowski) : The topologically inequivalent (non-discrete) norms on \mathbb{Q} are the usual \mathbb{R} norm and the *p*-adic \mathbb{Q}_p 's.

Proof: Let |*| be a norm on \mathbb{Q} . It turns out (intelligibly, if we guess the answer) that the watershed is whether |*| is *bounded* or *unbounded* on \mathbb{Z} . That is, the statement of the theorem could be sharpened to say: norms on \mathbb{Q} bounded on \mathbb{Z} are topologically equivalent to *p*-adic norms, and norms unbounded on \mathbb{Z} are topologically equivalent to the norm from \mathbb{R} .

For |*| bounded on \mathbb{Z} , in fact $|x| \leq 1$ for $x \in \mathbb{Z}$, since otherwise $|x^n| = |x|^n \to +\infty$ as $n \to +\infty$.

To say that |*| is *bounded* on Z, but *not discrete*, implies |x| < 1 for some $x \in \mathbb{Z}$, since otherwise d(x, y) = |x - y| = 1 for $x \neq y$, giving the discrete topology.

Then, by unique factorization, |p| < 1 for some prime number p. If there were a second prime q with |q| < 1, with $a, b \in \mathbb{Z}$ such that $ap^m + bq^n = 1$ for positive integers m, n, then

$$1 = |1| = |ap^{m} + bq^{n}| \le |a| \cdot |p|^{m} + |b| \cdot |q|^{n} \le |p|^{m} + |q|^{n}$$

This is impossible if both |p| < 1 and |q| < 1, by taking m, n large. Thus, for |*| bounded on \mathbb{Z} , there is a unique prime p such that |p| < 1. Up to normalization, such a norm is the p-adic norm.

Next, claim that if $|a| \leq 1$ for some $1 < a \in \mathbb{Z}$, then |*| is bounded on \mathbb{Z} . Given $1 < b \in \mathbb{Z}$, write b^n in an *a*-ary expansion

$$b^n = c_o + c_1 a + c_2 a^2 + \ldots + c_\ell a^\ell$$
 (with $0 \le c_i < a$)

and apply the triangle inequality,

$$|b|^n \leq (\ell+1) \cdot \underbrace{(1+\ldots+1)}_a \leq (n \log_a b + 1) \cdot a$$

Taking n^{th} roots and letting $n \to +\infty$ gives $|b| \leq 1$, and |*| is bounded on \mathbb{Z} .

The remaining scenario is $|a| \ge 1$ for $a \in \mathbb{Z}$. For a > 1, b > 1, the *a*-ary expansion

$$b^n = c_o + c_1 a + c_2 a^2 + \ldots + c_\ell a^\ell$$
 (with $0 \le c_i < a$)

with $|a| \ge 1$ gives

$$|b|^n \leq (\ell+1) \cdot \underbrace{(1+\ldots+1)}_{a} \cdot |a|^{\ell} \leq (n \log_a b + 1) \cdot a \cdot |a|^{n \log_a b + 1}$$

Taking n^{th} roots and letting $n \to +\infty$ gives $|b| \leq |a|^{\log_a b}$. Similarly, $|a| \leq |b|^{\log_b a}$. Since |*| is not bounded on \mathbb{Z} , there is C > 1 such that $|a| = C^{\log |a|}$ for all $0 \neq a \in \mathbb{Z}$. Up to normalization, this is the usual absolute value for \mathbb{R} . ///

Remark: A similar argument classifies non-discrete norms on $\mathbb{F}_q(x)$ up to topological equivalence.

Corollary: Up to topological equivalence, every norm on a number field is either \mathfrak{p} -adic or arises from \mathbb{R} and \mathbb{C} . ///

Remark: Note that the product-formula norms K_w on an extension K of k are not the extensions of the norm k_v with w|v. This is visible on the bottom completion k_v :

$$|x|_{w} = |N_{k_{v}}^{K_{w}}(x)|_{v} = |x^{[K:k]}|_{v} = |x|_{v}^{[K:k]}$$
 (for $x \in k_{v}$)

Indeed, on other occasions, the *extension* is the appropriate object, instead of composing with Galois norm.

Context should clarify what norm is appropriate. Typically, *multiplicative* computations/discussions use the product-formula norm, while genuine *metric* computations/discussions use the *extension*.

Additive (Weak) Approximation: (Artin-Whaples, Lang) Let v_1, \ldots, v_n index pairwise topologically inequivalent norms on a field k. Given $x_1, \ldots, x_n \in k$ and $\varepsilon > 0$, there exists $x \in k$ such that

 $|x - x_j|_{v_j} < \varepsilon$ (for $j = 1, \dots, n$)

Remark: When the norms are *p*-adic, arising from prime ideals in a Dedekind ring \mathfrak{o} inside k, this is Sun-Ze's theorem.

