[Truncated because of teaching evaluations...] Recap: Recall the product formula for \mathbb{Q} :

$$\prod_{v \le \infty} |x|_v = 1 \qquad \text{(for } x \in \mathbb{Q}^\times\text{)}$$

That is, with $|*|_{\infty}$ the 'usual' absolute value on \mathbb{R} ,

$$|x|_{\infty} \cdot \prod_{p \text{ prime}} |x|_p = 1 \quad (\text{for } x \in \mathbb{Q}^{\times})$$

To have the product formula hold for number fields k: for \mathfrak{p} lying over p, letting $k_{\mathfrak{p}}$ be the \mathfrak{p} -adic completion of k and Q_p the usual p-adic completion of \mathbb{Q} ,

$$|x|_{\mathfrak{p}} = |N_{\mathbb{Q}_p}^{k_{\mathfrak{p}}} x|_p = N \mathfrak{p}^{-\mathrm{ord}_{\mathfrak{p}} x}$$

Similarly, for archimedean k_v , define (or renormalize)

$$|x|_v = |N_{\mathbb{R}}^{k_v} x|_{\infty}$$

This product-formula normalization of the norm on \mathbb{C} (harmlessly) fails to satisfy the triangle inequality:

 $|x|_{\mathbb{C}} = |N_{\mathbb{R}}^{\mathbb{C}} x|_{\infty} = x \cdot \overline{x} = square \text{ of usual complex abs value}$ For example,

$$|2|_{\mathbb{C}} = |N_{\mathbb{R}}^{\mathbb{C}}2|_{\mathbb{R}} = |4|_{\mathbb{R}} = 4 > 1+1 = |1|_{\mathbb{C}} + |1|_{\mathbb{C}}$$

For **function fields** $k = \mathbb{F}_q(x)$, for *p*-adic *v* associated to nonzero prime $\mathfrak{p} = \varpi \mathbb{F}_q[x]$, the same sort of definition of norm is appropriate:

$$|f|_v = N\mathfrak{p}^{-\operatorname{ord}_\mathfrak{p} f} = q^{-\operatorname{deg} \varpi \cdot \operatorname{ord}_\mathfrak{p} f}$$

The *infinite* norm $|*|_{\infty}$ corresponding to the prime ideal \mathfrak{q} generated by 1/x in $\mathfrak{o}_{\infty} = \mathbb{F}_q[1/x]$, is

$$|f|_v = q^{+\deg f} = |\mathfrak{o}_\infty/\mathfrak{q}|^{-\operatorname{ord}_\mathfrak{q}f}$$

since $a_n x^n + \ldots + a_o = (\frac{1}{x})^{-n} (a_n + \ldots + a_o (\frac{1}{x})^n)$

Theorem: (Product formula for number fields)

$$\prod_{\text{places } w \text{ of } k} |x|_w = \prod_{\text{places } v \text{ of } \mathbb{Q}} \prod_{w|v} |N_{\mathbb{Q}_v}^{k_w}(x)|_v = 1 \qquad (\text{for } x \in k^{\times})$$

because, for K/k an extension of number fields, the *global* norm is the product of the *local* norms:

$$\prod_{w|v} N_{k_v}^{K_w}(x) = N_k^K(x) \quad (\text{for } x \in K, \text{ abs value } v \text{ of } k)$$

Corollaries of proof: The sum of the *local* degrees is the *global* degree:

$$\sum_{w|v} [K_w : k_v] = [K : k]$$

The global trace is the sum of the local traces:

$$\operatorname{tr}_{k}^{K}(x) = \operatorname{tr}_{k_{v}}^{K_{w}}(x) \qquad (\text{for } x \in K)$$

Why do we care about formulas $\prod_{v} symbol_{v}(x) = 1$?

The **idele group** $\mathbb{J} = \mathbb{J}_k$ of k is a colimit over finite sets S of places containing archimedean places:

$$\mathbb{J} = \mathbb{J}_k = \operatorname{colim}_S \left(\prod_{v \in S} k_v^{\times} \times \prod_{v \notin S} \mathfrak{o}_v^{\times} \right)$$

The idele group *surjects* to the group of fractional ideals of k, by

$$\alpha = \{\alpha_v\} \quad \longrightarrow \quad \prod_{v < \infty} \left((\alpha_v \cdot \mathfrak{o}_v) \cap k \right)$$

 k^{\times} maps to *principal* fractional ideals, so the **idele class group** \mathbb{J}/k^{\times} surjects to the *ideal class group* C_k . It also parametrizes *generalized* class groups.

