[Truncated because of teaching evaluations...] Recap:
Recall the product formula for \mathbb{Q} :

$$
\prod_{v \leq \infty}|x|_{v}=1 \quad\left(\text { for } x \in \mathbb{Q}^{\times}\right)
$$

That is, with $|*|_{\infty}$ the 'usual' absolute value on \mathbb{R},

$$
|x|_{\infty} \cdot \prod_{p \text { prime }}|x|_{p}=1 \quad\left(\text { for } x \in \mathbb{Q}^{\times}\right)
$$

To have the product formula hold for number fields k : for \mathfrak{p} lying over p, letting $k_{\mathfrak{p}}$ be the \mathfrak{p}-adic completion of k and Q_{p} the usual p-adic completion of \mathbb{Q},

$$
|x|_{\mathfrak{p}}=\left|N_{\mathbb{Q}_{p}}^{k_{\mathfrak{p}}} x\right|_{p}=N \mathfrak{p}^{-\operatorname{ord}_{\mathfrak{p}} x}
$$

Similarly, for archimedean k_{v}, define (or renormalize)

$$
|x|_{v}=\left|N_{\mathbb{R}}^{k_{v}} x\right|_{\infty}
$$

This product-formula normalization of the norm on \mathbb{C} (harmlessly) fails to satisfy the triangle inequality:

$$
|x|_{\mathbb{C}}=\left|N_{\mathbb{R}}^{\mathbb{C}} x\right|_{\infty}=x \cdot \bar{x}=\text { square of usual complex abs value }
$$

For example,

$$
|2|_{\mathbb{C}}=\left|N_{\mathbb{R}}^{\mathbb{C}} 2\right|_{\mathbb{R}}=|4|_{\mathbb{R}}=4>1+1=|1|_{\mathbb{C}}+|1|_{\mathbb{C}}
$$

For function fields $k=\mathbb{F}_{q}(x)$, for p-adic v associated to nonzero prime $\mathfrak{p}=\varpi \mathbb{F}_{q}[x]$, the same sort of definition of norm is appropriate:

$$
|f|_{v}=N \mathfrak{p}^{-\operatorname{ord}_{\mathfrak{p}} f}=q^{-\operatorname{deg} \varpi \cdot \operatorname{ord}_{\mathfrak{p}} f}
$$

The infinite norm $|*|_{\infty}$ corresponding to the prime ideal \mathfrak{q} generated by $1 / x$ in $\mathfrak{o}_{\infty}=\mathbb{F}_{q}[1 / x]$, is

$$
|f|_{v}=q^{+\operatorname{deg} f}=\left|\mathfrak{o}_{\infty} / \mathfrak{q}\right|^{-\operatorname{ord}_{\mathfrak{q}} f}
$$

since $a_{n} x^{n}+\ldots+a_{o}=\left(\frac{1}{x}\right)^{-n}\left(a_{n}+\ldots+a_{o}\left(\frac{1}{x}\right)^{n}\right)$

Theorem: (Product formula for number fields)

$$
\prod_{\operatorname{places} w \text { of } k}|x|_{w}=\prod_{\text {places } v \text { of } \mathbb{Q}} \prod_{w \mid v}\left|N_{\mathbb{Q}_{v}}^{k_{w}}(x)\right|_{v}=1 \quad\left(\text { for } x \in k^{\times}\right)
$$

because, for K / k an extension of number fields, the global norm is the product of the local norms:

$$
\prod_{w \mid v} N_{k_{v}}^{K_{w}}(x)=N_{k}^{K}(x) \quad(\text { for } x \in K, \text { abs value } v \text { of } k)
$$

Corollaries of proof: The sum of the local degrees is the global degree:

$$
\sum_{w \mid v}\left[K_{w}: k_{v}\right]=[K: k]
$$

The global trace is the sum of the local traces:

$$
\operatorname{tr}_{k}^{K}(x)=\operatorname{tr}_{k_{v}}^{K_{w}}(x) \quad(\text { for } x \in K)
$$

Why do we care about formulas $\prod_{v} \operatorname{symbol}_{v}(x)=1$?