Proof: First, we need to refine the notion of topological inequivalence, to exclude the possibility that the $|*|_1$ topology τ_1 is strictly finer than the $|*|_2$ -topology τ_2 . This uses the same proof mechanism as the earlier result showing that with two norms giving the *same* topology, each is a power of the other.

Suppose that the identity $(k, \tau_1) \to (k, \tau_2)$ is continuous. Then $|x|_1 < 1$ implies $x^n \to 0$ in the $|*|_1$ topology. Thus, $x^n \to 0$ in the $|*|_2$ topology, so $|x|_2 < 1$. Similarly, if $|x|_1 > 1$, then $|x^{-1}|_1 < 1$, so $|x|_2 > 1$.

Fix y with $|y|_1 > 1$. Given $|x|_1 \ge 1$, there is $t \in \mathbb{R}$ such that $|x|_1 = |y|_1^t$. For rational a/b > t, $|x|_1 < |y|_1^{a/b}$, so $|x^b/y^a|_1 < 1$. Then $|x^b/y^a|_2 < 1$, and $|x|_2 < |y|_2^{a/b}$.

Similarly, $|x|_2 > |y|_2^{a/b}$ for a/b < t. Thus, $|x|_2 = |y|_2^t$, and

$$|x|_{2} = |y|_{2}^{t} = \left(|y|_{1}^{\frac{\log|y|_{2}}{\log|y|_{1}}}\right)^{t} = \left(|y|_{1}^{t}\right)^{\frac{\log|y|_{2}}{\log|y|_{1}}} = |x|_{1}^{\frac{\log|y|_{2}}{\log|y|_{1}}} ///$$

Thus, as a corollary, for $|*|_1$ and $|*|_2$ topologically inequivalent, there exists $x \in k$ with $|x|_1 \ge 1$ and $|x|_2 < 1$.

Similarly, let $|y|_1 < 1$ and $|y|_2 \ge 1$. Then z = y/x has $|z|_1 < 1$ and $|z|_2 > 1$.

Inductively, much as in Sun-Ze's theorem, suppose $|z|_1 > 1$ and $|z|_j < 1$ for $2 \le j \le n$, and find z' such that $|z'|_1 > 1$ and $|z'|_j < 1$ for $2 \le j \le n + 1$. Let $|w|_1 > 1$ and $|w|_{n+1} < 1$. There are two cases: for $|z|_{n+1} \le 1$, then $z' = w \cdot z^{\ell}$ is as desired, for large ℓ . For $|z|_{n+1} > 1$, $z' = w \cdot z^{\ell}/(1+z^{\ell})$ is as desired, for large ℓ .

So there exist z_1, \ldots, z_n with $|z_j| > 1$ while $|z_j|_{j'} \le 1$ for $j' \ne j$. Then $z_j^{\ell}/(1+z_j^{\ell})$ goes to 1 at $|*|_j$, and to 0 in the other topologies. Thus, for large-enough ℓ ,

$$x_1 \cdot \frac{z_1^{\ell}}{1 + z_1^{\ell}} + \ldots + x_n \cdot \frac{z_n^{\ell}}{1 + z_n^{\ell}} \longrightarrow x_j \qquad \text{(in the } j^{th} \text{ topology)}$$

This proves the (weak) approximation theorem.

|||

Recall that the ring of **adeles** $\mathbb{A} = \mathbb{A}_k$ of k is

$$\mathbb{A} = \mathbb{A}_k = \operatorname{colim}_S \left(\prod_{v \in S} k_v \times \prod_{v \notin S} \mathfrak{o}_v \right)$$

Claim: Imbedding k diagonally in A_k , by

 $\alpha \longrightarrow (\dots, \alpha, \dots) \in \mathbf{A}_k$

the image of k is *discrete*, and the quotient A/k is *compact*.

Proof: Recall that a *topological group* is a group with a locallycompact Hausdorff topology in which the group operation and inverse are continuous. (Perhaps counter-intuitively, this disqualifies infinite-dimensional topological vectorspaces!) Usually a topological group will have a *countable basis*.

For *abelian* topological group G and (topologically) *closed* subgroup H, the quotient G/H is a topological group. If H were not closed, the quotient would fail to be Hausdorff.

In topological groups G (as in topological vector spaces), to describe a topology it suffices to give a local basis of neighborhoods at the identity $e \in G$: for all $g \in G$, the map $h \to gh$ is continuous (by definition), and has continuous inverse $h \to g^{-1}h$, so is a homeomorphism. Thus, for basis $\{N_j\}$ of neighborhoods of e, $\{gN_j\}$ is a basis of neighborhoods at g.

A subset Y of a topological space X is discrete when every point $y \in Y$ has a neighborhood N in X such that $N \cap Y = \{y\}$.

Claim: A subgroup Γ of a topological group G is discrete as a subset if and only if the identity e has a neighborhood N in G such that $N \cap \Gamma = \{e\}$.