An idele class character, or Hecke character, or grossencharacter, is a continuous group hom $\mathbb{J}/k^{\times} \to \mathbb{C}^{\times}$. Some of these characters arise from composition with *ideal class group* characters χ , by

$$\mathbb{J}/k^{\times} \longrightarrow C_k \xrightarrow{\chi} \mathbb{C}^{\times}$$

The product formula asserts that the ${\bf idele\ norm}$

$$x = \{x_v\} \longrightarrow |x| = \prod_{v < \infty} |x_v|_v \quad (\text{for } x \in \mathbb{J}_k)$$

factors through \mathbb{J}/k^{\times} . Thus, for $s \in \mathbb{C}$, we have an idele class character

 $x \longrightarrow |x|^s$ (for $x \in \mathbb{J}/k^{\times}$)

These characters enter the Iwasawa-Tate modern version of Riemann's argument for meromorphic continuation and functional equation of zeta functions and (abelian) *L*-functions.

Proving that an infinite product of almost-all 1's is equal to 1 should remind us of *reciprocity laws*, although reciprocity laws are subtler than the product formula. Recall

quadratic norm residue symbols
$$\subset$$
 idele class characters
 $\downarrow \downarrow$
quadratic Hilbert symbol reciprocity
 $\downarrow \downarrow$
quadratic reciprocity (general)

Classification of completions (often attributed to Ostrowski) : The topologically inequivalent (non-discrete) norms on \mathbb{Q} are the usual \mathbb{R} norm and the *p*-adic \mathbb{Q}_p 's.

Proof: Let |*| be a norm on \mathbb{Q} . It turns out (intelligibly, if we guess the answer) that the watershed is whether |*| is *bounded* or *unbounded* on \mathbb{Z} . That is, the statement of the theorem could be sharpened to say: norms on \mathbb{Q} bounded on \mathbb{Z} are topologically equivalent to *p*-adic norms, and norms unbounded on \mathbb{Z} are topologically equivalent to the norm from \mathbb{R} .

For |*| bounded on \mathbb{Z} , in fact $|x| \leq 1$ for $x \in \mathbb{Z}$, since otherwise $|x^n| = |x|^n \to +\infty$ as $n \to +\infty$.

To say that |*| is *bounded* on \mathbb{Z} , but *not discrete*, implies |x| < 1 for some $x \in \mathbb{Z}$, since otherwise d(x, y) = |x - y| = 1 for $x \neq y$, giving the discrete topology.

Then, by unique factorization, |p| < 1 for some prime number p. If there were a second prime q with |q| < 1, with $a, b \in \mathbb{Z}$ such that $ap^m + bq^n = 1$ for positive integers m, n, then

$$1 = |1| = |ap^{m} + bq^{n}| \le |a| \cdot |p|^{m} + |b| \cdot |q|^{n} \le |p|^{m} + |q|^{n}$$

This is impossible if both |p| < 1 and |q| < 1, by taking m, n large. Thus, for |*| bounded on \mathbb{Z} , there is a unique prime p such that |p| < 1. Up to normalization, such a norm is the p-adic norm. Next, claim that if $|a| \leq 1$ for some $1 < a \in \mathbb{Z}$, then |*| is bounded on \mathbb{Z} . Given $1 < b \in \mathbb{Z}$, write b^n in an a-ary expansion

$$b^n = c_o + c_1 a + c_2 a^2 + \ldots + c_\ell a^\ell$$
 (with $0 \le c_i < a$)

and apply the triangle inequality,

$$|b|^n \leq (\ell+1) \cdot \underbrace{(1+\ldots+1)}_a \leq (n \log_a b + 1) \cdot a$$

Taking n^{th} roots and letting $n \to +\infty$ gives $|b| \leq 1$, and |*| is bounded on \mathbb{Z} .

The remaining scenario is $|a| \ge 1$ for $a \in \mathbb{Z}$ [cont'd]