The idele group $\mathbb{J}=\mathbb{J}_{k}$ of k is a colimit over finite sets S of places containing archimedean places:

$$
\mathbb{J}=\mathbb{J}_{k}=\operatorname{colim}_{S}\left(\prod_{v \in S} k_{v}^{\times} \times \prod_{v \notin S} \mathfrak{o}_{v}^{\times}\right)
$$

The idele group surjects to the group of fractional ideals of k, by

$$
\alpha=\left\{\alpha_{v}\right\} \longrightarrow \prod_{v<\infty}\left(\left(\alpha_{v} \cdot \mathfrak{o}_{v}\right) \cap k\right)
$$

k^{\times}maps to principal fractional ideals, so the idele class group \mathbb{J} / k^{\times}surjects to the ideal class group C_{k}. It also parametrizes generalized class groups.
An idele class character, or Hecke character, or grossencharacter, is a continuous group hom $\mathbb{J} / k^{\times} \rightarrow \mathbb{C}^{\times}$. Some of these characters arise from composition with ideal class group characters χ, by

$$
\mathbb{J} / k^{\times} \longrightarrow C_{k} \xrightarrow{\chi} \mathbb{C}^{\times}
$$

The product formula asserts that the idele norm

$$
x=\left\{x_{v}\right\} \quad \longrightarrow|x|=\prod_{v \leq \infty}\left|x_{v}\right|_{v} \quad\left(\text { for } x \in \mathbb{J}_{k}\right)
$$

factors through \mathbb{J} / k^{\times}. Thus, for $s \in \mathbb{C}$, we have an idele class character

$$
x \longrightarrow|x|^{s} \quad\left(\text { for } x \in \mathbb{J} / k^{\times}\right)
$$

These characters enter the Iwasawa-Tate modern version of Riemann's argument for meromorphic continuation and functional equation of zeta functions and (abelian) L-functions.

Proving that an infinite product of almost-all 1's is equal to 1 should remind us of reciprocity laws, although reciprocity laws are subtler than the product formula. Recall
quadratic norm residue symbols \subset idele class characters \Downarrow
quadratic Hilbert symbol reciprocity
\Downarrow quadratic reciprocity (general)

Classification of completions (often attributed to Ostrowski) : The topologically inequivalent (non-discrete) norms on \mathbb{Q} are the usual \mathbb{R} norm and the p-adic \mathbb{Q}_{p} 's.
Proof: Let $|*|$ be a norm on \mathbb{Q}. It turns out (intelligibly, if we guess the answer) that the watershed is whether $|*|$ is bounded or unbounded on \mathbb{Z}. That is, the statement of the theorem could be sharpened to say: norms on \mathbb{Q} bounded on \mathbb{Z} are topologically equivalent to p-adic norms, and norms unbounded on \mathbb{Z} are topologically equivalent to the norm from \mathbb{R}.
For $|*|$ bounded on \mathbb{Z}, in fact $|x| \leq 1$ for $x \in \mathbb{Z}$, since otherwise $\left|x^{n}\right|=|x|^{n} \rightarrow+\infty$ as $n \rightarrow+\infty$.
To say that $|*|$ is bounded on \mathbb{Z}, but not discrete, implies $|x|<1$ for some $x \in \mathbb{Z}$, since otherwise $d(x, y)=|x-y|=1$ for $x \neq y$, giving the discrete topology.

Then, by unique factorization, $|p|<1$ for some prime number p. If there were a second prime q with $|q|<1$, with $a, b \in \mathbb{Z}$ such that $a p^{m}+b q^{n}=1$ for positive integers m, n, then

$$
1=|1|=\left|a p^{m}+b q^{n}\right| \leq|a| \cdot|p|^{m}+|b| \cdot|q|^{n} \leq|p|^{m}+|q|^{n}
$$

This is impossible if both $|p|<1$ and $|q|<1$, by taking m, n large. Thus, for $|*|$ bounded on \mathbb{Z}, there is a unique prime p such that $|p|<1$. Up to normalization, such a norm is the p-adic norm.
Next, claim that if $|a| \leq 1$ for some $1<a \in \mathbb{Z}$, then $|*|$ is bounded on \mathbb{Z}. Given $1<b \in \mathbb{Z}$, write b^{n} in an a-ary expansion

$$
b^{n}=c_{o}+c_{1} a+c_{2} a^{2}+\ldots+c_{\ell} a^{\ell} \quad\left(\text { with } 0 \leq c_{i}<a\right)
$$

and apply the triangle inequality,

$$
|b|^{n} \leq(\ell+1) \cdot \underbrace{(1+\ldots+1)}_{a} \leq\left(n \log _{a} b+1\right) \cdot a
$$

Taking $n^{\text {th }}$ roots and letting $n \rightarrow+\infty$ gives $|b| \leq 1$, and $|*|$ is bounded on \mathbb{Z}.

The remaining scenario is $|a| \geq 1$ for $a \in \mathbb{Z} \ldots$... [cont'd]