Proof of Claim: Discreteness certainly implies that e has such a neighborhood. For any other $\gamma \in \Gamma$,

$$\gamma N \cap \Gamma = \gamma \cdot (N \cap \gamma^{-1} \Gamma) = \gamma \cdot (N \cap \Gamma) = \gamma \cdot \{e\} = \{\gamma\}$$

Thus, every point of Γ is isolated when e is.

Claim: A discrete subgroup Γ of G is closed.

Note: A discrete sub*set* need not be closed: $\{\frac{1}{n} : 1 \leq n \in \mathbb{Z}\}$ is discrete in \mathbb{R} but is not closed.

Proof of claim: Let N be a neighborhood of e in G meeting Γ just at e. By continuity of the group operation and inversion in G, there is a neighborhood U of e such that $U^{-1} \cdot U \subset N$. Suppose $g \notin \Gamma$ were in the closure of Γ in G. Then gU contains two distinct elements γ, δ of Γ . But

$$\gamma^{-1} \cdot \delta \in (gU)^{-1} \cdot (gU) = N^{-1} \cdot N \subset N$$

contradiction. Thus, Γ is closed in G.

|||

Returning to proving k is discrete in $A = A_k$, it suffices to find a neighborhood N of $0 \in A$ meeting k just at 0.

To begin, let

 $N_{\text{fin}} = \prod_{v \mid \infty} k_v \times \prod_{v < \infty} \mathfrak{o}_v = \text{open neighborhood of 0 in A}$

 $N_{\text{fin}} \cap k = \mathfrak{o}$, since requiring local integrality everywhere implies global integrality (\mathfrak{o} is Dedekind). Then it suffices to show that the projection of \mathfrak{o} to $\prod_{v \mid \infty} k_v = k \otimes_{\mathbb{Q}} \mathbb{R}$ is discrete *there*.

We showed that \mathfrak{o} is a free \mathbb{Z} -module of rank $[k : \mathbb{Q}]$, and that a \mathbb{Z} -basis $\{e_1, \ldots, e_n\}$ is a \mathbb{Q} -basis of k. Because extending scalars preserves free-ness, $\{e_1, \ldots, e_n\}$ is an \mathbb{R} -basis of $k \otimes_{\mathbb{Q}} \mathbb{R}$.

This reduces the question to a more classical one: given an \mathbb{R} basis $\{e_1, \ldots, e_n\}$ of an \mathbb{R} vector space V, show that the *lattice* $\Lambda = \bigoplus_j \mathbb{Z} e_j$ is *discrete* in V.

Conveniently, by now we know that a finite-dimensional \mathbb{R} -vectorspace has a unique (appropriate) topology, so, by changing coordinates, we can suppose the e_j are the *standard* basis of \mathbb{R}^n , so $\Lambda = \mathbb{Z}^n$, and \mathbb{R}^n is given the usual metric topology. Any ball of radius < 1 at 0 meets \mathbb{Z}^n just at 0, proving discreteness.

To show compactness of \mathbb{A}/k , in a similar fashion: first, show that, given $\alpha \in \mathbb{A}$, there is $x \in k$ such that $\alpha - x \in \prod_{v \mid \infty} k_v \times$ $\prod_{v < \infty} \mathfrak{o}_v$. Let $0 \neq \ell \in \mathbb{Z}$ such that $\ell \alpha \in \mathfrak{o}_v$ at all $v < \infty$. With $\ell \mathfrak{o} = \prod_j \mathfrak{p}_j^{e_j}$ with $0 < e_j \in \mathbb{Z}$. By Sun-Ze, there is $y \in \mathfrak{o}$ such that $y - \ell \alpha_{\mathfrak{p}_j} \in \mathfrak{p}_j^{e_j} \cdot \mathfrak{o}_{\mathfrak{p}_j}$ for all j. Then $\ell^{-1}y - \alpha$ is locally integral at all finite places, so $x = \ell^{-1}y \in k$ is the desired element.

That is, A/k has representatives in $\prod_{v|\infty} k_v \times \prod_{v<\infty} \mathfrak{o}_v$. By Tychonoff, the latter is compact.

Again, a \mathbb{Z} -basis $\{e_1, \ldots, e_n\}$ of \mathfrak{o} is an \mathbb{R} -basis of the real vector space $k_{\infty} = \prod_{v \mid \infty} k_v$. Every element of k_{∞} has a representative $\sum_j c_j e_j$ with $0 \leq c_j \leq 1$. The collection of such elements is a continuous image (by scalar multiplication and vector addition) of the compact set $[0, 1]^n$, so is compact. ///

Remark: Recall that A_k/k is also the **solenoid** $\lim_{\mathfrak{a}} k_{\infty}/\mathfrak{a}$, the limit taken over non-zero ideals \mathfrak{a} of \mathfrak{o} . This gives another proof of the compactness, again by Tychonoff.